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Abstract

Life cycle assessment (LCA) is one methodology for assessing a product’s impact on
the environment. LCA has grown in popularity recently as consumers and governments
request more information concerning the environmental consequences of goods and
services. In many cases, however, carrying out a complete LCA is prohibitively
expensive, demanding large investments of time and money to collect and analyze
data. This thesis aims to address the complexity of LCA by highlighting important
product parameters, thereby guiding data collection.

LCA streamlining is the process of reducing the necessary e↵ort to produce acceptable
analyses. Many methods of LCA streamlining are unfortunately vague and rely
on engineering intuition. While they can be e↵ective, the reduction in e↵ort is
often accompanied by a commensurate increase in the uncertainty of the results.
One nascent streamlining method aims to reduce uncertainty by generating random
simulations of the target product’s environmental impact. In these random Monte
Carlo simulations the product’s attributes are varied, producing a range of impacts.
Parameters that contribute significantly to the uncertainty of the overall impact
are targeted for resolution. To resolve a parameter, data must be collected to more
precisely define its value.

This research project performs a streamlined LCA case study in collaboration with a
diesel engine manufacturer. A specific engine is selected and a complex model of its
production and manufacturing energy use is created. The model, consisting of 184
parameters, is then sampled randomly to determine key parameters for resolution.
Parameters are resolved progressively and the resulting decrease in uncertainty is
examined. The primary metric for evaluating model uncertainty is False Error Rate
(FSR), defined here as the confusion between two engines that di↵er in energy use by
10%. Initially the FSR is 21%, dropping to 6.1% after 20 parameters are resolved,
and stabilizing at 5.8% after 39 parameters are resolved. The case study illustrates
that, if properly planned, a streamlined LCA can be performed that achieves desired
resolution while vastly reducing the data collection burden.

Thesis Supervisor: Timothy G. Gutowski
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation: Easier Life Cycle Assessments

Life cycle assessment (LCA) is a tool used in both the public and private sector

to assess a product or service’s impact on the environment. In the private sector,

LCA has been increasingly used by manufacturers and retailers to meet consumer

requests for more information about the environmental impact of their products.

Along with the increased use of LCA comes a demand for more e↵ective and e�cient

LCA methods.

To begin an LCA, data must be collected on the environmental impact of the various

components in a product. As products may be very complex, guidance is needed on

which data to collect. LCA streamlining is the process of reducing the necessary e↵ort

to produce an acceptable LCA. While these methods can be e↵ective, the reduction

in e↵ort is often accompanied by an increase in the uncertainty of the results. The

area of LCA streamlining is currently very active, with many new methods being

proposed and tested.

1.2 Goal: Create Streamlined Assessment Proce-

dure for Diesel Engine Production

This research project analyzes LCA streamlining techniques as part of an ongoing

collaboration with a diesel engine manufacturer. The goal of this research is to

improve LCA methodology for performing accurate but streamlined LCAs of diesel
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engine manufacturing. A case study is undertaken to this end. The target product

for the case study is a large 15-liter on-highway truck engine, a relatively complex

assembly consisting of over 1,000 individual parts.

1.3 Outline

Chapter 2: Background This chapter introduces this project’s central case study

and industry collaboration. The life cycle assessment (LCA) methodology is

also discussed, as well as motivations for LCA. The concept of “streamlining”

to more e�ciently create useful LCAs is addressed, along with recent examples.

The Monte Carlo simulation technique is introduced, with a specific emphasis

on its relation to LCA. Finally, the specific application area for this research,

diesel engine production, is discussed.

Chapter 3: Modeling and Simulation Methodology This chapter specifies the

basis of the modeling and simulation used in this research. The concept of

reducing uncertainty iteratively by increased specification is highlighted. The

details of simulation modeling are discussed. The data sources are introduced,

as well as the metrics used to evaluate the simulation: False Signal Rate (FSR)

and Partial Rank Correlation Coe�cients (PRCC). Finally, the parameters of

the engine model are enumerated.

Chapter 4: Simulation Results and Analysis This chapter presents the results

of the simulations, as well as necessary changes that were made to the experiment

in light of initial results. The importance of a handful of influential parameters

- overall mass and composition - was underestimated by PRCC. The themes

of the results are discussed. It was found that very few parts have appreciable

impact on the uncertainty of the model. Additionally, the uncertainty of the

model has a distinct lower bound, which was not surpassed after resolving all

resolvable parameters.

Chapter 5: Additional Engine Production Assessments Separate from the im-

pact modeling and simulation, other brief assessments of diesel engine production

were also explored. This chapter discusses four such assessments: an approxi-

mate life cycle assessment of a diesel engine (including carbon emissions and

water usage), an engine camshaft design comparison, an analysis of resource

18



use at the factory scale, and an investigation into the material composition of a

wide range of diesel engines.

Chapter 6: Conclusion This chapter summarizes the findings of this thesis.
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Chapter 2

Background

2.1 Life Cycle Assessment

Life cycle assessment (LCA) is a methodology to evaluate the overall impact of

a product or service on the environment. Individual applications of LCA may be

qualitative or quantitative [1, 2]; these LCAs may focus on broad or narrow categories

of impact, such as energy use, carbon dioxide emissions, global warming potential,

or toxicity [3]. The applications of LCA are also tremendously diverse; for example,

LCAs have been used by private organizations to evaluate the impact of their products

[4] and by governments to label goods for sale [5].

2.1.1 LCA Stages

Despite the variety of life cycle assessment approaches and forms, there are some

unifying themes. Almost all LCAs concentrate on multiple stages of the product’s

life; these stages are commonly called life cycles. While the definition of these stages

varies slightly, the following general stages are featured in many LCAs (adapted from

the Environmental Protection Agency [6]).

1. Raw material extraction

2. Materials production

3. Manufacturing

4. Use

20



5. Reuse

6. Maintenance

7. Waste management and recycling

In specific LCAs, these stages may be expanded or grouped together. Some LCAs

may evaluate a subset of stages, while others aim to include the entire life cycle. All-

inclusive LCAs may be “cradle-to-grave”, raw material acquisition through disposal,

or “cradle-to-cradle”, raw material acquisition through recycling.

2.1.2 Comparative Nature of LCA

LCA is always used in the context of comparison. Rather than deriving absolute

results, LCAs compare two or more items in relation to each other [7]. Below are

examples of possible comparisons.

Competing products and services. Two or more products or services that fulfill

the same function can be compared using LCA. A “functional unit” must be

declared for the analysis. The functional unit is a quantitative measure of the

common service delivered by each competing item. The impact of each product

or service is then normalized to the same functional unit. As an example, in

Dettling [4], paper towels are compared with two varieties of electric hand

dryers. The functional unit in this study was drying 260,000 pairs of hands.

Variations of the same product. Rather than comparing di↵erent competing

products with LCA, variations of the same product could be compared to

evaluate the impact of key design changes. For example, vehicle lightweighting

has been suggested by some [8] as a potential energy-saving option over the

vehicle’s lifetime; in these analyses a vehicle is compared with a hypotheti-

cal lightweight variant. This can be evaluated with an LCA or with simpler

methods, as has been done by Ashby [9].

Di↵erent components of the same product. The various parts or materials that

constitute a product may also be compared to each other, usually with the

intent of identifying those with the most significant impact. In a thorough

LCA study Sullivan et al. [10] represented a generic family sedan with over 600

constituent parts .

21



Di↵erent stages of the same product. As mentioned earlier, LCAs study vari-

ous stages of a product’s life. The environmental impact of these stages can

be compared and contrasted with each other. For example, Gutowski et al.

[11] compare the life cycles of various product categories to evaluate the energy

savings of remanufacturing versus new production. The energy used by a

remanufactured product (e.g. an automotive tire) in its use phase (e.g. driving)

might o↵set any energy savings in the remanufacturing phase, when compared

to a comparable new product.

In should be emphasized that results from separate and unrelated LCAs are very

di�cult to compare, as many of the underlying assumptions may be fundamentally

di↵erent. This is true even if the target product or service is identical.

2.1.3 Specificity in LCA

LCAs have been compiled with varying levels of thoroughness, from qualitative ob-

servations to rigorously quantitative measurements. Many researchers have described

these levels. Henrik Wenzel summarized the spectrum of LCAs in three basic levels

[1]. In increasing order of complexity and specificity, they are

1. Matrix LCA. This level may be either quantitative or qualitative. Any

calculations are very rudimentary.

2. Screening LCA. This LCA is quantitative and based on secondary data from

existing databases. No new LCA-specific measurements are made. Calculations

may be more advanced.

3. Full LCA. This LCA includes new application-specific measurements and data.

Calculations are typically more advanced.

Increasing the specificity of an LCA will heavily a↵ect the associated workload. It

is therefore very important to define the scope and purpose of an LCA early in the

process.
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2.1.4 LCA Standards and Guidance

The increasing use of LCAs has prompted the creation of new standards and guidance,

most noticeably those introduced by the International Organization for Standardiza-

tion (ISO):

ISO 14040:2006 Life cycle assessment - Principles and framework [12]

ISO 14044:2006 Life cycle assessment - Requirements and guidelines [13]

As a testament to the ongoing growth and change in LCA, the ISO is also developing

two new standards. ISO 14071 will add review processes and reviewer competency

requirements; ISO 14072 adds additional requirements and guidelines specifically for

organizations [14].

2.1.5 Uncertainty in LCA

The theme of uncertainty in LCA is closely related to LCA streamlining. In some

assessments, streamlining is conducted by targeting activities that contribute most to

the uncertainty of the impact results. The sources of uncertainty in LCA have been

categorized by Eric Williams [15] as follows.

Data Uncertainty Data uncertainty is caused by both errors in the data collection

process as well as the imprecision of the measurements.

Cuto↵ Uncertainty Cuto↵ uncertainty is caused by the finite boundaries of the

analysis, which necessarily leave some activities unaccounted.

Aggregation Uncertainty Aggregation uncertainty arises when di↵erent processes

are grouped together into larger, or general “superprocesses”. This is most

common in economic input-output model LCA, or EIO-LCA, which determines

the impact of a product or service based on its cost.1

Temporal Uncertainty Temporal uncertainty is caused by the fluctuation of activ-

ity impacts over time. Over a large enough time scale, the impact of activities

can change appreciably, primarily due to technological improvements and gov-

ernment regulations. This timescale di↵ers for each process but may be as short

as a few months.
1See [16] for more on EIO-LCA
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Geographic Uncertainty Geographic uncertainty is caused by the geographic vari-

ation in activity impacts. As regulations and technologies di↵er drastically

between economies, so do the environmental impacts associated with production

in these economies.

2.2 Streamlined LCA

Because of the increasing use of LCA, there is a growing interest in reducing the

e↵ort and time invested in an LCA. The concept of Streamlined LCA (SLCA) was

first introduced in the early 1990s by Keith Weitz et al. at the Research Triangle

Institute [17]. SLCA is the general approach of conducting abridged LCAs. SLCA is

not a specific strategy, but a general grouping of possible strategies to reduce e↵ort

in LCA while maintaining relevance.

Many methods of LCA streamlining are unfortunately vague and rely on engineering

intuition. While they can be e↵ective, the reduction in e↵ort is often accompanied by

a commensurate increase in the uncertainty of the results. In fact, in a study of ten

di↵erent streamlined techniques Hunt [18] found that over half came to an incorrect

conclusion when compared with a full LCA. In light of this, streamlining methods for

LCA should be evaluated critically.

2.2.1 Primary Streamlining Strategies

The primary strategies described by Weitz [17] are summarized below.

• Create a list of damaging activities to be assessed. This is sometimes known

as an “inviolates” list. As an example, the inviolates list may include toxic

chemicals and substances as described by the United States Environmental

Protection Agency. This strategy relies on the judgment of the researchers, and

may ignore large impacts, especially previously unknown impacts.

• Remove activities of subjectively minor importance. This strategy again relies

on the judgment of the researchers, and previous biases can potentially impact

the assessment dramatically. This strategy mainly draws upon previous LCA

work to narrow the assessment scope.
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• Restrict the assessment to a subset of the life cycle stages. This strategy can

be very powerful, especially when comparing two closely related products that

may share similar life cycles stages. In broader applications this strategy must

necessarily rely on subjective judgment and previous work.

• Cull environmental impacts. This strategy is implemented to some degree in

every LCA. For example, greenhouse gas emissions are commonly one of the

primary impacts studied and reported.

• Cull inventory parameters and variables. This strategy eliminates some impact

assessments. For example, if greenhouse gas emissions are to be reported in an

assessment, energy use for each activity must be included in the inventory.

• Select only high mass or high volume activities. This strategy relies on quanti-

tative measures of activity size; only the cuto↵ point is subjective. In Hunt [18]

this strategy was used to alternatively exclude materials with mass less than

10% and 30% of the total. In many situations, however, this strategy eliminates

important activities. For example, rare earth metals are commonly used in

relatively small quantities per product, but their impact may be exceptionally

high; this is primarily due to their intensive extraction processes.

• Abbreviate or eliminate impact assessments. This strategy is very restrictive.

The resulting LCA has very limited application, as it is not possible to evaluate

options based on their potential environmental impact.

• Utilize qualitative assessments. This strategy is also very aggressive, and relies

strongly on the subjective judgment of the researchers. The primary weakness

of the qualitative assessment approach is that it is very di�cult to compare and

contrast di↵erent activities.

• Use surrogate data for an activity. In many LCAs this strategy is a necessity.

The choice of surrogate data is highly subjective, and in many cases can

significantly alter the assessment results.

2.2.2 Streamlined LCA Themes

The above strategies to streamline LCAs have a few key shared characteristics.

Importantly, each streamlining method is subjective in nature. The judgment of
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the assessment researchers is important and influential. Because of this subjectivity,

each strategy has the potential to be controversial. Researchers may remove an

environmental impact that they believe will be inconsequential for an assessment;

a future study may discover that this impact category was instead very important,

potentially nullifying many of the previous conclusions.

Despite their faults, streamlining strategies are necessary. Graedel [19] emphasizes

that every life cycle assessment will be incomplete. This incompleteness is a product

of many factors. First, each assessment must have discrete, finite boundaries; the

impact of the studied activities outside of these boundaries will not be captured.

Second, there are limitations to the amount and quality of data measurements. For

example, even if experimental data can be collected for primary processes, many of the

secondary processes may rely on external data sources. Finally, geographic, process,

and temporal variability all necessitate limiting the resolution of the assessment. For

example, the researchers must either choose specific geographies to study, or aggregate

the impacts in disparate areas. The incomplete nature of LCA is more thoroughly

studied in the context of uncertainty.

2.2.3 Streamlined LCA Examples

Hunt [18] provides a detailed analysis of di↵erent specific streamlining strategies,

many of them variations or specific instantiations of Weitz’s methods. Hunt includes

the following nine strategies:

• Removal of upstream components. Only the fabrication, use, and disposal life

cycle stages are studied.

• Removal of partial upstream components. No components before material

manufacturing are studied, with the exception of the step just before material

manufacturing. This method is slightly more inclusive than the preceding.

• Removal of downstream components. Only processes up to and including

material manufacturing are studied.

• Removal of upstream and downstream components. Only the material manu-

facturing phase is studied.
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• Specific impact used to represent entire impact categories. Rather than the use

of all components (e.g. solid waste), a representative component is selected (e.g.

plastic waste).

• Qualitative or less accurate data used. For components that contributed less

than 10% to the LCA results, proxy data was used.

• Surrogate processes used. Based on data availability, processes were replaced

with others that were physically or chemically similar.

