
Probabilistic Motion Planning and Optimization

Incorporating Chance Constraints

by

Siyu Dai

B.S. and B.B.A., Shanghai Jiao Tong University (2016)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

A uthor

Certified by...............

Certified by...............

Accepted by..............

Signature redacted
Department of Mechanical Engineering

August 17,)2018

.................. Signature redacted
Brian C. Williams

Professor of Aeronautics and Astronautics
n T)1e s Sypervisor

.~Signature redacted.............
Hhrry Asada

Ford Professor of Engineering

AThesis Reader

Sinature redacted
Rohan Abeyaratne

Quentin Berg Professor of Mechanics
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY Co

OCT 02 2018

LIBRARIES

ATM Mo

Probabilistic Motion Planning and Optimization

Incorporating Chance Constraints

by

Siyu Dai

Submitted to the Department of Mechanical Engineering
on August 17, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

For high-dimensional robots, motion planning is still a challenging problem, especially
for manipulators mounted to underwater vehicles or human support robots where
uncertainties and risks of plan failure can have severe impact. However, existing risk-
aware planners mostly focus on low-dimensional planning tasks, meanwhile planners
that can account for uncertainties and react fast in high degree-of-freedom (DOF)
robot planning tasks are lacking. In this thesis, a risk-aware motion planning and
execution system called Probabilistic Chekov (p-Chekov) is introduced, which includes
a deterministic stage and a risk-aware stage. A systematic set of experiments on
existing motion planners as well as p-Chekov is also presented.

The deterministic stage of p-Chekov leverages the recent advances in obstacle-
aware trajectory optimization to improve the original tube-based-roadmap Chekov
planner. Through experiments in 4 common application scenarios with 5000 test
cases each, we show that using sampling-based planners alone on high DOF robots can
not achieve a high enough reaction speed, whereas the popular trajectory optimizer
TrajOpt with naive straight-line seed trajectories has very high collision rate despite
its high planning speed. To the best of our knowledge, this is the first work that
presents such a systematic and comprehensive evaluation of state-of-the-art motion
planners, which are based on a significant amount of experiments. We then combine
different stand-alone planners with trajectory optimization. The results show that
the deterministic planning part of p-Chekov, which combines a roadmap approach
that caches the all pair shortest paths solutions and an online obstacle-aware tra-
jectory optimizer, provides superior performance over other standard sampling-based
planners' combinations. Simulation results show that, in typical real-life applications,
this "roadmap + TrajOpt" approach takes about 1 s to plan and the failure rate of
its solutions is under 1%.

The risk-aware stage of p-Chekov accounts for chance constraints through state
probability distribution and collision probability estimation. Based on the deter-
ministic Chekov planner, p-Chekov incorporates a linear-quadratic Gaussian motion
planning (LQG-MP) approach into robot state probability distribution estimation,

3

applies quadrature-sampling theories to collision risk estimation, and adapts risk allo-
cation approaches for chance constraint satisfaction. It overcomes existing risk-aware
planners' limitation in real-time motion planning tasks with high-DOF robots in 3-
dimensional non-convex environments. The experimental results in this thesis show
that this new risk-aware motion planning and execution system can effectively reduce
collision risk and satisfy chance constraints in typical real-world planning scenarios
for high-DOF robots.

This thesis makes the following three main contributions: (1) a systematic evalua-
tion of several state-of-the-art motion planners in realistic planning scenarios, includ-
ing popular sampling-based motion planners and trajectory optimization type motion
planners, (2) the establishment of a "roadmap + TrajOpt" deterministic motion plan-
ning system that shows superior performance in many practical planning tasks in
terms of solution feasibility, optimality and reaction time, and (3) the development
of a risk-aware motion planning and execution system that can handle high-DOF
robotic planning tasks in 3-dimensional non-convex environments.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

4

.....

Acknowledgments

The completion of my master has not been an easy process. Without the support

from my mentors and friends, I wouldn't have been able to conquer all the challenges

and obtain these research achievements.

I want to thank my supervisors Brian Williams and Andreas Hofmann, as well

as my thesis reader Harry Asada, for supporting my master study and providing

guidance for my research. The valuable advice they gave me was essential for shaping

my master research as well as this thesis. I want to thank my mentor Shawn Schaffert,

who devoted a lot of time and effort helping me get started in this new area, having

lots of valuable meetings to help me get out of research bottlenecks and brainstorm

ideas, providing detailed feedback on each of my papers and presentations, and giving

me very meaningful advices on both my research and my career. I also want to thank

Ashkan Jasour for contributing ideas for the development of the p-Chekov system

introduced in this thesis, especially for the state estimation part. Especially, I want

to thank my labmate Matthew Orton for constructing all the roadmaps used in this

thesis, which are essential for the p-Chekov experiments.

Completing a graduate degree is not only a challenge for academic and research

ability, but also a test for willpower. I'm very grateful to my boyfriend Benjamin

Ayton for always believing in me even when I'm doubting myself, for helping me

through all the tough times and getting back my confidence and courage, for always

keeping me company when I feel weak, and of course for providing valuable feedback

on my thesis. I don't know how I would have survived all the setbacks during the

past year without his important mental support. I'm also very grateful to my family,

especially my parents and my aunt, for trying their best to help me through challenges

remotely, for being my solid support whenever I needed help, and for caring about

my personal and career development even from the opposite side of the earth.

Master degree is not an end, and I will have more challenges to face during my

PhD. I'm very lucky to have so many people helping me during my master years. I

also hope what I have achieved in these two years, my growth in academic ability,

5

research ability and personality, will help me through my PhD time.

6

.

Contents

1 Introduction

1.1 Motivation. . .

1.2 Technical Need

1.3 Approach . . .

1.4 Overview. . . .

2 Background

2.1 Search-based Motion Planners

2.2 Sampling-based Motion Planners

2.3 Trajectory Optimization Type Motion Planners . .

2.3.1 Review of Trajectory Optimization Planners

2.3.2 The TrajOpt Algorithm [80, 79]

2.4 Risk-Aware Motion Planners

3 Problem Statement

3.1 D efinitions .

3.1.1 Model Definitions

3.1.2 Constraint Definitions

3.1.3 Problem Definition

3.2 Assum ptions .

4 Motion Planners Evaluation Experiment

4.1 M otivation

7

Implementation

.

19

19

24

26

31

35

35

38

41

41

46

49

55

55

55

56

58

60

63

63

.

.

.

.

4.2 Experiment Testbed Description . 65

4.2.1 Description of the Test Robot 65

4.2.2 Description of the Test Environments 67

4.3 Experiment Implementation . 67

4.3.1 Experiments on TrajOpt . 72

4.3.2 Sampling-based Planners Benchmark Experiments 75

4.3.3 Experiments on Combined Planners 76

5 Motion Planners Evaluation Experiment Results and Analysis 77

5.1 TrajOpt with Straight-line Seeds Experiment Results 78

5.1.1 TrajOpt Results for the Original 5000 Random-Sampled Cases 78

5.1.2 TrajOpt Comparison with RRT 81

5.1.3 Result Analysis . 82

5.2 Validation of Test Cases using Sampling-based Planners 84

5.3 TrajOpt with Sampling-based Planners Solutions as Seeds 86

5.3.1 Results of Sampling-based-seed Experiments on TrajOpt Fail-

ure C ases . 87

5.3.2 Influence of Seed Interpolation on TrajOpt Performance 95

5.3.3 Results of Comprehensive Sampling-based-seed Experiments and

Comparison among Different Motion Planners 98

5.4 Analysis of Parameters' Influence on TrajOpt Performance 106

5.4.1 Tests on TrajOpt Collision Penalty Hit-in Distance Parameter 106

5.4.2 Tests on TrajOpt Path Length Coefficient Parameter 115

5.4.3 Tests on TrajOpt Number of Waypoints Parameter 117

5.5 Influence of Optimization Gurobi on TrajOpt's Performance 125

5.6 TrajOpt with Chekov Roadmap Solutions as Seed Trajectories 128

6 Risk-aware Motion Planning Approach 131

6.1 P-Chekov Risk-aware Motion Planning and Execution System 132

6.2 Approach for Estimating Robot State Probability Distributions . . . 137

6.2.1 Dynamics and Observation Model Linearization 138

8

6.2.2 Optimal State Estimation and Optimal Control 139

6.2.3 Probability Distribution Estimation for Robot States and Con-

trol Inputs...... 141

6.3 Collision Probability Estimation Approach 143

6.3.1 Comparison of Existing Collision Probability Estimation Methods 143

6.3.2 P-Chekov Collision Probability Estimation Approach based on

Quadrature-sampling . 148

6.4 Risk Allocation Approach . 156

6.4.1 P-Chekov Planning Phase Risk Reallocation 156

6.4.2 P-Chekov Execution Phase Iterative Risk Allocation 159

6.5 Detailed P-Chekov Algorithm Illustration 161

7 Risk-aware Planning Experiments 165

7.1 Experiment Modeling . 166

7.1.1 Joint Value Observation Model 166

7.1.2 End-effector Observation Model 167

7.2 Planning Phase Experiment Results 169

7.2.1 Experiment Results for Joint Value Observation Model 169

7.2.2 Experiment Results for End-effector Observation Model 177

7.2.3 Results after Filtering out Potentially Infeasible Test Cases . . 184

7.3 Improvement from Iterative Risk Allocation 190

8 Summary 195

8.1 Main Content Summary . 195

8.2 M ain Contributions . 197

8.3 Discussions about Future Work . 198

9

10

List of Figures

1-1 "Nereid Under Ice (NUI)", a remote operated vehicle [33] 21

1-2 Toyota Human Service Robot (HSR) in a simulated kitchen environ-

ment, with children around . 22

1-3 Toyota Human Service Robot (HSR) in a simulated kitchen environ-

ment, with a static table around . 23

1-4 Evolution of Chekov-based motion planning and execution systems . 27

2-1 A diagram of fundamental incremental search algorithms 37

2-2 Minimal translation distance (T) and signed distance (sd) [80]. PA and

PB are a pair of points on the two objects that are touching when they

are translated by T . 44

4-1 Picture of the Baxter robot . 66

4-2 Environment 1: Tabletop with a Pole Environment 68

4-3 Environment 2: Tabletop with a Container Environment 69

4-4 Environment 3: Shelf with Boxes Environment 70

4-5 Environment 4: Kitchen Environment 71

5-1 Optimization time and number of waypoints correlation in straight-

line-seeded TrajOpt experiments: Tabletop with a Pole Environment 119

5-2 Optimization time and number of waypoints correlation in straight-

line-seeded TrajOpt experiments: Tabletop with a Container Environ-

m ent . 119

11

5-3 Optimization time and number of waypoints correlation in straight-

line-seeded TrajOpt experiments: Shelf with Boxes Environment . . . 120

5-4 Optimization time and number of waypoints correlation in straight-

line-seeded TrajOpt experiments: Kitchen Environment 120

5-5 Runtime and waypoint number correlation in sampling-based-seeded

experiments for failed TrajOpt cases: Tabletop with a Pole Environment121

5-6 Runtime and waypoint number correlation in sampling-based-seeded

experiments for failed TrajOpt cases: Tabletop with a Container En-

vironm ent . 121

5-7 Runtime and waypoint number correlation in sampling-based-seeded

experiments for failed TrajOpt cases: Shelf with Boxes Environment . 122

5-8 Runtime and waypoint number correlation in sampling-based-seeded

experiments for failed TrajOpt cases: Kitchen Environment 122

5-9 Collision number and waypoint number correlation in sampling-based-

seeded experiments on TrajOpt failure cases: Tabletop with a Pole

Environm ent . 123

5-10 Collision number and waypoint number correlation in sampling-based-

seeded experiments on TrajOpt failure cases: Tabletop with a Con-

tainer Environment . 124

5-11 Collision number and waypoint number correlation in sampling-based-

seeded experiments on TrajOpt failure cases: Shelf and Boxes Envi-

ronm ent . 124

5-12 Collision number and waypoint number correlation in sampling-based-

seeded experiments on TrajOpt failure cases: Kitchen Environment 125

6-1 System diagram for p-Chekov . 134

6-2 The planning phase of p-Chekov . 135

12

6-3 Approximate representation of feasible regions formed by a set of linear

constraints [67]. (a): the obstacle can be approximated by a triangle;

(b): the feasible region is inside an obstacle and can be approximated

by a triangle. 145

7-1 Statistics Breakdown for Tabletop with a Pole Experiment with End-

Effector Observation, Noise Level 0.0044 and Chance Constraint 10% 179

7-2 Statistics Breakdown for Tabletop with a Container Experiment with

End-Effector Observation, Noise Level 0.0044 and Chance Constraint

10% . 179

7-3 Statistics Breakdown for Feasible Cases in Tabletop with a Pole Exper-

iment with End-Effector Observation, Noise Level 0.0044 and Chance

Constraint 10% . 186

7-4 Statistics Breakdown for Feasible Cases in Tabletop with a Container

Experiment with End-Effector Observation, Noise Level 0.0044 and

Chance Constraint 10%. 186

13

14

...

List of Tables

4.1 Baxter Joints Information . 66

5.1 TrajOpt with Straight-line Seed Experiment Results Summary 80

5.2 RRT Experiments Results on TrajOpt Failure Cases 82

5.3 TrajOpt Experiment Results on Validated Test Cases 85

5.4 Validation of Sampling-based Path Planner Solutions 88

5.5 Sampling-based-seeded and Straight-line-seeded TrajOpt Performance

Comparison in Tabletop with a Pole Environment 90

5.6 Sampling-based-seeded and Straight-line-seeded TrajOpt Performance

Comparison in Tabletop with a Container Environment 91

5.7 Sampling-based-seeded and Straight-line-seeded TrajOpt Performance

Comparison in Shelf with Boxes Environment 92

5.8 Sampling-based-seeded and Straight-line-seeded TrajOpt Performance

Comparison in Kitchen Environment 93

5.9 LazyPRM Seed Interpolation Experiment Results 97

5.10 Planners Comparison in Tabletop with a Pole Environment 100

5.11 Planners Comparison in Tabletop with a Container Environment . . . 101

5.12 Planners Comparison in Shelf with Boxes Environment Environment 102

5.13 Planners Comparison in Kitchen Environment Environment 103

5.14 Straight-line Seed TrajOpt Performance with 0.025 Penalty Distance

and 0 Length Coefficient . 107

5.15 Sampling-based Seed TrajOpt Performance with 0 Penalty Distance

and 0 Length Coefficient . 109

15

5.16 Sampling-based Seed TrajOpt Performance with 0.025 Penalty Dis-

tance and 0 Length Coefficient . 110

5.17 Sampling-based Seed TrajOpt Performance with 0 Penalty Distance

and 1 Length Coefficient . 112

5.18 Sampling-based Seed TrajOpt Performance with 0.002 Penalty Dis-

tance and 1 Length Coefficient . 113

5.19 Sampling-based Seed TrajOpt Performance with 0.025 Penalty Dis-

tance and 1 Length Coefficient . 114

5.20 Sampling-based Seed TrajOpt Performance with 0.025 Penalty Dis-

tance and 0.5 Length Coefficient . 116

5.21 Combined Sampling-based and TrajOpt Planner Performance Com-

parison with Gurobi in Tabletop with a Pole Environment 126

5.22 Combined Sampling-based and TrajOpt Planner Performance Com-

parison with Gurobi in Tabletop with a Container Environment . . . 126

5.23 Combined Sampling-based and TrajOpt Planner Performance Com-

parison with Gurobi in Shelf with Boxes Environment 127

5.24 Combined Sampling-based and TrajOpt Planner Performance Com-

parison with Gurobi in Kitchen Environment 127

5.25 TrajOpt Seeded with Sampling-based Planner Solution compared to

Roadmap Solution . 129

6.1 Gauss-Hermite Quadrature Rule Abscissas and Weights 153

7.1 Initial Experiments in Tabletop with a Pole Environment with Joint

Value Observations, Chance Constraint 10% and Noise Level 0.01 . . 171

7.2 Results in Tabletop with a Pole Environment with Joint Value Obser-

vation, 0.0044 Noise Level and Various Chance Constraints 174

7.3 Results in Tabletop with a Container Environment with Joint Value

Observation, 0.0044 Noise Level and Various Chance Constraints . . . 175

7.4 Results in Tabletop with a Pole Environment with End-effector Obser-

vation Model, Chance Constraint 10% and Various Noise Levels . . . 181

16

7.5 Results in Tabletop with a Container Environment with End-effector

Observation Model, Chance Constraint 10% and Various Noise Levels 182

7.6 Penalty Hit-in Distance Increase Step Comparison in Tabletop with a

Pole Environment, with End-effector Observation Model and Chance

Constraint 10% . 183

7.7 Results in Potentially Feasible Test Cases with Joint Value Observa-

tion, Noise Level 0.0044 and Chance Constraint 5% 188

7.8 Results in Potentially Feasible Test Cases with End-effector Observa-

tion, Noise Level 0.0044 and Chance Constraint 10% 189

7.9 IRA Performance in Tabletop with a Pole Environment with Joint

Value Observation, Noise Level 0.0044 and Chance Constraint 5% . . 191

7.10 IRA Performance in Tabletop with a Pole Environment with End-

effector Observation, Noise Level 0.0044 and Chance Constraint 10% 191

7.11 IRA Performance in Tabletop with a Container Environment with Joint

Value Observation, Noise Level 0.0044 and Chance Constraint 5% . . 192

7.12 IRA Performance in Tabletop with a Container Environment with End-

effector Observation, Noise Level 0.0044 and Chance Constraint 10% 192

17

18

Chapter 1

Introduction

This chapter describes the main motivations that inspired the development of p-

Chekov, the real-time risk-aware robotic motion planning and execution system pre-

sented in this thesis, and also points out the deficiencies of existing motion planning

approaches which forms the technical need for the new p-Chekov system. Further-

more, this chapter highlights several key features of the developed approach and states

the key innovations in this thesis. In addition, a brief overview of the thesis contents

is presented at the end of this chapter.

1.1 Motivation

Nowadays, motion planning for high degree-of-freedom (DOF) robots in complex and

dynamic environments is still challenging. In many practical robotic motion plan-

ning tasks, uncertainties are inevitable. They may introduce severe disturbances

during plan execution and can cause plan failure. Common sources of uncertainties

include moving obstacles in the environment, unexpected changes to the task goals,

inaccuracies in the system model, sensor noises, controller noises, and other external

disturbances that can cause stochastic motions of the robot. In many cases, relying on

feedback controllers to deal with execution noises is inadequate, therefore uncertain-

ties need to be taken into consideration during the planning phase in order to avoid

plan failures. It follows that, in the face of those uncertainties, successful task com-

19

pletion usually requires the motion planner to be able to: 1) anticipate disturbances

based on uncertainty models and produce plans that account for those disturbances;

2) react fast to unexpected, severe disturbances that necessitate plan adjustments.

Although these aspects of motion planning have been investigated by many scholars,

available solutions are still very limited for high-dimensional motion planning with

complicated dynamics, which is required for a large number of real-world robotic

planning tasks.

Among the high-DOF robot motion planning tasks that are confronted with var-

ious sources of risks and require fast planner reaction, one representative example

is the underwater manipulation task. Unlike many robot manipulation tasks where

precise motion control can be achieved, underwater manipulation is a special case due

to the complicated and highly uncertain underwater environment. For instance, in

the Europa analog mission funded by the NASA Planetary Science and Technology

from Analog Research (PSTAR) program, a remote operated vehicle (ROV) with a

manipulator, as shown in Figure 1-1, will be used to explore the Kolumbo submarine

volcano area. The task for the manipulator is to take samples from carbon-dioxide

(C02) rich subsea pools in order to search for life forms. Since the manipulator usage

consumes the limited battery of the ROV, energy efficiency of its motion plans is

of critical importance. The trajectories planned for manipulation tasks should have

short path lengths. Further, the subsea environment is complicated and the ma-

nipulation tasks are often conducted in steep terrain, thus collision avoidance is an

important consideration during motion planning.

However, disturbances from the underwater environment are inevitable and can

severely influence the motion of manipulators. Common sources of disturbances in-

clude ocean currents, inner waves and vortex-induced vibrations. Therefore, the

process noises for underwater manipulator motions are much larger than for other

common manipulators, thus simply relying on feedback controllers to account for the

process noises is far from enough for underwater tasks. Additionally, precise sensing is

also very difficult in deep ocean applications. The observation noises from the stereo

cameras and sonar sensors used in underwater environments often have much higher

20

Figure 1-1: "Nereid Under Ice (NUI)", a remote operated vehicle [33]

variances compared to those from many other accurate sensors used in land manip-

ulation tasks. If those noises could be taken into consideration during the planning

phase, the risk of plan failure during plan execution could be much lower. Therefore,

underwater manipulation missions require a motion planner that can consider un-

certainties in planning tasks, balance path optimality and the risk of collisions, and

provide valid motion plans that can satisfy the risk bound required by the mission.

Another typical scenario that requires real-time risk-aware motion planning for

high-dimensional robots is the human service robot motion planning task, for exam-

ple the scenario shown in Figure 1-2 and Figure 1-3. When robots are surrounded

by humans, especially in homes with children, they face a lot of unpredictable hu-

man motions and must not harm anybody nearby. In those planning tasks, safety

is an important consideration since the outcome of a potential collision might be se-

vere. However, due to observation noises and the uncertainties introduced by mobile

base movement, the robot might not have fully accurate knowledge about both the

surroundings and its own movement. Consequently, in such applications, it is very

21

Figure 1-2: Toyota Human Service Robot (HSR) in a simulated kitchen environment,
with children around

22

Figure 1-3: Toyota Human Service Robot (HSR) in a simulated kitchen environment,
with a static table around

23

important that the motion planner that can predict the a priori robot state proba-

bility distributions and also estimate the risk of collision before plan execution starts.

Based on such probability estimations, the planner can plan intelligently according

to different scenarios as well as different risk bounds required by the user.

For example, when the robot needs to fetch a mug from the kitchen but there are

children playing around in the kitchen, like in Figure 1-2, the user might give the

robot a very low risk of collision when going across the kitchen and conducting the

manipulation task. In this case, the robot might end up choosing a long detour so

that it can avoid the frequently moving obstacles and keep children safe. In contrast,

when there is no one in the kitchen but only some static cabinets and tables, like in

Figure 1-3, for the same task the user might want a fast task accomplishment speed

instead of a low collision risk, and as a result, the robot might decide to choose a

shortcut instead of keeping far away from all the obstacles. This example shows that,

it is necessary in such scenarios that the motion planner can let the user specify a

certain risk bound, account for disturbances and noises during the planning phase,

and return a motion plan that satisfies the risk bound.

Besides underwater manipulation and human service robot motion planning, real-

time risk-aware motion planning is also required in many other planning tasks, for

example robotic surgery and manufacturing with human-robot-interaction. In order

to solve the above problems, fast-reactive risk-aware motion planning, which can

account for the risk of plan failure caused by uncertainties and plan trajectories for

high-DOF robots, is in great demand.

1.2 Technical Need

Risk-aware planning is a popular topic across many research fields, including the

Artificial Intelligence (AI) field, the robotic motion planning field and the control field.

Risk-aware motion planners usually take into consideration some of the uncertainty

sources and provide motion plans that will satisfy all the constraints with less than

a given bound of failure rate. The bound of the plan failure rate is called a chance

24

constraint. With risk-aware motion planners, users can balance success rate and

optimality, and specify the level of risk they can accept through the chance constraints.

Risk-aware motion planning is especially well developed for autonomous vehi-

cle planning tasks. However, for higher degree of freedom (DOF) planning tasks

like robot manipulation, available risk-aware planners are very limited. This is be-

cause many of the risk-aware motion planners are based on a Markov decision process

(MDP) framework [12, 31 or a partially observable Markov decision process (POMDP)

framework [45], which usually require discretization of the state space. Although

MDPs and POMDPs are powerful formulations for many planning problems, solving

them in large state-spaces is very difficult. Thus, the good performance they in-

duced in small state-space problems can not be easily extended to complicated high-

dimensional planning problems. Alternatively, a lot of risk-aware planners are based

on Mixed Integer Linear Programs (MILPs) [9, 67], which are also mostly limited to

low-dimensional applications and don't scale well to non-convex 3-dimensional envi-

ronments. In the motion planning field, chance-constrained motion planners based on

the Rapidly-exploring Random Trees (RRT) framework are not rare [57, 50], which

in theory should be able to handle high-dimensional planning tasks with complex dy-

namics due to the features of RRT. However, the low speed of RRT-based planners in

those complicated planning tasks is concerning, leading to the fact that those chance-

constrained planners can't handle the uncertainties in real-time planning tasks with

fast reaction.

