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Abstract

In this thesis, we utilize probabilistic reasoning and simulation methods to determine

the optimal selection rule for the secretary problem with switch costs, in which a

known number of applicants appear sequentially in a random order, and the objective

is to maximize the sum of the qualities of all hired secretaries over all time. It is

assumed that the quality of each applicant is uniformly distributed and any hired

secretary can be replaced by a better qualified one at a constant switch cost. A

dynamic program is formulated and the optimal selection rule for the single secretary

case is solved. An approximate solution is given for the multiple secretary case, in

which we are allowed to have more than one secretary at a time. An experiment was

designed to simulate the interview process, in which respondents were sequentially

faced with random numbers that represent the qualities of different applicants. Finally,

the experimental results are compared against the optimal selection strategy.

Thesis Supervisor: Dan Ariely

Title: Alfred P. Sloan Professor of Behavioral Economics
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Chapter 1. Introduction

1.1 Overview of the Secretary Problem

In decision theory, the secretary problem is that of making selection decisions

on a known number of items of random quality which are presented sequentially. The

aim is to maximize the probability to selecting the best or to maximize the expected

payoffs. The decision to reject, once made is irrevocable.

One classic example is the hiring of a secretary. Job applicants are interviewed

in succession and the decision to hire is made immediately after the interview before

interviewing the remaining applicants. Applicants who are rejected would no longer

be available for hire. Other examples include choosing a spouse from a series of

suitors, and online auction problems whereby agents arrive and depart over time.

The secretary problem first appeared as a simple, partly recreational problem in

the late 1950's and early 1960's, but made its way into the mathematical community.

Because the problem is easy to state and has a striking solution, it attracted the

attention of many eminent mathematicians and statisticians. Since then, the problem

has been extended and generalized to many areas

1.1.1 Classical Secretary Problem

In the classical secretary problem a strategy is sought to maximize the

probability of selecting the best hire among n available applicants. What I term as the

classical secretary problem is as follows.

1. A known number of applicants with unknown qualities are to be interviewed

one by one in random order, all n! possible orders are equally likely.

2. The interviewer at any time, is able to rank the applicants who had been

1



interviewed in the order of desirability.

3. As each applicant is presented the interviewer must either accept her, in

which case the process stops, or reject her, in which case the next candidate

in the sequence is interviewed and the interviewer faces the same choice as

before.

4. All the applicants once rejected cannot later be recalled later. The interviewer

is satisfied with nothing but the best.

Because the interviewer is never able to go back and select a previously

interviewed applicant, he clearly has to balance the risk of stopping too soon and

accepting an apparently desirable applicant when in fact a better one is still to come,

against that of going on for too long and realizing that the best applicant has already

been rejected earlier on.

The state of the process at any time may be described by two numbers (i, r),

where i is the number of applicants so far interviewed and r is the relative rank of the

ith applicant among the first i applicants with rank 1 being the best in the classic

secretary problem. An applicant should be accepted only if he is relatively the best

among those who have already been observed, and this applicant is called a candidate.

Thus the ith applicant is a candidate if and only if r=1. If we accept a candidate at

stage i, the probability we win (i.e. hire the best secretary) is the same as the

probability that the best among the first i applicants is also the best among all

applicants. This is basically the probability that the best overall candidate overall

appears among the first i applicants, namely i/n. Letting y(i, r) denote the probability

of selecting an applicant with relative rank r, then if applicant i is a candidate,

y(i,1) =1 (1.1)
n

Let Vi denote the probability of winning using an optimal rule among rules

that pass up the first i applicants. Because the best rule among those that pass up the

2



first i+1 applicants is available among the rules that pass up only the first i applicants,

it is obvious that V > gK+. If the probability to select a candidate at stage i is greater

than Vi , then it is optimal to stop there. It is also optimal to stop with a candidate

after stage i, because (i+1)/n > jI/n > > V'. Therefore, an optimal rule may be

found among the rules of the following form: reject the first k-1 applicants and then

accept the next relatively best applicant, if such an applicant exists.

The probability of 'win' using this form of optimal rules is:

P(k) = ZP(ih is best and is selected)
i=k

=Zp(i'h is best)Z P(i'h is selected |i is best)
i=k i=k

"~ 1k 1

nk I -1

n i-1

(1.2)

The optimal value of k is the value which maximizes the probability of 'win'. Because

P(k) P(k +1)

k -1 " 1
=> -Z -n i k i -I

k " 1

n i k.1i -

(1.3)

"1

i=k+1

The optimal rule is to select the first candidate that appears among applicants from

stage k onwards, where

k = min k 1: 1 1 min k >1: log 1} = min {k 1: k e-n). (1.4)

Hence, for large n it is approximately optimal to pass up a proportion,

e-1 = 36.8% of the applicants and then select the next candidate.

3



1.1.2 Generalized Secretary Problem

The generalized secretary problem can be obtained by replacing the rather

restrictive 4th assumption in the classical secretary problem, which is quite restrictive,

with the more general objective function: the interviewer is not only interested in the

best applicant.

Let a, and r denote the ith applicant's absolute rank and its relative rank

among the first i applicants respectively. A rule vector s = (s .... , s,) dictates that the

interviewer stops at on the first applicant for which r, s si. Obviously, the probability

that the interviewer stops at the ith applicant, conditional on reaching the applicant, is

si / j. The interviewer's cutoff for selecting an applicant with a relative rank r,

denoted i,, is the smallest value i for which r s. Usually the cutoff representation

will be more convenient. The following table shows an example of stopping rule and

its cutoff representation. For instance, the value of i4 is 7 because 7 is the smallest

number of i for which si > 4.

S1  S2  S3  S4  S5  S6  S7  S8

0 1 2 2 2 3 4 4

ii 14

1 3 6 7

Table 1. Stopping Rule and Its Cutoff Representation

Given that there is a total of n applicants, the probability that the ith applicant

has an absolute rank of a conditional on having a relative rank of ri is given by

(Lindely, 1961):

4



a -1 n -a)

P(A=aI =r)=r-1n i-r (1.5)

(n1)

Thus the expected payoff for selecting an applicant with relative rank r is:

n

E(7rri)= JP(A = a R r)r(a). (1.6)
a=r

The expected payoff for making a selection at stage i for some stage i policy s, is:

S,

ZE(ff;r 1=i )

Si

Denoting the expected payoff for starting at stage i+1 and then following a fixed

threshold rule thereafter by v,, the value of v, is:

v, = E ( ±|s)+ f1 .(1.8)

Lindley (1961) solved these by combining numerical search methods with

dynamic programming. The expected payoff for following a rule s is:

IS = n i-1 ( Sj ) i s
E(r Is)= = 1-s -E(rIs,)= v. (1.9)

i=1 _ j=0 j

The optimal rule s* is the policy s that maximizes Eq. 1.9. Denoting the applicant

position at which the search is terminated by m, the probability that the interviewer

stops at the ith applicant is:

P(m=i) s_ s- (1.10)
_ j=0 j

and the expected stopping position is

E-1 [ i J] (1

E(M) =1+z Q - 1.1
i-1 . =1

5



1.1.3 Multiple-Choice Secretary Problem

The Multiple-Choice secretary problem is a variation of the classical secretary

problem in which the algorithm is allowed to choose m secretaries with the goal of

maximizing their sum. Kleinberg (2005) presented an algorithm whose competitive

ratio, which is defined as the ratio between its online algorithm's performance and the

offline algorithm's performance, is 1- o17m .

The basic algorithm is defined recursively as follows. The classical secretary

problem is a special case of the multiple-choice secretary problem in which m=]. It is

approximately optimal to pass up a proportion e' = 36.8% of the applicants and

then select the next candidate. If m>1 then select a random sample with k elements

from the binomial distribution B(n, 0.5). Among these k elements, recursively apply

this algorithm until [m /2_] elements have been selected.

The remaining (m - [m / 2j) elements are selected from the remaining (n-k)

applicants. Let the k samples be ordered from the largest to the smallest:

y1  y2  ... y, . Among the (n-k) applicants, select every element which is greater

than yLmI2J until we have either selected m elements or have seen all applicants.

Let v be the sum of the m largest elements, Kleinberg (2005) suggests that the

elements selected from the first k samples have expected modified value of at least

(1-5/, I12).(1-1121k)-(v/2) and those elements selected from the remaining

(n-k) applicants have expected modified value of at least (1/2- jil v. Thus the

expected modified value of all elements selected by this algorithm is greater than

(1-5/,F)v .
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1.1.4 Other Multiple-Choice Secretary Problems

Once the interviewer is allowed to accept more than one applicant, many

interesting problems arise.