• Exclude materials with mass < 10% of total. Any raw material with a mass of

less than 10% of the total mass of all materials was not studied.

• Exclude materials with mass < 30% of total. This is simply a more aggressive

and less inclusive form of the preceding method.

The researchers conclude that the most promising technique is to use qualitative or

less accurate data for components that are not significant in the overall impact. The

use of proxy data was further explored by Hochschorner and Finnveden [2]; and Hur

[20].

In this same theme, Patanavanich [21, 22] and Zgola [23] use less accurate data for

less significant components. Notably, their approach to qualifying the significance of

components di↵ers from the other researchers. Uncertainty analysis is integrated into

the assessment process from the outset; the significance of components or parameters

is their contribution to the overall uncertainty of the results. This approach relies on

Monte Carlo simulations, which are discussed in this context in Section 2.3.

In a novel streamlining method, Sousa [24, 25, 26] uses machine learning techniques

such as artificial neural networks to approximate the impact of product concepts.

This method relies on existing LCAs that train the learning model. The model

then associates combinations of product attributes to environmental impacts such as

energy, solid waste, and smog. It should be noted that this technique was created

specifically for the early stages of product design. Even so, this method was able to

successfully rank the impact of various products [24].
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2.3 Monte Carlo Simulations in LCAs

As mentioned above, Monte Carlo simulations are utilized in some LCA techniques.

This section briefly introduces the concept of Monte Carlo simulations, with specific

emphasis on the technique’s use in LCA.

2.3.1 Background on Monte Carlo Simulation

Monte Carlo simulation is a stochastic method that has been used in a variety of

applications [7, 21, 23, 27]. Monte Carlo methods are based around one or more

mathematical or computational models of a system. Each parameter in the system

is declared with a probability distribution or a fixed value. Monte Carlo methods

sample system parameters from their corresponding probability distributions; from

these sampled system parameters, an output vector is calculated. This simulation is

repeated, usually for hundreds or thousands of iterations. The distributions of the

output vectors are then used to determine uncertainty bounds, usually at certain

quantiles, such as 5% and 95%.

In LCA, the model is usually constructed to estimate the environmental impact

of a product or service for certain stages of its life cycle. Examples of parameters

include product attributes, material composition, use-phase duty cycles, and electricity

generation details. The output vector of these LCA models consists of one or more

environmental impacts, such as embodied energy or greenhouse gas emissions.

2.3.2 Simulation to Quantify Uncertainty

Many LCA studies provide uncertainty ranges for final impacts. These ranges are

usually produced with uncertainty analyses that rely on simulation techniques like

Monte Carlo simulation. Maurice [7] and Sonnemann et al. [27] use Monte Carlo

simulation to analyze uncertainty in their life cycle assessments, which respectively

target coal power plants and waste incinerators. Sonnemann et al. assign various

uncertainty distributions to their model parameters based both on extensively available

data and on expert opinions, depending on availability. Monte Carlo simulations are

then executed to provide probabilistic distributions of the impacts rather than solitary

concrete values. In their study they claim that these distributions “correspond to a

better understanding of the magnitude of the uncertainties in LCA results.” [27]

28



2.3.3 Simulation to Streamline LCA

One method to streamline the LCA process is uncertainty reduction. Uncertainty

reduction is typically an iterative process. Initially, most product parameters are left

very general with large relative variances, which represents high uncertainties. Initial

LCA impact calculations, therefore, have an unacceptably high level of uncertainty.

Iteratively, product parameters are “resolved,” or set to specific values with low

variance; the parameters with the highest contribution to uncertainty are selected for

resolution. The impact metrics and their associated uncertainties are calculated, and

the process continues until the uncertainty is within pre-determined bounds. This

procedure can be carried out before data collection to create a comprehensive list of

data that must be gathered.

Figure 2.1 on the following page illustrates the process of uncertainty reduction to

assist in di↵erentiating between two products.

Examples of this method include the above mentioned work by Patanavanich [21, 22]

and Zgola [23]. In Zgola, liquid crystal displays manufactured for laptop computers

were studied. The parameters of these products included the product’s lifetime, total

mass, the number of LCD bulbs, the bulb type, the screen size, the laptop’s duty cycle,

and the electrical grid’s fuel mixture2. In this study, the attributes that contributed

most to the uncertainty were (in decreasing order of contribution) product duty cycle,

electrical grid’s fuel mixture, and product lifetime. The study’s target error rate was

10%; this resolution was achieved after 22 parameters were resolved from a total pool

of 47 total product parameters.

Patanavanich uses Monte Carlo simulation in a similar way, with a specific focus on

the underspecification of material properties. In this work, all materials are described

with five “levels” of increasing specification: material category, material property,

material type, material processing, and specific database entry. In this manner,

materials contributing significantly to overall model uncertainty are progressively

specified from level 1 (material category) to 5 (specific database entry).

2at the use location, not the manufacturing location.
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Figure 2.1 – Illustration of the uncertainty reduction process in streamlined life
cycle assessment, before and after resolution. This figure depicts the probability
distributions of the impact of two di↵erent products. Above are the distributions
before uncertainty reduction. Below are the distributions of the same products
after resolution of parameters; note that the intersection of the two distributions
is markedly smaller, and therefore the impacts are more easily di↵erentiated.
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2.3.4 System Parameters for Monte Carlo Simulations for

LCA

The life cycle assessment case studies mentioned in this section use Monte Carlo

simulation for a wide variety of system parameters and their variability or uncertainty.

Below is a sample of parameters.

Material mass

The mass of certain parts may vary or be uncertain. Because the embodied energy of

materials can in many cases account for a large part of the environmental impact,

any uncertainty or variability in the mass must be accounted for in the model.

Material composition

Similarly, the material composition may be somewhat unknown. The range of

materials that could be used must be accounted for, as in Patanavanich’s [21] material

underspecification method.

Use location

The geographic location where a product is used may have a proportionally large

environmental impact.3 Local characteristics, such as the mode of electricity genera-

tion, may significantly a↵ect the use phase impact; therefore, any uncertainty about

location must be modeled.

Use duty cycle

The duty cycle some products are subjected to may vary tremendously. For example,

a laptop may be used by an employee for 8 or more hours a day; the same model,

however, may be a second personal computer in a home and used infrequently. As

mentioned above, if the use phase has a significant a↵ect on environmental impact

the variability of its duty cycle must also be modeled.

3Indeed, for most products that actively consume energy during the use phase to provide their
primary functionality, the use phase will dominate the life cycle impact, especially with regards to
energy [28].
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Product attributes

For many products, fundamental attributes may be appreciably variable. For example,

a load-bearing part may be optionally composed of either 1 kg steel or 2 kg of aluminum.

If these attributes are not known, they may be simulated. One method of determining

the distribution for such parameters is the market share. For example, if 75% of

the products in question utilize steel, then the probability of sampling steel for this

parameter will be 0.75.

If an LCA covers a range of products as opposed to a specific model, even more

fundamental product attributes may vary, and therefore should be modeled with

uncertainty. An example from one of the case studies is the size of an LCD display.

2.4 Industry Collaboration: Diesel Engine Manu-

facturing

This research project focuses on the application of life cycle assessment to diesel

engine manufacturing. A large international engine manufacturer collaborated on

this project, contributed to its direction, and provided a necessary test opportunity

for LCA with one of their engine models.

2.4.1 Engine Studied

The engine studied in this research is a large diesel truck engine, with an engine

displacement of approximately 15 liters. The primary application of the engine is

on-highway tractor-trailers, with gross vehicle weight ratings of 25,000 lb. to 80,000

lb.4

The engine is sold both domestically and internationally, and is therefore subject to

a variety of international regulations; in the United States, these regulations are the

US Environmental Protection Agency’s (EPA) National Clean Diesel Campaign [30].

The engine is a complex assembly. The bill of materials (BOM) of the engine consists

of more than 500 distinct parts, which are comprised of over fifty materials and

4The US Department of Transportation’s Federal Highway Administration classification of these
trucks is Class 7 and 8, or “Heavy Duty.” [29] Examples are tractor-trailers, city buses, and dump
trucks.
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subjected to a variety of processes around the world, both at supplier locations and

the in manufacturer’s own facilities.

2.4.2 Diesel Engine Production

This project specifically focuses on the production and manufacturing of diesel engines,

as opposed the use of the engines.5 Currently the world market for newly produced

diesel engines is estimated to be roughly 150 billion USD [31]. In the United States,

the heavy-duty diesel engine manufacturing sector currently employs over 10,300

individuals in 30 di↵erent corporations; the sector has revenues of about 11 billion

USD [32]. Sales in the Unites States of large diesel vehicles (FHWA Class 8, “heavy

duty” [29]) are rising, roughly doubling to 170,000 from 2009 to 2011; this is even

greater than before the 2008-2010 recession (150,000 such trucks were sold in 2007)

[33].

5In this study the extraction and manufacturing phases of a diesel engine’s life will be investigated.
The in-use phase of its life, however, has a significant environmental impact; in fact, in many respects
its impact dwarfs that of the production phase. This observation and the motivations behind the
decision to focus on production are discussed in Section 3.2.3 on page 37.
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Chapter 3

Modeling and Simulation

Methodology

The methodology for this research project is described below. A model will be built

to quantify the environmental impact of the production of a diesel engine. This model

will have high uncertainty; a simulation procedure will then be run to identify which

parameters should be specified more precisely to reduce the overall uncertainty.

3.1 Overview of Process

The general steps of model creation and simulation are given below, along with

examples from this study. Each item will be more fully described in this chapter.

3.1.1 Simplified Process Steps

1. Define the scope of the life cycle analysis and the impact metric or metrics

used for evaluation. In this study the scope of the LCA is materials extraction

through final assembly of the engine. The primary impact metric is embodied

energy.

2. Inspect the product’s bill of materials, list all major components, and give

overall product specifications.

3. Select a subset of the components that are estimated to have the highest impact.

In this study, the subset was chosen by cost.
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4. Parameterize the major components of the engine. Approximate product

specifications, materials, and processes as best as possible. In this study this

was done for all of the major components, as well as the remainder of the engine

(en masse).

5. Use LCA databases to find the environmental impact of the system as a function

of the parameters. Treat the LCA values themselves as parameters of the model.

An example of parameters in this study are the mass and material composition

of the engine block.

6. Bound uncertainties for all parameters loosely based on readily available data.

For example, the mass of the engine block (before any material removal) was

loosely bounded from technical drawings of the part.

7. Execute a round of simulations. A round consists of a number of separate

simulations. Each simulation is the process of randomly setting each parameter

to a value in its range and then calculating the impact of the engine. In our

example, the engine block mass would randomly be assigned a value in its

bounded range. Each round consisted of 10,000 simulations.

8. Calculate the variance (a proxy for the uncertainty) of the impact values

calculated by the simulation.

9. Using the output of the simulations, identify the parameter that most signif-

icantly a↵ects the uncertainty of the impact. In this study, the partial rank

correlation coe�cient was used to judge the relative significance of parameters.

10. Reduce the uncertainty associated with this parameter to a reasonable level;

this uncertainty reduction represents the process of collecting more specific data

on the parameter. For example, the uncertainty of the engine block’s mass could

be reduced by referring to records of the casting’s measured mass. This specific

data would then be used to construct a tighter bound on this parameter.

11. Repeat steps 6 through 9 until uncertainty of the impact has either reached an

acceptable state, or has reached a steady state across simulation runs.

3.1.2 Workflow and Tools

The model for this project was assembled in Microsoft Excel. The random simulations

were executed using a macro script inspired and derived from Auer [34]. All analyses
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were completed in the R environment [35], with the uncertainty analysis functions

provided by the “Sensitivity” package [36].

3.2 LCA Approach, Scope, and Metrics

Before beginning the modeling and data collection phases of a life cycle assessment,

the scope of the study and the metrics used to evaluate it must be established. In

this section the overall approach to LCA used is discussed, along with LCA metrics

and scope.

3.2.1 LCA Approach: Use of Streamlining

Many of the techniques mentioned in 2.2 on page 24 by Weitz [17] and Hunt [18] are

used throughout this case study. It should be noted that each of these streamlining

techniques has recognized disadvantages; in fact, the primary purpose of this research

and case study is to identify which streamlining approximations a↵ect the outcome

most adversely so that they can be refined. Overall, the approach is to initially model

the system in a general fashion and then to increase specificity as needed.

3.2.2 Impact Metric: Embodied Energy

To assess the impact of engine production, energy was selected as the primary metric.

Energy will then serve as a proxy for overall environmental impact.1 A single metric

was selected rather than multiple metrics to simplify the case study. This is similar

to one of the streamlining approaches used by Hunt [18]. This methodology can, of

course, work with multiple impact metrics; this is explored more fully in Section 6.3.2

on page 92.

There are a number of reasons for the popularity of energy as an environmental metric.

Energy has been one of the primary metrics for many environmental studies. For

example, energy is the primary metric in Smith et al. [37], Gutowski et al. [11], and

Patanavanich et al. [21] Many other environmental indicators show some correlation

with energy usage. In fact, Huijbregts et al. [38] make an argument for the use of

cumulative energy demand (CED) from fossil fuels as a proxy environmental indicator:

1The usefulness of energy as a proxy in this specific study is analyzed more closely in Section 5.1.2
on page 71.

36



“Fossil energy demand is indicative of many environmental problems.

Fossil CED can therefore be used as a screening indicator for environmental

performance instead of performing a full LCA, for instance, in the absence

of su�cient data.”[38]

Energy, more than other environmental indicators (such as greenhouse gas emissions

or water usage), is most closely associated with production costs. Because of this, an

energy assessment may have usefulness for a corporation far outside of environmental

responsibility. There may therefore be more motivation and resources to study energy.

The validity of embodied energy as a proxy for other indicators in this specific case

study is discussed in more detail in the results section of this work, Section 5.1.2 on

page 71.

There are various methods to quantify energy use. For this study the concept of

embodied energy is used. Embodied energy is the amount of energy used to produce

a specific quantity of a material, good, or service [9]. The database used for this study

is Ecoinvent [39], discussed more in Section 3.3.1 on the following page. Ecoinvent

defines embodied energy as the total energy input into a product (and to any input

materials and subassemblies); this energy can be derived from any of the following

sources: coal, oil, natural gas, nuclear, hydroelectric energy, wood, wind, photovoltaic

energy, solar heat, and biofuels [40]. Unless otherwise specified, “energy use” in this

work refers to embodied energy.

3.2.3 LCA Scope: Engine Production

As mentioned earlier, this project is a collaboration with a large international diesel

engine manufacturer; one of the manufacturer’s own engine models served as the

target for this LCA case study.

The specific engine studied is a large diesel truck engine, with an engine displacement

of approximately 15 liters. The primary application of the engine is on-highway

tractor-trailers, which are classified by the US Department of Transportation’s Federal

Highway Administration as Class 7 and 8 [29]. The engine assembly has more than

500 distinct parts, which are comprised of over 50 di↵erent materials and undergo a

large variety of processes.

The use phase of an engine is known to dominate most of its life cycle impacts. Keoleian

[41] and Smith [37] have shown that for automobiles the use phase dominates the
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total energy consumption of the vehicle and engine, accounting for 70-80% of the

total. As a diesel truck engine may cover 5 to 10 times the distance as an automobile

in its lifetime2, and the fuel consumption per distance is higher, this proportion will

likely be even greater. Rough calculations for this engine indicate that the use phase

is most likely 99% or more of the total lifetime embodied energy of the engine. The

National Academies estimated the typical fuel economy for diesel trucks of this size

in the range of 2.5 to 7.5 miles per gallon [42]. An engine with a lifetime travel

of 500,000 miles2 in a typical truck would consume 66,600 to 200,000 gallons; the

embodied energy in the fuel alone would then be 10.2 to 30.6 TJ.3 As discussed

in Section 5.1, the embodied energy for the production of the case study engine is

approximately 69.7 GJ, or 0.2% to 0.7% of the fuel’s total embodied energy.