Additionally, as robot motion planning tasks are getting more and more compli-

cated and often involve human interaction with the robot, the time that a planner

takes to generate a feasible plan is becoming a major consideration. In many practical

motion planning tasks, planners need to be reactive to unstructured, rapidly-changing

environments, or updated knowledge about the environment or task. Many state-of-

the-art motion planners, such as many sampling-based planners, can tackle com-

plicated planning tasks with complex obstacle configurations and robot geometries.

However, often they are not practical for many realistic tasks where the environment

is not very complicated but is changing rapidly. This is because they usually assume

25

a well-known, static environment during the planning and execution process, which

causes them to not be robust to environment changes. [301 Also, instead of reusing

information from previous planning queries and iteratively improving the plan dur-

ing execution phase, many of the current motion planners generate completely new

trajectories for each task, which often results in slow online planning and not being

reactive to environment changes.

Therefore, in order to solve the planning problems that require short planning time

and the consideration of uncertainties and risks, in this thesis we present Probabilistic

Chekov (p-Chekov), a fast reactive risk-aware motion planning and execution system.

P-Chekov can handle the planning tasks for high-DOF robots with complicated dy-

namics and differential constraints, which current risk-aware motion planners can't

solve. Also, in p-Chekov, the environment obstacles don't need to be formulated into

convex obstacles, and the original 3-dimensional geometries of the environment can

be maintained. In addition, p-Chekov is a real-time planner that can react to severe

plan disturbances within a short time, as well as conduct anytime plan improvement

during the execution phase.

1.3 Approach

The development of p-Chekov includes two stages: the deterministic planning stage

and the risk-aware planning stage. The deterministic stage is inspired by the Chekov

motion planning and execution system [30]. Figure 1-4 provides a diagram of the evo-

lutionary process of the Chekov-based motion planning and execution systems. The

original Chekov system avoids obstacles, incorporates dynamic models and control

policies, and observes temporal constraints. It uses a tube-based roadmap in which

the edges of the roadmap graph are families of trajectories called flow tubes, rather

than the single trajectories commonly used in other roadmap systems. Those flow

tubes contain control policy information about how to move through the tube, and

also represent the dynamics of the system [30]. The first picture in Figure 1-4 shows

an example of those flow tubes used in the original Chekov [301.

26

Original "Flow
Tubes" Chekov

G

Deterministic stage:
roadmap + TrajOpt

'I

P-Chekov

ected path

ailure) 5 A Risk-aware stage:
satisfy chance constraints

Figure 1-4: Evolution of Chekov-based motion planning and execution systems

27

*1'

04-

0-

-0.2-

-0.4-

However, because Chekov uses a roadmap approach 1391, and because robotic mo-

tion planning state spaces are typically very large, the roadmap's coverage of the

operating workspace is very sparse. As a result, trajectories produced by the flow

tube roadmaps could be sub-optimal. Moreover, the inputs to Chekhov can change

quickly and unexpectedly with time while the motion is being executed. For practi-

cal applications, changes fall into three categories: 1) the current state of the robot

changes unexpectedly; 2) the goals to be achieved change; and 3) an environment

obstacle moves in a way that affects the robot. Thus, we define a disturbance as such

an unexpected change to task goals, environment, or robot state. Nevertheless, the

knowledge of the environment during roadmap construction pertains to a static envi-

ronment before disturbances happen, and it is highly possible that the plan returned

by the roadmap would be violated by those disturbances. Therefore, in this thesis,

we develop a new version of Chekov, which evolves into the deterministic part of p-

Chekov, and address these limitations by leveraging recent advances in obstacle-aware

trajectory optimization: the TrajOpt algorithm [80, 791.

In the deterministic planning part of p-Chekov, a new "roadmap + TrajOpt"

system is established in order to accomplish practical motion planning tasks with

fast reaction and high success rate. The second picture in Figure 1-4 shows a simple

example of this "roadmap + TrajOpt" system. The roadmap approach used here is

based on a simplified PRM-like framework combined with a cache of all-pair-shortest-

paths (APSP) solutions. The roadmaps are constructed by randomly sampling nodes

in joint space until a pre-defined number of collision-free nodes have been sampled.

Then, each node is connected to a certain number of nearest neighbors for which

collision-free edges exist. The resulting roadmap will be pruned of any nodes and

edges disconnected from the largest subgraph. Note that our roadmaps in this new

version of Chekov still have a sparse coverage of the whole configuration space. This

sparsity benefits both the offline roadmap construction time and the online shortest

path querying time. However, an inevitable disadvantage of the sparsity is the sub-

optimality of solution trajectories. Therefore, in this new system, the solution found

by the roadmap planner will be provided to the TrajOpt algorithm as an initialization,

28

and TrajOpt will smoothen and shorten the roadmap seed solution at runtime. In

this way, the new "roadmap + TrajOpt" system can overcome the sub-optimality

disadvantage as well as react to dynamic obstacles during execution.

TrajOpt uses a sequential convex optimization procedure to approximate the non-

convex robotic motion planning problem by repeatedly constructing a convex sub-

problem around a certain state. It passes linear constraints directly into the convex

subproblems, and turns nonlinear hard constraints into penalties for the subprob-

lem's objective function. Therefore, the optimization speed of TrajOpt is fast, and

it also provides p-Chekov the ability of incorporating differential constraints. In

addition, TrajOpt accounts for collisions by calculating the minimum translation dis-

tance [21]. Informally, the minimum translation distance for non-intersecting objects

can be viewed as the length of the smallest translation that puts the objects in contact.

Hence, unlike many other risk-aware planners, p-Chekov doesn't need to simplify ob-

stacle geometries into convex shapes, and the original geometries of the environment

can be maintained. Thanks to the fast optimization speed and the obstacle-aware

feature of TrajOpt, p-Chekov can react quickly and effectively to disturbances during

plan execution.

Although TrajOpt is used in the online optimization phase of p-Chekov, p-Chekov

does far more than simply trajectory optimization. First, p-Chekov is a risk-aware

global planning and execution system, while TrajOpt is only its local trajectory op-

timization part. Experiment results in Chapter 5 show that, in many practical ap-

plications, the failure rate of TrajOpt alone with a naive joint-space straight-line

initialization is very high, while the success rate can reach 98% after provided with

our roadmap solutions as seed trajectories. Second, in p-Chekov, conflicts extracted

from previous failed planning trials are utilized in order to help TrajOpt improve

its performance in future runs. When configurations that exceed the allocated risk

bounds are detected, penalties for those configurations are added to the TrajOpt ob-

jective, and the collision penalty hit-in distance of the corresponding waypoints are

also increased so as to guide TrajOpt to move towards the less risky space at those

waypoints. In this way, p-Chekov can lead TrajOpt to search for valid trajectories

29

that satisfy the chance constraints.

Despite that the new "roadmap + TrajOpt" system has superior performance un-

der the deterministic assumption, in many planning tasks it is not realistic to assume

perfect knowledge of the environment and robot states, as well as accurate control of

robot motions. As addressed previously, there are many application scenarios where

process noises and observation noises can have severe influence on robotic motion plan-

ning, and the risk of plan failures needs to be accounted for. Therefore, a risk-aware

layer is developed on the basis of the deterministic "roadmap + TrajOpt" system, and

hence the complete p-Chekov system is formed. This risk-aware version extends the

deterministic system by utilizing the state probability distribution estimation tech-

nique in the linear-quadratic Gaussian motion planning (LQG-MP) approach [891.

LQG-MP combines the Kalman filter and the linear-quadratic regulator (LQR), in

order to provide an estimation of robot state and control probability distributions

under process noises and observation noises. It takes as input the a priori probability

distribution of sensors and controllers with Gaussian noises, and outputs the a priori

distribution of robot states and control inputs along a given path.

Even though the state probability distribution estimation component in LQG-

MP is used in p-Chekov, p-Chekov is different from LQG-MP in terms of how the

state distribution information is used. In LQG-MP, the state distribution is used

to select the best path from a set of candidate paths generated from other motion

planners, for instance RRT. In contrast, in p-Chekov the robot state distributions

information is used to estimate the risk of plan failures, so that the plan generated

by p-Chekov will satisfy a user-specified risk bound. Instead of becoming a post-

processing path selection method that minimizes risk, p-Chekov aims at generating

feasible trajectories in real-time that satisfy the specified risk bound. This feature is

very important in that it incorporates the practical needs of many real-world planning

tasks which operate in real-time in unstructured, rapidly-changing environments. In

such cases, it is not very realistic to spend a lot of time searching for the best solution.

Instead, finding a feasible solution that has enough safety guarantee within a short

time is of much higher significance.

30

The key innovations of p-Chekov from the previously developed Chekov planning

system are mainly in the following two aspects. First, it incorporates recent advances

in trajectory optimization into a sparse roadmap framework. By using a multi-query

roadmap instead of generating completely new trajectories for each planning problem,

p-Chekov allows for persistent control policy information associated with a trajectory

across planning problems. Also, the sub-optimality resulting from the sparsity of

roadmap, as well as the unexpected disturbances from the environment, can both

be overcome by the real-time trajectory optimization process. Second, p-Chekov

considers the uncertainties in robot motion and observation and the risk of plan

failure. It allows the user to specify a certain risk bound, and it will quickly generate

a plan whose failure rate is within this risk bound. During the plan execution, p-

Chekov will iteratively improve the plan without violating the risk bound. Given

enough iterations, the plan found by p-Chekov should be locally optimal or near-

optimal according to a user-specified objective function, for example path length.

1.4 Overview

The main contribution of this thesis includes the following aspects: (1) a systematic

evaluation of several state-of-the-art motion planners in realistic planning scenarios,

including popular sampling-based motion planners and trajectory optimization type

motion planners, (2) the establishment of a "roadmap + TrajOpt" deterministic mo-

tion planning system that shows superior performance in many practical planning

tasks in terms of solution feasibility, optimality and reaction time, and (3) the de-

velopment of a real-time risk-aware motion planning and execution system that can

handle high-DOF robotic planning tasks in 3-dimensional non-convex environments.

The contents of this thesis are divided into the following chapters:

Chapter 2 provides a brief background of the development of the robotic mo-

tion planning field. Key features and typical representatives of several different

types of robotic motion planners (search-based planners, sampling-based planners

and optimization-based planners) are described and compared, and a detailed expla-

31

nation of the TrajOpt algorithm which is incorporated in the p-Chekov planner is

also provided. Additionally, a review of the recent progress in the risk-aware motion

planning field is provided and the limitations of current risk-aware motion planners

are addressed.

Chapter 3 defines the problem solved by the p-Chekov planner. The variables and

models used in the p-Chekov planner are defined, and the assumptions which are key

to the development of p-Chekov are summarized.

Chapter 4 describes the implementation of the experiments aiming at analyzing

the performance of current motion planners. Three environments that represent prac-

tical day-to-day application domains are designed, and one existing environment from

the motion planning community is adapted. 5000 sets of feasible manipulation tasks

are sampled and tested on each motion planner in each environment.

Chapter 5 presents the results of the experiments developed in Chapter 4, and

provides a thorough evaluation of the planners' performance in terms of planning

time, failure rate and solution quality. Each planner is tested alone, and their lim-

itations are addressed. Specifically, an in-depth assessment of the TrajOpt planner

is provided, together with the analysis of several major parameters' influence on

TrajOpt performance. Then approaches of leveraging TrajOpt in order to achieve

superior planning results are also explored through passing sampling-based planners'

solutions to TrajOpt as collision-free initializations. Experiments on those combined

planners are conducted and their performances are evaluated. Further, the combined

"roadmap + TrajOpt" planner used in p-Chekov is tested and evaluated with the

same sets of experiments, and the results show that this approach has an average

runtime of under Is and an average success rate of above 98% in practical application

scenarios.

Chapter 6 shows the technology details of the risk-aware p-Chekov motion plan-

ning system which allow for its chance constraint satisfaction feature. It first describes

the main components that form the p-Chekov system, including the a priori probabil-

ity distribution estimation component, the collision probability estimation component

and the risk allocation component, and then illustrates the whole system diagram of

32

p-Chekov.

Chapter 7 describes a set of simulation experiments on p-Chekov in several differ-

ent planning scenarios. It first introduces the modeling of system dynamics and two

different ways of formulating the system observation model. After that, it provides

the experiment results on the p-Chekov planning phase algorithm and demonstrates

its improvement compared to the deterministic Chekov planner. Finally, it shows the

preliminary results of using the execution phase Iterative Risk Allocation algorithm

after the planning phase found a feasible solution, and proves the potential of im-

plementing a full version of p-Chekov execution phase which considers the changing

starting pose and changing chance constraint during real robot executions.

Chapter 8 summarizes the main contributions of this thesis and discusses the

potential directions of future research work.

33

34

Chapter 2

Background

Available planners for robotic motion planning usually fall into three categories:

search-based motion planners, sampling-based motion planners and trajectory opti-

mization type motion planners. This chapter will briefly go through the development

and characteristics of those three different types of planners, as well as compare their

strengths and limitations. Specifically, Section 2.3 will highlight several influential

trajectory optimization type motion planners, and also provide a detailed description

of the TrajOpt [80, 79] algorithm which is intensively investigated in this thesis.

In robotic motion planning, uncertainties might come up when there are sensor

noises, moving obstacles and imprecise controllers. Therefore, robust planning is a

prevalent research topic throughout the planning community. In this chapter, Section

2.4 will briefly review the development in risk-aware motion planning and compare

several different risk-aware planning approaches.

2.1 Search-based Motion Planners

A typical way search-based (A* like) motion planners formulate their algorithms is

through discretizing the configuration space into grids and applying search algorithms

to find a valid trajectory from the start to the goal. Recent development of search-

based motion planners also learns from the way Rapidly-exploring Random Trees

(RRT) [46, 44] algorithm grows its tree. They usually generate and store a set of

35

motion primitives (short dynamically-feasible motions), and then use them to con-

struct a tree from the robot's current configuration in order to grow towards the

goal. Although this way of growing search trees makes it possible for search-based

motion planners to incorporate robot dynamics, fundamentally it is still a search-

based tree with discretized state spaces, which searches for low-cost solutions. Due

to their discretization nature, search-based planners are traditionally used for low-

dimensional planning tasks. However, modern development on search-based planning

has sped up the searching process and allowed for the application of search-based

planners to higher-dimensional planning problems, for example robot manipulation.

Search-based planners are deterministic and guarantee completeness and bounded

sub-optimality [17]. Another characteristic of search-based planners is the solutions

returned by them tend to be consistent, which means tasks with similar types of

starts and goals tend to result in similar types of solutions [151. Therefore, caching

can be applied to their solutions in order to help those search-based planners to be

used on high-dimensional planning tasks. Despite this, the exponential growth of

the state space still considerably limits the application of search-based planners in

high-dimensional problems.

The main directions that search-based motion planning researchers are heading for

include spatial dimension incremental planners, time dimension incremental planners

(also known as anytime planners), and many other interesting extensions.

The development of incremental search algorithms made it possible to use search-

based motion planners in complicated or rapidly-changing environments. Figure 2-

1 is a diagram that explains the development and also the relationship of several

popular incremental search algorithms. In this diagram, we can see that the D* al-

gorithm [82] is a fundamental breakthrough in the incremental path planning area,

which is an efficient, optimal and complete path planner that takes into considera-

tion the limited knowledge or rapid changes of the environment. Similarly, Dynamic

SWSF-SP [761 is another incremental search algorithm that can reuse information

from previous searches and potentially accelerates similar future path planning tasks.

Dynamic SWSF-SP is different from D* algorithm in that it solves single-source short-

36

Incremental Search Algorithms

m D* (1994) Similar , different *i()

Applied in robot

e A* (1968) Heuristic navigation in + Anytime
search unknown terrain Repairing A*

Combined . Lifelong Planning A* (2003) (ARA*)

Incremental (2001) (LPA*)
search - * Anytime

Dynamic A*
Dynamic W (1996) (2005) (AD*)

Figure 2-1: A diagram of fundamental incremental search algorithms

est path problems instead of propogating arc changes throughout the whole graph

(for all pair shortest path problems). Combining the heuristic search idea from the

A* algorithm [27] and the incremental search idea from Dynamic SWSF-SP, Lifelong

Planning A* (LPA*) [49, 41, 431 came into being. LPA* is like an incremental version

of A*, and when the edges or vertices in a given graph are changed, it can rapidly

search for shortest paths from a given start to a given goal. Later on, LPA* was

applied to robot navigation in unknown terrain and became D* Lite [40, 42]. D* Lite

implements the same planning strategy as D*, but is algorithmically simpler than D*.

Also, D* Lite performs a single-start-single-goal search, while D* provides updates

for the whole graph.

In addition to spatial dimension incremental planners, anytime planners represent

another track of incremental planners which are incremental in the time dimension.

For example, in Figure 2-1 the Anytime Repairing A* (ARA*) algorithm [48] provides

a suboptimal solution quickly and then keeps improving this solution until it hits a

user-provided time limit. Inspired by the idea of anytime planning, Likhachev et

al. combined ARA* with D* Lite and introduced the Anytime Dynamic A* (AD*)

algorithm [471. AD* can continually improve its solution until time runs out, and will

37

also quickly replan with previous search information when updated knowledge about

the environment is received.

Recently, many variants of incremental planners have also been developed. Hernan-

dez et al. developed Path-Adaptive A* [28] that can detect when part of a path from

previous searches remains on the minimum cost path and can reuse this part of the

path so that it can terminate before expanding a goal state. Incremental Phi* [59]

and Lazy Theta* [601 are examples of any-angle incremental path planning methods,

which allow the turns in the path to have any angle when searching for a path be-

tween two points in space. Planners that can deal with moving targets efficiently are

also developed, for example D* Lite with moving targets [84] and incremental ARA*

for moving targets [85]. Also, incremental path planning strategies are also applied

to multi-agent tasks [55, 54].

Despite that search-based motion planners can guarantee completeness and op-

timality, the discretization of the environment means the computational cost could

be very high for complicated planning tasks. Since this thesis focuses on practical

motion planning tasks, which require fast reaction to environmental changes, search-

based motion planning is not utilized in this thesis.

2.2 Sampling-based Motion Planners

Sampling-based planning is another powerful approach to solve motion planning

problems. Based on the solid math foundation provided by the Random Geometric

Graphs [72] theory, some sampling-based planners are guaranteed with probabilistic

completeness [86] and asymptotic optimality [38]. Instead of exhaustively construct-

ing the whole configuration space (C-space), sampling-based planners take advantage

of the Monte Carlo idea and randomly explore a subset of the C-space while keeping

track of the search progress. Due to this key feature, sampling-based planners are able

to provide fast solutions for some difficult motion planning tasks with the guarantee

of probabilistic completeness. Although less limited than search-based motion plan-

ners in high-dimensional planning tasks, in order to get good performance in those

38

tasks, a main consideration for sampling-based planners is wisely generating sampled

points, which is an active research area in the sampling-based planning community.

Two fundamental representatives of sampling-based motion planners are Probabilistic

Roadmaps (PRM) [391, which is a graph-based planner supporting multiple queries,

and Rapidly-exploring Random Trees (RRT) 146, 44], which is a single-query tree-

based planner. Another significant feature of sampling-based planners is their capabil-

ity of handling kinodynamic planning tasks. RRT-like sampling-based planners have

the outstanding feature that they can be extended to incorporate system dynamics

straightforwardly, meanwhile recent advances in PRM-like sampling-based planners

also endeavor to incorporate robot dynamics by leveraging theories in system stability

and control [56].

PRM is a multi-query planner. This method includes two planning phases: a

learning phase and a query phase. It constructs and stores a probabilistic roadmap in

the learning phase, and then connects the given start and goal configurations to the

roadmap and searches for a feasible path in the query phase using state-space search

approaches [391. In contrast, RRT is a single-query planner that incrementally builds

a tree from the start configuration to the goal configuration or vice versa. In unknown

or changing environments, single-query planners like RRT are often more applicable

than PRM. This is because when the environment changes, edges in the precomputed

roadmaps might be invalidated by obstacles. Incorporating incremental search algo-

rithms into PRM-based approaches to account for environmental uncertainties is one

of the active research directions in the motion planning community.

Although the basic sampling-based planners show strong advantages, their solu-

tions are usually suboptimal. Therefore, the motion planning field started to look

for variants of the original sampling-based planners that have better performance

in terms of finding optimal solutions. The development of RRT* and PRM* [38] is

a milestone in the optimal motion planning area. RRT* and PRM* are proved to

be asymptotically optimal, which means the costs of their solutions converge almost

surely to the optimum cost. In addition, their computational complexity is also within

a constant factor of that of their probabilistically complete (but not asymptotically

39

optimal) counterparts [38].

In order to improve the performance of sampling-based motion planners, efforts

have been devoted in many different aspects [201. In terms of using better sampling

strategies to improve sampling-based planner performance, [921 presents an adap-

tive workspace biasing algorithm which can automatically discover a locally-optimal

weighting of workspace features in order to produce a well-performing sample distri-

bution; [2] proposed a sampling heuristic that can bias the sampling and facilitate

cost decrease, as well as a node-rejection criteria that can increase efficiency. Addi-

tionally, guidance for exploration has also been investigated so that the expansions

of sampling-based planners can have a higher success rate. For example, Dynamic-

Domain RRT (DD-RRT) [91] and Adaptive Dynamic Domain RRT (ADD-RRT) [35]

accelerate RRT exploration by dynamically distributing the sampling domain; re-

cently, machine learning has also been applied to guiding the exploration phase of

sampling-based planners [5].

In addition, exploring the metrics which indicate the cost to go between two con-

figurations is another direction of modifying sampling-based planners, especially for

kinodynamic motion planning with complicated dynamics models. LQR-Trees [87]

and LQR-RRT* [74] integrate the Linear Quadratic Regulators (LQR) from the con-

trols community into sampling-based planners and allow them to deal with complex

or underactuated dynamics; Resolution-Complete RRT (RC-RRT) [141 discretizes the

input space and uses expansion failures to help redefine the most promising nodes;

Reachability-Guided RRT (RG-RRT) [81] improves tree state selection by taking into

account the system dynamics; Environment-Guided Random Trees (EG-RRT) 134]

can combine the strengths of RG-RRT and RC-RRT, as well as incorporate the prob-

ability of collision under uncertainty in control and sensing. Also, due to the high de-

mand of fast real-time planning in high-dimensional planning tasks, efforts have been

devoted to developing anytime versions of the sampling-based planners. [231 intro-

duced an Anytime RRT algorithm that can reuse information from previous searches

and improve the quality of solution paths at run-time; [731 uses the asymptotically-

optimal RRT* algorithm with a sparse sampling procedure in order to enable the

40

ability of identifying usable solutions in a short time, especially in high-dimensional

planning tasks like manipulation.

Although sampling-based motion planning is a powerful tool for robotic motion

planning, the trajectories they generate can be very jerky and include unnecessary

motions. Further, although theoretically asymptotic optimality is guaranteed for

some sampling-based planners, in practice planning time is usually limited, which

leads to a limited number of samples and hence sub-optimal solutions. Therefore,

after sampling-based planners return their solutions, trajectory smoothing and short-

ening is often needed, which can be achieved by trajectory optimization type motion

planners.

2.3 Trajectory Optimization Type Motion Planners

2.3.1 Review of Trajectory Optimization Planners

Trajectory optimization type motion planners are getting more and more popular

when the complexity of robots and environments is increasing. A distinguishing

characteristic of trajectory optimization type planners is that they are often able to

produce trajectories with both position and velocity information directly, rather than

producing physical paths and requiring post-processing to obtain dynamically feasible

trajectories. Since optimal control techniques can be incorporated, optimization-

based planners can construct trajectories which optimize over a variety of dynamic and

task-based criteria, instead of computing only feasible paths [931. Typical objectives

of trajectory optimization include obstacle avoidance and path smoothening. Another

key feature of trajectory optimization type planners is that they operate on the space

of trajectories and conduct a fast but local search instead of a global search. They

don't compute feasible trajectories directly. Instead, they start from a seed path and

optimize it over iterations in order to optimize the objective function. Despite the

advantages of optimization-based motion planners, they often have the same problem:

getting stuck in high-cost local optima. Although local search has the speed advantage

41

over global search, it also causes the performance of optimization-based planners to

be very sensitive to the quality of the initial path. When the initialization is naive

and deeply infeasible, for example a straight-line initialization, it can take trajectory

optimization planners a lot of iterations to get the trajectory out of collision and

find a feasible solution. Sometimes deeply infeasible initializations can even make the

planner not to be able to find feasible solutions for actually feasible planning tasks.

During the past several years, much effort has been devoted to trajectory opti-

mization planners, among which Covariance Hamiltonian Optimization for Motion

Planning (CHOMP) [77, 931, Stochastic Trajectory Optimization for Motion Plan-

ning (STOMP) [37], Incremental Trajectory Optimization for Real-time Replanning

(ITOMP) [70] and TrajOpt f80, 79] are some well-known ones.