Sakaguchi (1978) introduces a problem with k choices with the aim to

maximize the probability that any of them is the best. We define state (r s) to mean

that the rth applicant has been and the interviewer still has s choices to make. If the

interviewer accepts the candidate, the transition probabilities from state (r, s) to (, s-1)

and from (r, s) to state (oo, s -1) are r/(j-1) and r/n respectively. If the interviewer

rejects the candidate, the transition probabilities from state (r s) to (j, s) and from (r, s)

to state (oo, s) are r/j(/-1) and r/n respectively. The dynamic programming equation

is:

V (r, s) =max + r _VG's-1), Z r V U, S) ,(1.12)
In j,,+i (j-1) j,,41 j U- 1) 1

and the one-step-policy can be evaluated by considering s= 1,2,... sequentially. This

determines a set of numbers k k_ ... k< such that the interviewer makes his

(k-s+J)th choice at the first candidate to appear after item k* -1.

To tackle the problem in which the objective is to minimize the sum of actual

ranks of the k choices, Henke (1970) shows that the rth applicant should be accepted,

whenj items have already been accepted, only if its relative rank is such that s < s*

and Henke (1970) also gives a system of recurrence equations that determine these

critical values.

Nikolaev (1977) and Tamaki (1979) solve the problem of selecting the best and

second best applicants. The optimal rule says choose the first two candidates to appear

after the first r,* -1 applicants or, as second choice, the first applicant with apparent

7



rank 2 to appear after the first r -1 applicants. Sakaguchi (1979) generalizes

slightly by supposing that each applicant has probability q< 1 of being available if

chosen. The form of the optimal policy remains unchanged, but now r* / n ->0, and

r* /n -+# 0. As n -+ cc, the probability of winning tends to

6 (202) -q 02). (1.13)
2 -q

1.2 Problem Motivation and Description

The secretary problem and its variations have been extensively investigated.

For reference, see Freeman (1983) and Ferguson (1989) for reviews. For any given

problem the aim is usually to find the optimal selection strategy and relevant

properties that maximize the probability of a 'win'--- that is selecting a good applicant.

One of the most important feature of the classical secretary problem and its extensions

is that the entire process stops at the moment we have selected the required number of

applicants. In other words, there is no opportunity for the interviewer to change the

selected secretaries.

However, in reality jobs are not always guaranteed and it is perfectly legitimate

that managers may change their secretaries. Suppose that you need to hire a secretary,

and you decide to use an employment agency which will send you one applicant per

day. Then it is conceivable that you may first quickly hire a mediocre secretary to

prevent a backlog of routine administrative tasks while continuing the search for a

better qualified secretary.

Since a better secretary is expected to be more efficient and have a wider skill

set, it may be tempting to insist on having the best possible person for the job.

However, in many situations there is a significant cost involved in the switching

8



process. To hire a new secretary is costly, since you must dismiss your current

secretary and pay a large fee to the employment agency. Thus before you pay the

resulting price for the replacement of a secretary, you have to estimate what that price

will be. You clearly have to balance the cost of staying with an incompetent secretary

for too long, against for the cost of finding a replacement. The problem becomes more

complicated if you are going to hire several secretaries at a time.

In accordance with the experiment, we consider in this thesis the following

variant of the multiple secretary problem. There are 100 applicants for 7 secretary

positions; the quality of the applicants is uniformly distributed from 1 to 100. They

are interviewed sequentially in a random order with each order being equally likely.

Once rejected, an applicant cannot be recalled. The interviewer can employ at most 7

secretaries at a time, and he can replace any of them at a significant amount of switch

cost. Probabilistic reasoning and dynamic programming simulation is used to

determine the optimal strategy to balance the tradeoff between secretaries'

competency and costs of hiring.

Possible practical applications would include:

(a) Housing lease - The landlord has k apartments for lease, and there are n potential

tenants coming to inspect the apartments one by one. Each of them would like to

offer a different amount of rent. There is a cost to the landlord if he chooses to

change his tenants.

(b) Development of new products --- There are n proposals for a new product coming

sequentially. The company is able to produce at most k different kinds of products

at a time. The management team makes the detailed productivity and

marketability study of one proposal each month. It is costly to replace any existing

production line by a new one.

9



1.3 Thesis Objectives and Organization

The main objective of the thesis is to utilize probabilistic reasoning and

simulation methods to explore the optimal selection rule of the multiple secretary

problem with switch costs. The problem has been presented to respondents in an

experiment and the optimal selection rule developed in this work will be the

benchmark against which the respondents' intuitive selection decisions are measured.

In chapter 2, we examine the effect of interview cost and opportunity cost on

the optimal selection strategy in the single secretary problem with no recall. To allow

a more realistic formulation of the classical secretary problem, we consider costs

associated with the selection procedure. The stopping rule is found which minimizes

the total cost function.

In chapter 3, the single secretary problem with switch cost is presented and its

optimal selection rule is examined. This chapter starts with the infinite horizon

problem, which is a simplified version of the following finite horizon problem: A

constant replacement cost is incurred each time we replace a previously selected

secretary with a new one. A mathematic model is created to solve the problem

analytically.

We consider in chapter 4 a problem which allows us to possess more than one

secretary at a time. Dynamic programming is used to solve the optimal selection rule

for this problem as an extension of multiple-choice duration algorithm. Lastly,

experimental results are presented and discussed.

In chapter 5, we outline possible future work directions and summarize the

findings of this thesis.

10



Chapter 2. Generalized Secretary Problem with Costs

Before we embark on the discussion about the secretary problem with switch

costs, let us first look at cost issues in the generalized secretary problem. To allow a

more realistic formulation of the secretary problem, this chapter considers interview

cost and opportunity cost associated with the selection procedure.

In the generalized secretary problem, in order to maximize the probability of

choosing the best applicant, (i.e. to minimize the opportunity cost), the interviewer is

required to interview an enormous number of applicants. Chow et al. (1964) suggests

that this number is about n/4 and is as many as n/2 on the average. However, in a real

situation where interview cost is not negligible, it would be wise to be less aggressive

and be content with more modest results. Hence the tradeoff between opportunity cost

and interview cost does exist along the whole interview process, and the optimal

stopping rule can only be obtained by minimizing the total costs.

2.1 Notation

The following notations are used for the mathematical formulation.

Indices:

i The position of an applicant along the timeline

a The absolute rank of the ith applicant

ri The relative rank of the ith applicant, denoting the number of applicants

from 1 to i whose absolute rank is smaller than or equal to a,

s, The stopping rule, indicating that the interviewer stops on the first

applicant for which r s,

11



The cutoff representation of the stopping rule, denoting the smallest i for

which r < s

Parameters:

n The total number of applicants

N, The condition that no stopping occurs at the ith applicant or earlier.

x, Expected total cost under the condition Ni

gi Expected absolute rank of the selected applicant under the condition N

hi Expected number of further interviews required under the condition N

cg Cost of getting one lower expected rank

Ch Cost of interviewing one applicant

2.2 Problem Description

The payoff maximizing strategy for the classical secretary problem implies a

utility function that takes the value 1 if the best applicant is selected and 0 otherwise.

The generalized secretary problem can be obtained by replacing the classical utility

function with a more realistic value of f(a) where a is the absolute rank of the

selected applicant. We assume i(1) --- n(n).

When the interviewer's objective is to maximize earnings in the generalized

secretary problem in which n(a) increases linearly as (n-a) increases, then the

maximizing expected utility corresponds to minimizing expected rank of the accepted

applicant. According to the optimal search policy given by Mucci (1973), the

interviewer should interview and reject the first i, -1 applicants, then between

applicant i and applicant i2 -1 she should only accept applicants with relative

12
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rank 1; between applicant i2 and applicant i3 -1 she should accept applicants with

relative ranks 1 or 2; and so on.

The expectation of the total cost is:

Total cost = Opportunity cost + Interview Cost

Xi = C, (g, -1)+ chhi, (2.1)

where x, is what we want to minimize, and C,, Ch are constant values. In order to

get the optimal stopping rule to minimize the cost function, I will find out the

expressions for g, and hi in the following sections respectively. The probability of

the selection process ends at the ith applicant or earlier, the expected number of

interviews, and the expected absolute rank of the selected applicant are among the

major topics considered.

2.2.1 Probability of the Process ends at the th Applicant or Earlier

Let the probability of the selection process ends at the i-th applicant or earlier

be

(2.2)

It is important to note that the relative rank of ith applicant r is independent of the

values of rj, r2 ,- , r_,. Since the value of r is determined by the absolute ranks of

the previous i-1 applicants, i takes the value from 1 to i with equal probability. In

other words, relative ranks of the first i applicants can appear as any one of the iH

permutations with uniform probability 1/i.