This case study specifically focused on the first life cycle stages of the engine: material

extraction, material production, manufacturing, and part transportation. It must

be noted that the use phase was not included in the life cycle assessment. Because

engine e�ciency is such a significant factor in their business, our industry partner

had existing dedicated projects to study use-phase impacts. This case study was then

designed to focus on other aspects of the engine’s life cycle, namely every stage prior

to use. End-of-life stages, such as remanufacturing, recycling, and disposal were also

not considered in this study.

3.3 Data Sources

3.3.1 Ecoinvent Database

The primary database used for impact assessment was the latest release of the

Ecoinvent database, version 2.2, which was published in 2010 by the Swiss Centre

for Life Cycle Inventories [39]. This database was chosen because of its relatively

large size, its comprehensive listings, and the availability of international data. The

database contains over 4,000 life cycle indicators (LCIs) for energy sources, material

2Keoleian and Smith both use nominal values of approximately 100,000 to 120,000 miles for
the lifetime distance of an automobile engine before remanufacturing. As a comparison, the diesel
engine in this case study has a warranty for 500,000 miles.

3The environmental database Ecoinvent [39] (more in 3.3.1) lists the embodied energy of diesel at
regional storage facilities as 54.6 to 55.0 MJ/kg. The embodied energy for any fuel will be more than
its energy content, as all energy expenditures are involved, such as extraction and transportation.
The US Department of Energy estimates the energy content of #2 diesel fuel as 137,000 BTU/gal or
45.6 MJ/kg.
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extraction, transportation, processing, and disposal. Many indicators are available

for multiple geographies, such as the European Union and the United States.

The Ecoinvent database is integrated into the life cycle assessment software package

that was evaluated as part of this research project: the Windchill LCA module by

PTC. The Windchill LCA software is discussed in detail in the appendices, along

with an assessment of its utility and recommendations on usage (see Appendix A on

page 105).

3.3.2 Other Sources

Not all materials and processes needed for this case study were found in the Ecoinvent

database. To construct estimates for the values and ranges of these parameters, two

other sources were consulted. Ashby [9] has collected approximate embodied energy

data for many di↵erent materials. Hammond et al. [43] have similarly created a

resource that details the historical values and ranges of embodied energy for various

materials. In some cases multiple sources were combined to create the best estimate

for a parameter. Details of the materials used in this study can be found in Table B.10

on page 126.

3.4 Formulating and Populating the Model

One of the primary goals of this research is to streamline the data collection necessary

for modeling the engine’s production impact. Data for each model parameter was

bounded by reasonable upper and lower limits. It was only further resolved to a more

specific range after an explicit resolving step. This mimics the act of specific targeted

data collection. Below is the process used for building a model of the engine’s impact

during production.

3.4.1 Model Formulation

Equation 3.1 describes roughly the production energy for the engine.
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The following are the parameters of (3.1).

Parts, P The set P represents all the parts in the engine assembly. Each individual

part is expressed as i 2 P .

Materials, M The set M represents all of the materials used in the engine assembly.

Each unique material is expressed as j 2 M .

Processes, R The set R represents all of the processes used in the production of a

part. Each unique process is expressed as k 2 R.

Transportation Modes, T The set T represents all the distinct modes of trans-

portation used to transport a part to the final assembly location. Each individual

mode is expressed as l 2 T .

Mass, m Mass is represented by m, and is typically given in kg. The mass of each

part i 2 P is expressed as m
i

.

Energy Intensity, e Energy intensity, or specific energy, is represented as e and is

measured in energy per mass, typically MJ/kg. For each part i 2 P and material

j 2 M , the unique specific energy of the material is expressed as e
ij

. Similarly,

the specific energy for part i 2 P and process k 2 R is expressed as e
il

.

Travel Distance, d The travel distance of each part to the final assembly location

is represented as d and is measured in km. For each part i 2 P and mode l 2 T ,

the distance traveled is expressed as d
il

.

Energy Intensity of Transportation, e/d The energy intensity of a mode of trans-

portation is represented as e/d and is measured in energy per mass per distance,

MJ/kg·km. For each part i 2 P and mode l 2 T , the specific energy of transporta-

tion is expressed as (e/d)
il

.

Equation 3.1 can also be expressed in a compact form,

E
total

=
X

i2P

(E
materials,i

+ E
processes,i

+ E
transit,i

) (3.2)

where the total energy E
total

is the summation of the energy use contributions from

materials, processes, and transit associated with each part.
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3.4.2 Bill of Materials

The engine’s bill of materials (BOM) was obtained from the manufacturer for analysis.

The BOM for the full engine assembly contains 452 individual part numbers; each of

these parts is featured in the engine one or more times. Some parts, such as small

fasteners, are used in quantities over 20. In total, the engine assembly consists of

1,029 separate parts.

3.4.3 Truncation of the Bill of Materials

Conducting an analysis for all 452 parts would be prohibitively time-intensive; there-

fore, the list of parts to be analyzed was truncated based on cost. The relative

costs for all parts were compiled, and the 38 most expensive part numbers were

culled for detailed analysis. For parts appearing more than once, the total cost of all

instances was used. The cost of a component was calculated as the final cost to the

manufacturer. If a component was produced internally this cost consisted of material

costs, processing costs, and labor costs. For components purchased externally, this

cost was simply the purchase price.

Cost was chosen as the sorting metric as opposed to mass, which has been used by

other researchers, such as Weitz[17]. Cost was a preferred selection criteria as cost

tends to scale with size, scarcity, and complexity. As an example, included in the final

culled analysis list were the engine block, a shuto↵ valve, and the engine control unit.

The engine block is costly due to its large relative size; its mass is approximately

356 kg. The shuto↵ valve is costly due to the scarcity of its components, namely the

gold used in plating. The engine control unit is costly due to its complexity and the

scarcity of its constituent materials; circuit boards routinely contain many di↵erent

materials, such as C-H-O polymers, halogenated polymers, copper, gold, beryllium,

mercury, silica, and alumina [44].

The lack of diversity in the excluded, lowest-cost parts is another justification for the

usage of cost as the selection criteria. Of the 402 unique parts not included in the

analysis, most fell under a small number of categories. Over 70% of the remaining

were either fasteners or hose components, 45.5% and 25.1%, respectively. Fasteners

included screws, washers, and nuts; hose components included tubes, gaskets, seals,

and connectors. To calculate total impact of the entire BOM, the impact of these

excluded parts must be approximated.
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The 38 parts not excluded will be referred to subsequently as the “specified parts”.

Equation 3.2 on page 40 must be modified to reflect the truncation. The set P 0 ⇢ P

represents all of the specific parts. The remainder of the engine is treated as a single

entity, much like a part, and is represented as q. Equation 3.3 below is the modified

version of Equation 3.3.

E
total

= E
materials,q

+ E
processes,q

+ E
transit,q

+
X

i2P 0

(E
materials,i

+ E
processes,i

+ E
transit,i

)

(3.3)

In this work, the set P will be considered as P = P 0 [ q, as the remainder of the

engine, q, can in many ways be treated as a part, although most of its characteristics

cannot be resolved.

3.5 Modeling Parameter Uncertainty

Each of the parameters in Equation 3.1 and Equation 3.3 has inherent uncertainty

associated with it. Before resolution this uncertainty is significant. Even after

resolution this uncertainty is noticeable and must be accounted for in the model.

Monte Carlo simulations use probability distributions to model the uncertainty of

a parameter. For example, the uncertainty of a parameter could be modeled as a

normal distribution with a defined mean and standard deviation. Upon resolution the

mean may move, but more importantly the standard deviation will be reduced. On

the scale of the aggregate model, it is this reduction in standard deviation that will

create increasingly narrow impact distributions, as illustrated previously in Figure 2.1

on page 30.

Table 3.1 on the next page lists some of the most common probability distributions

for Monte Carlo Simulation. The subsequent sections give more detailed descriptions

of the distributions and their uses.

3.5.1 Common Distributions

A number of statistical distributions may be used for Monte Carlo simulation of life

cycle assessments. Heijungs and Frischknecht [45] provide an introduction to the use
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Distribution Continuous Non-Negative
Minimum
Data Points

Uniform Yes Yes 2
Triangular Yes Yes 3
Normal Yes No 3

Log-Normal Yes Yes 3
Beta (PERT) Yes Yes 3

Two-Sided Power Yes Yes 3

Table 3.1 – Probability distributions for Monte Carlo simulations. Each dis-
tribution has unique characteristics which determine its usefulness for certain
applications. In this research it was necessary to have a continuous and non-
negative distribution with low minimum data requirements.

of statistical probability distributions in the context of life cycle assessment. The

paragraphs below contain descriptions of the most common distributions, in rough

order of increasing data availability demands. The probability density function f(x),

the expected value E(X), and the variance Var(X) are also given for each.4

Uniform Distribution

Uniform distributions are utilized for parameters with few reliable data points.

Maximum and minimum values are selected to bound the parameter. The uniform

distribution has no distinct mode, as all values in the range are equally possible. The

distribution’s mean is simply the average value of the two extremes, which may also

be undesired. The probability density function for the uniform distribution is

f(x) =

8
<

:

1

b�a

for x 2 [a, b]

0 otherwise

where a and b are the minimum and maximum values in the range.

The expected value of the distribution is

E(X) =
1

2
(a+ b)

and variance is

4See Morgan and Henrion [46] for more details on these probability density functions and their
applications to uncertainty analysis.
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Var(X) =
1

12
(b� a)2.

Triangular Distribution

Triangular distributions have three parameter values: minimum, maximum, and

mode. This distribution is very common in life cycle analysis Monte Carlo simulation.

The primary advantages are its simplicity, non-negativity, and relative descriptive

power (when compared with a uniform distribution). Triangular distributions may

also be used instead of a normal or log-normal distribution if the data points have an

apparent skew.

The probability density function for the triangular distribution is

f(x) =

8
>>><

>>>:

2(x�a)

(b�a)(c�a)

for x 2 [a, c]

2(b�x)

(b�a)(b�c)

for x 2 (c, b]

0 otherwise

where a, b, and c are the minimum, maximum, and mode of the distribution.

The expected value of the distribution is

E(X) =
1

3
(a+ b+ c)

and variance is

Var(X) =
1

18
(a2 + b2 + c2 � ab� ac� bc).

The triangular distribution is an asymmetric distribution, but can be made symmetric

if

c =
b� a

2
.

Normal (Gaussian) Distribution

Normal distributions are assigned to parameters with more reliable data points.

Specifically, a normal distribution must have two parameters, a mean and a standard

deviation. These values must be obtained from a dataset of no less than three values.
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Normal distributions are not guaranteed to be non-negative, and therefore may not

be applicable for some parameters. When using a normal distribution, the underlying

data points should be relatively unskewed.

The probability density function for the normal distribution is

f(x) =
1

�
p
2⇡

e�
1

2�2 (x�µ)

2

where µ and � are the mean and the standard deviation of the distribution.

The expected value of the distribution is simply

E(X) = µ

and variance is

Var(X) = �2.

Log-Normal Distribution

Log-normal distributions are quite common in life cycle assessment simulations. This

distribution is also ascribed to data points in many life cycle indicator databases,

such as Ecoinvent. The log-normal distribution uses two parameters: mean and

standard deviation. The primary advantage of a log-normal distribution over a

normal distribution is the log-normal’s non-negativity.

The probability density function for the log-normal distribution is

f(x) =

8
<

:

1

x�

p
2⇡

e�
1

2�2 (lnx�µ)

2

for x > 0

0 otherwise

where µ and � are the mean and the standard deviation of the variable’s natural

logarithm, lnx.

The expected value of the distribution is simply

E(X) = eµ+
�2

2
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and variance is

Var(X) = (e�
2 � 1)e2µ+�

2
.

3.5.2 Less Common Distributions

The following two distributions are less common in Monte Carlo simulations for LCA.

Beta Distribution

The beta distribution is occasionally used in life cycle assessment simulations, generally

as the specific PERT distribution. The PERT distribution was originally developed

for PERT analysis: Program Evaluation and Review Technique. Like the uniform

and triangular distributions, it is bounded and non-negative.

Two-Sided Power (TSP) Distribution

The two-sided power (TSP) distribution was introduced in 2002 by J. René van Dorp

and Samuel Kotz [47]. It is based on the triangular distribution and is designed to

replace distributions such as the PERT. Like the triangular distribution, the TSP

distribution is bounded and non-negative.

3.5.3 Distribution Selection

As discussed previously, each parameter in the model of the engine impact was

assigned a range. This range was then used to construct a simple uniform distribution

for each parameter. The uniform distribution was selected for its simplicity and

wide applicability. Uniform distributions have been used in similar Monte Carlo

simulations [23, 48], and reflect a high degree of parameter uncertainty, especially

when a more specific distribution is not known.5 In this project, many parameters

were estimated from engineering knowledge and therefore were not described by a

probability distribution; an example is the mass of material removed from a part by a

machining process. Other parameters, such as transportation distance for individual

5Patanavanich [21, 22] uses a similar but distinct approach to model high uncertainty and lack
of knowledge about a probability distribution.
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parts, could be characterized in a Bayesian manner by analyzing all similar instances

on record; however, this would require additional data gathering that may be out of

the scope of an impact analysis.

3.6 Model Parameters

The final engine model consisted of 184 parameters. Each parameter was assigned

an associated uncertainty range, from which data points were sampled in the Monte

Carlo simulations, covered in a subsequent section. The uncertainty range of each

parameter was intended to reflect the actual initial uncertainty associated with a

realistic life cycle assessment or impact analysis. Each of the ranges was intentionally

wide, and was derived from existing sources, such as the Ecoinvent database, the

engine’s bill of materials (BOM), and technical drawings of the constituent parts.

3.6.1 Material energy intensity

The engine BOM contains material information for the constituent parts. This

material information is varied, from specific ANSI material declarations to general

ranges for acceptable materials. To analyze the impact of extracting and preparing

these materials, representative materials were chosen. In many cases, a single repre-

sentative material could be selected from the Ecoinvent database. In cases in which a

single material was not available, substitutes were made. These substitutes relied on

other reputable sources. In every case, an e↵ort was made to quantify the range of

uncertainty in the material data for each part. These uncertainties come from the

variability in materials used for a part, the variability in the Ecoinvent material data,

and the variability in material extraction and processing locations.

Forty-three parameters described the material intensity of the parts and the remaining

composition. For each part i 2 P and material j 2 M , the unique energy intensity

of the material is e
ij

. The ranges for most of the materials was obtained from the

Ecoinvent database [39]. For materials not covered by Ecoinvent, data from Ashby [9]

and Hammond et al.[43] was used to create a feasible range of values. The unresolved

range of values for each material spanned the reasonable range for the lowest to the

highest values available. Table B.10 in the Appendix details the range of material

intensity as well as the data source for each material.
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3.6.2 Part mass

43 parameters described the mass of specified parts and the remainder of the engine.

The range of the mass for each specified part was derived from technical drawings

and associated information about the material composition. This information was

in reality much easier to obtain than specific part mass, and therefore is a realistic

reflection of the streamlining process. The total engine mass was bracketed by the

masses of similar engines in the same classification. The mass of each part i 2 P is

expressed as m
i

.