CHOMP is a gradient-descent-based trajectory optimization method which is in-

variant to trajectory reparametrization. The objective of CHOMP is to minimize

a weighted sum of collision cost and trajectory smoothness cost. It treats a trajec-

tory as a geometric object unencumbered by parametrization, and ensures that the

underlying problem geometry is respected [93]. In the CHOMP method, joint limit

constraints are handled separately from the main optimization phase by smoothly

projecting joint limit violations. The way CHOMP handles collision cost is one of

its notable features. The static elements of the environment are handled by pre-

computing and storing a distance field using Euclidean Distance Transform (EDT)

algorithms [22, 251. The computation of high-resolution distance fields for available

object models is expensive but off-line, and for dynamic or sensed obstacles, oriented

bounding boxes are used combined with the pre-computed distance fields. In terms of

representing obstacle costs, an obstacle cost function is used to penalize the robot for

being within a certain distance from obstacles. The obstacle cost function is designed

so that the cost will drop smoothly to zero as the allowable threshold is reached. One

of the well-known issues of numerical trajectory optimization methods is the possibil-

ity of getting stuck in local minima. In order to alleviate the problem of converging

to a high-cost local minima, CHOMP can be combined with the Hamiltonian Monte

Carlo (HMC) [61, 62] idea, which can be generalized and re-framed as an optimiza-

42

tion procedure. Experimental results provided by [93] show that CHOMP has better

performance than RRT and RRT* in terms of speed and path length. However, in

the day-to-day manipulation task of grasping in cluttered environments provided by

[93], when given a very short time budget, e.g. Is, the success rate of CHOMP is

still very low (24.7%). This means CHOMP itself, starting from a naive straight-line

initial seed trajectory, lacks the ability to perform fast replanning and cannot be fast

enough to react to rapidly changing environments.

STOMP is a stochastic trajectory optimization method which differs from CHOMP

in that it is gradient-free. In each iteration, it generates noisy trajectories in order to

explore the space around an initial seed trajectory, and then those exploring trajec-

tories are combined to compute a new trajectory with lower cost [37]. The objective

function to minimize in STOMP includes obstacle cost and smoothness cost. Due to

the gradient-free feature, STOMP can overcome the local-minima problem that plan-

ners like CHOMP might get stuck in, as well as incorporate general constraints and

additional non-smooth costs, for example torque cost. However, when the number of

constraints is large, STOMP often requires a large number of trajectory states even

for reasoning about small obstacles or finding feasible solutions [581.

ITOMP is an incremental optimization-based algorithm that doesn't require a

priori knowledge of global motion or trajectories of dynamic obstacles [701. It can

estimate the trajectory of the moving obstacles over a short time horizon and then

compute a conservative bound for the moving obstacle position. The returned solu-

tion may be suboptimal, and when the robot is executing the computed path, the

optimization procedures will be repeated and the solution will be improved until the

robot reaches the goal. Despite the ability to handle dynamic environments, ITOMP

might encounter failure due to the fact that the overall time for trajectory computa-

tion and the time distribution for each waypoint on the trajectory both have to be

set before the optimization [70].

The key ideas in TrajOpt are a sequential convex optimization procedure and

a formulation of no-collision constraint based on the concept of signed distance [801.

TrajOpt approximates the non-convex robotic motion planning problem by repeatedly

43

A PB

T
T B PA

PB

B

sd > 0 sd < 0

Figure 2-2: Minimal translation distance (T) and signed distance (sd) [80]. PA and

PB are a pair of points on the two objects that are touching when they are translated

by T.

constructing a convex subproblem around a certain state, in order to find successively

lower cost solutions to the original non-convex problem. In each iteration, TrajOpt

solves a quadratic programming (QP) problem. It passes linear constraints directly

into the convex subproblems, and turns nonlinear hard constraints into penalties on

the objective function. By iteratively conducting the convex optimization procedure,

TrajOpt can ensure that all of the constraint violations are driven to zero when the

optimization converges. The way TrajOpt penalizes collision is based on the concept

of minimum translation distance 1211. Informally, the minimum translation distance

for non-intersecting objects can be viewed as the length of the smallest translation that

puts the objects in contact. For intersecting objects, penetration depth, which is non-

zero, is defined analogously as the minimum translation that can take two objects out

of contact [80]. The signed distance can then be defined as the minimum translation

distance for non-overlapping objects, and the opposite of penetration distance for

overlapping objects. Figure 2-2 provides an intuitive illustration of the definition of

minimal translation distance and signed distance. The TrajOpt algorithm will be

discussed in detail in Section 2.3.2.

Although TrajOpt and CHOMP are closely related, they are different from each

other in fundamental ways. First, the way they deal with collision costs is different.

44

-A

For each particular robot configuration, CHOMP maps each particular point on the

exterior body of the robot to a workspace point based on the robot forward kinematics.

The distance from any point in the workspace to the surface of the nearest obstacle

can be calculated through EDT algorithms. And then, in the cost function, points

that are inside or near obstacles are penalized [931. The distance field method from

CHOMP has the advantage that the collision checking for a link doesn't depend on

the complexity of the environment, but it doesn't express object geometry accurately.

Also, since the CHOMP method considers the collision cost for each point on a robot,

two points might drive the objective in opposite directions. In contrast, TrajOpt uses

a convex-convex collision checking method based on minimum translation distance

between objects. It computes the minimal translation distance between two colliding

objects that can take them out of collision [80]. As a result, it can directly get the

information of how to get out of collision (the minimun translation T), and hence can

avoid the situation where two points disagree on where to go. However, the TrajOpt

objective function only considers the total collision cost, while CHOMP object scales

the collision cost by velocity. Therefore, CHOMP can avoid the phenomenon where a

trajectory tends to sweep through an obstacle very quickly to achieve lower collision

costs. Second, the core optimization methods in TrajOpt and CHOMP are different.

CHOMP uses a gradient descent method, and in each iteration the update rule is

covariant in the sense that the change to the trajectory only depends on the trajectory

itself and not the particular representation [93]. Instead, TrajOpt uses a Sequential

Quadratic Programming (SQP) method, which is more expensive to solve at each

iteration, but converges faster (near quadratic instead of linear convergence). Based

on the above considerations, the p-Chekov system introduced in this thesis adopts

TrajOpt as the trajectory optimizer in its planning phase algorithm.

As stated at the beginning of this section, optimization-based planners are not

stand-alone planners and their performance is very sensitive to the quality of ini-

tializations. Also, numerical trajectory optimization often suffers from the problem

of getting stuck in high-cost local optima. Therefore, a natural thought to improve

the performance of optimization-based planners is to combine them with global plan-

45

ners, for example sampling-based planners. Some existing work, for example [53, 13J,

proposed online path shortening methods for sampling-based planners. The effects

of optimization in those approaches are mostly limited to trajectory smoothing and

shortening and they can't account for real-time obstacle avoidance and dynamics

constraints. Therefore, those modified sampling-based planners still share the typical

low-speed problem of common sampling-based planners. [69] presented a combined

roadmap and trajectory optimization planning algorithm. However, their additional

focus on avoiding singularities in redundant manipulators and meeting Cartesian con-

straints results in relatively long planning times. Their experiment results show that

the online planning phase of this approach takes about 15s for day-to-day motion

planning tasks in static environments, which is not fast enough to react to environ-

mental changes. In contrast, in this thesis, our approach aims at fast reactive real-time

planning in practical planning scenarios. We combine TrajOpt with both traditional

sampling-based planners and the Chekov roadmap approach 130], and conduct sys-

tematic experiments to compare their performance in terms of planning time, success

rate and path quality. Results of those combined planner experiments are presented in

Section 5. Their performance proved that the idea of combining global planners with

trajectory optimization planners works well in many practical planning scenarios.

2.3.2 The TrajOpt Algorithm [80, 79]

The TrajOpt algorithm was developed by Schulman et al [80, 791. It formulates the

kinematic motion planning problem as a non-convex optimization problem over a

T x K-dimensional vector, where T is the number of time-steps and K is the degrees

of freedom. The optimization variables in the kinematic formulation of TrajOpt are

denoted as X:T, where xt is the robot configuration at the tth time step. Note that

although the original formulation of TrajOpt doesn't include dynamics in the opti-

mization variables, this method can be further extended in order to include dynamics,

for example joint torques or contact forces, in the optimization problem formulation.

The kinematic motion planning problem is formulated in TrajOpt as the following

non-convex optimization problem:

46

I - _ . -. 1.1 1111 -- , -, . .7, 1- 111 1 1 11 1~ - __., I , - - 1. 4 . 11-1 11-1-1

minimize f(x)
x

subject to gi(x) < 0, i = 1, . .. , nine, (2.1)

hi(x) = 0, i = ,.,neq

where f is the objective function, gi < 0 are inequality constraints, and hi = 0 are

equality constraints. f, gi and hi are all scalar functions. nineq is the number of

inequality constraints and neq is the number of equality constraints.

In this formulation, the trajectory shortening and smoothing requirements can be

incorporated by using the sum-of-squared displacements as the objective function:

T-1

f (X1:T) = I xt+1 - Xt1 2 (2.2)
t=1

In terms of constraints, the obstacle avoidance constraint is the main inequality

constraint in the original TrajOpt formulation. Other inequality constraints like joint

limits, velocity limits and acceleration limits can also be incorporated. Meanwhile,

end-effector pose constraints at the end of trajectory, orientation constraints along

the whole trajectory, and many other constraints can be formulated into equality

constraints through forward kinematics.

In the TrajOpt algorithm, constraints are turned into li-norm penalties multiplied

by a penalty coefficient. Each inequality constraint gi(x) < 0 is turned into a penalty

Igi(x)l+, where JxJ+ = max(x, 0); each equality constraint hi(x) = 0 is formulated

into an absolute value penalty Ihi(x)l. The collision penalty, specifically, is calculated

based on the linearized signed-distance between objects. A safety margin must be

specified by the user when running TrajOpt, and once the robot gets within the safety

margin of an obstacle, the collision penalty will grow linearly as the signed-distance

to the obstacle is reduced. Each penalty is also multiplied by a penalty coefficient A

during the optimization. The penalty coefficient is adjusted in different iterations so

that it will be guaranteed that the constraint violations can be driven to zero.

The complete sequential convex optimization algorithm in TrajOpt is described

in Algorithm 1:

47

Algorithm 1: TrajOpt Sequential Convex Optimization Algorithm [80]
Parameters: /to: initial penalty coefficient

so: initial trust region size

c: step acceptance parameter

T+, 7-: trust region expansion and shrinkage factors

k: penalty scaling factor

ftol, xtol: convergence threshold for merit and x

ctol: constraint satisfaction threshold

Variables : x: current solution vector

p: penalty coefficient

s: trust region size

1 for PenaltyIteration = 1, 2, ... do

2 for ConvexifyIteration = 1, 2, ... do

3 f, j, h = ConvexifyProblem(f, g, h)

4 for TrustRegionIteration = 1, 2, ... do
nineq neq

5 x <- arg min f(x) + I I|ji(x)I+ + P E i(x)I+
x i=1 i=1

6 subject to trust region and linear constraints

7 if TrueImprove / ModelImprove > c then

8 s +- r+ x s /* Expand trust region */

9 break

10 else

11 s - r- X s /* Shrink trust region */

12 end

13 if s < xtol then break

14 end

is if converged according to tolerances xtol or ftol then break

16 end

17 if constraints satisfied to tolerance ctol then break

18 else p k Xp

19 end

48

Algorithm 1 includes three loops: the PenaltyIteration loop, the Convexifyltera-

tion loop and the TrustRegionlteration loop. The PenaltyIteration loop is the outer

loop. It adjusts the penalty coefficient p until all the constraints are satisfied, or

terminates when the coefficient exceeds the user specified threshold. The Convexi-

fyIteration loop is the middle loop. In this loop, a convex optimization approximation

to the original problem is constructed and solved. In the convex approximation, the

objective and inequality constraints are approximated by convex functions that are

compatible with a quadratic program (QP) solver, and the nonlinear equality con-

straints are approximated by affine functions. The nonlinear constraints are incor-

porated as penalties, while the linear constraints are directly imposed in the convex

subproblem. The TrustRegionlteration loop is the inner loop. It checks whether the

improvement (TrueImprove) to the non-convex merit function (objective plus con-

straint penalties) is a sufficiently large fraction of the improvement to the convex

approximation (ModelImprove), and then decides whether to accept this step.

2.4 Risk-Aware Motion Planners

Uncertainties in robot motion planning may come from many aspects, including envi-

ronmental uncertainties, system model uncertainties, sensing uncertainties, controller

uncertainties and external disturbances on robot motion. Risk-aware motion plan-

ners usually take into consideration some of these uncertainty sources and provide

motion plans that will satisfy all the constraints with a given upper bound on the

probability of failure. Risk-aware motion planning is comprised of two key parts:

the estimation of states' probability distributions, which determines the belief state

update models based on the uncertainty models, and the motion planning part. Due

to the mixture of state estimation and motion control, risk-aware motion planning

is an intersection of the Artificial Intelligence (AI) planning community, the motion

planning community and the control community.

Most work within the Al community on robust planning uses the Markov Decision

Process (MDP) framework [88, 16]. [12] shows the advantage of MDPs in terms of for-

49

mulating uncertainties in robot controllers and sensors during both the planning and

the execution stages; [3] presents a method using dynamic programming to compute

optimal control sequence for an MDP problem and applied it in the nonholonomic

needles steering problem; [4] combines a sampling-based roadmap representation with

the MDP theory and formulates a Stochastic Motion Roadmap (SMR). An extension

of MDPs, Partially Observable Markov Decision Process (POMDP) is often applied

to address the sensing uncertainty in robotic motion planning tasks. [451 developed

a point-based POMDP algorithm that exploits optimally reachable belief spaces and

applied it to robot navigation and target tracking planning tasks; [90] proposes an

approach that deals with probabilistic robot motion planning tasks by computing a

locally optimal solution to a continuous POMDP and can incorporate nonlinear dy-

namics and observation models. Despite the wide application of MDP-based planning

approaches, a lot of them require discretization of the state space. Even for extensions

of MDP-based methods that can handle continuous planning domains, tractability is

still a common issue since they typically need partitioning or approximation of the

continuous state space [67].

Another class of probabilistic robotic planners formulates the motion planning

problem into an optimization problem, for example Disjunctive Linear Program (DLP).

[8] introduces a DLP-based approach that can perform obstacle avoidance under un-

certainties. [9] describes a Mixed Integer Linear Programming (MILP) formulation

of the robust path planning problem which approximates chance-constraints with a

probabilistic particle-control approach This approach samples from discrete mode se-

quences and continuous disturbances according to a certain probabilistic distribution

and apply particle control theory to Jump Markov Linear Systems (JMLS). Due to

the stochastic sampling feature of the particle-control method, this approach can in-

corporate arbitrary non-Gaussian noise distributions. Another representative of this

class is the Probabilistic Sulu Planner (p-Sulu) developed by Ono et al. in [671. P-

Sulu formulates a planning problem as a chance-constrained qualitative state plan

(CCQSP) and performs goal-directed planning in a continuous domain with tempo-

ral constraints. It allows the user to customize chance constraints in an intuitive

50

manner. With a customized chance constraint, p-Sulu decomposes this joint chance

constraint by allocating risk bounds to individual constraints. However, p-Sulu en-

codes feasible regions with linear constraint approximations, which intuitively means

surrounding obstacles with polygons so that each side of a polygon becomes a linear

constraint in the MILP formulation. As a result, it will inevitably suffer from the

exponential growth of solution complexity when applied in complicated 3-dimensional

environments or planning tasks with multiple agents.

In the motion planning community, various state estimation methods are com-

bined with different types of traditional motion planners to achieve risk-aware opti-

mization. [31] incorporates environmental uncertainties into a graph search method

and develops a dynamic global path planner for manufacturing applications; [631 de-

velops a set of cost models and travel time distributions in order to search for the

optimal route from a given source to a given destination. Besides search-based mo-

tion planners, sampling-based planners are another class of candidates to integrate

with chance-constraints. Similar to [9], particle control theory is also used in 157],
but combined with RRT; [26] presents a Bounded Uncertainty Roadmap (BURM)

approach that extends PRM to consider collision probability bounds under envi-

ronmental uncertainties; [51] introduces Chance Constrained RRT (CC-RRT) which

uses chance constraints to guarantee probabilistic feasibility for linear systems subject

to process noise and environmental uncertainty; [11] addresses a Rapidly-exploring

Random Belief Trees (RRBT) formulation of motion planning problems under un-

certainties which considers nontrivial dynamics and spatially varying measurement

properties; [501 shows an incremental sampling-based algorithm called CC-RRT*-D,

which integrates the state dependence for chance-constraint approximation into the

RRT* framework. Besides, Voronoi diagram theory is also applied in the robust

motion planning field. For example, [64] builds a Voronoi Uncertainty Field which

considers both the attractiveness forces from the Voronoi nodes and the repulsive

forces from the uncertainty-bised potential fields, in order to plan a locally optimal

path in terms of path length and collision avoidance.

Control theories are also often blended into risk-aware motion planning in or-

51

der to compute the robot state probability distribution or allocating risk bounds

within the constrained optimization problem. The "information-constrained" linear

quadratic Gaussian (icLQG) approach in [32] combines global planning and local

feedback control to generate control policies with imperfect state information. [75]

formulates the partially observable control problem as a fully observable underactu-

ated stochastic control problem in belief space, and then uses linear quadratic regu-

lation (LQR) to generate control policies in belief space. Furthermore, [891 presents

a Linear-Quadratic Gaussian motion planning (LQG-MP) method that employs the

linear-quadratic controller with Gaussian noises, and can explicitly model the a priori

probability distribution of the state of the robot before path execution. It calculates

in advance the evolution of true states and estimated states during path execution

based on the LQR control policy and the Kalman filter measurements. This approach

is tested by generating candidate paths with RRT and evaluating them with the LQG-

MP algorithm. Experiment results in complicated planning tasks such as multi-robot

planning and robot manipulation show the high success rate of path selected by the

LQG-MP algorithm. [711 extend this work by taking into consideration the inter-

dependence of collision possibilities in different stages. In this thesis, the LQG-MP

approach is utilized in the p-Chekov planning phase in order to estimate the probabil-

ity distributions of robot states and control inputs. Different from LQG-MP, however,

p-Chekov uses this estimation to calculate trajectory collision probability and search

for a feasible solution that satisfies the collision risk constraint, instead of selecting a

minimum-risk one from a set of candidate trajectories. Therefore, p-Chekov can act

as real-time chance-constrained planning and execution system rather than an offline

optimal trajectory selector.

In addition, the Iterative Risk Allocation (IRA) algorithm in [66] provides an

iterative manner of allocating risk bounds to each constraint in each time step in

order to provide optimal solutions for robust Model Predictive Control (RMPC) with

a joint chance constraint. This IRA algorithm can be combined with many other risk-

aware planning tools and help them spend risk more intelligently. In the p-Chekov

system described in this thesis, this risk allocation and reallocation idea is adopted

52

in both planning phase and execution phase. In the planning phase, it helps with the

penalty configuration identification process and also accelerates the convergence to an

initial feasible solution. In the execution phase, it helps reduce the conservativeness

of initial solutions and improve the quality of solution trajectories.

Despite the variety of existing risk-aware planning approaches, most of them are

not applicable to real-time planning tasks for high-dimensional robots which require

fast reaction to disturbances during plan execution. Therefore, this thesis intro-

duces p-Chekov, a real-time risk-aware motion planning and execution system which

works for high-DOF robots like manipulators. It combines the ideas from sampling-

based planning, trajectory-optimization-based planning, and risk-aware planning. P-

Chekov accounts for the small disturbances caused by process noises and sensing

noises when planning a trajectory, and reacts fast to severe disturbances which ne-

cessitate plan adjustments.

53

54

Chapter 3

Problem Statement

This chapter provides a formal problem statement for the risk-aware motion planner

discussed in this thesis. Section 3.1 will define the variables and system models

required in this planner, constraints used this optimization problem and the planning

tasks that this planner is aimed at. Section 3.2 will summarize the key assumptions

required by this planning algorithm.

3.1 Definitions

3.1.1 Model Definitions

Let X = Rix denote the robot state space, and let U = R"u denote the control

input space of the robot, where n,, and nu are the dimensions of the state space

and the control input space respectively. Consider a discretized series of time steps

t = 0, 1, 2, ... , T with a fixed time interval AT, where the number of time steps T

is a finite integer. Let xt E X denote the robot state at time step t. We assume

applying a control input ut E U at time step t will bring the robot from state xt E X

to xt+1 E X, according to a given stochastic dynamics model:

Xt = f(xt-I, Ut1, mt), mt - A(0, Mt) (3.1)

where mt is the process noise at time step t that has a zero-mean Gaussian distribu-

55

tion with a given covariance matrix Mt. The covariance matrix models the motion

uncertainty in this stochastic dynamics model. We assume that the function f is

either linear or can be well approximated locally by its linearization.

We assume that we observe the robot states by taking a measurement at each

time step t, denoted as zt. We assume that measurements about the robot states are

provided by noisy sensors according to a stochastic observation model:

Zt = h(xt, nt), n1 t - A(O, Nt) (3.2)

where nt is the observation noise at time step t that has a zero-mean Gaussian dis-

tribution with a given covariance matrix Nt. h is the function that relates each

measurement zt with the robot state xt at time step t.

For each specific planning task, we assume we will be given a start state xstart,

and a goal state xgoal or a convex goal region Xgal. Let xO c X denote the initial

state of the robot, which is assumed to have a Gaussian distribution with mean tO

and covariance matrix Exo:

X0 ~ N(ko, ExO) (3.3)

We assume ko = xstart. An initial condition is defined as a combination of kO and ExO.

A trajectory rl is defined as a sequence of nominal robot states and control inputs

(x*, u, ... , x*) that satisfy the deterministic dynamics model x* = f (x*_ 1, u* 1 , 0) for

0 < t < T. We assume an objective function J(f) will be specified for a planning task,

which can include a variety of requirements such as minimum path length requirement.

3.1.2 Constraint Definitions

The constraints of a motion planning task include temporal constraints, chance con-

straints, no-collision constraints, goal state constraints, control input constraints, and

system dynamics constraints that are specified by the robot model.

A temporal constraint defines an upper bound T on the duration of execution of

a trajectory:

56

T x AT< (3.

For each specific planning task, we assume a joint chance constraint with bound

A, will be given, which constrains that during the execution of the whole trajectory

the probability of violating any of the no-collision constraints is less than or equal A,.

We denote the no-collision constraint for each obstacle i = 1, ... , N as Ci, and denote

the probability of violating constraint Ci as P(Ci). Then the chance constraint can

be expressed as:

N

P \/Z < AC (3.5)
(i=1)

The control input constraint requires that the control inputs for each time step

along the whole trajectory are within the control input space U:

u* E U, Vt = 1, ... , T (3.6)

The system dynamics constraints require that the robot states at each time step

along the whole trajectory are within the robot state space X, and the state transitions

between adjacent time steps satisfy the deterministic system dynamics model:

x* = (x*_1, u*-, 0) E X, Vt =a T (3.7)

For a specific problem with a given start state xstart , a given goal state xga or

convex goal region Xgal and the above constraints, a trajectory is valid if the robot

states and control inputs throughout the trajectory are within the robot state space X

and the control input space U respectively, and the trajectory satisfies that x* = xstar,

xg4al or x* goal, T x AT < T and the probability of not colliding with any

obstacle is at least 1 - Ac.

57

(3.4)

3.1.3 Problem Definition

In practical robotic motion planning tasks, changes happen from time to time. We de-

fine a disturbance as an unexpected change to task goals, environment, or robot state.

Note that such a disturbance may be due to an actual physical change, or a change

in the estimated state of the environment or robot (possibly because sensor data

improves as the robot moves). Here we distinguish between severe disturbances and

small disturbances. Severe disturbances refer to the ones that will cause significant,

qualitative plan changes, for example changes of the planning goal, the movement

of some obstacles that obstructs the original feasible plan, or a strong external force

that results in large deviations from the desired trajectory and the feedback con-

trollers can't get the robot back on track within one time step due to control limits.

On the other hand, small disturbances refer to the ones that are mainly caused by

process noises and observation noises, and the control inputs required to get the robot

back on the desired trajectory within one time step do not exceed the input bounds.

In practical robotic motion planning tasks, motion planners should account for the

risk of plan failure caused by small disturbances, and react fast and naturally like

human to severe disturbances which would necessitate plan adjustment. The goal of

this thesis is to develop a risk-aware motion planner that can successfully accomplish

practical planning tasks under disturbances within user-specified risk bounds.