Let the probability of stopping at the ith applicant be

S(i) = P{N11,_i <s.}=P(N_,)P(r s,) =N(i-l) -

The probability of the process ends at the ith applicant or earlier is given by

(2.3)

13
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N(i) = N(i -1) - S(i) =N(i-1) -N(i-1). (2.4)

N(i) can be derived as follows: the event N, implies that the first applicant

whose relative rank is 1 definitely appears in the first il -1 positions, and the second

applicant whose relative rank is 1 or 2 must appear in the first i2 -1 positions except

the position occupied by the applicant of relative rank 1, ... , the rth applicant with

relative rank from 1 to r is in the first i, -1 positions except the positions occupied

by the previous r-1 applicants. The remaining (i-r) applicants can be in any position

among the unoccupied (i-s) positions because is ij . Hence there are

H
k=1

(ik - k) -(i -r)! (2.5)

permutations corresponding to N,, and this leads to the following expression

S(ik -k) (i-r)!
N(i) = k=1 (2.6)

2.2.2 The Expected Number of Interviews

The probability of event N1 equals to the sum of the probabilities of the

processes ending at each position from i+1 to n. Thus for any i

N(i) =S(i+1)+S(i+2)+---+S(n). (2.7)

The expected number of interviews until the end of process is then given by

ho = JS(i) -i = I + N(i).
i=1 i=1

At the ith position, the expected number of additional interviews until the end of

process condition on N, is given by

14
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h Z = k-S(i+k) =-- N(k). (2.9)
N(i) k=1 N(i) k.,

Similarly we can get

1
h,- () N(k). (2.10)

N(i -1) k=iI

From (2.8), (2.9) and (2.10), we can get a recurrence formula for the expected number

of interviews, which is given as,

hiI = h,,-Ni +1=- h, - (1-L )+1 (2.11)
N(i-1)

2.2.3 The Expected Absolute Rank of the Selected Applicant

Given that there are n applicants, the probability that the ith applicant has an

absolute rank of a, condition on having a relative rank of r is given by Lindely

(1961) as,

ra-1 n-a)

P(a,=ajr=r)= n ,)i- (2.12)

for r ! a:! r+n-i. Otherwise P(a =alr,=r) =0.

The expected absolute rank under the condition that the relative rank of the ith

applicant is r is given by

E(a Ir = r)= a P(a, = a I r = r) (2.13)
a=1

n+ri a- n-a
= : a - 1 n -
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n+r-i (a n-a
"+a (a -r)!(r -1)!(i-r

a(a-1)! _n-a)
"+r- r(a-r)!(r-1)! i-r

a=r

"+ - r i-rnr -

a=r n

r"'-i (a) (n -a)
I r

(n) =, r i -r

r (n+1

n 
i+1

(n+1)! r(n-i)!i!

(+ 1)! (n - ! n!

n+1
- r .

Hec teexete bslternkcn eobanefrm(23i+d(21),a
n n-

Hence the expected absolute rank can be obtained, from (2.3) and (2.13), as

E (a)= Z a -P(a = a =r)S(i) (2.14)
i=i a=1

n n

= jZa P(ai = a r = r)P(N1)P(r & s)
i=il a=1

= $a -P(ai = a r = r)N(i -1)P(r s)
i=i, a=1

i=i, r=1 iI i
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n n+1
= nN(i -1)

ii, i+1

1 s, (s+1)

i 2

Let g, denote the expected rank condition on N,, i.e.

g, = E (a IN,) . (2.15)

Using (2.4) and (2.15), we can get the recurrence formula for the expected absolute

rank condition on N.

I n n+1
N 1 , -- k 1:N= -I z~ N(k-1) 1 Sk (Sk 1)

k 2
(2.16)

n+1 1 s,(s,+1) N(i)

i+1 i 2 'N(i-1)

n+1 1 s,(s+1) r s,
i+1 i 2 i

2.3 Optimal Stopping Rule

We have derived the expressions for expected number of interviews and

expected absolute rank condition on N,, and thus we have

(2.17)

Using (2.11) and (2.17), we can get the recurrence formula for total cost x, under

condition N, as

Xi= Cg (g_ 1 -1) + Chhil

C (n+ s,(s,+1)+
Cg+ 1 i 2 g i-

= n±1 1 s,(s,+1)+cg, I
g i+1 1 2

-1+ Ch h -1

- C1

xi = Cg (g -1)+ chhj

(2.18)

+1J

1-s +ch-c Si) 9S.

17
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n+1 1 s,(s,+1) s. s,=Cg +Ch-C -+-x, --9 i+1 i 2 + i i

1 s'( n+1 .
=x +c,+-IC, j]-Cg-x*

i =1 +1

It becomes obvious that s, is to be chosen as the largest integerj which satisfies

n+1
Cg . j <C +X , (2.19)

i+1

namely

s. = i+1 1+ X' (2.20)

n+1
Since gj1 = and h, 1, we get

2

xn_1 = cg (gn -1)+c+hh_= c, + .Ch. (2.21)

Starting from x,_1 , we can determine the values of the optimal stopping rule s, and

the optimized expected total cost xi by using (2.18) and (2.20) respectively.

The computations discussed above can be done by using computer simulation.

The following graphs (Figure 1, 2) presents the results for an example where the total

number of applicants is n=100, the cost of getting one lower expected rank is c9 = 2,

and the cost of interviewing one applicant Ch are 0 and 3. In Figure 1, it is

interesting to note that one should keep observing about 30% of the population

without taking any action. After that the interviewer takes an applicant only if it turns

out to be the best among all those observed so far. At the end of this phase, about 50%

of the population has been observed.

Figure 2 presents different curves due to the existence of interview costs. The

waiting period reduces significantly and the interviewer has to make decisions as

early as at i=4. In other words, the stopping rule gets mild much sooner. The optimal

expected total cost decreases as time increases from 1 to 82 but increases for time

18



greater than 82. In this case, the stopping rule is much more relaxed when compared

to that in the previous case. This is because the interviewer must pay an interview cost

for each observation of a new applicant, and he must strike a balance between the

costs of interviewing and secretaries' competency.
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Figure 1. Generalized Secretary Problem with Cost Coefficients cg = 2 and Ch =0
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Figure 2. Generalized Secretary Problem with Cost Coefficients cg = 2 and Ch= 3
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Chapter 3. Single Secretary Problem with Switch Costs

In this chapter we consider the following variant of the secretary problem.

There are n of applicants for a single position and n is known in advance. The

applicants are interviewed sequentially in a random order with each interview taking

one time unit. The quality of each applicant is uniformly distributed. The hired

secretary can be dismissed at any time. The number of replacements is not limited, but

there is a switch cost involved in this substitution process, consequently a significant

increased cost could be incurred if redundant changes are made.

Another key difference between the generalized secretary problem and the

single secretary problem with switch costs is the way we define the payoff. Since the

job position could be occupied by different secretaries along the interview process,

the payoff is no longer defined as the quality of one particular secretary, Instead it is

now defined as the weighted average quality of all the selected secretaries. In this

problem, the payoff is stated as the sum of the qualities of secretaries at each time unit

less total switch costs incurred.

Payoff = quality of secretay at time i - ( switch cost x No. of switches) (3.1)

Because the interview cost is almost negligible compared to the relatively large

switch cost, the interviewer will see all the applicants in this case. Taking the extreme

case where the switch cost is zero, we can see that the interviewer would definitely

insist on having the best possible person for the job at all times; at the end of each

interview, he will replace the current secretary with the current applicant if the current

applicant is better qualified. However, in reality where switch cost is significant, a

certain degree of quality "superiority" is needed before a switch become worthwhile.

This amount of quality superiority required is described as the selection criteria,

which is one of the key issues we explore in this problem.
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We first consider the infinite horizon problem where the number of available

applicants are infinite. In Section 3.2, we consider the problem where the time horizon

is finite, which is more complicated because the interviewer has to deal with different

time constraints along the selection process.

3.1 The Infinite Horizon Problem

In this problem, an infinite number of applicants whose qualities are i.i.d. are

interviewed sequentially. We received a payoff as long as we are employing a

secretary, and the payoff is defined as the quality of the secretary multiplied by the

duration of time we are employing this secretary. The total payoff is the sum of

payoffs received from all the secretaries whom we had hired or currently exploying,

less the total switching costs. The objective of this chapter is to find the optimal rule

to maximize the total payoff.

3.1.1 Mathematical Model

We assume that XIX 2,... are independent and identically distributed (i.i.d.)

random variables, uniformly distributed over [0, 1], where Xj denotes the quality of

the secretary at thejth stage. Let T7 denote the length of time we are in possession of

the ith secretary. Given that switch cost is a constant d, the payoff received from the

ith secretary is:

Xi -T, =
i =2 (3.2)

' Xi-T-d, i>2 (32

If n secretaries are to be hired during the entire selection process, then the total

payoffs can be written as
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n nl

$ F; =Xj.T+$ X, -T-d . (3.3)
i=1 i=2

3.1.2 Problem Analysis

We should note that the new secretary to be hired must have a higher quality

than the one we currently have. However, it is neither necessary nor optimal to accept

every applicant whose quality is higher than that of the current secretary. This is

because in the situation where there is a switch cost involved, there would be a

reduced loss in making redundant replacements. If the quality of the current hired

secretary is X,, we might not make the replacement until we meet an applicant with

quality X 1 , which is sufficiently higher than Xi. In other words, the value of X,1 is

always greater than that of X, for every i. Therefore, we can define the optimal

policy as follows:

Conditional on the quality of the current secretary being X, a replacement will

be made on the first applicant whose quality is X,j > X +,Ej, where X 0 =0, and Fi

is defined as ith optimal policy coefficient.