3.6.3 Process masses

The material processing data available was commonly more general than the material

extraction data. For example, the Ecoinvent database contains nine di↵erent indicators

for the extraction of various steel alloys; however, the same database lists only one

general heat treatment process for steel. Processing of the engine components were

divided into various categories:

Material shaping Material shaping processes do not change the mass of the part.

These processes are sometimes referred to as “net shape.” Material shaping

processes include forging and bending.

Material removal Material removal processes reduce the mass of the part through

the processing step. Examples of such processes are milling, grinding, and

drilling.

Material addition Material addition processes increase the mass of the part. Simi-

lar or di↵erent materials may be added. Examples of these processes include

plating, coating, and painting.

Twenty-four parameters specified the mass acted on by various processing steps. The

range for these masses was derived from technical drawings of the parts, in the same

manner as the part mass estimations. It should be noted that additional processes

were applied to the entire part, and therefore were directly tied to part mass.
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3.6.4 Remaining material composition

Five parameters characterized the composition of the parts not specified. The

composition of the remainder was divided into six general materials:

• Low-alloy steel

• Stainless steel

• Cast iron

• Tin

• Titanium

• Cast aluminum alloy

The five parameters described the composition of each of these materials, with the

exception of low-alloy steel, which was the dominant material and calculated as the

remainder.

This information was calculated by the manufacturer from purchasing records. The

manufacturer uses this aggregate information to monitor the cost of the material

input to the engine. This information was very beneficial when assessing the impact

of the engine; after the most expensive parts were defined, the remainder of the engine

can be treated as a aggregate part, with known material composition, and uncertain

processing.

3.6.5 Process intensity

Forty-one parameters described the energy intensity of manufacturing processes acting

on individual parts. The range of energy intensity values for these processes was

gathered from the Ecoinvent database. The energy intensity of processes is usually

given in MJ/kg, energy expended per mass processed.

3.6.6 Part transportation distance

Four parameters characterized the distance individual parts traveled to the assembly

location after fabrication. The three heaviest parts were treated individually: the
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Mode Lower e/d, MJ/t·km Upper e/d, MJ/t·km

Truck 1.7 7.3
Rail 0.49 0.70
Ship 0.15 0.61

Table 3.2 – Range of transportation mode energy intensities. Note that these
values are given per metric ton, rather than kg. More details are given in the
Appendix in Table B.2 on page 113.

cylinder block, the cylinder head, and the engine crankshaft. These three parts alone

account for 756 kg, or 54%, of the total engine mass. The remained of the parts were

treated as a single mass.

The ranges of transportation distance were estimated from the manufacturer’s supply

chain. Some parts were processed internationally in multiple continents, while others

were sourced domestically.

3.6.7 Transportation mode and intensity

Twenty-four parameters described the transportation mode and intensity. Three

transportation modes were available: on-road trucks, rail transit, and ocean and

sea vessels. The mix of these modes was also parameterized and allowed to vary.

The energy intensity associated with each mode was bracketed by ranges from the

Ecoinvent database. This intensity is represented as e/d and measured in energy per

mass per distance, MJ/t·km. Table 3.2 lists the three transportation modes and their

associated ranges.

3.7 Assessing Model Uncertainty and Selecting Pa-

rameters for Resolution

After the model was constructed and all parameters were assigned ranges, Monte

Carlo simulations were carried out to characterize the uncertainty at each model

state. Model parameters were progressively resolved and made more specific. After

a parameter was resolved, the model was simulated again. Each round of model

simulation consisted of 10,000 separate model simulations, in which each of the 184

model parameters was selected from its random distribution.
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3.7.1 Model Uncertainty Metrics: False Signal Rate from

the Self-Test

The uncertainty associated with each model simulation was characterized using a

“self-test” inspired by Zgola [23]. The primary aim of the self-test is to characterize

the amount of resolution available in the current state of the model. In the self-test

the distribution of impact values from a simulation round are duplicated and scaled.

Let X
A

2 X be a random variable that represents the observed impact distribution,

and eX
A

⇢ R
+

be a set of draws from X
A

. Let eX
B

⇢ R
+

be the set of the duplicated

self-test, defined as

eX
B

= ↵ eX
A

where ↵ � 1 is a constant scalar and therefore E( eX
B

) � E( eX
A

). The random variable

X
B

is then never drawn from, but rather eX
B

is calculated explicitly,

eX
B

= {x
B

|x
B

= ↵x
A

8x
A

2 eX
A

}

The false-signal rate (FSR) is calculated using eX
A

and eX
B

, and is a measure of the

confusion between the two:

FSR( eX
A

, eX
B

) = P ( eX
B

< eX
A

)

Again, note that E( eX
B

) � E( eX
A

). Because these are both discrete simulations, FSR

can be calculated explicitly,

FSR( eX
A

, eX
B

,↵) =
1

| eX
A

|| eX
B

|

X

xA2 e
XA

0

B@
X

{xB2 e
XB |xB<xA}

1

1

CA

=
1

| eX
A

|2
X

xA2 e
XA

0

B@
X

{xB2 e
XB |xB<xA}

1

1

CA

FSR( eX
A

,↵) =
1

| eX
A

|2
X

xA2 e
XA

0

B@
X

{xB2↵ e
XA|xB<xA}

1

1

CA (3.4)
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In simple terms, FSR is the count of all x
A

2 eX
A

and x
B

2 eX
B

where x
B

< x
A

,

normalized by the total number of comparisons, | eX
A

|| eX
B

| = | eX
A

|2. Note that in the

final formulation of FSR in Equation 3.4, only eX
A

and ↵ are needed.

For this project, the scaling factor was ↵ = 1.1 - an increase of 10%. Therefore, the

self-test simulated a scenario in which an engine with a 10% larger impact (B) is

compared with the original parameterized engine (A). The FSR is a measure of the

confusion between the two, the probability of incorrectly assigning a larger impact to

A than to B.

Working from the basis created by Cook [49, 50] for exact calculation of inequalities,

Zgola calculates the analytical approximation for FSR. This approximation assumes a

Gaussian distribution of impact values; while the sampled impact values do not form

a precise normal distribution, when large sample sizes are used they approximate a

normal distribution.6

FSR
approx

(k, COV
A

) =
1

2

✓
1 + erf

✓
1� k

2COV
A

◆◆
(3.5)

Where k is the ratio of expected values of eX
B

and eX
A

,

k =
E( eX

B

)

E( eX
A

)

and COV
A

is the coe�cient of variation of eX
A

,

COV
A

=
�( eX

A

)

E( eX
A

)

The formulation of FSR in Equation 3.5 is not necessary for computation (as Equation

3.4 can be used directly) but it is useful for analysis. Using 3.5 it can be shown that

the maximum FSR is 50%, and this occurs when ↵ = 1 (i.e. when a distribution is

compared to itself).

6Figure B.3 on page 125 in the Appendix demonstrates the viability of the normality assumption
with a q-q plot. See Wilk [51] for an introduction to q-q plots.
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FSR
approx

(k, COV
A

) =
1

2

✓
1 + erf

✓
1� k

2COV
A

◆◆

=
1

2
(1 + erf (0))

=
1

2

3.7.2 Distribution of Calculated Metrics: The Bootstrap

Method

As described above, the false signal rate can be calculated for each simulation round

sample, FSR( eX,↵) (see Equation 3.4). In many situations it is helpful to calculate

the distribution of this statistic like FSR rather than a singular representative value.

The bootstrap method is a resampling method first proposed by Efron [52] which

calculates distribution of a statistic S(Z) from a distribution Z. The distribution of

the statistic S(Z) should not to be confused with the distribution it is calculated

from, Z. Note that Z is itself typically a sample from a larger population; in Monte

Carlo simulations, each simulation round produces the sample set eX from the model

X.

The bootstrap calculates the sampling distribution of a statistic S(Z) by resampling

with replacement from Z. Let Z
i

be an instance of the resample. Each resample is of

size n; in total k resamples are taken. The statistic S is calculated for each sample.

Let S⇤ be the set of all statistics calculated on the resamples:

S⇤(Z) = {S(Z
i

) | i = 1, . . . , k}

It is critical for the bootstrap method to be e↵ective that the sampling from Z be

done with replacement. In this manner, the statistic S(Z
i

) for large sample sizes n

(n u |Z|) will not simply converge to the singular value S(Z) but will instead provide

meaningful insight into the possible distribution of S(Z). Sampling with replacement

assumes that all z 2 Z are independent and identically distributed (i.i.d.) random

variables.

In the same way S⇤(Z) is defined let FSR⇤( eX
A

,↵) be the bootstrapped distribution

of FSR( eX
A

,↵):

53



FSR⇤( eX,↵) = {FSR( eX
i

,↵) | i = 1, . . . , k} (3.6)

where each eX
i

, i = 1, . . . , k is a random sample from eX of size n.

3.7.3 Selection of Parameters for Resolution using Partial

Rank Correlation Coe�cients

The goal of any streamlining procedure is to reduce the amount of data needed to

complete an analysis, so the selection criteria for parameters to resolve is extremely

important. Each simulation round begins with the resolution, or specification, of a

single parameter. The goal is to select the parameter that will reduce the most uncer-

tainty. Partial rank correlation coe�cients7 (PRCCs) were chosen as an estimation

of the relative contribution to uncertainty by each parameter.

The PRCC method was selected because it is applicable to nonlinear system, as

opposed to competing methods, such as partial correlation coe�cients. The PRCC

method was proposed in 1942 by M. G. Kendall [53]. This method applies the concept

of the partial correlation coe�cients to rank analysis. Partial correlation analysis

aims to determine if the observed correlation between two real variables, x
1,

x
2

2 R
is primarily due not to each other but rather a third variable, x

3

2 R. It is of

note that any relationship between the variables in question must be assumed to be

linear. Kendall then applied this procedure, with modifications, to ranked values

y
1,

y
2

, y
3

2 Z
+

, producing the partial rank correlation coe�cient. The PRCC method

may be extended then to any real value variables z
1,

z
2

, z
3

2 R assuming they have

monotonically increasing or decreasing relationships (rather than a more restrictive

linear relationship) and can be ranked by value: ẑ
i

= rank(z
i

), i = {1, 2, 3}.

The PRCC method became a commonplace tool for uncertainty and sensitivity

analysis, with the primary benefit being that it does not require a probability

distribution to be assumed as only ranks are used. For illustrations of this application,

see the work of Ronald Iman and Jon Helton [54, 55]. Some uncertainty analysis

software packages have used PRCCs to estimate contribution to variance. As an

example, Oracle’s Crystal Ball software estimates “Contribution to Variance” with

7An example of rank correlations used in the life cycle assessment context to find significant
parameters is Maurice et al. [7]
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the normalized square of the PRCC of each parameter [56]. PRCC has also been used

by researchers in the life cycle analysis community; for example, see Zgola [23], who

uses Crystal Ball’s “Contribution to Variance” to estimate each LCA parameters’

contribution to overall model uncertainty.

In this research, the R package “sensitivity” [36] was used to calculate partial rank

correlation coe�cients for all parameters. The actual change in the uncertainty of

the model was calculated at the conclusion of every simulation round.

3.7.4 Accessible and Inaccessible Information for Resolving

One of the primary goals of this research project is to design a data collection strategy

for a realistic scenario. One of the primary di↵erences between idealized impact

assessments and their real-world instantiations is limited information. For this study

we collaborated with the engine manufacturer. This project and the simulations

reflect which information the manufacturer had available.

Information that was available to the manufacturer was considered capable of being

resolved. That is, with reasonable resource expenditure, the information could be

specified. Information and specifications were considered unresolvable if the task was

both extremely laborious and poorly specified. Examples of information that could

be resolved are the specific mass of individual parts, the mass of the entire engine, the

energy intensity of specific processing steps, the mode of transportation for specific

parts, and the distance traveled by parts. Examples of information that could not be

resolved are the mass of all remaining (unspecified) parts, the distance these parts

traveled, or any other detailed information about the unknown parts.

Very little information was considered specified without a resolving step. Even the

mass of each part necessitated a resolving step. The logic for this is that the engine’s

bill of materials is dynamic, and many parts change supplier and specifications

throughout the life of the engine design. Some parts may be sourced from multiple

suppliers. Some part designs may be the manufacturer’s, while others may be the

supplier’s proprietary design. Given these realities, it became apparent early in the

project that even relatively simple specifications such as part mass should not be

considered given without e↵ort.
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3.7.5 Resolution of Uncertainty

For this study, the process of parameter resolution consisted of reducing the variance

of the parameter. Because all parameters were modeled as uniformly distributed

random variables, variance reduction was achieved by tightening the bounds of this

distribution.

Resolved bounds in this case study still remained somewhat wide, with typical values

in the range of 1%-3% of the parameter value. This was done intentionally, so as to

not overstate confidence in any resolved values. It should be noted that these ranges

are much wider than those of resolved parameters in other studies. For example, in

Zgola’s case study [23] on LCA uncertainty reduction for liquid crystal displays, many

resolved value ranges are less than 0.01% of the parameter values; the narrowest

resolved range is 0.00002%. These narrow ranges will report higher overall model

resolution than is possible in reality.
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Chapter 4

Simulation Results and Analysis

This chapter discusses the results of the primary focus of this work, the iterative

reduction of LCA uncertainty through simulations. The results of the LCA itself are

discussed in Section 5.1 on page 70.

4.1 Simulation Results

4.1.1 Initial Results and Lessons

After every round of simulation, each parameter’s contribution to the model’s overall

uncertainty was estimated with the partial rank method. Parameters with high relative

|PRCC| values are estimated to have the most significant impact on uncertainty, and

are therefore candidates for resolution.

Table 4.1 illustrates the PRCC results after the initial simulation, before any resolution

of parameters. Of particular note is the relatively small value for total engine mass,

ranked 25th. The results of the first 19 rounds of simulation can be seen in Figure 4.1.

It is readily apparent that total engine mass is by far the most influential parameter.1

In light of this, the simulations were restarted, using the basic heuristic gleaned from

the previous simulations: total engine mass was resolved before all other parameters.

Besides this, the resolutions followed the suggestions of the PRCC results.

1Based on the results of the simulation for the total engine mass parameter, it is possible that
the model lacks complete monotonicity between the parameter inputs and the output.
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|PRCC| Category Description Resolvable
Rank

1 Material Composition Remaining aluminum fraction Yes
2 Process Mass Machining of remaining steel -
3 Material Intensity Remaining low alloy steel -
4 Process Intensity Machining of cylinder block Yes
6 Transit Distance Remaining mass -
13 Transit Mode Remaining transportation, truck -
14 Part Mass Electronic control module Yes
15 Process Intensity Machining of crankshaft Yes
16 Material Intensity Crankshaft, low alloy steel Yes
23 Transit Intensity Remaining transportation, truck -
25 Part Mass Total engine mass Yes

Table 4.1 – |PRCC| values for selected parameters after initial round of simu-
lations. Detailed results can be found in Table B.3 on page 114.
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Figure 4.1 – Results of initial first 19 resolved parameters. Note the large
decrease in false signal rate after the 11th parameter, total engine mass, is
resolved. Following these results, the simulation was restarted, and total engine
mass was resolved first. Those results can be seen in Figure 4.2 and Figure 4.3.
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Figure 4.2 – Results of final simulations, all rounds. False Signal Rate is taken
from the 10% self-test.