The problem solved by this risk-aware motion planner is to plan and execute robot

motions that accomplish a task specified by a set of temporal and spatial constraints

with a guaranteed success rate. The resulting motions should be locally optimal,

or near-optimal, according to a specified objective function, which may optimize a

variety of characteristics such as path length or control effort. The solution provided

by the planner should be robust to the motion uncertainties and sensor uncertainties

during plan execution, and the failure rate due to these uncertainties should be within

a user specified risk bound. After plan execution has started, the time needed to

adjust to a severe disturbance, such as obstacle movement or changed goal, should be

much less than the time needed to execute the adjusted plan, and also much less than

58

the expected time of the next disturbance that is severe enough to necessitate plan

adjustment. The system should react, effectively, instantaneously to disturbances; it

should act as if it always "instantly" knows what to do, for any combination of goals

and circumstances. This fast reaction is key to providing robots the capability to

operate effectively in unstructured, uncertain, fast-changing environments.

Problem 1 provides the formal problem statement for this risk-aware motion plan-

ner:

Problem 1.

minimize J(HI)
n

subject to xO ~r (xO, ExO)

Xt = f (xt-1, Ut1, mt), 0 < t < T

zt =h(xt, nt), 0 < t < T

Mt ~. Y(0,I Mt), 0 < t < T

nt ~\. Ar(0,1 Nt), 0 < t < T (3.8)

xt E X, 0 < t < T

ut E U, 0 < t < T

x* = Xgoal or x E Xgal

N

P V 6 < t

T x AT < T

Problem 1 is a constrained optimization problem which aims at minimizing the

given objective function J(I) over the robot states and control inputs along the

solution trajectory. The solution trajectory 11 has to satisfy the initial condition

and the robot dynamics model, and the robot states and control inputs along the

trajectory should fall into the robot state space and control input space respectively.

If a configuration space goal pose xgoal is given, the robot configuration at the final

time step of the trajectory should be at xgoal; on the other hand, if a convex goal

59

region of the workspace end-effector pose Xgoal is provided, the robot end-effector at

the final time step of the trajectory should fall into Xgal. The chance constraint and

the temporal constraint also need to be satisfied.

The inputs to our planner are: the system dynamics model xt = f(xt 1i1,Uti mt),

the observation model zt = h(xt, nt), the robot state space X, the control input

space U, the environment model containing obstacles, an initial condition xO

K(xstart, xo), a goal state xgoal or a convex goal region Xgoai, an objective function

J(Il), a temporal constraint with the limit T, a chance, constraint with the probability

of failure limit Ac, the covariance matrix of the process noise Mt, and the covariance

matrix of the observation noise Nt. The output of our planner is a valid trajectory II

that is optimal or near optimal.

3.2 Assumptions

In order to guarantee the promised performance of this risk-aware motion planner,

several key assumptions are made. Although these assumptions may seem restrictive,

they are consistent with a large class of practical robotic motion planning problems.

First, we assume that the collision environments are not overly complex. We are

not trying to solve "piano mover" problems like reaching into tunnels or through a

maze of obstacles. Instead, we assume that there is a small set of potential obstacles,

such as a workpiece, a table, another robot, or a human, but that some of these

may move. The emphasis here is on achieving fast performance in typical, practical

situations.

Second, we assume that both controller uncertainties (process noises) and sensor

uncertainties (observation noises) have Gaussian distribution. This assumption is

reasonable because in many real world scenarios, noises often come from inconsistent,

random sources, and hence Gaussian models should be used to describe these noises

based on the Central Limit Theorem [29]. With this assumption, the optimal perfor-

mance of Kalman filter will be guaranteed and the requirement of Linear-quadratic

Gaussian (LQG) control will also be satisfied. If all noises have Gaussian distribution,

60

the Kalman filter is the best optimal observer and can minimize the mean square error

of the estimated states; if the noises are not Gaussian distributed, the Kalman filter is

best linear observer, but non-linear observers might have a better performance [24].

Third, we assume that both the system dynamics model and observation model

are either linear or can be well approximated locally by its linearization. This as-

sumption is reasonable because in robotic motion planning tasks, robot motions will

be controlled to stay close to the trajectory during execution. Therefore, using local

linearizations around the trajectory H to approximate the non-linear system models

can well represent the robot motions.

61

62

Chapter 4

Motion Planners Evaluation

Experiment Implementation

In this thesis, a systematic and comprehensive evaluation of several representative

sampling-based and optimization-based motion planners is presented. The purpose of

this evaluation is to assess the real-time performance of different planners in practical

scenarios, and the focus of the evaluation is on planning time, success rate and path

length. This evaluation is a critical base to the development of the deterministic

"roadmap + TrajOpt" motion planner, which is a major part of the p-Chekov system.

This chapter will provide a brief introduction to this evaluation, and also give a

detailed description of the experiment setup. The results of this evaluation will be

presented in Chapter 5.

4.1 Motivation

Robotic systems deployed in the real world have to contend with a variety of chal-

lenges: wheels slip for mobile robots, lidars do not reflect off glass doors, currents

and turbulence disturb underwater vehicles, and humans in the environment move

quickly and in unpredictable manners. These systems cannot spend an unbounded

amount of time searching for an optimal motion plan - a plan that will ultimately

be invalidated by the next sensor reading, a change in the environment, or a slipping

63

wheel. Instead, the motion planner used in those systems must operate quickly and

allow the robot to truly react to new environmental information and to feel interac-

tive to humans. The problem of moving a robot safely and efficiently in uncertain

environments, however, is a challenging one. Often, there is significant complexity

with path planning alone, due to complex robot dynamics and environment geome-

try. Coupled with dynamic obstacles and sensor noises, the planning problem only

becomes more challenging. Therefore, in order to assess the potential of using cur-

rent motion planners in those challenging planning tasks, in this thesis we designed

and conducted a set of experiments on several popular motion planners including

BasicRRT from OpenRAVE, LazyPRM j10], PRM* [381 and RRT* 1381 from the

Open Motion Planning Library (OMPL), and the basic version of TrajOpt [801 with

a straight-line joint-space initialization.

As stated in Chapter 2, TrajOpt is one of the popular state-of-the-art optimization-

based motion planning approaches which is claimed to have fast planning time and

superior performance. It uses a sequential convex optimization procedure to incor-

porate collision avoidance into trajectory optimization [801. It solves a non-convex

optimization problem by repeatedly constructing a convex subproblem to approxi-

mate the original problem. It treats no-collision constraints as penalties, and gets

the trajectory out of collision by iteratively increasing the penalty level and gradually

driving the constraint violations into zero [79j.

However, since TrajOpt uses a continuous non-linear optimization algorithm, it is

susceptible to finding locally, instead of globally optimal solutions. Additionally, the

collisions are penalized in TrajOpt, rather than restricted through hard constraints,

hence possibilities still exist that there are collisions in the returned trajectories.

Therefore, as with all nonlinear optimization approaches, the initially provided seed

trajectory for TrajOpt is essential for finding a globally optimal and collision-free

solution.

To the best of our knowledge, no systematic and in-depth investigations on the

TrajOpt algorithm's limitations and applicabilities have been conducted. The authors

of the TrajOpt algorithm provided results under single initializations and multiple

64

initializations, but no further detailed analyses about the influence of initialization

on the performance of TrajOpt is given. Moreover, although t80] provided some

results showing the fast speed of TrajOpt compared to other path planning methods,

no in-depth analyses are provided about cases where TrajOpt may fail and factors

that can influence its performance. Therefore, in this thesis, we use TrajOpt as

the representative of optimization-based motion planning approaches and we have

designed a set of experiments to systematically evaluate its performance in typical,

practical planning tasks, especially its sensitivity and dependency on initialization.

As stated in Chapter 2, the planning speed of sampling-based planners for high

degree-of-freedom (DOF) robots is problematic, and optimization-based planners suf-

fer from local optima when provided with infeasible initializations. Therefore, a nat-

ural thought would be combining these two types of motion planners by passing

sampling-based planners' solutions as initializations to TrajOpt in order to achieve

superior performance. Hence in this thesis, the performance of different combina-

tions of sampling-based and optimization-based planners are also investigated by a

systematic set of experiments.

4.2 Experiment Testbed Description

The planner evaluation experiments presented in this thesis are conducted in simula-

tion on a 10-core Intel i7 3.0 GHz desktop with 64 GB RAM. The testbed includes a

robot model and several sets of simulation environments.

4.2.1 Description of the Test Robot

In the experiments in this thesis, we use the Baxter robot [78] (as shown in Figure

4-1) as test object, and the left arm of Baxter as the manipulator. Based on our initial

tests, TrajOpt works quite similarly on other manipulators, so here we take the left

arm as an example to implement the in-depth analysis. Baxter has altogether 16

joints, and joint_2 to joint_8 are the effective joints for the left arm manipulator. The

joint information is described in the Table 4.1, where mimic joints are not included.

65

Figure 4-1: Picture of the Baxter robot

Table 4.1: Baxter Joints Information

name joint index dofindex parentlink childlink
torso_to 0 0 base torso
head_pan 1 1 torso head
left sO 2 2 left armmount leftuppershoulder
left-s1 3 3 left uppershoulder left_lowershoulder
left-eO 4 4 left lowershoulder leftupper_elbow
left-el 5 5 left_upperelbow leftlowerelbow
left-wO 6 6 left lowerelbow leftupper_forearm
leftw 1 7 7 left upper-forearm left_lower_forearm
left_w2 8 8 left_lower_forearm left-wrist
right sO 9 9 right armmount rightuppershoulder
right_sl 10 10 rightupper_shoulder right_lowershoulder
right_eO 11 11 right lowershoulder right upper_elbow
rightel 12 12 rightupper elbow right lowerelbow
right_wO 13 13 right lowerelbow rightupper_forearm
rightwl 14 14 rightupper_forearm right_lower_forearm
rightw2 15 15 right lower forearm right-wrist

66

-

AIW

4.2.2 Description of the Test Environments

In order to test and compare the performance of different motion planners, four rep-

resentative, practical environments are used: a "tabletop with a pole" environment,

a "tabletop with a container" environment, a "kitchen" environment and a "shelf with

boxes" environment. We choose environments that are representative of different ap-

plication domains rather than using an environment with randomly-placed obstacles

because our goal is to develop a path planner that operates quickly and provides short

paths for real world applications, instead of building "perfect" planners that can solve

extremely complicated but not very common problems.

The "kitchen" environment comes from the TrajOpt package, whereas we designed

the remaining three. The "tabletop with a pole" environment, which is shown in

Figure 4-2, is a simple tabletop pick-and-place task environment, with a slender pole

in the middle of the table and a box on each side of the pole. This environment

is designed to be simple so that all the planners can easily handle most planning

queries in it. The "tabletop with a container" environment, as shown in Figure 4-3,

is similar to the "tabletop with a pole" one, but has a container with both boxes

inside and outside of it. It also has a pole as an extra obstacle on the tabletop. The

"shelf with boxes" environment, described in Figure 4-4, is a 7-level shelf environment

with boxes on each level of the shelf, which is a common scenario in the logistic

application domain. This scenario is known to be hard because of the relatively

large total number of obstacles and the narrow space between them. The "kitchen"

environment, as described in Figure 4-5, models a typical kitchen scenario which is

common in household application domains.

4.3 Experiment Implementation

For each environment, 5000 feasible planning tests are generated by randomly sam-

pling start and target configurations, which are ensured to be kinematically feasible

and collision-free. For each sampled case, both the joint-space configuration informa-

tion and the workspace end-effector position and orientation information are recorded.

67

N-I
L

Figure 4-2: Environment 1: Tabletop with a Pole Environment

68

.1

Figure 4-3: Environment 2: Tabletop with a Container Environment

69

*1

Figure 4-4: Environment 3: Shelf with Boxes Environment

70

-1

Figure 4-5: Environment 4: Kitchen Environment

71

For each experiment trial, planners are provided with the starting joint-space posi-

tion and the goal end-effector pose. We specify the goal in workspace coordinates to

give planners the opportunity to find different joint-space solutions to the planning

problem. The range of sampled points is relative to the base frame of the robot

manipulator instead of to the world frame. The sampling ranges in the four envi-

ronments are not exactly the same. The "tabletop with a pole" environment uses

a smaller sampling range and it only samples from above the table, which means

the cases generated by the random-sampler for this environment are relatively easy

for planners to find feasible solution paths. In the other three environments, larger

sampling ranges are utilized and include many poses where joint limits are reached

are also included. Therefore, in those environments, some more difficult test cases

are included, for example moving the manipulator from underneath the table to the

tabletop in the "tabletop with a container" environment, or moving the manipulator

from some low level of the shelf to a relatively high level in the "shelf with boxes"

environment. Including such difficult cases can help us better understand the reason

for planning failure and long planning time for all the test planners and gain a more

thorough view of their performance. All the test cases, including the environment

and poses, are saved so that they can easily be repeated in the future.

4.3.1 Experiments on TrajOpt

TrajOpt is the main target of the experiments in this thesis. This is because TrajOpt

is a relatively new planning approach in the robotic motion planning area, thus fewer

tests and practical application results are available in the planning community. In

addition, preliminary test results in [80] and [791 show the potential of TrajOpt in

practical motion planning which requires fast reaction. In this thesis, TrajOpt's

performance is tested in all four environments mentioned in Section 4.2.2, and the

evaluation includes planning time, collision rate, path length and the success rate of

reaching the goal. Furthermore, the influence of different parameters on TrajOpt is

also tested, for example the influence of waypoint number, the path length coefficient

and the collision penalty hit-in distance. The analyses on the influence of TrajOpt

72

parameters on its performance is shown in Section 5.4. Additionally, the influence of

initializations on TrajOpt is also investigated through the experiments on combined

planners.

TrajOpt works by formulating the kinematic motion planning problem as a non-

convex optimization problem over a T x K-dimensional vector, where T is the number

of time-steps and K is the number of degrees of freedom [80]. Hence every trajec-

tory returned by TrajOpt is made up of T waypoints, where the number T is set by

the user. When using the discrete-time no-collision constraints in TrajOpt, only the

waypoints are checked for collision, thus the resulting continuous-time trajectory may

have collisions between the waypoints. In such cases, it is important to impose "max-

imum displacement" constraints for each single time step and provide enough steps

for the sake of ensuring continuous-time safety. Through some preliminary tests with

different numbers of waypoints, we observed that TrajOpt runtime increased approxi-

mately linearly with the number of waypoints while the collision rate dropped quickly

with more waypoints. For the experiments on TrajOpt with joint-space straight-line

initialization, we found that setting T = 30 provided a good balance between low col-

lision rates and fast algorithm runtimes. Therefore, in the experiments on TrajOpt

with joint-space straight-line initializations, the maximum displacement between two

contiguous steps is set as 0.08 rad, and the total number of steps is set as T = 30.

The experiment results on TrajOpt with straight-line initializations are provided in

Section 5.1.

In addition to the discrete-time collision costs approach, the TrajOpt algorithm

also provides a "swept-out volume" method in order to ensure continuous-time colli-

sion checking [80]. However, this continuous-time collision checking approach doesn't

check self-collision, and slows down the planning time. Also, during our experiments,

we found that even when the continuous-time collision cost is utilized, collisions can

still occur in-between waypoints, and it is not obvious how to use TrajOpt's reported

collision cost to detect collisions consistently since large cost values can indicate either

a collision or just a waypoint close to an obstacle. Hence, rather than simply refer-

ring to cost values returned by TrajOpt, in our experiments we also implement an

73

independent collision checking process for the returned trajectory to test continuous-

time safety. In particular, we interpolate 100 - 1000 intermediate waypoints between

each pair of adjacent waypoints and collision check each point using the OpenRAVE

collision checker. For our work, we consider this fine-grained discrete-time collision

check to approximate a continuous-time collision check sufficiently well.

Besides the constraint violation cost values returned by TrajOpt, which indicate

whether the solution is satisfactory, in our experiments we also implemented indepen-

dent tests for the returned trajectory in terms of the final pose of the end effector. We

record the xyz-position and the orientation of the end-effector at the last waypoint of

the solution trajectory and compare it to the target pose. The position error is calcu-

lated by the Euclidean distance between the end position in the last waypoint and the

target xyz-position, and the rotation error is calculated by the angle between the final

waypoint orientation and the goal orientation. We view a solution as valid only when

it satisfies both the pose constraint and the collision-free constraint. Herein, the pose

constraints include position constraints and orientation constraints, and we set 3 dif-

ferent levels for each to measure the satisfaction rates of both position and orientation

constraints.. As for position constraint satisfaction, we divide the Euclidean distance

between the final waypoint position and the goal position by the straight Euclidean

distance between the start position and the goal position, and compare the relative

position error with 1%, 5% and 10%. If the relative position error is within 1%, we

say it avoids the 1% position-failure, and similar for 5% position-failure and 10%

position-failure. As for orientation constraint satisfaction, we compare the rotation

error with 0.10, 0.50 and 1.00. If the rotation error is within 0.10, we say it avoids the

0.10 rotation-failure, and similar for 0.50 rotation-failure and 1.00 rotation-failure.

In this thesis, the planning trials where TrajOpt solution ends in a position that is

more than 5% away from the target position, or the end orientation need to turn

more than 10 to reach target orientation are viewed as TrajOpt pose-failure cases.

The planning trials where collisions are detected by our independent collision checker

are viewed as collision-failure cases. All the trials that showed either collision-failure

or pose-failure are recorded as TrajOpt failure cases.

74

All the TrajOpt input and output information in each experiment case is recorded.

Hence once interesting behaviors are detected in some of the test cases, the experi-

ment on this certain case can easily be repeated and further analyzed. Here the input

information includes the environment name, the start and target pose, the Euclidean

distance between start and target poses, total number of obstacles that the joint-space

straight-line initial path collides with, number of waypoints, maximum displacement

constraint, collision penalty threshold, collision penalty hit-in distance, and the path

length coefficient. The output information includes the trajectory returned by Tra-

jOpt, total time spent on TrajOpt optimization, TrajOpt constraint violation cost

values, waypoint collision-checking results, interpolated trajectory collision-checking

results (here it is viewed as continuous-time collision-checking results since the inter-

polation number is large), and the error of reaching pose target.

4.3.2 Sampling-based Planners Benchmark Experiments

In our experiments, although the test cases are guaranteed to have collision-free and

kinematically feasible start and end poses, it is still possible that feasible solution

trajectories might not exist in certain test cases, especially in environments with

narrow spaces like the "shelf with boxes" one. Therefore, feasibility validation with

other benchmark planners is necessary. In this thesis, four sampling-based planners

are chosen as benchmark planners: RRT, RRT*, Lazy PRM and PRM*. RRT is a

typical tree-based, single-query sampling-based planner; Lazy PRM is a variant of the

traditional graph-based sampling-based planners, and it has relatively fast planning

speed compared with the original PRM due to its lazy collision checking. RRT*

and PRM* are typical representatives of optimal tree-based planners and optimal

graph-based planners respectively.

In order to validate the feasibility of the test cases used in our experiments, we

run the four representative sampling-based planners (OpenRAVE BasicRRT, OMPL

LazyPRM [10], OMPL PRM* 138] and OMPL RRT* [38]) on the test cases where

TrajOpt failed by colliding with obstacles or not reaching the target pose. The results

of this validation are presented in Section 5.2. We filtered out the cases where none of

75

the planners succeeded to find a solution, and formed 5000 feasible test cases in each of

the environments. Those 5000 test cases were then used to compare the performance

of all the different test planners and their combinations. The performance of each of

the planners are compared and analyzed in terms of planning time, failure rate and

path length.

4.3.3 Experiments on Combined Planners

The experiments on sampling-based planners show that although they are good at

avoiding collision, they often take too long for practical applications to find a solu-

tion. In contrast, in those experiments TrajOpt shows good performance in terms

of runtime, but the high collision-rate makes it an unsatisfactory practical planner.

Therefore, a natural thought of improving the current planners' performance is to

combine sampling-based planners with optimization-based planners. We pass in the

collision-free but sub-optimal solutions from sampling-based planners as seed trajecto-

ries to TrajOpt, and then TrajOpt can smooth and shorten the trajectories and return

better solutions. In this thesis, experiments on TrajOpt combined with four popular

sampling-based planners (OpenRAVE BasicRRT, OMPL LazyPRM, OMPL PRM*

and OMPL RRT*) are conducted on the 5000 feasible test cases in each of the four

environments introduced in Section 4.2.2. The results of these combined sampling-

based and TrajOpt planners are shown in Section 5.3. Also, a new roadmap-based ap-

proach developed in the Model-based Embedded and Robotic Systems Group, Chekov

roadmap [18], is also utilized to provide initializations for TrajOpt in order to achieve

superior performance than using either of the planners alone. Chekov roadmap is a

sparse roadmap that represents the static collision-free configuration space and caches

the shortest paths in between each pair of nodes offline. The experiment results on

TrajOpt with Chekov roadmap solutions as seeds will be presented in Section 5.6.

This combination is the core of the deterministic planning part of p-Chekov, and the

experiment results in Section 5.6 show their superior performance in terms of success

rate and planning speed.

76

Chapter 5

Motion Planners Evaluation

Experiment Results and Analysis

Chapter 4 provides a detailed description for the experiment implementation of the

evaluation on several representative motion planners. In this Chapter, the results

of those experiments will be presented, and the performance of those planners in

the experiments will be analyzed. In Section 5.1, we first start with experiments on

the original TrajOpt planner with joint-space straight-line trajectories as initializa-

tion. Then we conducted sampling-based planners benchmark experiments in order

to compare the performance of TrajOpt with standard planners, and also filter out the

infeasible or extremely difficult test cases. Section 5.3 explores approaches to provide

TrajOpt with better initializations so that better performance can be achieved. This

is accomplished by sending the solutions from sampling-based planners to TrajOpt as

seed trajectories. Furthermore, experiments results for the influence of several major

parameters on TrajOpt performance are presented in Section 5.4, which provides a

basic guidance for TrajOpt usage through analyzing the trade-off between aspects of

TrajOpt planning performance. Then a comprehensive evaluation of all the tested

planners (standalone or combined) is conducted on the basis of experiments in 4

practical simulation environments with 5000 test cases each, as shown in Section

5.5. Additionally, the deterministic plan generating component used in p-Chekov,

the combined "roadmap + TrajOpt" planner, is also tested in the same environments,

77

and the experiment results in Section 5.6 proves its superior performance over the

other tested planners in real-time practical motion planning tasks.

5.1 TrajOpt with Straight-line Seeds Experiment Re-

sults

This section presents the results of the preliminary experiments on the TrajOpt algo-

rithm. As stated in Chapter 4, in each test environment 5000 test cases are generated

by randomly sampling kinematically feasible and collision-free start and goal pose

pairs. The initializations for TrajOpt are obtained by interpolating the joint-space

straight-line between start pose and goal pose. Taking into account the trade-off be-

tween failure rate and runtime, the total waypoint number (including start and goal)

is set to 30. The maximum displacement between two contiguous steps is set as 0.08

rad. The experiments tested TrajOpt's performance in terms of runtime, collision

avoidance ability, path length, and goal-reaching ability.

After the initial tests on TrajOpt, the BasicRRT planner from OpenRAVE is used

as a benchmark planner on the test cases where TrajOpt failed to avoid collision or

reach the goal. A comparison between RRT's and TrajOpt's performance is presented

in Section 5.1.2. Based on the preliminary experiment results, a comprehensive anal-

ysis of the TrajOpt algorithm is provided in Section 5.1.3, which leads us to explore

better utilizations of TrajOpt in later sections.

5.1.1 TrajOpt Results for the Original 5000 Random-Sampled

Cases

The experiment results for TrajOpt with joint-space straight-line initializations are

summarized in Table 5.1. For each of the four environments ("tabletop with a pole"

environment, "tabletop with a container" environment, "shelf with boxes" environment

and "kitchen" environment), 5000 pairs of start and goal poses are tested, and Traj Opt

performance in terms of optimization speed, collision-avoidance and target-reaching

78

ability are evaluated.

For each test case in a specific environment, the runtime TrajOpt takes to return

an optimized solution given the joint-space straight-line seed trajectory is recorded,

and the average over the 5000 test cases is shown in the "Average Optimization Time"

row in Table 5.1. From this row we can see that the average optimization time for four

different environments, from easy to difficult, ranges from 0.5s to 1.6s. We consider

this to be a good speed in the motion planning for a 7 degree-of-freedom (DOF) arm.

In the results shown in Table 5.1, the collision failure is measured by our indepen-

dent OpenRAVE continuous-time collision-checking process, which checks collision

for the whole trajectory rather than only the waypoints. For each environment, the

percentage of cases where collision is detected in the solution returned by TrajOpt

is listed in the "Collision Rate" row. From the collision rate results we can tell that

TrajOpt, when provided only with straight-line initializations which might be in colli-

sion, is not very good at getting the trajectories out of collision. The collision rate for

the relatively difficult environments, for example "shelf with boxes", can be as high as

38.26%. In order to see clearly how much improvement TrajOpt made to the initial

trajectories, we also used the same continuous-time collision detecting process on the

initial straight-line trajectories, and the numbers of environmental obstacles they col-

lided with were recorded. For each test case, we compare the number of obstacles in

the initially provided straight-line joint-space trajectory and in the solution trajectory

returned by TrajOpt, and the number of collision obstacles TrajOpt helped reduce are

recorded as the collision reduction number. The "Average Collision Reduction" row

in Table 5.1 shows this collision reduction number averaged on 5000 test cases, which

indicates TrajOpt's effort in collision avoidance. From this average collision reduction

number, we can see that although the final collision rate is still high, this is partially

because of the low-quality initializations that are deeply in collision. TrajOpt does

show some ability to help get the trajectories out of collision, but it might need better

seed trajectories in order to show satisfying motion planning performance.