The optimal strategy can be summarized as follows.

Theorem 1. Let X, denote the quality of ith secretary, and Ec denote the ith

optimal policy coefficient. Then the expected length of time we are in possession of

this secretary is:

E[T]= (3.4)
1- Xi -6i

Proof. The optimal rule indicates that a replacement will be made on the first
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applicant whose quality is X,l > Xi + E,. Thus, each time when we meet a new

applicant the probability of acceptance is:

PA = (1X (3.5)

and the probability of rejection is

P'7 =1-P =(X, +-"). (3.6)

Therefore, given the quality of the current secretary and the corresponding

optimal policy coefficient, we can get the expected duration during which we are in

possession of this secretary:

E[T I]=1P+2PPB+3PAPB2 +4PAPB3 +... +nP B (3.7)

=1I- (I- X, -e,) + 2.(1 -X,- E) (X, + i) +--+ n -(1- Xi - i) (,+ S "

=1I- (Xi +.6i)+ 2 (X X+ 6, -2 (X, + Ei 2 +--+ n (X X+ EJ n"~ -n (X X+ e )"

1-Xi -8.

Theorem 2. Let A denote a set of elements uniformly distributed on the

interval [a, 1], and let B denote a set of elements uniformly distributed on the interval

[b, 1]. If we can map A onto B and the transformation is a one-to-one correspondence,

then we can map a+,a in A onto b+eb in B, where

1 -b
E = S (3.8)

1 -a

Proof. The linear mapping from A onto B can be expressed in the following

function:

f (x) = x-a (1-b)+b (3.9)
1-a

Obviously it is a bijective function from A to B with the property that, for every

n e B, there is exactly one m in A such that f(m) = n .Therefore,
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f(aa+,) -. (1-b)+b (3.10)
1-a

=b+E 1-b
" 1-a

=b+Eb

1-b

In a special case when a = 0, Flb = Ea 1-b - E, (1 - b)
1-1a

Theorem 3. If the optimal policy dictates that the first secretary will be

selected on an applicant whose quality is X, > FO, the ith optimal policy coefficient

can be written as:

, = (I- X,) - ,(3.11)

Proof. Suppose we know the optimal policy coefficients c = (O, 1E-...-, E,,) to

select secretaries whose qualities are uniformly distributed over [0, 1]. Then the

expected optimal payoffs of using the given optimal policy are:

E [P] = ZE [ F ] =E (Xl -E [T,|] + IE (X .E [T |d , (3.12)
i=1 i=2

where n denotes the total number of secretaries hired in the whole process, and X, is

strictly selected based on the optimal policy. The probability of acceptance is:

1 1/(1-X, -4 ), (Xi, +i-1)< X, i1 (3.13)
0, otherwise

and we define that we have a "dummy secretary" X0 = 0 at the beginning of the

process.

Suppose we rescale the quality distribution of the secretaries into [b, 1],

where b > 0. Then according to Theorem 2, the value of X will be consequently

rescaled to X,'= X, (1-b)+ b and the value of E, becomes F,'= z, (1-b).
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According to Theorem 3, the expected length of time we are in possession of this

particular secretary becomes:

E[T1 = 1 E[]. (3.14)
1-X,'-c,' (1-b)-X,(1-b)-,(1-b) 1-b

Suppose after rescaling the quality distribution interval, the selection policy

coefficients are c' = (&0 ', E',.... , &,') , then

(X,_1 + ,_i)< X, <1 (3.15)

=: (1- b) (X,_1 + E,_ ) < (I- b) Xi :! (I - b)

-> (1- b) X_ +(1- b)i_1 < (1- b)Xi 1- b

=: (I -b) X,_ + b+ (1 -b) E,_I < (1 -b) Xi + b < 1

= X,'+ Fi_1' < Xi' <1.

Though the optimality of this selection policy is yet to be determined, we can get the

expected total payoff based on the policy coefficients s'= (&0
1, E'...... n)

E [P']= E [F '] (3.16)

i=2

- E([X1 '-E [T;']] + E[X, '-E [T; '] - d

= E ((1-b)X +b) +Z E ((1-b)Xi+b) d
1-b i=2 1-b

Fb.E [T] b.E[T1]1= E X,.-E [T]+ +$ E Xi -E [T ]+ -d .
EI1-b 1 i2 I 1-b_

In this problem, we are only interested in the incremental total payoffs. The

basic payoff, which can be obtained by keeping the original secretary with quality b

without any replacement along the whole process, should be subtracted from the total

payoffs. The incremental payoff can be calculated as:
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E[P']-b-E[T]

nZ J nb-E[T ]
= E['] 1-b

.E[7J+ b-E[7 ] +.E Xi-E[T]+ b
i=2 _I-b

= E[X,- E[T ]] + ZE[X. E[T]]-d

= E[P],

By following the selection policy s'= (F , ',' n C ') , we can get the incremental

total payoffs which is the same as the total payoffs with uniform distribution on [0, 1].

Suppose the optimal selection policy coefficients to yield the maximum

additional total payoffs with uniform distribution on [b, 11 are E = (E0, E ,--..,. E). By

following this optimal selection policy, the optimal incremental total payoffs can be

obtained by:

E[P']-b-E[]=E[1 -E[I] +I E[, -E[IJ-d,
i=2

(3.18)

where

Obviously when b=O, the optimal incremental total payoffs are supposed to be

equivalent to the optimal total payoffs with uniform distribution on [0, 1]:

E[P' -0-E [ =E[P'] (3.19)

> E[X, -E[i]] + JE[ -E[Ij]-d = E[X,- E[T]+ZE[x, E[Ti]]-d.

We can see that the same amount of payoffs can be obtained by using either
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selection policy or= (zo, c,--, .... .) or E'= (c '',-,) . Hence we can conclude

that F'= ( ..', , n C') are the optimal selection policy coefficients, which if used

would yield the maximum incremental total payoffs.

In the infinite time horizon problem, the selection process is memoryless

because at any stage the remaining time is infinite. This suggests that every point

along the time horizon is a fresh start but with a distinct starting point 'b'. Thus we

can always follow the optimal policy to get the optimal incremental total payoffs. The

ith optimal policy coefficient is therefore

i =(1 - X )-F, (3.20)

1

0-

E[TlXj]

Figure 3. Payoffs after Selecting the Secretary with Quality X,

In the optimal selection process, let P(X,) denote the total payoffs after

selecting the secretary with quality X,. The value of P(X) can be divided into two

parts as illustrated in Figure 3. The first part deals with the payoff to be earned as long

as the current secretary remains employed, which is labeled as region A. This portion

of payoff is mathematically defined as the secretary's quality X times the expected
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time of possession of this particular secretary minus the switch cost. The second part,

which is labeled as region B, is the total payoffs to be earned P(X+1), where Xj,

is the quality of the next selected secretary. Thus,

(3.21)

In this equation, X+11 depends on Xi and ,, and c- is determined by X,

and F- . Assuming that the value of co is known, we can find the value of X,j

which is completely dependent on X,:

(3.22)

Let P(X,) denote the total payoffs if the quality of the current secretary is X,, then

E[P(X,)] = Xi x E[T I Xi] -d + r E[P(x)]f (x)dx.

wheref(x) is a uniform distribution on [X, + (1- X) -* c, 1]:

0,/(1- X )(1- 6),
0,

(3.23)

(3.24)
X, + (1-X 1 ).-O <x ! 1

otherwise

and E[TjXj is the expected length of time we are in possession of the secretary

with quality X:

E[TIXj]= 1 .
1-X -(1-x,) 0 (1-X)(1-O)

Let y(X,) denote the expected total payoffs E[P(X,)]:

y(X,)=X 1 d+( y(x) dx
(1-,)1-s) +0-ho (1- X,) (I - O)

(3.25)

(3.26)

1X - -d+ y(x)dx.
Be(1-X)(s- ) (1- X) (1-r) at t+hg-xgoco

Because we have no secretary at the beginning of the selection process, the expected

28
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total payoffs with uniform distribution on [0, 1] is y(0) . Thus the objective of the

problem is to find the optimal policy coefficient * which maximizes y(0) . By

knowing the optimal value of 60, the values of optimal policy coefficients

E = (FO , ,) can be easily obtained by using the formula of E, =(1- X,)s 0E.

3.1.3 The Alternative Methodology

We can look at this problem from another analytical angle. Instead of

maximizing the expected payoffs, we can find the optimal policy coefficient e* by

minimizing the expected total costs. The expected total costs consist of both

opportunity costs and switch costs. Opportunity costs are defined as the additional

payoffs which could be received if the quality of the encountered secretary is 1.