4.1.2 Final Results

Figure 4.2 shows the results of all rounds of final simulations, with Figure 4.3 detailing

the first 30 rounds; both figures represent the model after restarting. The model

uncertainty is reduced noticeably in the first 13 rounds of simulations. After 39

rounds, however, the model uncertainty is roughly constant regardless of the number

of further parameters resolved. Therefore the minimum degree of uncertainty (as

quantified by the false signal rate of the 10% self-test) appears to be 5.8% in this

formulation of the model. With all 151 possible parameters resolved, the simulated

false signal rate was still 5.8%. Figure 4.2 shows the FSR after the resolution of the

first 16 parameters, as well as after the resolution of all 151 resolvable parameters.

There is very obvious variation in the results, as illustrated by the apparent increase in

uncertainty after some resolution steps. This is partially an artifact of the simulation

process. When these results are resampled using the bootstrap technique, it can be

shown that each increase in FSR after resolution falls well within the sampling range

of the previous iteration’s FSR. Figures B.1 and B.2 in the Appendix illustrate this.

Also included in the Appendix is Table B.7, which provides various percentiles for
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Parameters Parameter Parameter FSR
Resolved Category Description

0 - Initial Round 21.5%
1 Part Mass Total engine mass 11.9%
2 Material Composition Remaining aluminum fraction 9.7%
3 Material Composition Remaining gray iron fraction 9.6%
4 Process Mass Machining of cylinder block 9.4%
5 Material Intensity Cylinder block, gray iron 8.4%
6 Material Composition Remaining titanium fraction 8.4%
7 Process Intensity Forging of engine crankshaft 7.7%
8 Process Mass Machining of cylinder head 7.6%
9 Part Mass Electronic control module 7.3%
10 Process Mass Machining of crankshaft 6.7%
11 Material Intensity Crankshaft, low alloy steel 6.4%
12 Material Intensity Cylinder head, gray iron 6.1%
13 Process Intensity Machining of cylinder block 6.1%
14 Material Composition Remaining tin fraction 6.1%
15 Material Intensity Electronic control module, PCB 6.1%
16 Process Intensity Machining of cylinder head 6.0%
151 - All parameters resolved 5.8%

Table 4.2 – False Signal Rate after the first 16 round of simulations. These
values were taken after restarting the simulations. Final FSR is also included.
Note that the reduction in uncertainty is negligible for the resolution of the last
135 parameters.
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Figure 4.3 – Results of final simulations, first 30 rounds. False Signal Rate is
taken from the 10% self-test.

the FSR data. From this table it can be shown that no round’s median FSR is more

than the 70th percentile of the previous round’s FSR. Indeed, only 3 of the 40 rounds

have an FSR greater than the 60th percentile of the previous round’s FSR.

This phenomenon of increased uncertainty may also be caused by the interdependence

of parameters. In a simple example an impact i may be caused by two parts, a and b:

i = e
a

m
a

+ e
b

m
b

(4.1)

where i is impact, and e is energy intensity. Expressed in random variables, this is

I = E
a

M
a

+ E
b

M
b

If the sum of m
a

and m
b

is known (with or without uncertainty), then the random

variables M
a

and M
b

are not independent. Therefore the variance of the impact

random variable I may increase upon a decrease in the variance of M
a

and M
b

, if it

is accompanied by a shift in the expected values of m
a

and m
b

; this exact scenario is
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possible in a resolution step. This reasoning is explored further in the Appendix on

page 128 in Equations B.1 through B.12.

4.2 Discussion of Results

Very few of the parameters in the engine model were found to impact model uncertainty

significantly; therefore, these parameters should be targeted for data collection and

resolution. This ability to a↵ect the model’s uncertainty will be referred to as

“leverage” through this thesis.

4.2.1 High Leverage Parameters

Parameters with high leverage included overall approximate engine mass, material

composition, part masses, energy intensity of materials, and processing for certain

large and expensive parts. A few smaller and less expensive parts a↵ected the model,

but typically only via their material energy intensity. Table 4.3 on page 63 shows the

17 parameters that noticeably a↵ected the uncertainty of the model.

The leverage results shown in Table 4.3 are discussed in more detail below.

Part mass

Five mass parameters were observed to have high leverage. Most of these are high-mass

parts, above 100 kg: the cylinder head, cylinder block, and crankshaft. One exception

was the electronic control module, which was made of a high-energy-intensity material,

printed circuit board (PCB). The other exception was the air intake manifold, which

was made of cast aluminum; aluminum is significantly more energy intensive per unit

mass than iron and steel, the materials of the heaviest components. Also, decreasing

uncertainty about the mass of the manifold reduces uncertainty about the mass of

aluminum in the remainder of the engine; aluminum was the second most abundant

material in the remainder of the engine.

Process intensity

Three of the process intensity parameters with high leverage featured the crankshaft.

The crankshaft is unique among the other parts because it has both a large mass and

62



Category Part Details

Part Mass

Total engine assembly
Cylinder head
Electronic control module
Cylinder block
Air intake manifold

Process Intensity

Crankshaft Forging
Crankshaft Machining
Oil filter head Machining
Crankshaft Heat treatment
Cylinder head Machining

Process Mass
Crankshaft Material removed
Cylinder block Material removed
Cylinder head Material removed

Material Intensity
Cylinder block Gray iron
Crankshaft Low alloy steel
Cylinder head Gray iron

Material Composition Remaining assembly Aluminum fraction

Table 4.3 – High leverage parameters, based on decrease in overall model uncer-
tainty, FSR. Leverage is the significance of a parameter’s e↵ect on uncertainty
and was judged by the median change in FSR from the previous round, as
measured in the bootstrap resampling. The above parameters showed a |�FSR|
> 0.10%. For a full listing of the significance levels of all parameters, see Table
B.5 on page 117.
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many processing steps. The other two parameters in this category also belonged to

relatively massive parts (the oil filter head and the cylinder head).

Process mass

All three of the process mass parameters with leverage involved processes that e↵ected

large masses. All three processes also involved material removal, which can be very

energy intensive.2

Material intensity

The three material intensity parameters follow a similar theme: all involve very

massive parts. The material itself, however, is not necessarily energy intensive; indeed,

the materials involved in these process - gray iron and low alloy steel - were two of

the least energy-intensive materials considered in this project.

Material composition

In this model there were five material composition parameters that e↵ected the

remaining mass of the engine, and therefore had the potential for high leverage. Only

one such parameter was found to have high leverage. It should be noted, however, that

resolving this parameter accounted for more than 90% of the remaining engine mass.3

Therefore, the other material composition parameters did not have any significant

leverage.

Themes in high-leverage parameters

A parameter may have large leverage for various reasons.4

• Magnitude of uncertainty. If the uncertainty of a parameter is high enough, it

may have significant leverage in the model. Example: the mass of a complex

part like the air intake manifold was di�cult to estimate and therefore had high

uncertainty.

2In this study material removal processes included the embodied energy of the material removed,
as well as the energy involved in the actually removal process.

3Low alloy steel and aluminum made up the vast majority of the remaining engine mass.
4Geisler et al. [57] discuss in more detail these various factors in a parameter’s contribution to

uncertainty.
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• Magnitude of impact. If the environmental impact of a parameter is high, it may

a↵ect the model significantly, even if its uncertainty is relatively low. Example:

the cylinder block’s mass is very high relative to the engine as a whole, and

contributes noticeably to the impact.

• Reuse in model. If a parameter is referenced in multiple sections of the model,

it may have high leverage. Example: total engine mass is referenced numerous

times in the model. The uncertainty was relatively well bounded, but the reuse

and magnitude of this parameter give it the highest leverage.

Relationship to PRCC

It is beneficial to compare parameters recognized as high-leverage with those receiving

high PRCC values. This is one method of assessing the usefulness of PRCCs as a

predictor of parameter importance in the model. Figure 4.4 on the following page

compares a parameter’s realized leverage - measured as the decrease in uncertainty,

FSR - with its PRCC value. This comparison is revealing; some parameters with

low PRCC values had noticeable leverage. Parameters with high PRCC values do,

however, appear to be more likely to have leverage. Overall, the relationship appears

to be relatively weak.5

4.2.2 Insignificant Parameters

As expected, the parameters associated with many of the smaller parts were found to

be insignificant. Less intuitive was the finding that the transportation parameters

for individual parts were not selected for resolution (i.e. low |PRCC|) and did

not contribute to model uncertainty in a discernible manner. This is a significant

insight: total transportation accounts for a significant portion - roughly 9% - of the

total energy used in this study’s boundaries, yet its constituent parameters have no

appreciable leverage in the model.

In this light, it may be possible to leave all transportation unresolved and still

produce LCA results with acceptable uncertainty. It may also be possible to collect

aggregate statistics on the transportation of parts to slightly tighten the bounds of

all transportation parameters.

5It should be noted that only parameters that were able to be resolved (see Section 3.7.4 on
page 55) can be compared in this manner. Therefore, many parameters with high PRCC values are
left out of this comparison.
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Figure 4.4 – Parameter leverage realized vs. PRCC. Parameter leverage is
measured as the decrease in the false signal rate, FSR.

Many materials in the total engine composition were found to be insignificant. Low

alloy steel and aluminum made a up a large degree of the remaining engine mass and

were the only parameters that showed high leverage. The other materials (e.g. iron,

stainless steel, titanium, and tin) could be left unresolved without significant increase

in uncertainty.

4.2.3 Inherent Uncertainty

It was shown that the model and the system it represents have significant inherent

and unavoidable uncertainty. This point, while obvious qualitatively, has significant

ramifications for data collection. The inherent uncertainty in the formulation dom-

inated most of the parameters in the model, and therefore approximately only 40

parameters were significant enough to a↵ect overall uncertainty. After these data

points are collected, analysis should either cease or the model must be refined to

allow for more reduction in uncertainty.

There are two primary reasons for the inherent uncertainty. First, the unresolved pa-

rameters combine to contribute significantly. Second, each of the resolved parameters
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still has uncertainty associated with it. As was mentioned in Section 3.7.5 on page 56,

this study made a deliberate e↵ort to avoid resolving parameters to an unrealistic

degree.

Any form of the model, no matter how detailed, will contain uncertainty in a variety

of forms: data, cuto↵, aggregation, temporal, and geographic uncertainties. Details

of these uncertainties can be found in Section 2.1.5 on page 23.

4.2.4 Weaknesses of Methodology

Various weakness were found with the specific LCA streamlining methodology pursued;

the most significant of these are discussed below. Some of these weaknesses provide an

opportunity for future work in this area and are discussed in that light in Section 6.3

on page 92.

The metric for contribution to uncertainty failed to identify a significant

parameter

It was found that the partial rank correlation coe�cients were ine↵ective when

evaluating the significance of total engine mass. As previously mentioned, an exception

to the PRCC selection criterion was made for engine mass; this parameter was resolved

first, and proved to be the most significant parameter. This weakness is significant:

PRCCs were unable to identify the most important parameter. Therefore, care should

be taken when evaluating metrics for contribution to uncertainty.

No consideration for work involved in data collection

All resolution steps were considered equal in this work; therefore, it is very feasible

that data that is di�cult to collect would be prioritized over much more accessible

data, even though the latter may in the end enable more resolution for the e↵ort

invested. Furthermore, these more time-intensive data collection steps could possibly

be divided into smaller and more manageable pieces, each of which could have a

measurable impact on resolution.
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Little consideration for relative costs of parts

Very little cost data was available for this study: only the cost rankings of the parts

were provided. One of the primary drawbacks of this limitation was that it was not

possible to identify parts that had a lower energy use than their costs would predict.

Identifying these outliers would contribute to a more accurate model.

Large portion of engine was approximated

Because of the large number of individual parts (> 1000) only a small fraction could

be analyzed in detail. The largest parts were targeted, and therefore over half of the

mass was modeled in detail. Because of helpful data on the composition of the entire

engine, the remainder of the engine that was not modeled in detail had corresponding

material composition information. Despite these measures, much of the details of the

engine were modeled with high uncertainty. In Section 6.3.5 on page 94 one possible

remedy is suggested: aggregating many small parts into larger “superparts” for more

detailed analysis.

4.3 Recommended Streamlined Approach for Man-

ufacturer

In this section we detail our specific recommendations to the manufacturer for

performing streamlined life cycle assessments of their engines. These recommendations

come from the lessons learned while producing this case study.

To improve the resolution of the model, it will be necessary to bring more engine

components into the model beyond the 38 considered in detail in this study. Individ-

ually adding specific parts with compositions and processes that are energy-intensive

may help; guidance may be needed to make this selection, preferably from a source

very familiar with a specific engine model’s entire BOM. Another approach that may

be very e↵ective is the creation of aggregate parts based on part type. This concept

is explored further in section 6.3.5 on page 94.

In a similar vein, internal expertise in life cycle assessment should be developed in

the organization. On multiple occasions in this study detailed knowledge on both

engine production and LCA was necessary. It should also be emphasized that the
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data gathering process should be interdisciplinary and involve multiple functional

groups inside the organization. As an example, some of the most influential data for

this study - the aggregate material composition of the target engine - came from the

purchasing department, far outside the design engineering group where most of the

data was gathered.

Based on the results in this study, it may be possible to forgo detailed modeling of

supply chain transportation for individual parts, as the corresponding reduction in

uncertainty is relatively small. It may, however, be very beneficial to collect aggregate

and general data on supply chain transportation. For example, the travel could be

modeled loosely by the countries involved rather than the specific locations. The

model could then incorporate tighter bounds than crude and general approximations

for all parts.

Details of engine material composition can also be limited to the dominant materials.

Over 90% of the remainder of the engine was aluminum and low alloy steel. These

mass parameters indeed had high leverage; however, the rest of the compositional

parameters lacked significant leverage.
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Chapter 5

Additional Engine Production

Assessments

While the development of a streamlined LCA methodology for diesel engines was the

primary focus of this research, other assessments of diesel engine production were

also done carried out. Each of these additional assessments was done in collaboration

with the same engine manufacture. The analyses range from the specific comparison

of two camshaft designs to a broad assessment of energy use at the factory scale.

5.1 Streamlined LCA Results for Case Study En-

gine Production

As a natural extension of the streamlining experiments, a complete streamlined LCA

for the case study engine was produced with five impact metrics: embodied energy

(discussed in Section 3.2.2 on page 36) and four additional metrics, described below.

This LCA utilized the case study model and LCI data from the Ecoinvent database.

5.1.1 Impact Metrics and Scope of LCA

• Greenhouse gas emissions. Greenhouse gas emissions are commonly expressed

as the global warming potential of the substances involved. Global warming

potential is a measure of the radiative forcing of a gas in the atmosphere.

Global warming potential and greenhouse gas emissions are expressed in CO
2
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equivalence, which normalizes a substance’s global warming potential by that

of carbon dioxide. [58]

• Acidification potential. Acidification potential is a measure of a substance’s

disposition or potential to release H+ ions. The measure of acidification used here

is SO
2

equivalence: a substance’s acidification potential per mass normalized

by that of sulfur dioxide. [59, 60, 61]

• Eutrophication potential. Eutrophication potential is a measure of a substance’s

potential to cause over-fertilization of soil and/or water, and thereby increasing

the growth of biomass and potentially decreasing biodiversity. The measure of

eutrophication potential used here is PO
4

equivalence, which normalizes by the

eutrophication potential of PO3�
4

. [59, 60, 62]

• Embodied water. Embodied water, like embodied energy, measures the water

used to produce a substance. The Ecoinvent database considered water depletion

from rivers, lakes, wells, and all other sources of fresh water. Embodied water

is expressed as the total volume or mass of the fresh water used. [63]

5.1.2 Embodied Energy vs. Other Environmental Impact

Metrics

The success of embodied energy as an environmental proxy metric can be tested using

the results of this streamlined LCA. If the relative impact of the parts is similar under

two di↵erent metrics, the metrics may be appropriate substitutes for each other in this

study. Table 5.1 on page 73 compares each metric to embodied energy: greenhouse

gas emissions, acidification potential, eutrophication potential, and embodied water

use.