The TrajOpt performance in terms of solution path length is shown in the "Average

Solution Trajectory Joint-space Length (rad) " row in Table 5.1. These data are

79

Table 5.1: TrajOpt with Straight-line Seed Experiment Results Summary
Tabletop Tabletop Shelf with

Environment with a with a Boxes Kitchen
Pole Container

Total Num of Trials 5000 5000 5000 5000
Average Optimization Time (s) 0.5629 1.3412 1.6414 0.7455
Collision Rate (percent trials) 1 17.40% 36.36% 38.26% 9.08%

Average Collision Reduction 0.38 1.50 1.83 1.53
(num obstacles)

Average Solution Trajectory 0.7145 1.1396 1.5467 0.9423
Joint-space Length (rad)

Average Start-Goal
Straight-line Euclidean 0.5033 0.7756 0.8316 0.7636

Distance (m)
1cm Position-failure 2 1.26% 6.36% 11.62% 4.26%
5cm Position-failure3 0.04% 0.44% 2.08% 0.22%

10cm Position-failure4 0.02% 0.12% 0.58% 0.04%
0.10 Rotation-failure5 0.34% 2.68% 8.90% 2.44%
0.50 Rotation-failure 6 0.08% 0.46% 5.00% 0.30%
1.00 Rotation-failure 7 0.06% 0.30% 4.72% 0.18%

1 Collision detected in the TrajOpt
time collision checker.

reach
reach
reach
reach
reach
reach

the
the
the
the
the
the

target
target
target
target
target
target

position by
position by
position by
orientation
orientation
orientation

solution trajectories by our separate continuous-

1cm Euclidean distance.
5cm Euclidean distance.
10cm Euclidean distance.
by > 0.10.
by > 0.5 .
by > 1.00.

80

2

3

4

5

6

7

Fail
Fail
Fail
Fail
Fail
Fail

to
to

to
to
to

to

calculated by measuring the joint-space distance traveled by each joint through all

the waypoints and then averaging up the number for all the seven joints. The last six

rows of Table 5.1 summarizes the pose target failure in different levels, as explained in

the Section 4.3.1. For example, the 1% position-failure row shows the percentage of

cases in which the manipulator end-effector failed to reach the 1% range of the goal

position, where 1% means the error Euclidean distance relative to the straint-line

distance between start and end position. Since here we use a non-dimensional form

to represent position-failure level, we also provide the average Euclidean distance

between the workspace start position and goal position in the "Average Start-Goal

Straight-line Euclidean Distance" row for reference. As for rotation-failure results, the

"0.1' Rotation-failure" row indicates the percentage of cases in which the end-effector,

when at the final waypoint of the trajectory returned by TrajOpt, still needs to rotate

more than 0.1' to reach goal rotation, and similar for the "0.5' Rotation-failure" row

and the "1.0 Rotation-failure" row.

5.1.2 TrajOpt Comparison with RRT

As observed in Section 5.1.1, the failure rate of TrajOpt with straight-line initializa-

tions is relatively high. In order to help us better interpret the failure rate, we use

the BasicRRT planner from OpenRAVE to test the cases where TrajOpt failed to get

the trajectory out of collision or the end point of the trajectory failed to reach the

goal pose. Here we define failing to reach goal position by 5% or failling to reach goal

orientation by 1. 0 'as goal-reaching failures. The results of the BasicRRT planner on

TrajOpt failure cases are shown in Table 5.2. Here, the RRT runtime upper bound is

set to 300s. In Table 5.2, the "TrajOpt Failure Num" row shows the number of test

cases where the TrajOpt solution has collision failure or goal-reaching failure. The

"RRT "No Solution" Percent" row says the percentage of cases out of the TrajOpt

failure cases where RRT also fails to find a feasible solution. From the RRT path-

planning results, we can see that among all the TrajOpt failure cases, only a small

part are marked as "No Solution" by the BasicRRT planner. This means most of the

failure cases in the preliminary TrajOpt experiments actually have valid solutions.

81

Table 5.2: RRT Experiments Results on TrajOpt Failure Cases
Tabletop Tabletop Shelf with

Environment with a with a Kitchen
Pole Container

Total Num of TrajOpt Trials 5000 5000 5000 5000
TrajOpt Failure Numi 880 1846 1972 472

RRT "No Solution" Percent 2 1.82% 11.43% 31.19% 11.44%
Average RRT Planning Time 28.9678 61.9968 84.6395 57.5310

(s)3
Average TrajOpt Optimization 2.1314 2.6649 2.7952 2.6579

Time (s) 3

1 Number of trials where TrajOpt solution is in collision, or fails to reach the tar-
get position by more than 5% Euclidean distance, or fails to reach the target
orientation by more than 1.00.

2 Percentage of TrajOpt failure cases where RRT also failed for find a valid path.
3 Average of all failure cases, not of all trials.

This experiment indicates that most of the failures in the previous straight-line Tra-

jOpt experiment are because TrajOpt failed to converge to a feasible solution that

satisfies all the constraints, rather than due to the intrinsic difficulty of the test cases,

where no solutions can be found by any motion planner.

5.1.3 Result Analysis

From the experiment results shown in Table 5.1 and Table 5.2, we can conclude that

if TrajOpt is simply provided with joint-space straight-line interpolations between

start poses and goal poses as initializations, its performance is far from satisfying.

From the collision point of view, TrajOpt is failing too frequently to fulfill the

practical motion planning tasks. From Table 5.1 we can see that the "kitchen" envi-

ronment looks relatively easy for TrajOpt since the collision failure rate is only about

8%. In contrast, in both the "tabletop with a container" environment and the "shelf

with boxes" environment TrajOpt shows quite high collision-failure rate at about 37%.

Even for the "tabletop with a pole" environment where the test cases have relatively

small sampling range and exclude many difficult cases, the failure percentage is still

as high as 17.4%. Therefore, we can see that TrajOpt is not reliable enough to provide

82

satisfying solutions for many practical environments. The reason for this might be

that as an optimization-based planner, when the seed solution is deep in collision, it

might easily get stuck in local optima and fails to converge to the optimal feasible so-

lution. Although in the RRT benchmark experiments, RRT also fails to find feasible

solutions for some of TrajOpt failure cases, the experiment results show that the "No

Solution" cases are actually only a small part of all the RRT test cases. This means

in most of the TrajOpt failure cases, feasible solutions exist, but TrajOpt failed to

find them. Therefore, the collision-rate data in the experiment results shown in Table

5.1 prove that, when given a naive joint-space straight-line interpolation between the

start pose and the goal pose as initialization, TrajOpt's capability in terms of moving

the trajectory out of collision is very limited.

From the view of goal-reaching ability, we can also see that the performance of

TrajOpt with straight-line seeds is not satisfying enough. This issue is especially

noticeable in the "shelf with boxes" environment. Based on the start-goal straight-

line Euclidean distance data, we can estimate that more than 10% of the test cases

in "shelf and boxes" environment failed to reach the target position by around 1.2%,

and more than 2% of cases failed by about 12%. In theory, when an optimization-

based motion planner is doing trajectory optimization, it should only move the in-

between waypoints but not the start and goal ones. Additionally, unlike collision

constraints which are turned into penalties, the pose targets are modeled as hard

constraints in TrajOpt. However, in our experiments, we found out that a small

percentage of test cases show goal-reaching failure. This might be caused by the errors

in the forward kinematics, or by the failure of the optimization algorithm to converge.

In TrajOpt, the optimization results include several different types: converged, hit

penalty limit, hit iteration limit, and failed. However, when running the massive

amount of experiments on TrajOpt it's difficult to catch the exact optimization result

information, so we deduce optimization results from the planning behavior. These

goal-reaching failure results warn us that in the optimization process in the TrajOpt

algorithm, it might push the last waypoint away from the goal pose when it fails

to converge. In conclusion, TrajOpt's performance in terms of goal-reaching ability

83

shows that when TrajOpt is provided with difficult planning tasks; like in-collision

initializations or environments full of narrow spaces, it is highly likely to fail.

Based on the above analysis about the TrajOpt experiment results, we can find

that when simply provided with joint-space straight-line initial trajectories, the per-

formance of TrajOpt is far from satisfying. This suggests that, possibilities are that

we may be able to enhance its performance by providing it with better initial trajecto-

ries, for example the feasible and collision-free solutions from sampling-based motion

planners. Therefore, in the following sections, we will start to explore the influence

of seed trajectories on TrajOpt's performance, and search for appropriate approaches

that can be combined with TrajOpt in order to perform superior motion planning in

practical planning tasks.

5.2 Validation of Test Cases using Sampling-based

Planners

In Section 5.1.2, we used RRT to test the experiment cases where TrajOpt failed to

find a feasible solution, and then found that there are some cases where RRT also

failed to find a feasible solution within the time limit. However, we don't want to in-

clude in our experiments the test cases where no feasible solution exists at all or ones

that are too difficult for any motion planner to solve, since our emphasis is on prac-

tical, typical planning problems. Therefore, we choose another three representative

sampling-based planners from the Open Motion Planning Library (OMPL), together

with the BasicRRT from OpenRAVE, to validate the test cases in our experiment.

The three planners are LazyPRM, PRM* and RRT*. Those OMPL planners are inte-

grated with OpenRAVE through the OROMPL interface developed by the Personal

Robotics Lab. The runtime upper bound we set for the OMPL planners are also 300s.

We run all the four planners on the test cases where TrajOpt fails to find collision-free

solutions that satisfy the goal pose constraint, and filter out the cases where none of

the sampling-based planners can find feasible solutions. We believe these cases are

84

Table 5.3: TrajOpt Experiment Results on Validated Test Cases
Tabletop Tabletop Shelf with

Environment with a with a Kitchen
Pole Container

Total Num of Trials1 5000 5000 5000 5000
Average Optimization Time (s) 0.5624 1.3329 1.4869 0.7376
Collision Rate (percent trials) 2 17.38% 35.96% 32.06% 8.80%

Average Collision Reduction 0.38 1.49 1.88 1.53
(num obstacles)

Average Solution Trajectory 0.7140 1.1367 1.5097 0.9394
Joint-space Length (rad)

Average Start-Goal
Straight-line Euclidean 0.5033 0.7752 0.8291 0.7636

Distance (m)
1cm Position-failure3 1.26% 6.18% 8.18% 4.14%
5cm Position-failure 4 0.04% 0.38% 1.26% 0.22%

10cm Position-failure5 0.02% 0.12% 0.03% 0.04%
0.10 Rotation-failure 6 0.32% 2.70% 6.06% 2.40%
0.50 Rotation-failure7 0.08% 0.44% 2.24% 0.28%
1.00 Rotation-failure 8 0.06% 0.28% 2.02% 0.16%

1 TrajOpt experiment results summary for the new 5000-cases sets, where all the
cases are validated by at least one of the sampling-based planners to be solvable.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Fail to reach the target position by 1cm Euclidean distance.
4 Fail to reach the target position by 5cm Euclidean distance.
5 Fail to reach the target position by 10cm Euclidean distance.
6 Fail to reach the target orientation by > 0.10.
7 Fail to reach the target orientation by > 0.50.
8 Fail to reach the target orientation by > 1.00.

either non-solvable at all, or too complicated for most of the existing motion planners

to solve although feasible solutions might actually exist. We view those test cases

as unfair tests for the experiments on TrajOpt. After filtering out those unfair test

cases, we form a new 5000-cases set for each environment, where every test case has

been validated by at least one of the sampling-based planners that feasible solutions

exist. TrajOpt experiment results on those validated 5000 test cases sets in different

environments are summarized in Table 5.3.

Comparing Table 5.3 with Table 5.1, we can see the improvement in TrajOpt's

85

performance after eliminating the non-solvable cases, especially in the "shelf' environ-

ment. This improvement involves optimization time, collision-avoidance ability and

goal-reaching ability. This result is expected since the non-solvable cases will add to

the failure rate of TrajOpt. However, even after we validated all the test cases, the

basic conclusions we got from Section 5.1 still don't change. We can still see that

when the initializations for TrajOpt are deep in collision, for example joint-space

straight-line initializations, TrajOpt's ability of getting trajectories out of collision is

very limited. Therefore, searching for appropriate approaches that can provide Tra-

jOpt with high-quality initializations with fast speed would be an important method

to better utilize TrajOpt in practical motion planning tasks.

5.3 TrajOpt with Sampling-based Planners Solutions

as Seeds

As we stated in Chapter 2, trajectory optimization type motion planners are local

planners not global planners, and their performance highly depends on the initial-

izations they are provided with. Further, since numerical optimization algorithms

often suffer from high-cost local optima, when the seed trajectories are deep in col-

lision, they might have trouble getting trajectories out of collision. As a result, we

hypothesize that the way to improve TrajOpt's performance is to provide TrajOpt

with high-quality seed trajectories, for example feasible and collision-free trajectories

from sampling-based planners. In this way, TrajOpt's task will be more focused on

smoothing and shortening the trajectories instead of finding collision-free solutions.

Although during the path shortening and smoothing process of TrajOpt, an edge in

a collision-free seed trajectory might be pushed into collision if TrajOpt only checks

collision at waypoints, we hypothesize that the success rate of this "seed + TrajOpt"

planner will be high enough for most of the practical motion planning tasks.

In order to examine our hypotheses, we used the OMPL planners mentioned in

Section 5.2 and also the RRT planner from OpenRAVE as seed planners for TrajOpt

86

and conducted a set of experiments to test the performance of the combined "sampling-

based + TrajOpt" planners. First, in order to see whether using better initializations

will get the original failure cases into success, we run a set of experiments in each

of the four environments on the test cases where TrajOpt failed to find feasible and

collision-free solutions in the experiments presented in Section 5.1. After that, we test

the "sampling-based + TrajOpt" planners in all the 5000 feasible test cases formed

in Section 5.2 for all the simulation environments for the purpose of comprehensively

evaluating the performance of the combined planners.

5.3.1 Results of Sampling-based-seed Experiments on TrajOpt

Failure Cases

This section presents the preliminary experiment results on the combined "sampling-

based + TrajOpt" planners. We first run the four sampling-based planners, RRT,

RRT*, LazyPRM, PRM*, on the test cases where TrajOpt failed to find feasible

solutions in the experiments in Section 5.1. Then we select the test cases where

at least one of the sampling-based planners have found solutions. For the cases

where more than one planners have found solutions, we choose one of them as the

seed planner for TrajOpt; for the cases where only one of the planners has found

solutions, the one succeeded to find solution will be the seed planner for TrajOpt;

cases where none of the sampling-based planners have found solutions are excluded

from the experiments. After selecting seed planners, we first test the seed solutions

provided by the seed planner with the same collision test and goal-reaching test that

we conducted for TrajOpt, and then we provide those seed solutions for TrajOpt and

compare its performance with straight-line-seeded TrajOpt.

Before passing the sampling-based planners' solutions to TrajOpt, we conducted

a validation on those solutions in terms of continuous-time collision-avoidance perfor-

mance and goal-reaching performance. Here we use the same independent continuous-

time collision detecting procedure and goal-reaching failure measuring method as we

use for TrajOpt in Section 5.1. The average performance of the chosen sampling-

87

Table 5.4: Validation of Sampling-based Path Planner Solutions
Tabletop Tabletop Shelf with

Environment with a with a Bxs Kitchen
Pole Container

Total Num of Trials1 879 1818 1495 458
Solution in Collision (percent 0.24% 1.20% 3.46% 0.70%

trials)2

1cm Position-failure3 0.00% 0.00% 0.00% 0.00%
5cm Position-failure4 0.00% 0.00% 0.00% 0.00%

10cm Position-failure5 0.00% 0.00% 0.00% 0.00%
0.1* Rotation-failure6 10.22% 18.14% 8.20% 3.04%
0.50 Rotation-failure7 0.00% 0.00% 0.00% 0.00%
1.00 Rotation-failure8 0.00% 0.00% 0.00% 0.00%

1 TrajOpt experiment result summary for the new 5000-cases sets, where all the
cases are validated by sampling-based planners to be solvable.

2 Collision detected in the sampling-based planners' solution trajectories by our
separate continuous-time collision checker.

3 Fail to reach the target position by 1cm Euclidean distance.
4 Fail to reach the target position by 5cm Euclidean distance.
5 Fail to reach the target position by 10cm Euclidean distance.
6 Fail to reach the target orientation by > 0.10.
7 Fail to reach the target orientation by > 0.5'.
8 Fail to reach the target orientation by > 1.0*.

based planner solution for each TrajOpt failure case is summarized in Table 5.4.

From Table 5.4 we can see that although there still exist cases where the solutions

returned by sampling-based planners are in collision, that percentage is very small. In

terms of goal-reaching ability, none of the test cases have position error that exceeds

1cm, or orientation error that exceeds 0.50. Therefore, the overall performance of

sampling-based planners are satisfying, and we believe they can become high-quality

seed solutions for TrajOpt in the following experiments.

After validating the solutions from the sampling-based planners, we pass them

into TrajOpt as seed trajectories in order to see the improvement of TrajOpt's per-

formance in those originally failed cases. The test cases in this experiment are the

failure cases from Section 5.1 where at least one of the four sampling-based planners

have found solutions. The seed planner is one of the sampling-based planners that

have found solutions, which might not be the same for different cases. In this section,

88

the number of waypoints for TrajOpt is no longer fixed at 30. Instead, for each test

case this number is set to the same number as the seed trajectory it takes in, in

order to match the requirement of the optimization algorithm. Also, in this prelimi-

nary experiment, we removed the constraints on maximum displacement of each step,

since the sampling-based planner may return a path which is unevenly distributed,

and adding maximum displacement constraint may add difficulty to the trajectory

optimization. The goal of this preliminary experiment is to get a general idea of Tra-

jOpt's improvement after taking sampling-based planners solutions as initializations,

so that we can prove our hypotheses. The results of this experiment will guide us in

further in-depth experiments and analyses on providing better seeds for TrajOpt.

Table 5.5, 5.6, 5.7 and 5.8 show the comparison of TrajOpt's performance with

joint-space straight-line initializations and sampling-based solution initializations in

four different test environments. From Table 5.5 to 5.8 we can observe that TrajOpt's

performance in terms of finding collision-free solutions is significantly improved com-

pared to its performance when provided with a straight-line seed path. The time it

takes TrajOpt to find solutions is also much shorter when provided with sampling-

based planners' solutions as initializations. However, TrajOpt is still not able to find

collision-free solutions in all test cases, and its collision rate is much higher than the

collision rate of the seed sampling-based planners (shown in Table 5.4). This means,

in many test cases, TrajOpt is actually pushing the collision-free seed trajectories into

collision during its optimization. This phenomenon might be caused by the additional

constraints and costs we use in TrajOpt.

In our planner evaluation experiments, we are mainly using three parameters to

describe our expectations for the solution trajectories returned by TrajOpt: maximum

displacement for each time step, path-length coefficients, and collision penalty hit-in

distance. Maximum step displacement, as mentioned in Section 5.1, is a constraint

that specifies the maximum displacement each joint can travel through in a time

step, which is essentially a velocity constraint. This constraint is turned off in the

experiment in this section as we want to respect the seed trajectories, thus here it

shouldn't be the reason for TrajOpt to push trajectories into collisions. Path-length

89

Table 5.5: Sampling-based-seeded and Straight-line-seeded TrajOpt Performance
Comparison in Tabletop with a Pole Environment

Sampling-based Joint-space
Planners Jm-pc

Initializations Solutions as Straight-line as
.ouiosa Initialization

Initialization
Total Num of Trials' 879 879

Average Optimization Time (s) 0.0572 2.1309
Continuous-time Collision Rate (percent 16.84% 98.86%

trials) 2

Waypoints Collision Rate (percent trials)3 0.00% 59.16%
Average Collision Reduction (num 1.09 0.29

obstacles) 4

Average Start-Goal Straight-line Euclidean 0.6857 0.6857
Distance (m)

Average Solution Trajectory Joint-space 2.5431 1.3483
Length (rad)

1cm Position-failure 5 2.39% 3.53%
5cm Position-failure6 0.23% 0.23%

10cm Position-failure 7 0.00% 0.11%
0.10 Rotation-failure8 60.07% 0.80%
0.5* Rotation-failure9 0.11% 0.46%
1.0* Rotation-failurel 0.11% 0.34%

The test cases used in this experiment are the ones where straight-line-seeded
TrajOpt failed but sampling-based planners can find solutions. The sampling-
based solutions are provided to TrajOpt as seeds, and the results of the new
experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.10.
9 Fail to reach the target orientation by > 0.50.
10 Fail to reach the target orientation by > 1.00.

90

Table 5.6: Sampling-based-seeded and Straight-line-seeded TrajOpt Performance
Comparison in Tabletop with a Container Environment

Sampling-based Joint-space
. . Planners

Initializations Slutions Straight-line as
Solutions Initialization
Initialization

Total Num of Trials' 1818 1818
Average Optimization Time (s) 0.1598 2.6576

Continuous-time Collision Rate (percent 26.13% 98.46%
trials)2

Waypoints Collision Rate (percent trials) 3 2.97% 65.46%
Average Collision Reduction (num

obstacles) 4

Average Start-Goal Straight-line Euclidean 0.9961 0.9961
Distance (M)

Average Solution Trajectory Joint-space 2.3592 1.6203
Length (rad)

1cm Position-failure 5 5.72% 11.77%
5cm Position-failure 6 0.28% 0.99%

10cm Position-failure 7 0.06% 0.33%
0.1* Rotation-failure 8 51.16% 4.90%
0.50 Rotation-failure 9 0.11% 1.10%
1.0* Rotation-failurel 0.11% 0.72%

1 The test cases used in this experiment are the ones where straight-line-seeded
TrajOpt failed but sampling-based planners can find solutions. The sampling-
based solutions are provided to TrajOpt as seeds, and the results of the new
experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.10.
9 Fail to reach the target orientation by 0.5'.
10 Fail to reach the target orientation by 1.00.

91

Table 5.7: Sampling-based-seeded and Straight-line-seeded TrajOpt Performance
Comparison in Shelf with Boxes Environment

Sampling-based Joint-space
Planners Jm-pc

Initializations Slutions Straight-line as
Solutions as .ntaizto
Initialization

Total Num of Trials' 1495 1495
Average Optimization Time (s) 0.6606 2.6929

Continuous-time Collision Rate (percent 30.84% 97.06%
trials)2

Waypoints Collision Rate (percent trials) 3 7.02% 64.88%
Average Collision Reduction (num 3.25 1.78

obstacles) 4

Average Start-Goal Straight-line Euclidean 1.0173 1.0173
Distance (M)

Average Solution Trajectory Joint-space 2.3106 2.1049
Length (rad)

1cm Position-failure5 5.08% 19.60%
5cm Position-failure6 0.40% 3.81%
10cm Position-failure7 0.07% 0.87%
0.10 Rotation-failure8 32.98% 13.85%
0.50 Rotation-failure9 1.74% 6.62%
1.00 Rotation-failure10 1.14% 6.29%

1 The test cases used in this experiment are the ones where straight-line-seeded
TrajOpt failed but sampling-based planners can find solutions. The sampling-
based solutions are provided to TrajOpt as seeds, and the results of the new
experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.10.
9 Fail to reach the target orientation by > 0.50.
10 Fail to reach the target orientation by > 1.00.

92

Table 5.8: Sampling-based-seeded and Straight-line-seeded TrajOpt Performance
Comparison in Kitchen Environment

Sampling-based Joint-space
. . PlannersInitializations Slutions Straight-line as

Solutions Initialization
Initialization

Total Num of Trials' 458 458
Average Optimization Time (s) 0.2682 2.6418

Continuous-time Collision Rate (percent
.ras 2 33.62% 96.07%trials)2

Waypoints Collision Rate (percent trials) 3 5.24% 63.76%
Average Collision Reduction (num

obstacles) 4

Average Start-Goal Straight-line Euclidean 0.8833 0.8833
Distance (m)

Average Solution Trajectory Joint-space 1.8009 1.6918
Length (rad)

1cm Position-failure5 8.95% 17.90%
5cm Position-failure6 0.00% 2.18%

10cm Position-failure7 0.00% 0.44%
0.10 Rotation-failure 8 36.03% 8.95%
0.5* Rotation-failure9 0.66% 1.97%
1.00 Rotation-failure10 0.44% 1.75%

1 The test cases used in this experiment are the ones where straight-line-seeded
TrajOpt failed but sampling-based planners can find solutions. The sampling-
based solutions are provided to TrajOpt as seeds, and the results of the new
experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.1*.
9 Fail to reach the target orientation by > 0.50.
10 Fail to reach the target orientation by > 1.00.