1

I1-Xj

0-
E[T Xi]

Figure 4. Alternative Method to Determine the Optimal Policy Coefficients

Let us denote the expected total costs of each selection as L (X,) given that the

selected secretary is X. As illustrated in Figure 4, the opportunity cost for each

selected secretary is equal to the size of region C. Since the switch cost is a constant d,

the expected total cost L (X,) for secretary with quality X can be expressed as:
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L(X,) = Opportunity Cost + Switch Cost (3.27)

= (1-X,) .E[TIX]+d

1
=1XX-)(+d

1

(1-(X,(1-s)

(1so

D
1-Xi

0,
E[TIXi]

Figure 5. Opportunity Cost for Each Selected Secretary

It is interesting to note that total cost of each selection L (X,) is independent

of the quality of the secretary. This means that for any selected secretary, the

opportunity costs are constant regardless of the quality of the secretary. From a

graphic point of view, the sizes of region C, D and E in Figure 5 are exactly the same.

Thus instead of maximizing the value of y(0) , we can try to minimize the total loss in

order to get the optimal value of co. Let N(X,) denote the expected number of

replacements to be made when the quality of the selected secretary is X,. The total

loss is defined by

L -N(Xj) (3.28)

where
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N(X))=I+ N(x)f(x)dx (3.29)

=1+ 1 ) N(x)dx
(1 - X) (1- CO) fx, +(-xj,

The objective of the problem is to find the optimal policy coefficient eo which

minimizes L -N (Xi).

3.1.4 Simulation Results and Analysis

We will solve integral equation (3.29) by using a Laplace Transform. Starting

with

y(x) =I+ y (t)dt (3.30)
(1-x)(1- &) fi-C)x+F

-y(x) =1 (X(1- F, -)+ y (t) dt

-> y xW = f Wx + g Wx r + y(t)dt ,

where f(x)=1, g(x)=- , a=l, b=1-s and c=s.

We can apply Laplace Transform to both sides of equation (3.30), and put
C C

X=S+- =s+l , t =u+ =u+l, the equation yields
I-b 1-b

Y(s)=F(s)+G(s) rSC Y(u)du (3.31)
I-b

> Y(s) =1+ Y(u)duz~Ys()-l)

Let Z(s) = Y(u)du , it is easy to see that Z(0)=0. Thus we can get

Z'(s) =I+-, Z((-)s). (3.32)
(1-E)s
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However the rescaling factor (1- &) makes the Laplace equation (3.32) hard to solve

analytically.

We can employ recursion to solve integral equation (3.29). In accordance with

the experiment, we rescale the secretary quality distribution to [0, 100], and set switch

cost as 500. The following is the corresponding pseudo-code to calculate the expected

payoffs for one particular value of E:

function (eps, x)

lowlimit = (1-s)x+c

counter = 0

for i = lowlimit to 100 do

sum = sum +function (eps, i)

counter ++

end for

return 1 +sum/counter

end function

The optimal value of EO is the one that minimizes total opportunity cost y (x) .

Figure 6, which compares the points showing (3.29) with the results for different

values of policy coefficients £0 , indicates that the optimal policy coefficient to achieve

minimum total costs is Z* =67. The total cost decreases as e increases from 1 to

67 but increases as eo goes beyond 67. This suggests that quality of the first

secretary we are supposed to select along the interview process should be greater than

67. The optimal policy coefficients for the later stages can be calculated as:

I = 1 -E = 1L 67 (3.33)
100)0 100)
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Toa Cot Total Cost vs Optimal Policy Coefficients (Switch Cost=500)
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Figure 6. Total Cost vs. Optimal Policy Coefficients (Switch Cost = 500)

Total Cost vs Optimal Policy Coefficients
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14000 --- _

12000

10000-

3000 --

4000

2M0

34
0 - ------ - -- -.---- -- ______

1 3 5 7 9 111315 17 19 2123 25 27 2931333S 37 394143 45 47 49 $153 5S7 S9 6163 6$ 67 69 71737 7779 # 6 0M587 91939S979

Swith Cost 100 -300 -500 -700 -900 4

Figure 7. Total Cost vs. Optimal Policy Coefficients (Switch Cost = 100, 300, 500, 700, 900)

Figure 7 compares how the total cost curve varies across different values of

switch costs d. The total costs associated with a greater switch cost are generally

higher than those associated with a smaller one, and the curves converge as ec

approaches 100. Table 2 shows the optimal policy coefficients with different switch
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costs. It can be seen that the optimal policy coefficients increase with the value of

switch costs and converge to 76.

Switch Cost Optimal el Total Cost

100 34 1009.46

300 51 1692.48

500 67 2275.62

700 76 2837.82

900 76 3346.08

1100 76 3854.35

Table 2. Optimal Policy Coefficients Associated with Different Values of Switch Costs

3.2 The Finite Horizon Problem

The finite horizon problem is essentially the same as the infinite horizon case

except that the number of applicants to be seen is finite. In this thesis, the number of

applicants is set as n=100 in line with the situation in the experiment. As we

mentioned earlier, the selection process in the infinite time horizon problem is

memoryless because at any stage the remaining time is always infinite in the infinite

horizon case. This suggests that the problems we encounter at each point along the

process are basically the same.

However, in the finite horizon case, different time constraints may yield

different selection decisions. At the beginning of the interview process, the selection

rule might be similar to those in the infinite horizon problem because the interviewer

has enough time to achieve significant incremental payoffs. When the interview

process approaches its end, the interviewer may hesitate to change secretary because

the additional payoffs to be earned from the new secretaries might not enough to
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recoup the relatively large switch costs incurred.

3.2.1 Single Choice Duration Problem

Ferguson (1991) introduces a sequential observation and selection problem

called the duration problem, which is related to the single secretary problem with

switch cost we consider here. The distinguish feature of the duration problem is that

the payoff to the interviewer is the length of time he is in possession of a relatively

best object. Thus, he will only select a relatively best applicant, receiving a payoff of

one as he does so and an additional one for each new observation as long as the

selected applicant stays relatively best.

We assume that X1, X 2 , ... are i.i.d. random variables, uniformly distributed

on [0, 1], where X, denotes the quality of the applicant at the nth stage from the end.

Let w(x, n) denote the expected payoff given that the nth applicant from the last is a

relatively best applicant of quality X, = x and we select it.

w(x, n) =1+x+x2 +-.x"-' =1~x' (3.34)
1-x

We can use backward induction to find the optimal rule. Let v(x, n) denote the optimal

expected return when there are n applicants yet to be observed and the present

maximum of past observation is x. v(x, n) can be defined as

v(x,n) = xv(x, n -1)+ fmax{w(t,n), v(t, n -1)}dt (3.35)

with initial condition, v(x, n)=O.

Let u(x, n) denote the expected payoff when we skip a relatively best applicant

and select the next relatively best applicant if any. We can express u(x, n) as

n-I

u(x,n) =Z x- fw(tn -k)dt (3.36)
k=1
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n-1 n--k I jX

k=1 j=1 1

Obviously we should select the secretary if w(x,n) u(x, n) . Thus in the full

information duration problem, it is optimal to select a relatively best secretary of

quality x xn at n stages from the end, where xn is the unique root of the equation,

n n-1 n-k

EZXk- I ~Xk-11 X (3.37)
k=1 k=1 j=1 I

Ferguson (1991) uses numerical methods to solve this equation and gave the

approximate root of the equation to be x 2.12
n

Though this duration problem is similar to the single secretary problem with

switch costs in that the payoff is related to the length of time the interviewer is in

possession of a secretary. However unlike the single secretary problem, the payoff

defined in the duration problem is independent of the specific values of the selected

secretaries, and is only based on one particular secretary.

3.2.3 Numerical Analysis

In the single secretary problem with switch costs, we are allowed to employ

only one applicant at any time and a constant cost d is incurred when replacement

takes place. Imagine a situation where we employ a secretary and a new candidate has

appears. We need to decide if we want to accept the new candidate and dismiss the

previous secretary at a cost of d or reject the new candidate and continue employing

the current secretary. For simplicity we do not consider interview cost in this problem.

We consider this problem as a Markov decision process model. Decision of

either selection or rejection takes place only when a candidate appears. We describe

thestateoftheprocessas (x,y, n), 1-5x l100, 1 y l100, 1<5n<i100 ifthis
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applicant is a candidate, there remain n more applicants to be interviewed, we have

reached a new candidate with quality x and quality of the secretary we are possessing

is y.