Embodied energy appears to be a very good proxy for greenhouse gas emissions.

There is only one noticeable outlier in this study, the valve cover. The valve cover

is unique among the parts studied because it is comprised completely of plastic

(polyethylene terephthalate, PET). The relative impact of this plastic part is higher

in embodied energy than greenhouse gas emissions.

Acidification potential and eutrophication potential are less easily represented by

embodied energy. The plastic valve cover is again an outlier when these two metrics

are compared with energy, and again the relative impact is less for these metrics than
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for energy. Other outliers emerge as well. The most salient outlier is the nitrogen

sensor, whose relative impact is much greater in these two metrics than in embodied

energy. This sensor is comprised of copper and tin, both of which contributed to the

uncorrelated metrics.

Water use shows perhaps the weakest correlation with energy use. A general correlation

is visible, but there are many outliers. The valve cover and the nitrogen sensor are

again two of the most significant outliers. Also notable is the exhaust transfer tube.

The transfer tube’s metal body is unremarkable in relation to the other parts, but it

is coated in an acrylic resin.

For more detailed results of this LCA, please see Table B.8 on page 122 and Table B.9

on page 123, both in the Appendix.

5.1.3 Summary of LCA Results

Figures 5.2 and 5.3 summarize the results of the LCA in terms of embodied energy.

Figure 5.2 groups embodied energy by category. The most significant result is the

importance of material embodied energy, which accounts for a full two-thirds of

embodied energy.

Figure 5.3 groups embodied energy by engine part. The largest parts on the engine

predictably have the largest embodied energies: the cylinder block, the crankshaft,

and the cylinder head. However, the nine most energy-intensive parts shown in the

figure only account for a little more than half of the total embodied energy.

5.2 Camshaft Impact Comparison

The engine’s camshaft was studied in more detail to provide a detailed LCA case

study. The primary impetus for this research task was comparing two competing

camshaft production processes. There are a variety of production techniques available

for manufacturing camshafts, detailed below.

5.2.1 Camshaft Manufacturing Methods

Cast Camshafts Camshafts are commonly cast from either steel or iron alloys. The

resulting casting then undergoes turning and grinding on all contact surfaces,
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Figure 5.1 – Embodied energy compared with other environmental metrics for
25 engine parts. The relative impact of the 25 most energy-intensive parts is
plotted on both axes of the log-log plot. The x-axes are the relative impact
measured in embodied energy; the y-axes are the other environmental impacts
studied. If two impacts are highly correlated they may be adequate proxies for
each other. For example, this is the case for embodied energy and greenhouse
gas emissions. The details of these plots are given in Table B.9 on page 123.
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such as the lobe and bearing surfaces. In general, cast parts are economical to

produce and relatively strong.

Forged Camshafts Forged camshafts are hot-forged from a single casting of steel

or iron. The forging surface can then be machined on contact surfaces in a

similar manner as a cast camshaft. Forgings may also be produced with high

quality surface finishes, therefore obviating further machining. Forged parts are

commonly stronger per unit mass than comparable cast parts.

Machined Camshafts Machined camshafts are produced from bar stock (usually

steel). The shape of the camshaft is produced through milling, turning, and

grinding. The camshaft is commonly heat treated afterwards for increased

strength.

Assembled Camshafts Assembled camshafts are a relativity recent innovation.

This design is a conglomeration of a variety of parts and materials. The

center shaft may be solid or hollow. The cam lobes may be either sintered or

forged and usually have machined surfaces. The lobes are assembled onto the

shaft, typically through thermal expansion. The assembled camshaft’s primary

advantages are the novel materials available and potential cost savings for low

volume production runs.

5.2.2 Direct Data Measurements

Experimental data was gathered for a detailed analysis of the camshaft production.

Measurements were taken in 2012 at a manufacturing facility in New York. These

camshafts were produced by machining. The camshaft production line consisted of

45 separate production machines performing 15 discrete processing steps. The sole

energy inputs to all but one process was grid electricity. A single process, the draw

oven heat treatment, consumed natural gas.

All electrical equipment measured was powered by a 480-volt 3-phase supply. Elec-

tricity consumption was measured both at substations and individual machines,

depending on the power rating and the wiring configuration. Most processes had

cycle times of less than ten minutes; multiple cycle times were evaluated for each

machine, with a target of 50 cycles. Continuous power consumption measurements

were logged using an AEMC 3945-B three-phase power quality analyzer. Average

measurements for each of the three phases were logged every second.
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Processing Step Energy per % of
part (MJ) total

Lobe Mill 124.3 31%
Heat Treatment 82.8 20%
Bearing Grinder 75.7 19%
Lobe Grinder 57.8 14%
Lathe 42.2 10%

Table 5.1 – Energy use for major processes for machined camshaft production,
measured in MJ per part. All electricity measurements were converted to primary
fuel energy. These five processes used 94% of the total production energy for
machined camshafts.

The energy used for each processing step was calculated using the instantaneous power

consumption integrated over the duration of the step. Idle power for all machines

was also measured. Most of the process machines remained powered while not in use.

The average energy use per camshaft produced therefore varied noticeably with the

daily production volume.

For this study, primary fuel energy was the measure of energy used. Primary fuel

energy traces electricity use back to the fuels burned and allows for the comparison of

both electricity and natural gas consumption. The conversion from electricity energy

E
e

to primary fuel energy E
p

was performed using a conversion e�ciency factor for

the United States, 38.7%, from the International Energy Agency [64]:

E
p

=
E

e

0.387
= 2.58E

e

5.2.3 Measurement Results

It was found that out of the 16 processes, a few used the vast majority of the energy.

Two processes, lobe milling and heat treatment, used over half of the total primary

energy. The top five processes used 94% of the total. See Table 5.1 for details on the

energy used in these steps. All processes and their energy usage are depicted in a

Pareto chart in Figure 5.4 on the facing page.
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Figure 5.4 – Machined camshaft: Pareto chart of energy use over the 16
processing steps. Note the large share that the first five processes contribute to
the total. All energy is measured in primary fuel energy.
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5.3 Manufacturing Plant Energy Usage

Energy usage data was also collected for entire engine production facilities. The

primary impetus was finding the strength of the relationship between plant-wide

energy consumption and production. Other similar studies have shown a weak

connection between production variation and overall energy consumption [65, 66].

5.3.1 Facilities Profiles and Data Collection

The energy use of two di↵erent factories was investigated. The first plant assembled

large diesel truck engines (FHWA Class 6 - 8 [29]); the primary function of the plant

was engine assembly, accompanied by some other processing, such as machining and

heat treatment. The second facility produced diesel turbochargers. The operations in

this facility primarily consisted of turbocharger assembly.

Both electricity and natural gas use were considered as energy inputs into the plants.

The energy use data was gathered from monthly plant records over the course of two

years: January 2010 to December 2011. This data was then compared to production

records for the same periods.

In this section “unit” or “product” will refer to the specific outputs of the di↵erent

plants - engines and turbochargers, respectively. The primary metric studied was

aggregate energy use per unit produced. The significance of this energy use is always

relative to the base load. This base load represents the energy used to power all

facility-wide devices: air conditioning and heating units, plant lighting, and o�ce

equipment. It also represents any idle energy consumption by the production machines

themselves. Above the baseline, a trend may emerge, representing the incremental

energy consumption of the entire facility as production volume varies over time.

5.3.2 Engine Assembly Facility

The engine assembly facility had a very pronounced base load electricity use, which

accounted for 56% to 83% of the total electricity used in a month. The incremental

production electricity was clearly visible as well, increasing roughly linearly. Figure 5.5

on the next page illustrates total energy use versus production volume; Figure 5.6

on page 80 demonstrates the variation in electricity use per engine. As production

increases, the plant’s apparent energy e�ciency rises, as each engine requires less
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Figure 5.5 – Engine plant electricity usage vs. units produced. The electricity
and units produced have been scaled linearly to protect propriety production
volume information.

electricity. The slope of the curve in Figure 5.5 is the minimum electricity use per

engine, 193 kw · h; this is the asymptotic limit of energy used per unit as production

volume grows.

Natural gas use shows no correlation with engine production whatsoever, as Figure 5.7

on page 81 shows. This leads to the conclusion that the natural gas heat treatment

processes were overshadowed by natural gas use for building heating. This hypothesis

was further tested by comparing natural gas consumption to historical weather records

[67]. Figure 5.8 on page 82 shows a clear inverse relationship between average monthly

temperature and natural gas use.

5.3.3 Turbocharger Facility

Electricity use at the turbocharger facility showed a much higher dependence on

production volume. In some cases incremental load was five times larger than the

base load. Figures 5.9 on page 83 and 5.10 on page 84 illustrate total electricity use
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Figure 5.6 – Electricity used per engine vs. units produced at the engine plant.
Production volume has been scaled in the same manner as in Figure 5.5;
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Figure 5.7 – Engine plant natural gas usage vs. units produced. Production
volume has been scaled in the same manner as in Figure 5.5.
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Figure 5.8 – Engine plant natural gas usage vs. mean temperature. Production
volume has been scaled in the same manner as in Figure 5.5.
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Figure 5.9 – Turbocharger plant electricity usage vs. units produced. The
electricity and units produced have been scaled linearly to protect propriety
production volume information.

and electricity use per unit produced. Each unit produced uses approximately 11

kw-h of electricity.

5.4 Diesel Engine Composition Across Application

Areas

The final analysis of energy consumption in diesel engine manufacturing focused

specifically on embodied energy of materials. Our collaborating manufacturer produces

engines of varied size and power output. These engines correspond to various

application areas, such as commercial and industrial power generators, truck engines,

and marine engines. The material composition of these types of engines varies across

the application areas, and therefore the energy invested in each engine varies as well.
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Figure 5.10 – Electricity used per turbocharger vs. units produced. Production
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5.4.1 Importance of Material Embodied Energy

In the LCA of the case study engine in Section 5.1.3, the importance of materials

in overall energy use is clear. Materials account for approximately two-thirds of the

total energy used to produce that engine. Because of this importance, restricting

a study to the material composition of various engines should still lead to relevant

results.

5.4.2 Engine and Material Background Information

The data for this section was acquired from purchasing records in the same manner

as the material composition for the case study engine (discussed in Section 3.6.4

on page 49). Twenty-seven di↵erent engines were studied. The engines ranged in

mass from 190 kg to 13,500 kg and in engine displacement from 2.8 L to 91 L.

As evidenced by the range of mass and displacement, the engines spanned many

application areas. The engines can be grouped into four general categories, listed

below. The categories delineate between on- and o↵-highway engines. On-highway

engines are used in vehicles that travel on public roads and must therefore meet

specific emissions standards. In the United States, these standards are set by the

Environmental Protection Agency [68]. O↵-highway vehicles and engines are not

subjected to the same standards.

• On-highway, medium-duty - The engines range in displacement from 2.8 L to

6.7 L. Example applications include delivery trucks and small buses.

• On-highway, heavy-duty - The engines range in displacement from 8 L to 15 L.

Examples of uses include fire trucks, buses, and semi-trailer trucks.

• O↵-highway - The engines range in displacement from 15 L to 28 L. Example

applications include bulldozers and other mining vehicles.

• Power generation - The engines range in displacement from 19 L to 91 L.

Examples of uses include locomotives, ships, and industrial power generation.

The composition of the engines was broken into 18 separate materials; details of

these materials, as well as data sources used, can be found in Table B.10 on page 126.

While these materials are not all inclusive, in many cases they account for 99% or

more of the total engine mass.
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5.4.3 Material Composition of Various Engine Types

Below are general observations about the material composition of the engines. The

material composition varied considerably across the engine lines, but some materials

were common to all.

• High scrap steel content. All engines - regardless of type, size, or other materials

used - were composed of 41% to 47% scrap steel by mass.

• Few extremely energy-intensive materials. The four most energy-intensive

materials in this audit were nickel, molybdenum, tin, and titanium1. The

highest nickel content among the engines was 1.0% by mass; most were less

than 0.8%. The other three energy-intensive materials were individually at

most 0.36% of an engine’s mass.

• Narrow range of pig iron and low-alloy steel usage. Like scrap steel, both pig

iron and low-alloy steel were abundant in all the engines with narrow ranges.

By mass, all engines contained between 18% and 20% pig iron and between

26% and 27% low-alloy steel.

5.4.4 Embodied Energy Findings

The composition of each engine was used to determine the approximate embodied

energy in the materials. The most notable result is the strong linear relationship

between engine mass and embodied energy across all engines analyzed (See Figure 5.11

on the facing page). Stated another way, the material embodied energy per unit mass

(MJ/kg) for all engines was similar; Figure 5.12 on the next page illustrates the finding

that all engines have an average embodied energy of 17 to 20 MJ/kg. The smaller

engines have larger embodied energies, from 18.8 to 19.8 MJ/kg; the largest engines

have embodied energy values of about 17.2 MJ/kg.

1Approximate embodied energy of these materials:
nickel, 142 MJ/kg
molybdenum, 151 MJ/kg
tin 321, MJ/kg
titanium, 670 MJ/kg
Please see Table B.10 on page 126 in the Appendix for more details on these materials.
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Figure 5.11 – Embodied energies of engines vs. total engine mass, log-log scales.
Note the strong linear relationship.
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Figure 5.12 – Average embodied energy intensities of engines vs. total engine
mass. There is very little change in the energy intensity over a 100-fold change
in engine mass.
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To explore the variations in composition and energy intensity between engines of

di↵erent sizes, two representative engines were chosen: an 11 L on-highway engine

and a 19 L o↵-highway engine. For brevity and clarity, these engines will be referred

to as “small” and “large,” respectively. These two engines represent the largest (the

small engine) and smallest (the large engine) embodied energy intensity. Table 5.2

summarizes the two engines.

Engine Displacement Category Mass Embodied Energy Intensity

“Small” 11 L on-highway 1,104 kg 19.8 MJ/kg
“Large” 19 L o↵-highway 1,973 kg 17.3 MJ/kg

Table 5.2 – Details of representative engines.

Figures 5.13 a-d on the next page explore the di↵erences in composition between the

small and large engine. The compositions by mass of the small and large engines are

shown in 5.13a and 5.13b, respectively. The large engine contains a larger portion of

low energy intensity materials: scrap steel, low-alloy steel, and pig iron; these three

materials account for 93% of the large engine’s mass and 86% of the small engine’s

mass. This is a major factor in the lower energy intensity of the large engine.

The material embodied energy breakdowns for the small and large engines are shown

in 5.13c and 5.13d, respectively. The most striking feature of these figures is the

extremely small embodied energy contribution of scrap steel; although it accounts for

almost half of the mass of the engines, it contributes only about 2% of the embodied

energy.
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5.4.4 for details.
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Chapter 6

Conclusion

6.1 Research Background

This research addresses the complexity and burden of LCA by highlighting important

product parameters and thereby guiding data collection. This work may be categorized

as LCA streamlining, which is the process of reducing the necessary e↵ort to produce

acceptable analyses. While many methods of streamlining exist, most select a priori

which activities and parameters to evaluate. This selection relies very heavily on the

researchers’ intuition, and may ignore large impacts. The reduction in e↵ort expended

is therefore often accompanied by a commensurate increase in the uncertainty of the

results.