93

coefficients specify the weight of path-length cost in the TrajOpt objective function. It

defines how much effort TrajOpt should spend on path shortening. When TrajOpt is

trying to shorten the trajectories, it is possible that it might push originally collision-

free edges into collision, especially if it's focusing on waypoint collision avoidance.

However, in this section's experiment the path-length coefficient is also turned off,

so it should not be the reason for collisions in TrajOpt's solutions either. Collision

penalty hit-in distance describes how far away the solution trajectories are supposed

to be from obstacles. As described in Chapter 2, collision constraints are turned into

penalties in TrajOpt, and a safety margin will be specified by the user in order to

define when the collision penalties will hit in. In the experiment in this section, the

collision penalty hit-in distance is set to 0.025 m. This means, if at some waypoint

the solution provided by a sampling-based planner is very close to obstacles, TrajOpt

will tend to push that waypoint farther away from obstacles, which unfortunately

might cause some other edges to collide. More detailed analysis of the influence of

collision penalty hit-in distance will be presented in Section 5.4.1. Based on the above

analysis, one of the approaches that can help avoid TrajOpt's collision-failure is to

add the same safety margin to sampling-based seed planners too.

Additionally, from Table 5.5 to 5.8 we can also note that the 0.10 rotation-failure

rate of solution trajectories tends to be larger when TrajOpt is provided sampling-

based planner solutions as initializations. This might be because the seed trajecto-

ries from sampling-based planners have larger rate of 0.1' rotation-failure than the

straight-line seeds which precisely reach the goal pose. As we can see from Table 5.4,

the 0.10 rotation-failure rate of sampling-based planners solutions ranges from 3% to

18%. Therefore, when TrajOpt is trying to adjust the seed trajectories, there could be

a higher possibility of orientation errors than using the "precise" straight-line seeds.

Nonetheless, when we look at the percentage of larger orientation errors, for example

0.50 rotation-failure and 1.00 rotation-failure, we can actually find that the sampling-

based-seeded TrajOpt is generally performing much better than straight-line-seeded

TrajOpt in terms of orientation precision, since the sampling-based-seeded one is

better at avoiding large orientation errors.

94

_-- Jqp I - RPM, Mq Wffl"- I

Another finding about Table 5.5 to 5.8 is that the joint-space trajectory length

of solutions is larger in the experiments with sampling-based seed planners' solutions

as initializations. This is a natural consequence because the straight-line seed tra-

jectories represent the shortest distance between the start and goal, meanwhile the

sampling-based planner solutions are often winding. This finding reminds us that,

if we want to use sampling-based planners' solutions as TrajOpt initializations, we

should let TrajOpt spend more effort on path shortening and smoothing by using a

higher path-length coefficient.

5.3.2 Influence of Seed Interpolation on TrajOpt Performance

After the preliminary experiments of TrajOpt with sampling-based planners' solu-

tions as initializations, we validated our hypothesis that passing in high-quality seed

trajectories to TrajOpt can enhance TrajOpt's performance significantly. However,

collisions still happen in the solutions returned by TrajOpt even if we pass in collision-

free seeds. Therefore, we endeavor to find approaches that can improve TrajOpt's

collision avoidance ability. One of the promising approaches is to interpolate the seed

trajectories before giving them to TrajOpt. This can be beneficial because it is highly

possible that solutions provided by sampling-based planners are unevenly distributed.

There might be many jiggles in a certain part of the trajectory, and large jumps in

other parts of the trajectory. The large jumps in seed trajectories are usually where

TrajOpt gets into collision. Interpolation of seed trajectories is a way to solve this

problem. We constrain the maximum displacement of joint values in each step in

a seed trajectory, and when the length of some edge in the trajectory exceeds the

maximum joint step displacement, we add more waypoints on the edge in order to

satisfy the maximum step constraint.

The advantages of seed interpolation includes two aspects. First, it provides Tra-

jOpt more freedom to adjust the seed trajectories. When TrajOpt optimizes a seed

trajectory, it moves the waypoint around in order to reduce the total cost. If the

waypoints are far away from each other, it is difficult for TrajOpt to move the way-

points without colliding with obstacles. In contrast, when there are more waypoints,

95

TrajOpt will have better control over the seed trajectories, and thus will have more

freedom to make changes and minimize the costs. Therefore, after interpolating the

seed trajectories, the optimized solutions returned by TrajOpt will tend to be shorter

and more smooth. Second, seed interpolation will also help TrajOpt avoid collisions.

Although in theory TrajOpt should support continuous-time collision checking, em-

pirical tests show that it will still have edge collision even when the continuous-time

collision-checking is turned on, and the edge collision rate is usually much higher

than waypoint collision rate. Also, the current continuous-time collision-checker in

TrajOpt doesn't support self-collision checking. We have to use both continuous-time

and discrete-time collision-checkers in order to actually utilize the continuous-time

collision checking function in TrajOpt, which slows down the optimization speed a

lot. Therefore, interpolating the seed trajectories by adding more waypoints on long

edges before providing them to TrajOpt will be the better way to help TrajOpt avoid

edge collision.

One disadvantage of seed interpolation is that TrajOpt optimization time will be

longer when the seed has more waypoints. This inspired us to conduct further exper-

iments so as to test the influence of waypoint number on TrajOpt's speed. Detailed

study on the number of waypoints will be presented in future sections. In this sec-

tion, we conducted several preliminary tests on LazyPRM seeds in order to find an

appropriate maximum step for joint values to interpolate seed trajectories, which can

facilitate remarkable improvement in TrajOpt's performance without losing the speed

advantage of TrajOpt. The test cases used in these tests are the feasible 5000 test

cases validated by sampling-based planners in Section 5.2. The collision penalty hit-

in distance in these tests are set to 0.025 m, and the path-length coefficient is set to

1. We choose the relatively easy and relatively difficult environment, "tabletop with

a pole" and "shelf with boxes" respectively, to test the influence of setting maximum

joint step displacement at 0.08 rad and 0.16 rad. For the other two environments, we

only tested with the maximum step displacement 0.16 rad. The results of these tests

are presented in Table 5.9.

From Table 5.9 we can see that before seed interpolation, the average number of

96

_19MMI qllw lm

Table 5.9: LazyPRM Seed Interpolation Experiment Results
Average

Continuous- Waypoints Solution
Average Average time Collision Trajectory

Environments Num of Opti- Collision Rate Joint-
Way- mization Rate (ecn pc
points Time (s) (percent (percent space

trials) trials) Length
t ri al s)_ _(r a d)

No Inter- 7.24 0.22 37.58% 1.42% 1.13
polation

Tabletop Max
with a Step 0.08 110.22 1.54 0.20% 0.16% 1.32

Pole (rad)
Max

Step 0.16 57.15 0.98 0.12% 0.08% 1.28

(rad)
No Inter- 8.00 0.30 43.67% 1.88% 1.25

Tabletop polation
with a Max

Container Step 0.16 62.52 1.55 0.96% 1.21% 1.44

(rad)
No Inter- 9.25 0.38 43.46% 1.42% 1.44
polation

Shelf Max
with Step 0.08 131.65 2.42 2.19% 1.49% 1.69

Boxes (rad)
Max

Step 0.16 68.38 1.36 1.57% 1.25% 1.60

(rad)
No Inter- 7.05 0.31 31.39% 0.83% 0.94
polation

Kitchen Max
Step 0.16 54.29 1.28 0.35% 0.41% 1.11

(rad)

97

waypoints in seed trajectories are very small (less than 10). This can easily cause

TrajOpt to get into edge collisions when it is trying to smooth and shorten the trajec-

tories. The "Continuous-time Collision Rate" column in Table 5.9 shows that TrajOpt

is failing 30% - 45% of time in getting collision-free solutions even if the uninterpolated

seed trajectories are collision-free. When we interpolate the seed trajectories with the

maximum step displacement of 0.08 rad, the average number of waypoints shoots up

to above 100, and the average optimization time also increases to 1.5 - 2.5 s. The

continuous-time collision rate dropped to below 3% for all the environments, which

proves the effect of seed interpolation. However, compared to TrajOpt's performance

with maximum step 0.16 rad, using maximum step 0.08 rad actually makes TrajOpt

have both higher collision rate and longer average trajectory length. The collision rate

increase might be because the waypoint number of above 100 adds to the complexity

of optimization, and then adds to the failure rate. The average trajectory length

increase is natural, since the 0.08 maximum cases have about twice the number of

waypoints as the 0.16 cases. In conclusion, using 0.08 rad maximum displacement has

no advantage over using the 0.16 one. Further, although using 0.16 as maximum step

displacement introduces an optimization time increase compared to uninterpolated

cases, the average runtime is still below 2 s in all the four environments, which is

not an unacceptable increase. Therefore, in our following experiments, we decide to

use 0.16 rad as maximum step displacement and conduct seed interpolation before

passing sampling-based planners' solutions to TrajOpt.

5.3.3 Results of Comprehensive Sampling-based-seed Exper-

iments and Comparison among Different Motion Plan-

ners

After preliminary tests and seed interpolation on TrajOpt with sampling-based plan-

ners' seed solutions, we conduct a comprehensive motion planner evaluation experi-

ment on the 5000 feasible test cases validated in Section 5.2. In this experiment, same

as the previous section, the collision penalty hit-in distance in these tests are set to

98

I will 1PFJ1FNJ_1. Nil

0.025 m, and the path-length coefficient is set to 1. The motion planners used in

this experiment includes the original TrajOpt with joint-space straight-line initializa-

tions, OpenRAVE BasicRRT, OMPL RRT*, OMPL LazyPRM, OMPL PRM*, and

TrajOpt with initializations provided by each of those four sampling-based planners.

We also compare the solutions of the above motion planners with the joint-space

straight-line in between the start pose and the goal pose. In this experiment, the

main aspects we are examining include success rate, planning time, and solution path

length. Here, the success rate of sampling-based planners considers both their ability

to find a solution within the time limit (300 s) and the collision-avoidance ability of

their solutions. Meanwhile for TrajOpt, since it will always return a trajectory even

if the optimization failed, the success rate only considers the collision-free rate. Note

that the test cases for original TrajOpt and sampling-based planners are all the 5000

feasible cases in each environment, while for TrajOpt seeded with sampling-based

planners' solutions, the test cases are the ones that the specific sampling-based plan-

ner has found solutions in. This is because the feasible 5000 test cases are the ones

where at least one sampling-based planner can find solutions, rather than ones where

all sampling-based planners can find solutions. Further, sampling-based planners' so-

lutions are interpolated before provided to TrajOpt as initializations. The maximum

joint displacement in each time step is set as 0.16 rad. The experiment results and

performance comparison of different motion planners are listed in Table 5.10, Table

5.11, Table 5.12 and Table 5.13.

In Table 5.10 to 5.13, the "no-solution rate" represents the percentage of test cases

where sampling-based planners failed to return a solution within the given time limit.

This is not applicable to TrajOpt because TrajOpt will always return a trajectory

even if the optimization failed. The "edge collision rate" in Table 5.10 - 5.13 rep-

resents the continuous-time collision checking results provided by our independent

collision-checker, while the "waypoint collision rate" describes the percentage of cases

where collision is detected on waypoints in the solution. For sampling-based plan-

ners, the collision rates are calculated with respect to the cases where the planner

has found a solution instead of all the 5000 cases. For each of the sampling-based

99

Table 5.10: Planners Comparison in Tabletop with a Pole Environment
Edge . AverageTotal Average Average No- Cll Waypoint Way-

Planners Num of Length Time solution sion Collision point
Trials1 (rad) (s) 2 Rate3 Rte 4 Rate Number5

Straight- 5000 0.48 0.00 - 45.50% 0.00% 2.00
line6

Straight-
line-seeded 5000 0.71 0.56 - 17.38% 10.42% 30.00
Traj Opt

LazyPRM 5000 1.76 7.32 0.22% 0.68% 0.00% 7.24
RRT 5000 0.77 17.88 2.30% 14.33% 0.00% 19.65
RRT* 5000 0.63 300.19 5.32% 0.34% 0.00% 3.09
PRM* 5000 0.79 300.71 1.00% 0.44% 0.00% 3.43

LazyPRM-
seeded 4989 1.28 0.98 - 0.12% 0.08% 57.15

TrajOpt
RRT-seeded 4885 0.70 0.63 - 1.29% 0.45% 36.96

TrajOpt
RRT*-
seeded 4734 0.54 0.29 - 0.02% 0.00% 21.53

TrajOpt
PRM*-
seeded 4950 0.64 0.36 - 0.10% 0.06% 26.57

TrajOpt

1 The test cases used in this experiment are the 5000 feasible test cases validated
by sampling-based planners. For TrajOpt with a certain sampling-based planner's
solutions as initializations, the test cases where the specific sampling-based planner
failed to find solutions are not included.

2 For TrajOpt with sampling-based initializations, the time sampling-based planners
take to generate seed trajectories are not included.

3 Percentage of cases where sampling-based planners failed to find solutions within
the time limit. Since TrajOpt will always return a trajectory even if the optimiza-
tion failed, this no-solution rate is not applicable to TrajOpt.

4 Percentage of test cases where collision is detected by our separate continuous-time
collision checker.

5 Start point and goal point are included. For TrajOpt with sampling-based ini-
tializations, seed trajectories are interpolated before passing into TrajOpt. The
maximum step displacement is constrained at 0.16 rad.

6 The joint-space straight-line that connects the start pose and goal pose.

100

Table 5.11: Planners Comparison in Tabletop with a Container Environment
Edge . AverageTotal Average Average No- Colli- Waypot Way-

Planners Num of Length Time solution . Collision poin
Trials1 (rad) (s)2 Rate3 sion4 Rate Point

RateRate Number
Straight- 5000 0.52 0.00 - 73.68% 0.00% 2.00

line6

Straight-
line-seeded 5000 1.14 1.33 - 35.96% 24.02% 30.00

TrajOpt
LazyPRM 5000 1.92 15.04 2.36% 1.11% 0.00% 8.00

RRT 5000 0.92 44.90 5.72% 19.50% 0.02% 26.16
RRT* 5000 0.80 300.29 15.94% 0.86% 0.00% 3.58
PRM* 5000 1.04 300.73 3.24% 1.28% 0.00% 4.45

LazyPRM-
seeded 4882 1.44 1.55 - 0.96% 1.21% 62.52

Traj Opt
RRT-seeded

RTajpt 4714 0.85 1.02 - 2.18% 1.51% 45.74
Traj Opt
RRT*-
seeded 4203 0.70 0.44 - 0.90% 1.07% 26.54

TrajOpt
PRM*-
seeded 4838 0.84 0.49 - 1.12% 1.32% 34.06

Traj Opt

1 The test cases used in this experiment are the 5000 feasible test cases validated
by sampling-based planners. For TrajOpt with a certain sampling-based planner's
solutions as initializations, the test cases where the specific sampling-based planner
failed to find solutions are not included.

2 For Traj Opt with sampling-based initializations, the time sampling-based planners
take to generate seed trajectories are not included.

3 Percentage of cases where sampling-based planners failed to find solutions within
the time limit. Since TrajOpt will always return a trajectory even if the optimiza-
tion failed, this no-solution rate is not applicable to TrajOpt.

4 Percentage of test cases where collision is detected by our separate continuous-time
collision checker.

5 Start point and goal point are included. For TrajOpt with sampling-based ini-
tializations, seed trajectories are interpolated before passing into TrajOpt. The
maximum step displacement is constrained at 0.16 rad.

6 The joint-space straight-line that connects the start pose and goal pose.

101

Table 5.12: Planners Comparison in Shelf with Boxes Environment Environment

Total Average Average No- Edge Waypoint Average
Colli- Way-

Planners Num of Length Time solution sion Collision point
Trials' (rad) (s) 2 Rate3 Rt 4 Rate Number 5

Straight-
line 6 5000 0.52 0.00 - 84.70% 0.00% 2.00

Straight-
line-seeded 5000 1.51 1.49 - 32.06% 21.68% 30.00

TrajOpt
LazyPRM 5000 2.08 63.85 16.94% 1.04% 0.00% 9.25

RRT 5000 1.06 63.86 10.00% 19.58% 0.00% 33.57
RRT* 5000 0.93 300.37 26.78% 0.63% 0.00% 3.97
PRM* 5000 1.16 300.79 24.34% 1.27% 0.00% 5.20

LazyPRM-
seeded 4153 1.60 1.36 - 1.57% 1.25% 68.38

TrajOpt
RRT-seeded

RTajpt 4500 0.98 0.92 - 4.20% 3.38% 55.07
TrajOpt
RRT*-
seeded 3661 0.81 0.46 - 1.17% 0.85% 30.88

TrajOpt
PRM*-
seeded 3783 0.95 0.67 - 1.98% 1.72% 38.57

TrajOpt

1 The test cases used in this experiment are the 5000 feasible test cases validated
by sampling-based planners. For TrajOpt with a certain sampling-based planner's
solutions as initializations, the test cases where the specific sampling-based planner
failed to find solutions are not included.

2 For TrajOpt with sampling-based initializations, the time sampling-based planners
take to generate seed trajectories are not included.

3 Percentage of cases where sampling-based planners failed to find solutions within
the time limit. Since TrajOpt will always return a trajectory even if the optimiza-
tion failed, this no-solution rate is not applicable to TrajOpt.

4 Percentage of test cases where collision is detected by our separate continuous-time
collision checker.

5 Start point and goal point are included. For TrajOpt with sampling-based ini-
tializations, seed trajectories are interpolated before passing into TrajOpt. The
maximum step displacement is constrained at 0.16 rad.

6 The joint-space straight-line that connects the start pose and goal pose.

102

I I I I - - "! - -1 . - _I

Table 5.13: Planners Comparison in Kitchen Environment Environment
Edge .AverageTotal Average Average No- Edge Waypoint Wa-

Coli- WyPlanners Num of Length Time solution . Collision poin
Trials' (rad) (s) 2 Rate3 sion Rate point

Rate4 Number
Straight- 5000 0.53 0.00 - 53.32% 0.00% 2.00

line6

Straight-
line-seeded 5000 0.94 0.74 - 8.80% 5.84% 30.00
Traj Opt

LazyPRM 5000 1.67 18.03 3.36% 0.85% 0.00% 7.05
RRT 5000 0.78 45.95 3.60% 12.28% 0.04% 20.62
RRT* 5000 0.71 300.27 13.58% 0.51% 0.00% 3.15
PRM* 5000 0.87 300.89 3.60% 1.33% 0.00% 3.67

LazyPRM-
seeded 4832 1.11 1.28 - 0.35% 0.41% 54.29

TrajOpt
RRT-seeded

RTajpt 4820 0.72 0.99 - 0.52% 0.48% 38.26
Traj Opt
RRT*-
seeded 4321 0.62 0.45 - 0.37% 0.28% 23.90

TrajOpt
PRM*-
seeded 4820 0.70 0.54 - 0.46% 0.50% 28.83

TrajOpt

The test cases used in this experiment are the 5000 feasible test cases validated
by sampling-based planners. For TrajOpt with a certain sampling-based planner's
solutions as initializations, the test cases where the specific sampling-based planner
failed to find solutions are not included.

2 For TrajOpt with sampling-based initializations, the time sampling-based planners
take to generate seed trajectories are not included.

3 Percentage of cases where sampling-based planners failed to find solutions within
the time limit. Since TrajOpt will always return a trajectory even if the optimiza-
tion failed, this no-solution rate is not applicable to TrajOpt.

4 Percentage of test cases where collision is detected by our separate continuous-time
collision checker.

5 Start point and goal point are included. For TrajOpt with sampling-based ini-
tializations, seed trajectories are interpolated before passing into TrajOpt. The
maximum step displacement is constrained at 0.16 rad.

6 The joint-space straight-line that connects the start pose and goal pose.

103

planners, the number of "has-solution" cases is the same as the total number of trials

for TrajOpt with the corresponding sampling-based planner as seed planner. The

"average waypoint number" for the joint-space straight-line in Table 5.10 to 5.13 is

always 2, since the straight-lines only have start point and end point. On the other

hand, for TrajOpt with straight-line as seeds the waypoint number is set to 30. As

for TrajOpt with sampling-based-seeds, this number is the number of waypoints after

seed interpolation.

From the "average length" in Table 5.10 to 5.13 we can see that LazyPRM has the

longest average length among all the planners. This is natural due to the lazy search-

ing technique used in LazyPRM. TrajOpt seeded with LazyPRM solutions also have

a relatively long average length compared to others, but it has significantly shortened

the LazyPRM seed trajectory length. On the other hand, although seeded with the

shortest-distance initial trajectories, the straight-line-seeded TrajOpt still has rela-

tively long average solution length. This might be because most of the straight-line

initializations are deep in collision and TrajOpt is struggling to find collision-free so-

lutions, therefore the solutions they eventually got to might not be high-quality ones.

Compared to other sampling-based planners, RRT* usually has the shortest solutions,

therefore the RRT*-seeded TrajOpt has the shortest average solution length among

all the planners. Comparing the quality of the sampling-based seed trajectories and

the optimized trajectories after the smoothing and shortening of TrajOpt, we can see

TrajOpt has played a notable role improving the solution quality.

From runtime aspect, TrajOpt is performing much faster than sampling-based

planners. RRT* and PRM* will always take all the given time to improve their solu-

tions, so their runtime is always about 300 s. Although RRT and LazyPRM are not

optimal planners, their runtime still ranges from 10 s to 60 s in different environments.

This is not feasible for practical motion planning tasks under uncertain environments,

since those tasks require the planner to be fast-reactive. In terms of TrajOpt, its op-

timization time is related to the collision condition and the number of waypoints of

seed trajectories. Straight-line-seeded TrajOpt usually takes a longer time because

it can cost TrajOpt many iterations to move the trajectory out of collision. Among

104

the sampling-based-planner-seeded TrajOpt planners, LazyPRM initializations usu-

ally cost TrajOpt longer time to optimize, since they are less optimal and have more

waypoints. When TrajOpt is provided with optimal planners' solutions as seeds, it

usually spends about half a second smoothing and shortening the trajectories, and

the length of the solution TrajOpt returned can be very close to the straight-line dis-

tance between the start and the goal. This is very promising, because it shows that

if we can provide high-quality initializations to TrajOpt, the post-processing time

TrajOpt takes to optimize the solutions is very short. Therefore, TrajOpt can be a

very powerful online post-processing tool for fast-reactive motion planning.

When looking into the collision rate of the test planners, we realize that sampling-

based planners, which are supposed to return only collision-free solutions, still have

edge collision detected sometimes, although their waypoint collision rates are usually

0%. This phenomenon is especially noticeable for the OpenRAVE BasicRRT planner.

This tells us that despite the theoretical collision-free edge connection in sampling-

based planning, in practical implementations the granularity of collision checking

might not be small enough and there might still be edge collisions. However, after us-

ing TrajOpt to post-process the sampling-based planner solutions, there is no longer

high collision rate in any of the environments. Even in the most complicated envi-

ronment, "shelf with boxes", the 19.58% edge collision rate in RRT solutions will be

reduced to 4.20% after TrajOpt optimization. In the relatively easier environments

("tabletop with a pole", "tabletop with a container" and "kitchen"), the continuous-

time collision rate will usually become smaller after the seed trajectories are optimized

by TrajOpt. However, in the "shelf with boxes" environment the collision rate tends

to be higher after TrajOpt. One possible reason is that the environment complexity

and the larger number of seed trajectory waypoints makes it more difficult for Tra-

jOpt converge when shortening and smoothing the seed trajectories, which is likely

to cause more collision.

In conclusion, this planner evaluation experiment shows that many of the current

robotic motion planners are not perfect enough for practical planning tasks. The

sampling-based planner representatives show slow planning speed, and some of them

105

have high no-solution rate or edge collision rate. On the other hand, TrajOpt, the

representative of state-of-the-art trajectory optimization type motion planners, shows

high collision rate when simply initialized with straight-line seed trajectories. Using

sampling-based planners' solutions as seed trajectories for TrajOpt provides high-

quality paths with low collision rate, whereas the time the sampling-based planners

take to generate seed trajectories is too long for practical motion planning tasks that

require fast reaction. Therefore, this inspires us to search for faster approaches to gen-

erate high-quality seed trajectories for TrajOpt, which will facilitate the construction

of a fast-reactive risk-aware motion planning system.