Let T(x, y, n) be defined as the time of the first candidate after the time when we

have n applicants to be seen. Let p(x, y, n, k) = P(T(x, y, n)=k). Then it is easy to see

that

100-x (x ak-
100 _ X , k = 1, 2,,n

p(x,y,n,k) =< _ . (3.38)

100)

Let W(x, y, n) be the expected additional payoff under an optimal strategy

starting from state (x, y, n), 1 s x: 100, 1 y l 100, 1 s n s 100, and also let

U(x, y, n) be the expected additional payoff when we select the new candidate and

then continues search in an optimal manner. Similarly, let V(x, y, n) be the expected

additional payoff when we reject the new candidate and then continues search in an

optimal manner. Then the principle of optimality yields, for 1 s x 100, 1 y 100,

1 s n s 100

W(x, y, n) = max{U(x, y, n), V(x, y, n)} (3.39)

where

n+i

U (x, y, n) =( (Expected Payoff if T (x, y, n) = k)- p(x, y, n, k) (3.40)
k=1

= k kx-d+ f'W(t,x,n-k)dt -p(x,y,n,k)
k=1 1 000-x

+(nx-d) -p(x,y,n,n+1)

I 10- Xo 100-x x -

=n Z kx-d+ 1 jW(t,x,n-k)dt -
k10 0
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+(nx-d) X 2
100

and

V(x, y, n) = (Expected Payoff if T (x, y, n) = k)- p(x, y, n, k) (3.41)

k=1o

=I Kky+ 1 W(ty,n-k)dt p(x,y,n,k)
k=1 100 -x

+ny p(x, y, n,n+1)

=jLkyL + "W(t,y,n-k)dt -100x x
k=1 0-10 10

+ny . )

100

Using the boundary condition: U(x,y,0) = x-d, U(100, y, n) =100(n+1) -d,

V(x,y,0)=y and V(100,y,n)=y(n+1), 1:5x 100, 15y l100, 1 n 100,we

can solve Equations (3.39- (3.41) recursively to yield the optimal strategy and optimal

value W(x, y, n).

As each state of the process is described by three different variables, namely

1 5 x 100, 15 y 5100, 1 n 100, there would be 106 different states involved

in the process. In order to determine the optimal strategy associated with these 106

possibilities, we could employ numerical methods to obtain the solution. The

following is the corresponding pseudo-code to calculate the expected additional

payoff under an optimal strategy starting from state (x, y, n) for, 1 x 100,

1 5 y 100, 1 s n 100. The replacement cost is d=500.

main function

read in the values ofx, y and n
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calculate the values of U(x, y, n) and V(x, y, n)

if V(x, y, n) > Ufx, y, n)

reject the applicant

else

select the applicant

end if

end function

W(x, y, n)

calculate the values of U(x, y, n) and V(x, y, n)

if V(x, y, n) > Ufx, y, n)

return V(x, y, n)

else

return U(x, y, n)

end if

end function

U(x, y, n)

Ifx=100

return 100(n+)-d

else if n=0

return x-d

else

n+1

return 1(Expected Payoff if T (x, y, n) =k). p(x, y, n, k)
k=1

end if

end function

V(x, y, n)

Ifx=100
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return y(n+1)

else if n=0

return y

else

n+E

return IZ(Expected Payoff if T (x, y, n) = k) -p (x, y,n, k)
k=1

end if

end function

The Selection Criteria in the Single Secretary Problem with y=O, d=500
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Figure 8. The Selection Criteria in the Single Secretary Problem with y=O, d=500

As there are 106 different possible states in the process, it is impossible to

display the optimal strategies for all the possible states here. Figure 8 shows the

criteria for selecting the new secretary with different numbers of remaining applicants,

for the case the quality of the current secretary is y=O, and the replacement cost is

d=500. We can see from the plot, that at the very beginning of the interview process,

we should not select any applicant whose quality is lower than 73. The criteria
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increase steadily for the first 2/3 of the population, but decreases for n greater than 34.

It is interesting to note that the selection criteria starts to increase dramatically when

we have only 10 applicants to be observed and no selection should be made when the

number of remaining applicants is 5 or less. This makes sense because when the

interview process approaches its end, the benefit of changing secretaries is unlikely to

outweigh the huge switch costs we have to invest.
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Chapter 4. Multiple Secretary Problem with Switch Costs

In this chapter we consider another variant of the secretary problem whereby

the interviewer is allowed to hire more than one secretary and that there are switch

costs.. In this problem an infinite number of applicants, whose qualities are

independent, identically distributed from a uniform distribution, are interviewed in

sequence. Assuming that the interviewer can employ at most m secretaries at any one

time, and that he receives a payoff as long as he employs at least one secretary, then

the total payoff can be given as the sum of all the selected secretaries' qualities

multiplied by the length of time we are in possession of these secretaries, less the total

switching costs:

Payoff = quality of secretary j at time i -( switch cost x No.of switches).
i=1 j=1 )-(sic otxN.o wths

The objective is to find the optimal policy to maximize the total payoff.

As the interviewer now has more vacancies to keep more secretaries, the

selection criterion is expected to be lowered. The interviewer might make more

selections along the interview process as compared to the case in the single secretary

problem. Because of the complex calculation involved in this finite horizon problem,

we may use dynamic programming technique and numerical methods to calculate and

estimate the optimal policy.

4.1 Multiple Choice Duration Problem

Tamaki et al. (1991) attempts to extend the one choice problems to the multiple

choice problems. They explored a variant of the multiple choice secretary problem

that is known as the multiple choice duration problem, in which the objective is to

maximize the time of possession of relatively best objects. For the m choice duration

problem with a known number of objects, there exists a sequence of critical numbers
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(sps2,... mS) such that, whenever there remain k choices to be made, then the optimal

strategy immediately selects a relatively best object if it appears after or on times I,

and receive each time a unit payoff as long as either of the chosen objects remains a

candidate.

Obviously only candidates can be chosen, the objective being to maximize

expected payoff. This problem can be viewed from another perspective as follows,

Let T(i) be defined as the time of the first candidate after time i if there is one, and

n+1 if there is none. Then T(i)-i is the duration of the candidate selected at time i and

the objective is to find a stopping vector (z-*, r*,..., r*,) such that

E[ (T(T)-T)]= sup E[ (T(,)-T,)] (4.1)
i=1 (r, -2-..r.)eC , i

where r, , 1 ! i s m, denotes the stopping time related to the ith choice and C,,, is

the set of all possible vectors (ri , T2 .. Trm).

The m choice duration problem can be considered as a Markovian decision

model. Since the decision to select or reject takes place only when a candidate appears,

we describe the state of the process as (i, k), 1 i n, 1 k m where the ith

applicant is a candidate and k is the number of remaining choices to be made. For the

above process to be a Markov chain, we must further introduce additional absorbing

state (n+], k) that denotes the situation where the process comes to an end with k

choices left for1 k m.

The expected duration of the candidate selected in (i, k) is given by E[T(i) -i],

which is calculated as

n+1 nlj

E[T(i) -i]= (j -i)p(i, j) = Z- (4.2)
j=i+1 j=i I

To make the solutions of the models more easily comparable to each other, the
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expected contribution of the candidate selected in (i, k) is evaluated as E[T(i) - i] / n

instead of E[T(i) -i].

Let W(i,k) be the expected additional payoff under an optimal strategy

starting from state (i, k), 1< i s n, 1< k<m, and also let U(i,k) and V(i,k) be

the expected additional payoff when we select and reject the ith object and then

continues search in an optimal manner. Then the principle of optimality yields, for

1 is n and 1 k: m

W(i,k)= max{U(i,k),V(i,k)}, (4.3)

where

U(i,k)= E T(i -+W(T (i),k -1)] = n
+ -* W(j,k -1)

.4+1 (1 -1)

VQ, k) = W (TQ), k) = IW(i,k).
j~il U- 1)

(4.5)

There equations can be solved recursively to yield the optimal strategy and the

optimal value W (1, m) . The optimal strategy can be summarized as follows. There

exists a sequence of integer-valued critical numbers (sIs 1 ,...,Sm) such that the

optimal strategy immediately selects a candidate if it appears at or after time sk:

Sk = min{i: G(i,k) >O}

G(i,k) = G(i,1)+
j=ma

G(i,1) = .
1=' 1

1
I .G(j,k-1)
x(i+1,s,_k) j -

"i 1 t l

J=. J- 1 t ~t

and

(4.4)

where

and

(4.6)

(4.7)

(4.8)
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4.2 Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems

by combining the solutions to subproblems. Dynamic programming is still applicable

even when the subproblems are not independent. The divide-and-conquer algorithm is

inefficient as it treats each subproblem uniquely and would often solve the same

subproblem multiple times. Dynamic programming on the other hand, stores the result

of each unique subproblem on a lookup table and simply retrieves this result from the

lookup table if a subproblem that has already been solved is encountered.

Dynamic programming is typically applied to optimization problems. In such

problems there can be many possible solutions. In the multiple secretary problem with

switch cost, we wish to find an optimal policy to achieve the optimal value, that is, the

maximum payoff.

There is a variation of dynamic programming that offers the efficiency of the

usual dynamic programming approach while maintaining a top-down strategy. The

idea is to memorize the natural, but inefficient, recursive algorithm. As in ordinary

dynamic programming, we maintain a table with subproblem solutions, but the

control structure for filling in the table is more like the recursive algorithm. A

memorized recursive algorithm maintains an entry in a table for the solution to each

subproblem. Each table entry initially contains a special value to indicate that the

entry has yet to be filled in. When the subproblem is first encountered during the

execution of the recursive algorithm, its solution is computed and then stored in the

table. Each subsequent time that the subproblem is encountered, the value stored in

the table is simply looked up and returned.