6.2 Contribution of Work

This research project performed a streamlined LCA case study with a diesel engine

manufacturer. A specific diesel engine was selected: a large 15-liter on-highway truck

engine. Embodied energy was selected as the primary environmental impact metric.

A complex model of its energy use in the production and manufacturing life cycles

was created. The model consisted of 184 total parameters describing various aspects

of production energy use: part mass, part composition, material energy intensity,

process energy intensity, transportation distance, and transportation mode. Each

parameter was assigned a generous range, derived from readily available data. The

model was then simulated repeatedly and the parameters were randomly assigned,

producing a range of possible model outputs.
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Each parameter’s contribution to model uncertainty (or variance) was approximated

using partial rank correlation coe�cients (PRCCs). PRCCs are designed for nonlinear

models, but assume a monotonic relationship between the model inputs (engine

parameters) and outputs (energy use). This assumption was shown to be e↵ective for

most parameters. The variance contribution of one parameter - total engine mass -

was found to be noticeably underestimated by PRCCs. This finding led to a simple

heuristic to prioritize this parameter above all others. The model simulations were

then rerun.

After each simulation, the parameter with the most significant contribution to uncer-

tainty (as judged by PRCC) was resolved. The resulting decrease in model uncertainty

was then evaluated. Total model uncertainty was quantified by a custom test and

metric: the self-test and the False Error Rate (FSR), respectively. The self-test

compares two hypothetical engines with embodied energy values di↵ering by 10%.

This is accomplished by creating an identical impact distribution (B) shifted from

the original (A) by +10%, such that E(X
B

) > E(X
A

). The FSR is then the rate of

confusion between the two engines, the instances that falsely conclude that X
B

< X
A

.

The maximum FSR possible is 50%. Initially the model FSR was 21%. After 20

parameters were resolved it had decreased to 6.1%; it finally reached a steady state at

5.8% after 39 parameters were resolved. The subsequent resolution of any parameters

- indeed, all of the remaining parameters - did not a↵ect the uncertainty.

Many conclusions can be drawn from this case study. Most saliently, few parameters

in the engine energy use model were significant; therefore, these parameters should

be targeted for data collection and resolution. These parameters included overall

approximate engine mass, approximate composition, and the masses of some parts.

For certain large and expensive parts energy intensity of materials and processing

were also significant. A few smaller and less expensive parts a↵ected the model, but

typically only via their material energy intensity.

The transportation parameters for individual parts were not selected for resolution,

and did not contribute to model uncertainty in a discernible manner. This is a

significant insight: total transportation accounts for a significant portion - roughly

9% - of the total energy use in this study’s boundaries, yet its constituent parameters

have no appreciable leverage in the model.

Finally, the model has significant inherent and unavoidable uncertainty. This has

significant consequences for data collection. The inherent uncertainty in the formu-

lation dominated most of the parameters in the model, and therefore less than 45
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were significant enough to a↵ect overall uncertainty. Data should therefore not be

collected on the insignificant parameters.

6.3 Suggestions for Future Work

Following this research, there are multiple possibilities for continued work. Below are

suggested projects that may be particularly relevant to this work.

6.3.1 Data Collection Cost Optimization

In this research and in similar work, the resolution of each parameter is treated

with equal weight. There is no consideration of the amount of investment needed to

resolve di↵erent parameters. Work could be done to evaluate the relative di�culty

and cost associated with resolving di↵erent product attributes (e.g. part mass,

part composition, material energy intensity, distance transported, and mode of

transportation). An optimization problem could then be formulated to achieve the

desired resolution of the LCA for the lowest investment cost.

It may also be possible to integrate into the optimization problem the interaction

between data-gathering steps. For example, gathering process data for the engine

block may significantly lower the burden in gathering data for the fuel pump housing,

if both are sourced from the same supplier. This interaction between steps may

make it advantageous to gather multiple disparate parameter data in one task.

The optimization problem created by interdependence would be similar to linear

optimization problems in open pit mining.1

6.3.2 Streamlining for Multiple Environmental Impact Met-

rics

While one environmental impact - energy use - served as the sole metric for this study,

the resulting streamlined LCA could be completed using any metrics. However, this

approach has one clear downside: the uncertainty associated with other metrics, such

as water use, may be very di↵erent than that of energy use. The resulting uncertainty

1In open pit mining optimization, removing obstructions to certain caches of ore may make it
advantageous to also mine other caches (that would not have been otherwise feasible to mine). For
examples of optimization problems in open pit mining, See Espinoza et al. [69]
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of other metrics may then be unacceptably high. Future research could be dedicated

to streamlining over multiple environmental impact metrics. Compromises would

have to be made so that all metrics in question were reduced to an acceptable level

of uncertainty.

6.3.3 Staged Resolution of Parameters

Another opportunity for improvement can be found in the types of uncertainty targeted

in the resolution step. Resolution is not a simple or uniform process. Various types of

uncertainty could be resolved (e.g. temporal uncertainty, geographic uncertainty, and

process uncertainty). Therefore the resolution of a single parameter could actually be

divided into multiple stages.

As an illustration, consider the model parameter for the energy intensity of crankshaft

forging. Assume that based on contribution to model variance, it is determined

that this parameter should be resolved. Rather than resolve all available types of

uncertainty in one laborious data-gathering task, the resolution could be staged. First,

the process uncertainty could be reduced by researching the specific forging process

utilized. After this resolution, the model could again be simulated. If the forging of

the engine crankshaft no longer contributed most significantly to model variance, it

would not have to be resolved further in this step. If resolution was still desired, the

temporal uncertainty could be resolved; the most recent data for the specific forging

process would be needed. Other possible stages are the specific geographic area of

the forging and the specific forging plant and process.

This staging strategy could also be used to address multiple suppliers. Rather than

simultaneously gathering data from all suppliers of a specific part, a single supplier

- possibly the most commonly used supplier for this part - could be targeted for

resolution.

Staged resolution could also greatly benefit from the aforementioned cost optimization

of data collection, as some stages may be much more di�cult to resolve than others.

Patanavanich [22] explores a type of staged resolution applied specifically to materials.2

2See Section 2.3.3 on page 29 for a brief description of this work.
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6.3.4 Accounting for Cost Anomalies in the BOM

The bill of materials detailed certain parts that are much more expensive than their

mass or material would predict. Examples of anomalous parts are the fuel injectors:

the six injectors, with an approximate total mass of less than 1 kg, were in the top

five most expensive parts (if all six are treated en masse) along with much more

massive parts: the cylinder block (>300 kg), the cylinder head (>200 kg), and the

engine crankshaft (>100 kg). The fuel injector material is tool steel; while relatively

high, the material cost of tool steel cannot explain the large cost of the injectors.

Energy intensive precision machining most likely accounts for a sizable portion of the

injector cost. Anomalies such as these could be pursued to produce a more accurate

model of energy use.

To identify these outliers, a hybrid LCA approach could be used. Only crude measures

of cost of goods sold (COGS) was made available for this study in the form of the

relative cost rankings of the parts. If exact part cost data was made available, one

method of identifying cost outliers would be to use a course economic input-output

LCA model, such as the EIO-LCA model [16]. The engine model’s estimation for

energy used to produce a part could be compared with the EIO-LCA estimation;

those parts that showed the greatest relative underestimation could be selected for

further study.

6.3.5 Part Aggregation

The single improvement that would most help this research would be part aggregation.

As discussed in this thesis, the investigated engine contains over 1,000 individual

parts. Many of these are small parts with masses on the order of 0.1 kg; however,

their aggregate impact could be significant. As an illustration, there are 172 fasteners

in the bill of materials. Even if these fasteners had an average mass of only 0.05 kg

(50 g), their total mass of 8.6 kg would be greater than many of the 38 most expensive

parts, which were culled for detailed analysis in this study. These fasteners could be

combined to form a part aggregation, or a “superpart,” that could be analyzed along

with the other parts of the engine, thereby decreasing the mass of the remaining parts

and increasing the possible resolution of the model.

The implementation of aggregate parts could take various forms: it might be thorough

or it may simply rely on intuition and generous uncertainty bounds, as in the example
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above. Even in the latter case, this aggregation may provide more insight into the

impact of the product under study.
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Appendix A

Analysis of Enterprise LCA

Software

A.1 Introduction

As part of this research project, an enterprise-level LCA software was piloted for

possible use by the engine manufacturer. The software chosen was Windchill LCA

from PTC. This module integrates with PTC’s product life cycle management (PLM)

software, Windchill, to calculate the environmental impact of products. This software

was installed on a remote server to simulate a production environment. The version

tested was Windchill Product Analytics 10.1 M010 with the LCA Module.

As tested, the software included two databases for environmental impact data: Ecoin-

vent, version 2.2, released in 2010 by the Swiss Centre for Life Cycle Inventories

[39] and the 2002 US Benchmark Version of the Economic Input-Output Life Cycle

Assessment (EIO-LCA) Model with producer price, released in 2009 by the Green

Design Institute at Carnegie Mellon University [16]. For this test only the Ecoinvent

data was used. Component costs and the EIO-LCA model were not factored into

the analysis. The categories in EIO-LCA are, in general, more broad and o↵er less

resolution.

A.2 Applications

Windchill LCA was used for two distinct projects:
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1. Analysis of a diesel engine’s bill of materials (BOM), which includes the con-

stituent parts, as well as the general processing of those parts.

2. Analysis of two di↵erent camshaft designs, including the detailed processing

steps involved.

These two projects were chosen to test the usefulness of the tool in a broad range

of applications from general (represented by the engine BOM analysis) to specific

(represented by the camshaft analysis).

A.3 Material Processing

The primary focus of the Windchill LCA tool is material data. Therefore, special

attention was given to testing its capabilities for analyzing processing. As tested, the

module only has the ability to add materials to a part, not processes. Processes must

instead be added as materials. Processes were divided into several general categories,

which are described below.

The following process descriptions rely on scaling. Environmental impact as calculated

in the Ecoinvent database scales linearly with process metrics, such as mass or surface

area.

A.3.1 Processes that scale with mass

These processes scale with mass of the material they are applied to. Some act on an

entire part, and others on a subset of the part.

A.3.2 Processes acting on the whole part

These processes act on the entire mass of the part. For this analysis, the mass of the

part refers to the final mass of the part. One example of this type of process is heat

treatment. To enter one of these processes into Windchill LCA, a separate “dummy”

material must be created to represent each process. The mass of this material is then

equal to that of the part.
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A.3.3 Processing acting on a subset of the part

These processes also scale with mass, but act only on a subset of the part. All

material removal processes, for example milling and drilling, are categorized as such.

These processes can be added in a similar fashion as other mass-scaling processes. In

some scenarios, listed at the end of this appendix, subset processes must be treated

di↵erently than processes acting on the whole part.

A.3.4 Processes that do not scale with mass

Many processes do not scale with mass, but instead with another metric. Most

commonly this is surface area. Coating and plating are examples of such processes.

These processes must be added with an artificial scaling factor, described in the

Strategy section of this appendix.

A.3.5 Multi-part processes

Some processes are applied to multiple parts; the primary examples of these processes

are painting and brazing. These processes may scale with mass, surface area, or

another metric. These processes require a workaround, described in the Strategy

section on the next page.

A.4 Assessment

A.4.1 Database

The included Ecoinvent database is extremely extensive and covers many materials

and processes. In our testing, this information was very helpful and expedited our

work. Conversely, the database does have a limited amount of data on certain

materials. For example, titanium and tool steel are not included. The processes are

also relatively general, and there is little ability to di↵erentiate between processes.

As an example, the database only includes one general heat treatment process for

steel, as opposed to specific processes such as carburizing or ammonia gas nitriding.
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A.4.2 Indicators

The Ecoinvent tool provides many di↵erent ecological indicators. The Windchill LCA

tool provides access to five of the most common: greenhouse gas emissions, energy use,

water use, acidification potential, and eutrophication potential. These five indicators

should su�ce for most private and public uses.

A.4.3 Features and Stability

The LCA module was tested after its first release. A variety of bugs were encountered

during the testing phase. The feature set was also limited in some areas. Various

workarounds are essential in the module’s current state. For example, the module can-

not utilize processing data without implementing a workaround. Compromises must

therefore be made between conflicting priorities. The following section, Strategies,

serves as a brief guide to the major decisions.

A.5 Strategies

To overcome the aforementioned shortcomings of the tool, a variety of workarounds

may be employed. Listed below are several strategies, or general approaches to the

workarounds and compromises. The strategies are listed roughly in order of increasing

e↵ort. Each strategy has both benefits and disadvantages. There is currently not an

ideal strategy, regardless of e↵ort expended.

The advantages and disadvantages associated with all strategies discussed below are

summarized in Table A.1.

A.5.1 Default Strategy

In the default strategy, the software is used as provided. Material information is

included for every part; however, no process data is included. Calculated part mass

is the sum of the material masses; as such, the transportation calculations, which

scale with part mass, are valid.
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A.5.2 Strategy A: Basic Processes

This strategy modifies the default strategy by including mass-based processes as

“dummy” materials. Each such new material must be created, and therefore this

strategy requires moderately more e↵ort. The primary disadvantage of this strategy

is that the transportation calculations are no longer valid, as the calculated mass of

the part is all of the materials plus each process. For example, if a part has 10% of

its mass removed by machining and then undergoes heat treatment, the calculated

mass is the sum of materials, machining, and heat treatment: 210% of the actual

part mass.

A.5.3 Strategy B: Customized Processes

Strategy B builds on A by adding the remaining processes that do not scale with

mass. All processes are now included, each as a separate dummy material. This

process requires a moderate e↵ort.

The primary disadvantage of this strategy is that the units of the new processes are

not accurate. As the tool only accepts materials in terms of mass, the new dummy

materials must have an artificial conversion factor. For example, if a part is painted,

this new process will scale with area, measured in m2. The units of the dummy

material will be in mass, kg; there must therefore be an arbitrary and artificial

conversion from m2 to kg. For these tests, the conversion was a 1-to-1 conversion

from m2 to kg.

Strategy B su↵ers from the same invalid transportation calculations as A. The

transportation impact calculations are therefore more skewed due to the additional

processes and artificial units.

A.5.4 Strategy C: Lumped processes and materials

This strategy overcomes the invalid transportation calculations previously mentioned.

Many additional dummy materials are created which include both material and

processing information. The calculated mass of the part is therefore accurate, and

the transportation impact calculations are valid.

This strategy requires much more e↵ort than A or B, as the number of custom

materials will be larger than the total number of materials. For example, aluminum
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with and without heat treatment must be created as two separate materials. If a

second process option, such as coating, is added, the number of custom materials is

now four. Any additional process options increase the number of custom materials

exponentially.

Strategy C has significant drawbacks. Because processes and materials are combined,

any process that does not scale with the final mass of the part cannot be included.

This then excludes processes such as machining and coating.

A.5.5 Strategy D: Customized processes with unit scaling

Strategy D is a simple but consequential variation of B. The advantage of this

approach is the validity of the transportation calculations. The units of all processes,

without exception, are scaled significantly. The objective is to reduce the added mass

from a process to such a degree that it becomes insignificant in part mass calculations.

For example, the impact of all mass-based processes may increase by 1,000. Therefore,

removing 2 kg of material by machining would be entered into the software as 0.002 kg

of machining. The conversion to the appropriate 2 kg of machining must be included

in the custom material for machining. The primary and significant disadvantage of

this strategy is the misleading artificial units of all the processing steps.

A.5.6 Strategy E: Custom material for each part

This strategy is the most time-intensive and o↵ers no scalability. Strategy E is

identical to C, except that each part has a unique custom material. This enables

valid transportation calculations and any processing, but no reusable materials or

processes.