5.4 Analysis of Parameters' Influence on TrajOpt

Performance

5.4.1 Tests on TrajOpt Collision Penalty Hit-in Distance Pa-

rameter

As introduced in Chapter 2, in TrajOpt the collision penalty hit-in distance param-

eter describes how large a safety margin the solution trajectories should keep from

obstacles. Once the robot gets into this safety margin, the collision penalties will

hit in. When TrajOpt is provided with sampling-based planners' solutions which

don't have a safety margin guaranteed, TrajOpt might need to move some waypoints

so that the solution trajectories will be further away from obstacles. However, this

might also cause longer path length or add to the chance of optimization failure. In

order to further explore the influence of collision penalty hit-in distance, we run a

set of experiments on the TrajOpt failure cases from Section 5.1 with sampling-based

planners' solutions as initializations. TrajOpt's performance with different collision

penalty hit-in distances are compared with the straight-line-seeded TrajOpt (as shown

in Table 5.14), and the effect of this parameter is analyzed. Note that the test cases

and the seed solution for each case are the same as in Section 5.3.1, and the seed

trajectories have not been interpolated before provided to TrajOpt.

106

Table 5.14: Straight-line Seed TrajOpt Performance with 0.025 Penalty Distance and
0 Length Coefficient

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trials' 879 1818 1495 458

Average Optimization Time (s) 2.1309 2.6576 2.6929 2.6418
Continuous-time Collision Rate 98.86% 98.46% 97.06% 96.07%

(percent trials)2

Waypoint Collision Rate (percent 59.16% 65.46% 64.88% 63.76%
trials)'

Average Collision Reduction (num 0.29 2.01 1.78 2.48
obstacles)'

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (m)

Average Solution Trajectory 1.3483 1.6203 2.1049 1.6918
Joint-space Length (rad)

1cm Position-failure5 3.53% 11.77% 19.60% 17.90%
5cm Position-failure6 0.23% 0.99% 3.81% 2.18%

10cm Position-failure7 0.11% 0.33% 0.87% 0.44%
0.10 Rotation-failure8 0.80% 4.90% 13.85% 8.95%
0.50 Rotation-failure9 0.46% 1.10% 6.62% 1.97%
1.0* Rotation-failure10 0.34% 0.72% 6.29% 1.75%

1 The test cases used in this experiment are the ones where straight-line-seeded
TrajOpt failed but sampling-based planners can find solutions. The sampling-
based solutions are provided to TrajOpt as seeds, and the results of the new
experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by 0.1'.
9 Fail to reach the target orientation by 0.50.
10 Fail to reach the target orientation by 1.00.

107

Table 5.15 and 5.16 provide the experiment results with collision penalty hit-

in distance set to 0 m and 0.025 m respectively, both of which have path-length

coefficient set to 0. Therefore in these two cases, TrajOpt will not spend effort on

trying to shorten the path length. Compare the results shown in Table 5.15 and

5.16, we can notice that setting the collision penalty hit-in distance higher actually

causes higher collision rate and more goal-reaching failures. This is because when the

seed trajectories from sampling-based planners have no safety margin but the safety

margin set for TrajOpt is large, TrajOpt will tend to make more adjustment to the

waypoints of seed trajectories. Hence if the seed trajectories have large jumps, it

would be hard to guarantee continuous-time safety on those long edges even if the

waypoints are further away from obstacles. If we compare Table 5.15 and 5.16 with

Table 5.14, we will find that the collision rate of TrajOpt will be much lower when

provided with sampling-based planners' seed trajectories instead of straight-line seeds.

However, the collision rate is still low enough to be satisfactory. This problem, as

discussed in Section 5.3.2, can be solved by interpolating the seed trajectories before

passing into TrajOpt.

Table 5.17, 5.18 and 5.19 provide the comparison of setting collision penalty hit-in

distance to 0, 0.002 and 0.025 when path-length coefficient is set to 1. When the path-

length coefficient is set to 1, TrajOpt starts to spend more effort on shortening the

path length, and we can notice from Table 5.17, 5.18 and 5.19 that the continuous-

time collision rate starts to get very high. Although this set of experiments are

conducted on the TrajOpt failure cases which are relatively difficult test cases, this

collision rate result is still too high to be satisfactory. Compare Table 5.19 with Table

5.14 we can even see that the continuous-time collision rate of sampling-based-seeded

TrajOpt is almost as high as straight-line-seeded cases. If we compare the collision

rate across different environments, in Table 5.17 to 5.19 we can notice the interest-

ing phenomenon that the relatively difficult environment, "shelf with boxes", actually

has relatively low continuous-time collision rate. One possible reason is that in diffi-

cult environments, the sampling-based planner solutions include more waypoints, as

can be found through Table 5.10 to 5.13. When the seed trajectories include more

108

Table 5.15: Sampling-based Seed TrajOpt Performance with 0 Penalty Distance and
0 Length Coefficient

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trialsi 879 1818 1495 458

Average Optimization Time (s) 0.0186 0.0522 0.0906 0.0599
Continuous-time Collision Rate 5.80% 16.67% 23.48% 20.52%

(percent trials)'
Waypoint Collision Rate (percent 0.23% 3.80% 7.76% 4.59%

trials)3

Average Collision Reduction (num 1.22 3.36 3.49 3.70
obstacles) 4

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (m)

Average Solution Trajectory 2.5293 2.3310 2.1765 1.7628
Joint-space Length (rad)

1cm Position-failure5 0.00% 1.10% 0.00% 2.18%
5cm Position-failure 6 0.00% 0.00% 0.00% 0.00%
10cm Position-failure7 0.00% 0.00% 0.00% 0.00%
0.10 Rotation-failure 8 58.48% 50.22% 27.42% 34.06%
0.5* Rotation-failure9 0.00% 0.00% 0.00% 0.00%
1.00 Rotation-failure' 0 0.00% 0.00% 0.00% 0.00%

1 The test cases used in this experiment are
TrajOpt failed but sampling-based planners
based solutions are provided to TrajOpt as

the ones where straight-line-seeded
can find solutions. The sampling-
seeds, and the results of the new

experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by 0.10.
9 Fail to reach the target orientation by 0.50.
10 Fail to reach the target orientation by > 1.00.

109

Table 5.16: Sampling-based Seed TrajOpt Performance with 0.025 Penalty Distance
and 0 Length Coefficient

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trials1 879 1818 1495 458

Average Optimization Time (s) 0.0572 0.1598 0.6606 0.2682
Continuous-time Collision Rate 16.84% 26.13% 30.84% 33.62%

(percent trials)2

Waypoint Collision Rate (percent 0.00% 2.97% 7.02% 5.24%
trials)3

Average Collision Reduction (num 1.09 3.23 3.25 3.24
obstacles) 4

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (M)

Average Solution Trajectory 2.5431 2.3592 2.3106 1.8009
Joint-space Length (rad)

1cm Position-failure5 2.39% 5.72% 5.08% 8.95%
5cm Position-failure6 0.23% 0.28% 0.40% 0.00%
10cm Position-failure7 0.00% 0.06% 0.07% 0.00%
0.10 Rotation-failure 8 60.07% 51.16% 32.98% 36.03%
0.5 Rotation-failure9 0.11% 0.11% 1.74% 0.66%
1.00 Rotation-failure10 0.11% 0.11% 1.14% 0.44%

1 The test cases used in this experiment are
TrajOpt failed but sampling-based planners
based solutions are provided to TrajOpt as

the ones where straight-line-seeded
can find solutions. The sampling-
seeds, and the results of the new

experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by 0.10.
9 Fail to reach the target orientation by 0.50.
10 Fail to reach the target orientation by > 1.00.

110

waypoints, it will be easier for TrajOpt to avoid edge collision. Compared to edge col-

lision rates, the waypoint collision rates shown in Table 5.17 to 5.19 are much lower.

These empirical experiment results show that, although in theory TrajOpt is doing

continuous-time collision checking, TrajOpt's ability of guaranteeing continuous-time

safety is much worse than waypoint safety.

Compare the experiment results for TrajOpt with sampling-based seeds when the

path length coefficient is set to 1 and the collision penalty hit-in distance is set as

0 m, 0.002 m and 0.025 m respectively, then we can see that increasing collision

penalty hit-in distance helps decrease both the discrete-time collision rate and the

continuous-time collision rate. This conclusion is different from what we found out in

Table 5.15 and Table 5.16 when the path length coefficient is set to 0. This is because

zero path length coefficient is a special case. When the path length coefficient is

set to 0, TrajOpt is not actually doing any path smoothing and shortening, so with

zero collision penalty hit-in distance it should just return the seed trajectory if it

is collision-free. Yet if the collision penalty hit-in distance is large, TrajOpt will

try to move the waypoints around so that they are far enough away from obstacles,

which unfortunately might cause edge collision. However, in the nonzero path length

coefficient case, TrajOpt is always trying to move the waypoints around, and when the

number of waypoints of seed trajectories are too small, chances are TrajOpt will push

the trajectories into collision while moving the waypoints. In this case, setting the

collision penalty hit-in distance higher will be beneficial for avoiding edge collision

too, because having all the waypoints further away from obstacles is also likely to

make the trajectory far from obstacles in general.

Another finding about Table 5.17 to 5.19 is that increasing collision penalty hit-in

distance does not necessarily increase solution path length. In many of the environ-

ments, larger collision penalty hit-in distance test cases actually have shorter average

path length. Additionally, we can also discover from Table 5.17 to 5.19 that changing

collision penalty hit-in distance doesn't have notable influence on TrajOpt's goal-

reaching ability.

In conclusion, giving TrajOpt a certain safety margin from obstacles is helpful for

111

Table 5.17: Sampling-based Seed Traj
1 Length Coefficient

Opt Performance with 0 Penalty Distance and

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trials' 879 1818 1495 458

Average Optimization Time (s) 0.1343 0.1763 0.2116 0.2513
Continuous-time Collision Rate 94.20% 87.35% 80.67% 86.03%

(percent trials)2

Waypoint Collision Rate (percent 8.65% 17.16% 33.98% 24.45%
trials)3

Average Collision Reduction (num 0.17 2.33 2.41 2.14
obstacles) 4

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (M)

Average Solution Trajectory 1.7544 1.6407 1.7468 1.2181
Joint-space Length (rad)

1cm Position-failure 5 1.25% 2.59% 1.67% 2.40%
5cm Position-failure 6 0.00% 0.00% 0.00% 0.22%
10cm Position-failure 7 0.00% 0.00% 0.00% 0.00%
0.10 Rotation-failure8 35.61% 29.98% 20.13% 15.28%
0.5* Rotation-failure9 0.00% 0.39% 1.47% 0.66%
1.00 Rotation-failure10 0.00% 0.22% 0.87% 0.22%

1 The test cases used in this experiment are
TrajOpt failed but sampling-based planners
based solutions are provided to TrajOpt as

the ones where straight-line-seeded
can find solutions. The sampling-
seeds, and the results of the new

experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.10.
9 Fail to reach the target orientation by > 0.50.
10 Fail to reach the target orientation by > 1.00.

112

Table 5.18: Sampling-based Seed TrajOpt Performance with 0.002 Penalty Distance
and 1 Length Coefficient

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trials1 879 1818 1495 458

Average Optimization Time (s) 0.1329 0.1814 0.2342 0.3044
Continuous-time Collision Rate 91.70% 83.83% 71.84% 78.17%

(percent trials) 2

Waypoint Collision Rate (percent 1.82% 7.59% 15.05% 9.82%
trials)3

Average Collision Reduction (num 0.21 2.39 2.53 2.07
obstacles)4

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (M)

Average Solution Trajectory 1.7539 1.6410 1.7272 1.1787
Joint-space Length (rad)

1cm Position-failure5 1.14% 2.26% 1.40% 1.53%
5cm Position-failure6 0.11% 0.00% 0.00% 0.22%

10cm Position-failure7 0.00% 0.00% 0.00% 0.00%
0.10 Rotation-failure 8 35.61% 29.37% 19.67% 13.10%
0.50 Rotation-failure 9 0.00% 0.39% 1.60% 1.09%
1.00 Rotation-failure10 0.00% 0.17% 1.00% 0.44%

1 The test cases used in this experiment are
TrajOpt failed but sampling-based planners
based solutions are provided to TrajOpt as

the ones where straight-line-seeded
can find solutions. The sampling-
seeds, and the results of the new

experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by 0.1'.
9 Fail to reach the target orientation by 0.50.
10 Fail to reach the target orientation by 1.00.

113

Table 5.19: Sampling-based Seed TrajOpt Performance with 0.025 Penalty Distance
and 1 Length Coefficient

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trials1 879 1818 1495 458

Average Optimization Time (s) 0.2129 0.2923 0.4913 0.4079
Continuous-time Collision Rate 65.30% 60.84% 45.15% 47.06%

(percent trials)2

Waypoint Collision Rate (percent 0.00% 4.07% 5.89% 4.37%
trials)3

Average Collision Reduction (num 0.55 2.78 3.08 3.12
obstacles)4

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (M)

Average Solution Trajectory 1.6778 1.5715 1.6545 1.2254
Joint-space Length (rad)

1cm Position-failure5 3.41% 7.86% 15.65% 11.35%
5cm Position-failure6 0.00% 0.72% 2.47% 0.44%
10cm Position-failure7 0.00% 0.06% 0.80% 0.00%
0.10 Rotation-failure8 33.33% 27.67% 26.56% 17.69%
0.5* Rotation-failure9 0.00% 0.39% 7.09% 1.97%
1.00 Rotation-failure10 0.00% 0.28% 5.55% 1.09%

1 The test cases used in this experiment are
TrajOpt failed but sampling-based planners
based solutions are provided to TrajOpt as

the ones where straight-line-seeded
can find solutions. The sampling-
seeds, and the results of the new

experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by lem Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.1*.
9 Fail to reach the target orientation by > 0.50.
10 Fail to reach the target orientation by >, 1.00.

114

it to reduce both edge collision rate and waypoint collision rate. Although when the

seed planner is not constrained by a safety margin Traj Opt sometimes might push the

trajectories into collision, this problem can be solve by interpolating seed trajectories

and provide TrajOpt with more waypoints to optimize over. In this thesis, most of

the experiments have collision penalty hit-in distance set to 0.025 m.

5.4.2 Tests on TrajOpt Path Length Coefficient Parameter

In TrajOpt, path length coefficients are multipled by the costs exerted on joint move-

ment radians in each time step. This parameter influences the weight of total trajec-

tory length in the cost function. In order to further analyze the influence of this path

length coefficient parameter, experiments with different path length coefficients are

conducted and TrajOpt's performance with those different parameters are compared.

The test cases used in this section is the same as in Section 5.3.1 and Section 5.4.1.

Table 5.20 summarizes the results of sampling-based-seeded TrajOpt on original

TrajOpt failure cases with collision penalty hit-in distance set to 0.025 m and path

length coefficient set to 0.5. Compare the results shown in Table 5.16, Table 5.20

and Table 5.19, which all have collision penalty hit-in distance set to 0.025 m but

with the path length coefficient set to 0, 0.5 and 1 respectively, then we can find

that changing path length coefficient from zero to non-zero has significant influence

on both continuous-time collision rate and average path length, while increasing path

length coefficient from 0.5 to 1 has much less obvious influence. For example, in the

"tabletop with a pole" environment, the average path length is 2.54 m with zero path

length coefficient, and it jumps to 1.72 m with 0.5 path length coefficient. However,

the decrease for changing path length coefficient from 0.5 to 1 is only from 1.72 m to

1.68 m. Similarly, the edge collision rate in the "tabletop with a pole" environment

climbs from 16.84% to 64.16% when changing the path length coefficient from 0 to

0.5, but it only increases from 64.16% to 65.30% when the path length coefficient is

raised from 0.5 to 1.

When we look at the experiment results in Table 5.15 and Table 5.17 with collision

penalty hit-in distance set to 0 m, we can get similar conclusions about the influence

115

Table 5.20: Sampling-based Seed TrajOpt Performance with 0.025 Penalty Distance
and 0.5 Length Coefficient

Tabletop Tabletop Shelf
Environment with a with a with Kitchen

Pole Container Boxes
Total Num of Trials1 879 1818 1495 458

Average Optimization Time (s) 0.3208 0.3547 0.4476 0.4079
Continuous-time Collision Rate 64.16% 59.68% 45.01% 47.06%

(percent trials)2

Waypoint Collision Rate (percent 0.00% 4.40% 6.62% 4.37%
trials)'

Average Collision Reduction (num 0.57 2.01 3.09 3.12
obstacles)4

Average Start-Goal Straight-line 0.6857 0.9961 1.0173 0.8833
Euclidean Distance (m)

Average Solution Trajectory 1.7164 1.6042 1.6774 1.2254
Joint-space Length (rad)

1cm Position-failure 5 3.41% 6.38% 15.72% 11.35%
5cm Position-failure 6 0.11% 0.33% 2.21% 0.44%

10cm Position-failure 7 0.00% 0.06% 0.87% 0.00%
0.10 Rotation-failure8 34.93% 29.48% 27.09% 17.69%
0.5 Rotation-failure9 0.00% 0.27% 7.09% 1.97%
1.00 Rotation-failurel 0.00% 0.22% 5.62% 1.09%

The test cases used in this experiment are
TrajOpt failed but sampling-based planners
based solutions are provided to TrajOpt as

the ones where straight-line-seeded
can find solutions. The sampling-
seeds, and the results of the new

experiment are compared to the TrajOpt performance with joint-space straight-
line initializations.

2 Collision detected in the TrajOpt solution trajectories by our separate continuous-
time collision checker.

3 Collision detected on the waypoints of TrajOpt solution trajectories.
4 Collision reduction in each test case means the number of obstacles the joint-space

straight-line collides with minus the number of obstacles TrajOpt solution collides
with. Average collision reduction is the average of collision reduction numbers
over all the test cases.

5 Fail to reach the target position by 1cm Euclidean distance.
6 Fail to reach the target position by 5cm Euclidean distance.
7 Fail to reach the target position by 10cm Euclidean distance.
8 Fail to reach the target orientation by > 0.10.
9 Fail to reach the target orientation by 0.50.
10 Fail to reach the target orientation by 1.00.

116

of path length coefficients. In these cases, changing path length coefficients from zero

to nonzero caused remarkable increase in continuous-time collision rate and notable

decrease in average solution path length. Here the influence on edge collision rate is

even more obvious than the cases with collision penalty hit-in distance as 0.025 m.

This is because, when the path length coefficient is zero, setting collision penalty hit-in

distance to 0 m means TrajOpt is basically keeping the original seed trajectories and

therefore the collision rate is very low. On the other hand, when path length coefficient

is nonzero, TrajOpt is likely to have edge collision when moving the waypoints around

to shorten path length. In this case, having smaller collision penalty hit-in distance

means the waypoints of solution trajectories are closer to obstacles, thus edge collision

rate will be even higher. Therefore, the change of collision rate with path length

coefficients will be more drastic when the collision hit-in penalty is set to 0 m.

In conclusion, when using a nonzero path length coefficient, TrajOpt shows strong

ability of shortening solution path length. In this thesis, most experiments on TrajOpt

have path length coefficient set to 1.

5.4.3 Tests on TrajOpt Number of Waypoints Parameter

In Section 5.1 we mentioned that the number of waypoints in the straight-line-seeded

TrajOpt experiments is set to 30 considering the trade-off between optimization time

and collision rate. This consideration is based on the analysis show in this section

that discusses the correlation between number of waypoints and TrajOpt optimization

time. Additionally, based on the result analysis in Section 5.3, we can find that

even if provided with collision-free sampling-based planners' solutions, there is still a

possibility that TrajOpt may return solutions that are in collision. We hypothesize

that, since TrajOpt can avoid waypoint collision much better than edge collision,

when the seed trajectory provided for TrajOpt has too few waypoint number, it is

possible that TrajOpt may push the trajectory section in between two waypoints

into obstacles when conducting trajectory optimization. Therefore, in this section we

present several sets of experiments and analyses which are aimed at investigating the

influence of number of waypoints on TrajOpt's performance in terms of collision rate

117

and optimization time.

In Section 5.3 we propose that interpolating the seed trajectories before providing

to TrajOpt and hence increasing the seed waypoint number may increase the success

rate of TrajOpt. However, we are also concerned that increasing waypoint number

may cause a rise in optimization time cost by TrajOpt. In order to study the influence

of number of waypoints on TrajOpt optimization time, we conduct further investiga-

tion into the original straight-line seed TrajOpt experiments by changing the number

of waypoints in those experiments. We compare the time cost of the same test cases

with different waypoint number, and the results are summarized in Figure 5-1, 5-2,

5-3 and 5-4. The waypoint numbers used in this test are: 5, 10, 15, 20, 30, 40, 50,

70, 100, 120, 150, 180, 200, 250, 300 and 400. In Figure 5-1 to 5-4, the horizontal

axis is the total number of waypoints in seed trajectory, and the vertical axis is the

average optimization time cost by TrajOpt in all the experiment cases. From Figure

5-1 to 5-4 we can see that the time TrajOpt takes to optimize a seed trajectory grows

almost linearly with the increase of number of waypoints in the seed trajectory.

Furthermore, we also analyze the correlation between optimization time and total

number of seed waypoints in the sampling-based-seeded TrajOpt experiments on test

cases where the original straight-line-seeded TrajOpt failed. Figure 5-5, Figure 5-

6, Figure 5-7 and Figure 5-8 summarize the result of time and waypoint number

correlation analysis, where the horizontal axis is the total number of waypoints in

the seed trajectory and the vertical axis is the optimization time for the test cases

where the number of waypoint is the corresponding value on the horizontal axis. The

blue curve in Figure 5-5 to 5-8 represents the average time spent by TrajOpt among

all the test cases that has the number of waypoints corresponding to the value on

the horizontal axis, whereas the red star represents the optimization time that each

test case takes. From Figure 5-5 to 5-8 we can also see that the growing trend of

optimization time with the increase of number of waypoints is not very steep.

Additionally, we also analyze the influence of number of waypoints in the sampling-

based seed experiments. We investigate the correlation between number of obstacles

that TrajOpt solutions collide into and number of waypoints in the seed trajectory

118

.....-. 0"W"', I'M MW --- 1C_

50

4 0 ------------.-.-.--.-- -.-..---- ..-. -

30----

CL

0

01

0 50 100 150 200 250 300 350 400
Number of Waypoints

Figure 5-1: Optimization time and number of waypoints correlation in straight-line-
seeded TrajOpt experiments: Tabletop with a Pole Environment

350

300-- - --

250 -.---- ------ 300 ------- ---- -- ----------- ------........... - ------- ------ ----- - ---

- 250 -......-.--.-..-.---- .-----

1 5 0 - -.. -. .. - . -. . --.-.- -- - --------.- - - ---------

E 0

4-J
CL
0

01

0 50 100 150 200 250 300 350 400
Number of Waypoints

Figure 5-2: Optimization time and number of waypoints correlation in straight-line-
seeded TrajOpt experiments: Tabletop with a Container Environment

119

50 100 150 200 250 300 350 400
Number of Waypoints

Figure 5-3:
seeded Traj

Optimization time and number of waypoints correlation in straight-line-
Opt experiments: Shelf with Boxes Environment

2,;n.

200

E
C
0

N

E

0

150

100

501

01
C

Figure 5-4:
seeded Traj

50 100 150 200 250 300 350 400
Number of Waypoints

Optimization time and number of waypoints correlation in straight-line-
Opt experiments: Kitchen Environment

120

600

500 -

4 0 0 - ---- - -- - - - -

2 0 0 -..-

0

a)

E

.2C

N
E

40
0

0

-..............- -. .

-.

... -..

---...................................

0.5

*

0 .4 -- - - - - -...--.-.-.--.-.- ...- .---.-.-.-

4

*

CL

**

0

0 .1 -------------_ -- *.---.-.-.- .--

0.2 0 10 2 0 -0 4 0-

5 *

1.2

10 -... -.-.-.........-.......-. -----------

*O. * ** *

CL**

II

0.0*
0 10 20 30 40 50 60

Number of Waypoints

Figure 5-5: Runtime and waypoint number correlation in sampling-based-seeded ex-
periments for failed TrajOpt cases: Tabletop with a Pole Environment

1.2

**

E * ***

* *

* **

N **

E* * * *
*

0.0

0) 10 20 30 40 50 60 70 80
Number of Waypoints

Figure 5-6: Runtime and waypoint number correlation in sampling-based-seeded ex-
periments for failed Traj Opt cases: Tabletop with a Container Environment

121

2.5

2.0 [- -. - .

1.5 -. -. . .

. * .I *
1.01 - - - *

* *

**

-* ----

#* **

** *

0.5

0.0
C

*

*

.-..- .------- --------------- ---
**

* *

W4

**

* * :

** *

50 100
Number of Waypoints

150

Figure 5-7: Runtime and waypoint number correlation in sampling-based-seeded ex-
periments for failed TrajOpt cases: Shelf with Boxes Environment

1.4

1.2-

aJ
E

0

N

0.