To solve a complicated problem like multiple secretary problem with switch

cost, the natural recursive algorithm without memorization runs in exponential time

since solved subproblem are repeatedly solved. Memoization provides a more
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efficient way to determine the optimal rules.

4.3 Numerical Analysis

In the multiple secretary problem with switch costs, the interviewer can have at

most m secretaries at a time, thus there will be more variables involved in describing

the Markov decision process model. We describe the state of the process as

(x,y,,...y,,n), 1x ,yx<100, l!y:lOO 1< n l100wherex is the quality of the

candidate, n is the remaining number of applicants to be observed, and y, y2,, y,

are the qualities of the current secretaries. We have y, y2  ... - Y, -

Let W (x, y1,..., y,,, n) be the expected additional payoff under an optimal

strategy starting from state (x, y,..., y,,n), 1 x ,100, l!y:OO 1< n<100,

y1  y 2  ... - yn , and also let U (x, y ... , y, , n) be the expected additional payoff

when we select the new candidate and then continue search in an optimal manner.

Similarly, let V (x, y ,..., yin n) be the expected additional payoff when we reject the

new candidate and then continue search in an optimal manner. Then the principle of

optimality yields, for 1 x ! 100, 1 y l100, 1<n ! 100

= max(U(x, y, . ', y, , n), V(x, y ... , ym. n)}) (4.9)

where

(5.0)U(x, y ..... y,,, n)

n+1

= (Expected Payoff if T (x, y,..., ym, n) = k) -p(x, y,..., y,, n, k)
k=

=n k(x+y2+ ---+y,,,)-d1+ 0 W(t,xy 2 -. .. ,y.,n-k)dt
k=1 100- x

46

W(x, y ..... y,,, n)



=> k(x+y2 +---+ym)-d+ 0 j W(t,x,y,
k=1 1000-x-j

100 -min(x, y,) min(x, y,)k-

100 100

+[n(x+y, +---+ym)-d]- min (x,y,)_ n

100

V (x, yl,..., ym, n)

I . .ym,,n - k) dt)

and

(5.1)

n+I

=(Expected Payoff f T(x,y,..., y., n)
k=1

= k ). p(x, y1 ,..., ym, n, k)

= Ik (y, + ---+ y,)+
k=1 100-x

xp(x, yl,..., y.,,n, k)+n(y, +---+ y,.) -p(x, yi,..., Ym,n,n+1)

= xk(y +-+ y,)+ W (t, y,..., y,,n-k)dt
k=1 100-x O O

100 100) 100

Equations (4.9)-(5.1), combined with the boundary conditions

U(x, y,..., yOn,) =x+y +...+y, -d, U(100,y,100,...,ym,n) =mxlOO(n+1) -d,

V(100,y,..., y.,0) =(y +...+y,,)x(+1) and V(x,y ,..., y,0) = y, +...+y, ,

1 x ! 100, l! y l100, 1 n i100 , y1  y2 * .'. y,, , can be solved recursively to

yield the optimal strategy and optimal value W (x, y,..., yn n) .

As each state of the process is described by m+2 different variables, namely
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l:!x l100 , 1  y 2  **5 y2 : .. y,., 1 1 n: 100, there could be 102,+4 different

states involved in the process. In order to determine the optimal strategy associated

with these 102,.4 possibilities, we could employ numerical methods and dynamic

programming algorithm to obtain the solution. To solve the problem more efficiently,

memorization method is exploited and a matrix is constructed to store subproblem

solutions. The following is the corresponding pseudo-code to calculate the expected

additional payoff under an optimal strategy starting from state (x, y,..., y,,,, n) ,

1 x<5100, 1 yl100, 1 n i100 and y, 1 y 2  -- y,.The switch cost in the

simulation is set to d=500.

construct a global matrix M [x, yi,...,y, n]

mainfunction

read in the values of x, y1 ,..., y, n

assign a special value to the matrix M [x, y,,..., y, n] <_ 0

calculate the values of U (x, y1 ,..., yin' n) and V (xyl, ,., n)

if V (x, y,,..., y,,, n) > U (x, y,,..., y,,,, n)

M [x, y ,...,. y, n]|+- V (x, y ,...,. y,,, n)

reject the applicant

else

M [x, y,,..., y,,,, n]|+- U (x, yl,..., y,,, n)

select the applicant

end if

end function
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W(x, y,..., Y,,, n)

if M[x, y,,y,,,,n]<oo

return M[x, y,..., y,,,n]

else

calculate the values of U(x, y,..., yi n) and V(x, y . . . y, n

if V(x, y,...,ym,,,n)> U(x, y,,..., y,,n)

M [x, y ,...,. y,,, n ]<- V (x, yl,..., y,,, n)

return V(x, yp... Ym,, n)

else

M[x,

return

end if

end if

end function

yi,..., ym, n]<- U(x, yi,..., ym, n)

U(x, y ,..., y,, n)

U(x, y,..., ym,n)

Ifx= y 2 =100

return mxlOO(n+)-d

else if n=0

return x+ y,++ ym -d

else

return

n k(x+y 2+-+y)d +O- W(tx, y -- y,,,n -k)dt
k=1 ( 10-x
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100-min(x,y 2 ) min(x,y 2 )

100 100

+[n(x+y 2 +...+y,)-d]-minxy2)

end if

end function

V(x, y, n)

Ifx=100

return (y,+...+y,)x(n+1)

else if n=O

return y +... + y,

else

return

(k k(,+--+ y,)+ W W(t, y1,..., y,,n -k) dt
k=1 100-x £

100-x x )k-I . "
x - +n(y+-+y 0100 100 100

end if

end function

4.3.1 The Two Secretary Case

The interviewer can have at most 2 secretaries at any time, hence each state of

the process is described by 4 variables and there would be 108 different states. The

optimal additional payoff at each state can be represented by a 32-bit floating point

value, thus the minimum space requirement is 3.2 x 10' bits, which is 3.2 gigabits.

50



This still exceeds the available computer memory size.

Thus, instead of keeping the subproblem solutions in a matrix, we can create a

file in the hard disc that maintains an entry per subproblem with the solution to each

subproblem. As illustrated in Figure 9, a data structure is constructed to describe each

Markov process state. Each data structure contains values of yi,.... y,, x, n and the

expected additional payoff under an optimal strategy starting from state

(x, y 1,,.., Yin' n) .These information are well organized in the file in such a way that

the program can easily find one particular data set according to state variables

y,..., y.,, x, n and obtain the value of W(x, y ,..., y,,, n) .

File

Data Structure

y1

ym

x
n
W

in Hard Disc

Figure 9. The Data Structure to Store the Solution to Each Subproblem

The expected additional payoff under an optimal strategy starting from each

state can be calculated by using numerical simulation. Given that the interviewer has

not selected any secretaries yet (i.e. y =y = 0), Figure 10 presents the threshold

values of the first secretary for various values of n. It can be seen that the threshold

value remains between 58 and 59 for n larger than 39; increases as n decreases from

39 to 29; and decreases as n decreases further. The threshold value increases as n

decreases from 39 to 29 because the interviewer is unlikely to have the time for
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further replacement and thus have to select a candidate for sufficient quality. The

threshold value goes down when the interview process approaches the end since the

interviewer has no choice but to be satisfied with a mediocre applicant.

Secretary I's Threshold Value for Various Values of n (Two Secretary Case)
70

I

10

40L

89 79 59 49 39 29 19 9

Number of Remnaining Applicans n

Figure 10. Secretary I's Threshold Values for Various Values of n

Figure I1I shows the selection criteria for the second secretary when we have

already hired the first secretary and there remain 99 more applicants to be observed.

The threshold value for the second secretary's quality increases as the quality of the

first secretary increases from 0 to 78. This is because when the quality of the first

secretary is higher, the interviewer is more patient and he or she would expect to get a

better second secretary. The curve begins to go down after the quality of the first

secretary reaches 78, and converges to a steady state value of 73. The existence of the

hump can by explained by the fact that when we are holding a secretary with a

sufficiently high quality, a lower quality second secretary can be tolerated because we

may still have a chance to replace this secretary later on to achieve optimal payoff.
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Figure 11. the Selection Criteria for Secretary II with Known Secretary I and n=99

Selection Criteria for Secretary 11 with Known Secretaryi, n=9, 19,39, 69, 99

0-

0 2 4 6 8 1012141618202224262830323436384042444648505254S658806264666870727476788082848688909294698

Secretary I's Quality

Figure 12. the Selection Criteria for Secretary II with Known Secretary I, n=9, 19, 39, 69, 99

Figure 12 shows the selection criteria for the second secretary at different time

horizons. According to this plot, the hump is more obvious when we have more

53

the Selection Criteria for Secretary 11 with Known Secretary I and n=99

90.