A.5.7 Multi-part processes

Multi-part processes may be added through the addition of dummy parts (as opposed

to dummy materials). These parts could then have the appropriate processes attached

to them. The primary disadvantage of this approach is that the BOM must be

modified, which may not be appropriate for a production environment.
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Attributes
Strategies

; A B C D F E

Valid transportation results      
Materials        
Mass-based processes, whole part    #   
Other mass-based processes   # #  
Other processes # # #  
Multi-part processes # #
BOM used as-is      
Relative Complexity 0 1 2 3 3 3 4

Table A.1 – Possible strategies and corresponding attributes when implementing
Windchill LCA. The default implementation is represented as ;. Strategies A
through E are described in the text above. The  symbol signifies that an
attribute is available or true. The # symbol applies only to process data, and
signifies that the processes are available, but the associated units are incorrect.
These processes are then usable and the calculated results correct; however,
interpretation and scalability su↵ers. The Relative Complexity attribute is a
qualitative measure of the e↵ort and complexity of the strategy; the lower the
complexity, the easier and more straightforward a strategy.

A.6 Primary Shortcomings

The following were presented to the software maker PTC as the primary shortcomings

of the tool.

1. No material processing support. There was no native functionality to add

process information without artificially adding to the mass of the part.

2. Non-mass-based processes. There was no native support for any processing

steps that did not scale with mass.
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Appendix B

Additional Data Tables, Figures,

and Equations
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Material Lower (MJ/kg) Upper (MJ/kg)

Aluminum Alloy 44 59
Copper 25 40

Copper-Tin Alloy 60 76
Gray Iron 18 29

Low Alloy Steel 20 34
Nickel 158 240

Nickel Alloy 132 205
Nylon 6-6 86 128

PCB, General 9,963 14,239
PCB, Logic Type 12,579 20,209

PCB, Memory Type 8,240 11,708
PET Plastic 67 102
Stainless Steel 60 89

Tin 233 384
Titanium 605 833

Turbocharger Alloy 36 62

Table B.1 – Material energy intensity ranges. These ranges form the initial
rough estimate for material energy intensity of the engine componentes. Through
resolution these values can change independently for each part. This data
aggregated from Ecoinvent [39], Ashby [9], and Hammond and Jones [43].

Mode Lower e/d, MJ/t·km Upper e/d, MJ/t·km

Truck 1.7 7.3
transport, lorry >32t, EURO5 transport, lorry 3.5-7.5t, EURO3

Rail 0.49 0.70
transport, freight, rail, Austria transport, freight, rail, diesel, US

Ship 0.15 0.61
transport, transoceanic freight ship transport, barge

Table B.2 – Range of transportation mode energy intensities and their associated
source in the Ecoinvent database. Note that these values are given per metric
ton rather than kg.
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Table B.4 – False Signal Rate details after all simulation rounds.

Parameters Parameter Parameter
FSR

Resolved Category Description

0 - Initial Round 21.5%

1 Part Mass Total engine mass 11.9%

2 Material Composition Remaining aluminum fraction 9.7%

3 Material Composition Remaining gray iron fraction 9.6%

4 Process Mass Machining of cylinder block 9.4%

5 Material Intensity Cylinder block, gray iron 8.4%

6 Material Composition Remaining titanium fraction 8.4%

7 Process Intensity Forging of engine crankshaft 7.7%

8 Process Mass Machining of cylinder head 7.6%

9 Part Mass Electronic control module 7.3%

10 Process Mass Machining of crankshaft 6.7%

11 Material Intensity Crankshaft, low alloy steel 6.4%

12 Material Intensity Cylinder head, gray iron 6.1%

13 Process Intensity Machining of cylinder block 6.1%

14 Material Composition Remaining tin fraction 6.1%

15 Material Intensity Electronic control module, PCB 6.1%

16 Process Intensity Machining of cylinder head 6.0%

17 Process Mass Machining of turbocharger 6.0%

18 Process Intensity Heat treatment of cylinder block 6.3%

19 Process Intensity Machining of crankshaft 6.0%

continued...
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Table B.4: (continued)

Parameters Parameter Parameter
FSR

Resolved Category Description

20 Material Intensity Turbocharger, Al and Ni 6.1%

21 Process Intensity Machining of oil filter head 5.8%

22 Process Intensity Coating of air intake manifold 5.8%

23 Material Composition Remaining stainless steel fraction 6.2%

24 Process Intensity Heat treatment of cylinder head 6.4%

25 Part Mass Oil filter head, aluminum 6.4%

26 Process Mass Machining of air intake manifold 6.3%

27 Part Mass Air intake manifold 6.2%

28 Process Intensity Heat treatment of crankshaft 6.0%

29 Process Mass Machining of flywheel 6.4%

34 Various Group A1 6.4%

39 Various Group B1 5.6%

44 Various Group C1 5.5%

49 Various Group D1 5.5%

76 Part & Process Mass Remaining 27 parameters 5.4%

101 Material Intensity Remaining 25 parameters 5.6%

130 Process Intensity Remaining 29 parameters 5.6%

133 Transit Distance Remaining 3 parameters 5.5%

142 Transit Mode Remaining 9 parameters 5.5%

151 Transit Intensity Remaining 9 parameters 5.8%

These data points were taken after restarting the simulations. Note that the FSR

increases after some rounds. This is explored more in Table B.7 on page 121.

1See Table B.6 on page 119, which describes the parameters placed in these groups.
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Table B.5 – Leverage† of each parameter for uncertainty reduction.

Parameters Parameter Parameter
Leverage†

Resolved Category Description

1 Part Mass Total engine mass   
2 Material Composition Remaining aluminum fraction   
3 Material Composition Remaining gray iron fraction #
4 Process Mass Machining of cylinder block  
5 Material Intensity Cylinder block, gray iron   
6 Material Composition Remaining titanium fraction

7 Process Intensity Forging of engine crankshaft   
8 Process Mass Machining of cylinder head  
9 Part Mass Electronic control module  
10 Process Mass Machining of crankshaft   
11 Material Intensity Crankshaft, low alloy steel  
12 Material Intensity Cylinder head, gray iron  
13 Process Intensity Machining of cylinder block #
14 Material Composition Remaining tin fraction

15 Material Intensity Electronic control module, PCB

16 Process Intensity Machining of cylinder head  
17 Process Mass Machining of turbocharger

18 Process Intensity Heat treatment of cylinder block

19 Process Intensity Machining of crankshaft  
continued...
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Table B.5: (continued)

Parameters Parameter Parameter
Leverage†

Resolved Category Description

20 Material Intensity Turbocharger, Al and Ni

21 Process Intensity Machining of oil filter head  
22 Process Intensity Coating of air intake manifold

23 Material Composition Remaining stainless steel fraction

24 Process Intensity Heat treatment of cylinder head

25 Part Mass Oil filter head, aluminum

26 Process Mass Machining of air intake manifold #
27 Part Mass Air intake manifold  
28 Process Intensity Heat treatment of crankshaft  
29 Process Mass Machining of flywheel

34 Various Group A2 #
39 Various Group B2   
44 Various Group C2  
49 Various Group D2

76 Part & Process Mass Remaining 27 parameters #
101 Material Intensity Remaining 25 parameters

130 Process Intensity Remaining 29 parameters

133 Transit Distance Remaining 3 parameters  
142 Transit Mode Remaining 9 parameters #
151 Transit Intensity Remaining 9 parameters

†Parameter leverage over model uncertainty was judged by the median change

in FSR from the previous round, as measured in the bootstrap resampling.

  - Significant leverage. |�FSR| > 0.50%

 - Moderately leverage. |�FSR| > 0.10%

# - Trivial leverage. |�FSR| > 0.03%

blank - Insignificant parameter. |�FSR| < 0.03%

2See Table B.6 on the facing page, which describes the parameters placed in these groups.
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Group Category Description

G
ro
u
p
A

Part Mass Fuel Filter Head
Process Intensity Machining of Fuel Filter Head

Part Mass Oil Pan
Material Intensity Oil Pan, Low Alloy Steel
Process Intensity Machining of Gear Housing

G
ro
u
p
B

Process Intensity Machining of Fuel Pump Head
Material Intensity Flywheel, Gray Iron

Part Mass Cylinder Head, Gray Iron
Material Intensity Oil Filter Head
Process Intensity Forging of Oil Filter Head

G
ro
u
p
C

Process Intensity Machining of Oil Filter Head
Part Mass Cylinder Block
Part Mass Turbocharger

Material Intensity Valve Cover PET
Process Intensity Forging of Fuel Pump Head

G
ro
u
p
D

Process Intensity Machining of Turbocharger
Part Mass Engine Crankshaft
Part Mass Gear Housing Cast Aluminum Alloy

Process Intensity Machining of Camshaft
Process Intensity Forging of Connecting Rod

Table B.6 – Grouped parameters. After 30 rounds of simulations, the next
20 parameters to be resolved were placed into groups of 5 each and resolved
together.
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Figure B.1 – False Signal Rate for final rounds. Bootstrap resampling was used
to produce the 5% and 95% quantiles shown on the figure. False Signal Rate for
final rounds.
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Resolved FSR Bootstrap Percentile
Parameters 5th 50th 60th 95th

0 20.08% 21.23% 21.58% 22.27%
1 10.76% 11.88% 12.24% 13.07%
2 9.57% 10.72% 11.10% 11.89%
3 8.37% 9.56% 9.96% 10.72%
4 8.28% 9.33% 9.71% 10.44%
5 7.27% 8.32% 8.72% 9.35%
6 7.33% 8.36% 8.65% 9.26%
7 6.71% 7.74% 8.02% 8.63%
8 6.58% 7.61% 7.90% 8.50%
9 6.28% 7.31% 7.60% 8.20%
10 5.87% 6.73% 7.01% 7.56%
11 5.57% 6.40% 6.66% 7.21%
12 5.27% 6.06% 6.32% 6.86%
13 5.24% 6.13% 6.38% 7.09%
14 5.21% 6.08% 6.38% 6.88%
15 5.30% 6.11% 6.40% 7.04%
16 5.14% 5.94% 6.23% 6.80%
17 5.05% 5.95% 6.23% 6.77%
18 5.33% 6.23% 6.52% 7.13%
19 5.10% 5.95% 6.26% 6.89%
20 5.14% 6.05% 6.30% 6.90%
21 5.02% 5.88% 6.18% 6.78%
22 4.95% 5.87% 6.21% 6.88%
23 5.19% 6.25%† 6.42% 7.07%
24 5.43% 6.31% 6.63% 7.27%
25 5.46% 6.32% 6.61% 7.28%
26 5.40% 6.24% 6.52% 7.18%
27 5.29% 6.18% 6.43% 7.03%
28 5.05% 5.95% 6.25% 6.96%
29 5.37% 6.28%† 6.63% 7.27%
34 5.45% 6.36% 6.61% 7.24%
39 4.78% 5.65% 5.90% 6.50%
44 4.60% 5.47% 5.76% 6.39%
49 4.69% 5.49% 5.76% 6.40%
76 4.51% 5.42% 5.67% 6.34%
101 4.69% 5.55% 5.81% 6.42%
130 4.77% 5.52% 5.83% 6.43%
133 4.72% 5.49% 5.76% 6.29%
142 4.65% 5.45% 5.71% 6.31%
151 4.90% 5.73%† 5.99% 6.61%

Table B.7 – Selected percentiles of the False Signal Rate of resampled distri-
butions. Only 3 rounds have an FSR greater than the 60th percentile of the
previous round’s FSR; these are set in bold and marked with a cross (†): 23, 29,
and 151.
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Table B.8 – Results from streamlined LCA, by part. The most energy-intensive
25 parts are included. The same results are presented as fractional values in
Table B.9 on the facing page.
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Table B.9 – Results from streamlined LCA, by part. All part impacts are given
as a fraction of the total engine impact for that metric. The most energy-intensive
25 parts are included.
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Figure B.2 – False Signal Rate for final rounds (first 30). Bootstrap resampling
was used to produce the 5% and 95% quantiles shown on the figure.
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Figure B.3 – Normal Q-Q plot (quantile-quantile plot) for the distribution of
estimated engine impact. Data from the model with no parameters resolved.
The normal Q-Q plot is useful when arguing qualitatively for the normality
of a specific distribution. From this plot it can be inferred that the impact
distribution is indeed approximately Gaussian. See Wilk [51] for an introduction
to Q-Q plots.
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Table B.10 – Embodied energy for selected materials from the diesel engine
case study. Singular representative values are shown in this table for simplicity;
however, it must be noted that each material has a broad range of embodied
energy values.

Material Embodied Energy Data Source

(MJ/kg)

Aluminum Alloy 72 Ecoinvent, index #1045,

“aluminium alloy, AlMg3, at plant”

Aluminum 51 Ecoinvent, index #1057,

“aluminium, production mix, cast

alloy, at plant”

Copper 34 Ecoinvent, index #1074, “copper, at

regional storage”

Steel, Cold Rolled Coil 28 Ecoinvent, index #1154, “steel,

low-alloyed, at plant”

Ferromanganese 23 Ecoinvent, index #1097,

“ferromanganese, high-coal, 74.5%

Mn, at regional storage”

Ferromolybdenum 43 Composite (See Gutpa [70]). 65%

molybdenum: Ecoinvent, index

#1118, “Molybdenum concentrate,

main product.” 35% pig iron:

Ecoinvent, index #1132, “pig iron,

at plant.”

Ferrosilicon (Fe-Si) 16 Composite (See [71]). 45%

low-grade silicon: Ecoinvent, index

#321, “silicon carbide, at plant.”

55% pig iron: Ecoinvent, index

#1132, “pig iron, at plant.”

Steel, Hot Rolled Coil 28 Ecoinvent, index #1154, “steel,

low-alloyed, at plant”

continued...
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Table B.10 on the preceding page: (continued)

Material Embodied Energy Data Source

(MJ/kg)

Steel, 4140 33 Composite (See Central Steel &

Wire Company [72]). 99% low-alloy

steel: Ecoinvent, index #1154,

“steel, low-alloyed, at plant.” 1%

chromium: Ecoinvent, index #1073,

“chromium, at regional storage.”

Molybdenum 151 Ecoinvent, index #1116,

“molybdenum, at regional storage”

Nickel 142 Recycled production mix (See

Ashby [9]). 74% primary nickel:

Ecoinvent, index #1121 nickel,

“99.5%, at plant.” 26% Ecoinvent,

index #8149, “nickel, secondary,

from electronic and electric scrap

recycling, at refinery.”

Pig Iron 23 Ecoinvent, index #1132, “pig iron,

at plant”

Iron Scrap 0.73 Ecoinvent, index #1101, “iron scrap,

at plant”

Lead 16 Ecoinvent, index #1103, “lead, at

regional storage”

Tin 321 Ecoinvent, index #1155, “tin, at

regional storage”

Zinc 52 Ecoinvent, index #1156, “zinc,

primary, at regional storage”

Titanium 670 Ashby [9], mean value from range of

600 - 740 MJ/kg.

Stainless Steel 68 Ecoinvent, index #1152, “steel,

electric, chromium steel 18/8, at

plant”

127



Impact variance demonstration equation, where i is impact, e is energy intensity, m

is mass, and a and b are parts:

i = e
a

m
a

+ e
b

m
b

(B.1)

Definitions and givens for Equations B.9 through B.12:

I = E
a

M
a

+ E
b

M
b

(B.2)

m
a

+m
b

= c (B.3)

M
a

= �M
b

+ c (B.4)
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Variance of product of energy intensity and mass:
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Covariance of masses:
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