60

20 - - - - - - - --.- - - - - - -

0
70 80 90 1000 10 20 30 40 50 60

secretary I's quality



remaining applicants to see, and it becomes less pronounced and finally disappears

when we approach the end of the interview process (n=19, 9). This is probably due to

the fact that when the number of applicants is small, the possibility to change the

second secretary at a later stage is low, thus the interviewer may stick to his previous

selection criteria and would not accept any compromise.

4.3.2 The Seven Secretary Case

In this case the interviewer can have at most 7 secretaries at a time. If the

quality of each applicant is uniformly distributed over (0, 100], each state of the

process should be described by 9 variables and there are 1018 different states. The

optimal additional payoff at each state can be represented by a 32-bit floating point

value, thus the space requirement is 32 exabits, which far exceeds the sizes of the disc

drives currently available.

Though it is impossible to determine the optimal strategy for the case in which

the quality of each applicant is uniformly distributed over [0, 100], the space

requirement can be significantly reduced if we change the distribution range to [0, 51.

Correspondingly the switch cost is rescaled to 25. By doing so, we are able to get an

approximate optimal strategy for the seven secretary case.

Given that the switch cost is d=25, and the interviewer has not selected any

secretary yet (i.e. y, = Y2 = ---= y = 0). Table 3 gives a selection of the first

secretary's threshold values x* for various values of n. The corresponding expected

additional payoff is U when we select the new candidate and is V when we reject the

new candidate. This is shown in this table. It can be seen that the time horizon value n

does not have a significant effect on the first secretary's threshold value, which equals

to 2 consistently. It may be attributed to the approximate methodology we employ in

the analysis,. Another reason is that an increase in the number of vacancies leads to a
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lower selection criteria, and thus, the switch cost becomes less influential.

Table 3. Approximate First Secretary's Threshold Values x*

In the Seven Secretary Case.

for Various Values of n (d=25)

4.4 Experimental Results

In this section, we compare the respondents' decisions made in the experiment

with the previously-derived approximate optimal selection rules. Upon arrival at the

lab, respondents were seated individually and given instructions for the experiment.

All respondents received instructions emphasizing their goal in the experiment - to

accumulate as much total payoff by the end of the experiment.

As a metaphor for the interview process, a computer program was created with

a decision-making task. The experiment comprised 100 stages, during each of which

the respondent would be shown a number. Each number that appeared during one of

the 100 stages was randomly generated from a discrete uniform distribution with the
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x n U V

2 99 1767 1794

2 89 1557 1584

2 79 1347 1374

2 69 1137 1164

2 59 927 954

2 49 717 744

2 39 508 535

2 29 308 337

2 19 126 157

2 9 10 16



range [1, 100]. Respondents also had to manage an inventory that could store at most

7 numbers. Accumulating payoff was done by selecting numbers to add to their

inventory. At the end of every stage, a stage payoff equal to the sum of the numbers in

their inventory would be added to their total payoff. In addition, respondents could

attempt to increase their payoff at the end of any stage by selecting the number that

had appeared to replace one of the current numbers in their inventory. However,

replacing a number would cost the respondent a fixed sum of 500. Thus, they had to

trade off the benefit of replacing a number against the fixed cost that would be

incurred. If we assume that the numbers that appear at each stage represent the

qualities of different applicants, then the analogy between the experimental program

and the problem presented should be apparent.

In order to compare the performance of the respondents with our approximate

optimal selection rule, we take a look at 13 sets of experimental results in which

necessary experimental information had been properly recorded and the instructions

had been apparently followed.

Respondents' First Selected Applicants

2U

U
2r --- _ _ . . .....I

Qualkty Oft Flrst $*keceAppkcn"

Figure 13. The Respondents' First Selected Applicants
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It is worth contrasting the behavior of the respondents at the very beginning of

the sequential search task to an optimal strategy benchmark, which in this experiment

is to select the first number according to our simulation results in 4.3.2. Based on the

approximate optimal selection rule, the optimal threshold value for the first secretary's

quality is equal to 2/5 of the maximum value, which is 100 in this experiment. In

other words, the first number that a respondent selects should be no less than 40.

Figure 13 shows the qualities of the respondents' first selected applicants. Of the 13

respondents, 12 selected their first numbers greater than 40, and only one chose 20 as

his or her initial selection. The average value of respondents' first selected numbers is

73.23, which is somewhat surprisingly high.

Time to Make the First Selection r Optimal Time, Average= 1.23
n Respondents' Time. Average=1 -85

5

4 -

3 -

E

2 -

0+ I
1 2 3 4 5 6 7 8 9 10 11 12 13

Experiments

Figure 14. Time to Make the First Selection

Figure 14 compares the time to select the first secretary based on the optimal

selection rule with the observed time at which the respondents made their first

selections during the experiments. While most of the respondents selected their first

numbers at the very beginning of the process, which is consistent with the optimal

selection strategy, some of respondents waited a longer time for their first selections

than the optimal benchmark does. Consequently, the average time to make the first
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selection under optimal rule (1.23) is shorter than that made by the respondents (1.85).

Figure 15 presents the quality variance of the selected secretaries according to

the optimal selection rule and that based on the respondents' selections. The quality

variance of the optimal selections is 212.3, which is smaller than the quality variance

of the respondents' selections (246.7). This can be attributed to the fact that majority

of the selections made by respondents take place during the first half of the process, at

which the selected numbers yield a greater variance. However, the optimal rule

suggests making fewer selections at early stages and as a result, the decreased number

of relatively low quality secretaries reduces the total variance.

Variance of the Qualities of Selected Applicants 0 Varance ofthe Optimal Selections, Average=212.3

0 Variance of the Respondents' Selections, Average=246.7

800

700 I

500

500 I I
400

300

200

U0,

1 2 3 4 5 6 7 8 9 10 11 12 13

Experiments

Figure 15. Variance of the Qualities of Selected Applicants

Figure 16-41 show the comparison between our selections based on the

approximate optimal selection strategy and all the 13 respondents' selections. The

dots in the graphs represent the values of the numbers respondents have seen along

the sequential search process. Of all the 100 dots, the square shaped ones refer to the

numbers selected based on the optimal strategy or by respondents respectively. Note

that the motivation for switching is highly influenced by two factors - the expected
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number of possible replacements to be made and potential loss associated with

unnecessary switches, both of which reduce the incentive to switch numbers. First,

towards the end of the experiment, respondents have bigger numbers and thus a

reduced need to take the risk to make the replacements. Second, the expected benefit

of switching is reduced with time because the time horizon during which the new

numbers can be kept is reduced. Thus it is not surprising to see that most of the

selections are made during the first 1/3 of the experiment and there is a decreased

tendency to select numbers later in the process. In contrast to the optimal behavior,

respondents tend to make more selections or replacements at the beginning and make

less later on. It is probably due to the fact that without a precise calculation, redundant

early selections made by respondents lead to significant losses.
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Figure 42. Optimal Number of Switches vs. Respondents' Number of Switches

Figure 42 compares the optimal number of switches and respondents' number

of switches. The average number of switches based on the optimal selection strategy

is 13.30, which is higher than that of respondents' number of switches 11.23. The

correlation coefficient of these two variables is 0.53. As we can see from the plot, the

optimal strategy generally leads to more switches and there is only one exception

among the 13 experiments. This suggests that respondents might be less ambitious to

get a higher payoff by frequently switching numbers in consideration of the switch

costs.

Figure 43 shows the comparison between the approximate optimal payoffs that

could be gained with the payoffs achieved by respondents in each experiment.

Although we would expect that the optimal payoffs are always greater than

respondents' payoffs, though there were a few respondents who actually achieved

better results than the optimal strategy does. These exceptions are a consequence of

the limited accuracy of our approximate optimal selection rule. The average optimal

payoff is 52443, and the average of respondents' payoffs is 50296. The correlation

coefficient of these two variables is 0.63.
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Chapter 5. Summary and Future Directions

In this thesis, we have explored the optimal selection strategies for the multiple

secretary problem with switch costs by using probabilistic reasoning and numerical

analysis. We have examined the effect of various costs on optimal selection strategy in

generalized secretary problems with no recall or replacement allowed. A single

secretary problem with switch cost has been presented and its optimal selection rules

in both infinite and finite time horizons have been given. The model is further

extended to the case where we can hire more than one secretary at a time. The

selection strategy for two secretary case has been determined and an approximate

solution for the seven secretary case has been given. At the end of the thesis,

experimental results have been compared against the optimal selection rule.

Numerous computational methods have been employed in this thesis. We have

exploited numerical methods to calculate complicated integral equations. Dynamic

programming and memoization method have been utilized to improve computation

efficiency.

In the future, we can consider further improving our computation methodology

to find out a more accurate optimal selection strategy for seven secretary problem

with switch costs. The current method asks for a huge space requirement of around 32

exabits, which far exceeds the size of currently available drives.
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