1.0 ----.. -

0.8 - -----

0.6 --.

0.4

0.2

0.0
C 10 20 30 40 50 60 70 80 90

Number of Waypoints

Figure 5-8: Runtime and waypoint number correlation in sampling-based-seeded ex-
periments for failed TrajOpt cases: Kitchen Environment

122

E

0

N
E
'Z

0

200

*

*

* *

-* * -.-
*

**

-- * - - --* * -*

* * *

.. . *. .* .

V -,-, .- __

I

-.-...

*

2.0

1.5

E
z
C
0

6 1.0
U

*0
CL

0.

0.0
0 10 20 30 40

Number of Waypoints
50 60

Figure 5-9: Collision number and waypoint number correlation in sampling-based-
seeded experiments on TrajOpt failure cases: Tabletop with a Pole Environment

provided for TrajOpt in the sampling-based-seed TrajOpt experiments on test cases

where the original straight-line-seeded TrajOpt failed to find a collision-free solution.

The result of collision number and number of waypoints correlation analysis is shown

in Figure 5-9, Figure 5-10, Figure 5-11 and Figure 5-12. The horizontal axis in Figure

5-9 to 5-12 is the total number of waypoints in the seed trajectory, and the vertical

axis is the average number of collision for the test cases where the seed waypoint

number is the corresponding value on the horizontal axis. The blue curve in Figure 5-

9 to 5-12 represents the average number of collisions among all the test cases that has

the number of waypoints corresponding to the value on the horizontal axis, whereas

the red star represents the number of obstacles that each test case collide with. From

Figure 5-9 to 5-12 we can see that the trend for the average number of collisions is

not very clear when the number of waypoint changes, but the collision number of

individual cases can get very high when number of waypoints is low.

123

- * ****** ******** **

.-.

.*..

-

.....................

..............

....................

..-

5

4

E
z
c 3
0

05
U
-0
-5 2.

0I
0

* * --- * .- - - * . -. -- .--

A)
10 20 30 40 50 60 70 80

Number of Waypoints

Figure 5-10: Collision number and waypoint number correlation in sampling-based-
seeded experiments on TrajOpt failure cases: Tabletop with a Container Environment

7

6

.a5n5
E
z
C
.2 4

U

3

0

C

- .. - -.-. -----.---.-. ---.-.-. --.-.- ------------- - - - -

----- * ---- - - - -

....-...-.- ...-.-

-- hm +....... .- ..

JA i.r{,I~VAftA
50 100

Number of Waypoints
150

*

0 200

Figure 5-11: Collision number and waypoint number correlation in sampling-based-
seeded experiments on TrajOpt failure cases: Shelf and Boxes Environment

124

ammmmmmmmmmnI ~Ie

..............

..............

...............

.............. I

---- ******a***----

II

10 I I I I

8 ------ - - - --- - --

0 10 20 30 40 50 60 70 80 90
Number of Waypoints

Figure 5-12: Collision number and waypoint number correlation in sampling-based-
seeded experiments on Traj~pt failure cases: Kitchen Environment

5.5 Influence of Optimization Gurobi on Tr-ajOpt's

Performance

When we are testing on Traj~pt, we notice that, if the Gurobi certificate is not in-

stalled properly, Traj~pt will use other open-source optimization algorithms without

telling the user. Therefore, we are not aware that Traj~pt is not using Gurobi for

the experiments shown in previous sections in this Chapter, thus the results shown

are without Gurobi. In this section, we installed the Gurobi certificate properly and

conducted tests on Traj~pt with Gurobi on the feasible 5000 test cases in all the

four environments. Here, Traj~pt is seeded with different sampling-based planners'

solutions, and the seed trajectories are all interpolated with the maximum step dis-

placement 0.16 rad. The results are shown in Table 5.21, Table 5.22, Table 5.23 and

Table 5.24. Compare the results shown in Table 5.21 to 5.24 with the results in Table

5.10 to Table 5.13, we can see that after using Gurobi, the optimization speed of

125

10

Table 5.21: Combined Sampling-based and TrajOpt Planner Performance Compari-
son with Gurobi in Tabletop with a Pole Environment

TrajOpt with TrajOpt wtih TrajOpt with TrajOpt with
Planners LazyPRM RRT Seed RRT* Seed PRM* SeedSeed

Total Num of Trials 5000 5000 5000 5000
Average Path Length 1.25 0.69 0.54 0.63

(rad)
Average Time (s) 0.55 0.39 0.22 0.28

Edge Collision Rate 0.10% 0.72% 0.04% 0.08%
Waypoint Collision 0.12% 0.04% 0.02% 0.06%

Rate
Average Waypoint 57.15 36.96 21.53 26.57

Number

Table 5.22: Combined Sampling-based and TrajOpt Planner Performance Compari-
son with Gurobi in Tabletop with a Container Environment

TrajOpt with TrajOpt with TrajOpt with TrajOpt withPlanners LazyPRM RRT Seed RRT* Seed PRM* Seed
____ ____ ___ ____ ___ Seed

Total Num of Trials 5000 5000 5000 5000
Average Path Length 1.30

(rad) 1 0.84 0.69 0.82

Average Time (s) 0.78 0.57 0.32 0.46
Edge Collision Rate 0.92% 1.21% 0.93% 1.12%
Waypoint Collision 1.25% 0.76% 1.00% 1.36%

Rate
Average Waypoint 62.52 45.74 26.54 34.06

Number

TrajOpt is notably improved, especially for the cases where the number of waypoints

are high after seed interpolation. On the other hand, TrajOpt's ability of shortening

path length and avoiding collision is also improved, although the improvement is not

as significant as on optimization speed.

126

Table 5.23: Combined Sampling-based and TrajOpt Planner Performance Compari-
son with Gurobi in Shelf with Boxes Environment

TrajOpt with
Trnnesajpt w TrajOpt with TrajOpt with TrajOpt with

Planners LazyPRM RRT Seed RRT* Seed PRM* Seed

Total Num of Trials 5000 5000 5000 5000
Average Path Length 1.55 0.95 0.80 0.92

(rad)
Average Time (s) 0.92 0.85 0.39 0.59

Edge Collision Rate 1.47% 1.80% 1.04% 1.72%
Waypoint Collision 1.11% 1.56% 0.79% 1.45%

Rate
Average Waypoint 68.38 55.07 30.88 38.57

Number

Table 5.24: Combined Sampling-based and TrajOpt Planner Performance Compari-
son with Gurobi in Kitchen Environment

TrajOpt with TrajOpt with TrajOpt with TrajOpt with
Planners LazyPRM RRT Seed RRT* Seed PRM* Seed

Seed
Total Num of Trials 5000 5000 5000 5000

Average Path Length 1.10 0.72
(rad) 0.62 0.70

Average Time (s) 0.73 0.53 0.31 0.40
Edge Collision Rate 0.33% 0.27% 0.42% 0.52%
Waypoint Collision 0.39% 0.27% 0.35% 0.60%Rate

Average Waypoint 54.29 38.26 23.90 28.83
Number

127

5.6 T rajOpt with Chekov Roadmap Solutions as Seed

Trajectories

Based on the motion planner evaluation from previous sections, we conclude that

TrajOpt has fast online optimization speed but needs the seed trajectories to be

high-quality to guarantee success rate, whereas interpolated sampling-based planners'

solutions can become good seed trajectories but require a long time to generate.

Therefore, the challenge for online fast reactive motion planning becomes how to

generate high-quality seed trajectories within a short time.

In order to solve this problem, Matthew Orton from the Model-based Embedded

and Robotic Systems group developed an off-line roadmap construction approach that

can be reused across planning instances [181. Here we call this roadmap approach

"Chekov roadmap". Chekov roadmap is a sparse roadmap that represents the static

collision-free configuration space and stores the shortest paths in between each pair

of nodes. The core of the Chekov roadmap framework is a simplified PRM variant

combined with a cache of all-pair-shortest-paths (APSP) solutions. The roadmaps are

constructed by randomly sampling points in joint space until a pre-defined number of

collision-free points have been sampled. We want the Chekov roadmap to be sparse so

that the online query time to feed TrajOpt with seed trajectories will be very short.

However, the sparsity of the roadmap also results in suboptimal solutions, and that's

why we need TrajOpt to post-process the solution trajectories.

Table 5.25 presents the comparison of TrajOpt performance with Chekov roadmap

and other sampling-based planners. From Table 5.25 we can see that, in terms of fail-

ure rate, our Chekov roadmap planner performs comparably or better than all other

tested sampling-based planners. When the roadmap planner produces a solution,

TrajOpt in turn produces a collision-free trajectory more than 98% of the time. In

addtion to failure rate, our roadmap planner's average runtime is substantially better

than the sampling-based planners' in all cases. It is faster by more than an order

of magnitude in most observed cases. This is a result of caching the APSP solution

set for fast queries. Additionally, it should be noted that the roadmap planner con-

128

Table 5.25: TrajOpt Seeded with Sampling-based Planner Solution compared to
Roadmap Solution

Average Average Seed + TrajOpt Planner

Seed TrajOpt Seed Average Average
EnvionmntsPath CollisionPlanners Runtime Length Runtime Length Rate 2

(s) (rad) (s)1 (rad)

LazyPRM 0.98 1.76 8.30 1.28 0.12%

Tabletop RRT 0.63 0.77 18.51 0.70 1.29%

with a Pole RRT* 0.29 0.63 300.48 0.54 0.02%
PRM* 0.36 0.79 301.07 0.64 0.10%

Roadmap 0.45 1.24 0.59 0.82 0.06%
LazyPRM 1.55 1.92 16.59 1.44 0.96%

Tabletop RRT 1.02 0.92 45.92 0.85 2.18%
with a RRT* 0.44 0.80 300.73 0.70 0.90%

Container PRM* 0.49 1.04 301.22 0.84 1.12%
Roadmap 0.52 1.32 0.70 1.02 0.90%
LazyPRM 1.36 2.08 65.21 1.60 1.57%

Shelf with RRT 0.92 1.06 64.87 0.98 4.20%
Shelf wRRT* 0.46 0.93 300.83 0.81 1.17%
Boxes PRM* 0.67 1.16 301.46 0.95 1.98%

Roadmap 0.61 1.30 1.00 1.02 1.98%
LazyPRM 1.28 1.67 19.31 1.11 0.35%

RRT 0.99 0.78 46.95 0.72 0.52%
Kitchen RRT* 0.45 0.71 300.72 0.62 0.37%

PRM* 0.54 0.87 301.43 0.70 0.46%
Roadmap 0.70 1.29 1.08 0.86 0.73%

1 Sum of seed planner runtime and TrajOpt runtime averaged from
2 Continuous-time collision rate.

5000 test cases.

129

structs the roadmap for each environment a priori whereas LazyPRM constructs a

new roadmap online for each case in our tests. For path length, the roadmap planner

performs worse than the optimal planners and RRT, but better than LazyPRM. In

general with roadmap-based planners, the sparsity of the roadmap restricts ability

to obtain short paths. That being said, the Chekov roadmap planner generates di-

rect, collision-free paths compared to the off-the-shelf sampling-based planners. Since

these paths are just seeds for TrajOpt and their lengths are well within an order of

magnitude of one another, the discrepancies in path length are not a concern for us.

If we look at the path length after TrajOpt's optimization, we can see that the com-

bined Chekov "roadmap + TrajOpt" planner produces solutions that are on average

more than 10% shorter than their corresponding seed trajectories.

Overall, our Chekov roadmap planner performs as well as if not better than the

off-the-shelf sampling-based planners we tested. The performance metrics used are

failure rate, average runtime, and average path length. Since one of the main goals of

p-Chekov is to develop a fast reactive motion execution system that can "instantly"

replan when disturbances occur, average runtime is where we are most concerned with

improvement. Fortunately, average runtime is where we saw the greatest improve-

ment when using our Chekov roadmap planner to provide seed solutions rather than

using other traditional sampling-based planners. Therefore, the Chekov "roadmap +

TrajOpt" combined planner is a qualified candidate to be the deterministic motion

plan generating component in the p-Chekov framework.

130

Chapter 6

Risk-aware Motion Planning

Approach

This chapter introduces a real-time risk-aware motion planning and execution system

called p-Chekov. During the planning phase, p-Chekov accounts for the uncertainty

introduced by the sensors and controllers that will be used during the trajectory

execution, and solves for a solution trajectory that can satisfy a user-specified chance

constraint. During the execution phase, p-Chekov can keep improving the solution

by iteratively redistributing the risk allocations for different waypoints along the

trajectory, so that it can make the most use of the chance constraint and approach

the locally optimal solution.

In this chapter, Section 6.1 first gives a brief overview of the whole p-Chekov

motion planning and execution system and presents the system diagram. Then the

following three sections provide a detailed description for each of the main compo-

nents that are incorporated in the p-Chekov system respectively. Section 6.2 intro-

duces the technique for estimating the a priori state probability distributions along

a certain trajectory before execution, taking into account the system process noises

and observation noises from controllers and sensors. Based on this state distribution

estimation, the probability of collision along a certain trajectory can be estimated by

sampling from this estimated probability distribution. Therefore, Section 6.3 gives

a detailed explanation about the collision probability estimation approach used in

131

p-Chekov. Additionally, provided with a total amount of user-specified risk bound,

how to allocate the risk among different constraints has significant influence on the

quality of final solutions. Hence Section 6.4 discusses the risk allocation ideas for

both the planning phase and the execution phase in p-Chekov that can help provide

better solutions within fewer iterations. Finally, Section 6.5 presents the p-Chekov

algorithm in detail and explains through pseudo code how the different components

are integrated together.

6.1 P-Chekov Risk-aware Motion Planning and Ex-

ecution System

Real world robotic motion planning tasks inevitably suffer from uncertainties from

many different sources, such as approximate models of system dynamics, imperfect

sensors, and stochastic motions caused by controller noises. Although nowadays feed-

back controllers can take care of a large portion of uncertainties during the execu-

tion phase, the remaining deviations can still be problematic, especially for robots

with mobile bases, and there are no guarantees for task success. As a result, tak-

ing uncertainties into account during the planning phase is important, especially for

uncertainty-sensitive planning tasks where safety and accuracy are crucial. The p-

Chekov risk-aware motion planning and execution system introduced in this thesis

accounts for the potential uncertainties during execution while making plans, and the

solutions it returns can satisfy user-specified chance constraints over plan failure.

The system diagram of the p-Chekov planning and execution system is shown in

Figure 6-1, for which the "plan generating and risk estimation" component is extracted

and illustrated in Figure 6-2. From Figure 6-1 we can see that p-Chekov can be

divided into two phases: the planning phase and the execution phase. The goal in

the planning phase is to find a feasible solution trajectory where the total risk of

collision is smaller than or equal to a given joint chance constraint. Since this initial

solution can often be overly conservative, p-Chekov will keep improving it during the

132

execution phase in order to achieve better utility.

In p-Chekov, time is discretized into fixed-interval time steps, and the no-collision

constraint of each time step is viewed as a separate constraint. When the planning

phase starts, p-Chekov first decides on an initial allocation of the given joint chance

constraint among the no-collision constraints for each time step. This initial allocation

is often a uniform allocation. Provided with a risk allocation, p-Chekov then goes

into the "plan generating and risk estimation" stage, which is shown in Figure 6-2.

In this stage, p-Chekov first generates a nominal solution trajectory that is feasible

and collision-free under the deterministic assumption. This nominal trajectory is

generated by the deterministic "roadmap + TrajOpt" planner described in Section 5.6.

Then this nominal trajectory is passed into the LQG-MP algorithm, which will be

introduced in Section 6.2, in order to estimate the a priori probability distribution

of robot states along this trajectory, taking into consideration the controllers and

sensors that will be used during execution. With this state distribution information,

the probability of collision on each waypoint along this certain trajectory can be

estimated using the quadrature-sampling-based collision estimation approach that

will be shown in Section 6.3.2. Then the "plan generating and risk estimation" stage

is finished.

Now that the initial risk allocation and plan generating and risk estimation stages

are completed, we have the allocated risk bound for each waypoint and also the esti-

mated probability of collision for each waypoint along the nominal solution trajectory.

With this information, we can compare the allocated risk bound and the estimated

risk of collision for each waypoint and conduct the "risk test" shown in Figure 6-1.

If at some waypoint, the estimated risk of collision exceeds the allocated risk bound,

then the robot configuration at this waypoint will be viewed as a conflict, and this

nominal trajectory will be viewed as invalid. The p-Chekov system will go back to

the previous step in this case, as shown in Figure 6-1.

When going back to the plan generating and risk estimation stage, penalties will

be associated with the configurations at the waypoints where the allocated chance

constraint is violated, so that the plan generator will be guided to avoid such config-

133

Initiate Risk Allocation

f Plan Generating and Risk Estimation

violate chance
constraints

Risk Test
extract conflict Isatisfy chance constraint

begin execution

Reallocate Risk

Figure 6-1: System diagram for p-Chekov

134

H
Planning

phase

Iterative
Risk
Allocation
(IRA)

Execution
phase

Plan Generating and Risk Estimation

Deterministic Roadmap + TrajOpt Planner

I Nominal trajectory

Figure 6-2: The planning phase of p-Chekov

135

1
I

LQG-MP (Linear-quadratic Gaussian Motion Planning)

State and control

Iprobability distributions

Approximate Risk of Collision

urations in order to satisfy the chance constraints when generating new plans. That

being said, TrajOpt is not guaranteed to move further away from obstacles when one

certain risky configuration is penalized. In order to avoid the situations where Tra-

jOpt moves towards obstacles when some configurations are penalized, an increase

on the collision penalty hit-in distance is added to those risky waypoints at the same

time. This can help guiding TrajOpt to move to a safer direction in the new iteration.

Additionally, p-Chekov will also conduct a risk reallocation procedure if the nominal

trajectory fails the risk test, which would be explained in detail through Algorithm 4

in Section 6.4.1. This procedure takes risk bounds from the waypoints where they are

underutilized to the ones where they are violated, so that feasible trajectories can be

found in fewer iterations. With the above three types of new constraints, i.e. config-

uration penalization, penalty hit-in distance increase and risk reallocation, p-Chekov

will replan and improve the nominal trajectory from the previous iteration in order to

progress to a feasible trajectory. This "plan generating and risk estimation - risk test -

plan generating and risk estimation" cycle will keep going until the solution trajectory

satisfies the chance constraints or the iteration number hits its upper bound. If the

chance constraints at all the waypoints are satisfied, the joint chance constraint for

this planning task will be satisfied, and the planner will go to the execution phase.

If the chance constraints can not be satisfied within the iteration limit, the planner

will return failure.

In the execution phase, the robot will start to execute the solution trajectory

from the planning phase. In the mean time, the p-Chekov system will proceed with

an "any-time" style of plan refinement. This means, after finding the initial feasible

trajectory, the planner will keep improving it during execution until the robot reaches

its goal. In p-Chekov, this plan refinement is based on the Iterative Risk Allocation

(IRA) algorithm, which would be illustrated in Section 6.4.2. Through gradually

reducing the penalty hit-in distance in TrajOpt, IRA can distinguish between active

constraints and inactive constraints. Then it can reallocate the risk from inactive

constraints to active constraints in order to get a less conservative risk allocation.

After that, p-Chekov will go back to the "plan generating and risk estimation" step

136

with zero penalty hit-in distance and find a new feasible solution which satisfies the

new risk allocation. When it finds a valid plan, the robot will keep executing based

on the updated plan. This risk reallocation and plan refinement process is conducted

iteratively, which will help the planner to converge to a locally optimal solution if

given enough number of iterations.

6.2 Approach for Estimating Robot State Probabil-

ity Distributions

In order to make motion plans which can guarantee that the final trajectory exe-

cution satisfies the user-provided chance constraint over plan failure, estimating the

probability distributions associated with a certain solution trajectory in the planning

phase is an important step. In p-Chekov, the linear-quadratic Gaussian motion plan-

ning (LQG-MP) approach [89] is adapted to carry out this probability distribution

estimation step.

LQG-MP is a bridge between control theory and probabilistic motion planning.

When making motion plans, it takes into account the controllers and sensors that

will be used in the execution phase, and explicitly characterizes in advance the a

priori probability distributions of robot states along a given trajectory. In our im-

plementation of LQG-MP, it is assumed that the deviation of the robot execution

trajectory from the desired trajectory caused by uncertainties is small enough so that

the control effort needed to bring the robot back on track will not exceed the control

input space. Another assumption in this implementation is that the system dynamics

and observation models can be linearized along the desired trajectory. As a result of

this linearization assumption, we also assume that linear-quadratic Gaussian (LQG)

controllers will be used during execution, since with linear dynamics it can provide

the optimal control policy to guide the robot along a planned trajectory [7]. A LQG

controller is the combination of a Kalman filter 124] and a Linear Quadratic Regu-

lator (LQR) [7]. It can provide optimal control policies for linear systems corrupted

137

by additive white Gaussian noise. Based on the separation theorem [52], observer

design and controller design can be separated into two independent processes, thus

the optimality of LQG control is guaranteed.

In this section, we will give a brief introduction to this LQG-based a priori prob-

ability distribution estimation approach by describing its model linearization, the

optimal state estimation and optimal control techniques it uses, and then its state

and control input distribution estimation technique. In p-Chekov it will play a sig-

nificant role in the planning phase algorithm.

6.2.1 Dynamics and Observation Model Linearization

As defined in Chapter 3, the stochastic robotic system p-Chekov solves for has the

dynamics model:

Xt = f(xt-1, Ut1, mt), mt ~ (O, mA) (6.1)

and the observation model:

Zt = h(xt, nt), n't - .(O, Nt) (6.2)

Although the system models are nonlinear, it is reasonable to use local lineariza-

tions (i.e. first-order Taylor expansions) to represent robot motions, since we can

assume the robot will be controlled to stay close to the desired trajectory during

execution and the deviations are small enough to be well approximated by linearized

models [89]. Therefore, we can express the system model in terms of the deviations

from the desired trajectory II = (x, u, ... , x*, u*), and then conduct the lineariza-

tion as follows:

xt - f(x*_ 1, u*_ 1, 0) = At(xt_1 - x*_ 1) + Bt(ut_1 - u* 1) + Vtmt
(6.3)

zt - h(x*, 0) = Ht(xt - x*) + Wtnt

where

138

MMYPIRT11 I" _-_11--__"__'."_'_"_ -1-111 1. 1--l" , -,,",IlM"FM,,M"M" -- _ - . 1_111-_-'-"' I . -1.1- -1 --- I'll, -

At=Of X J*10A x - t(xi ui,

At = f (xt*, ut*,0)
au - t*

Vt = Of(x*,u*_ 1,0) (6.4)

Ht= a(x, 0)
ax

Wt = (x*, 0)

are the Jacobian matrices of f and h along the desired trajectory H.

If we define:

Xt = Xt - Xt

lit Ut - U* (6.5)

zt= zt - h(x*, 0)

then the linearized system dynamics model and observation model shown in Equation

6.3 can be rewritten as:

t = At t_ 1 + Beit_ 1 + Vtmt, mt ~ A(0, M) (6.6)

2t = Htkt + Wtnt, nt ~ A(0, Nt)

6.2.2 Optimal State Estimation and Optimal Control

Since the system models are linearized, a Kalman filter [241 and a Linear Quadratic

Regulator (LQR) [7] can be applied as observer and controller respectively. In our

implementation of LQG-MP, a discrete-time Kalman filter is used, which includes the

following prediction and update phases:

Prediction : k- = Atkt_ 1 + B ti _1

P =- = AtP_ 1 A[+ V tMeV

139

Measurement update: Lt = PjH (HtPjH[+ WtNtWt~

Rt = it + Lt(zt - Htkt) (6.8)

Pt = (I - LtHt)Pj

The LQR controller optimizes the control input by minimizing a quadratic cost

function defined over the execution [891. In order to keep the robot close to the desired

trajectory, here the deviation of robot states and control inputs are included in the

cost function to be minimized:

t=T

J = E (Z(TQkt + fiTRdt) (6.9)

where Q and R are positive-definite weight matrices.

In our implementation, we assume the system is fully actuated, and a finite-horizon

discrete-time LQR controller is used, where the feedback matrix Kt can be computed

through backward recursion:

ST = Q

Kt= -(BTStBt + R)-1 BSt At (6.10)

St_ =Q + ATSt At + ATStBtKt

In LQG, since the true state kt is unknown, the state estimation Rt from the

Kalman filter is used to determine the control input at each time step during the

trajectory execution. This is reasonable because the separation theorem [52] tells

us that observer design and controller design can be separated into two independent

processes with the guarantee of LQG optimality. Therefore, the optimal control input

can be given by:

it = Kt+15t (6.11)

During the execution of the whole desired trajectory, the optimal state estimation

based on the Kalman filter and the optimal control policy computation based on LQR

140

take turns and cycles until the execution is complete, so as to optimize the execution

and track the desired trajectory [891.

6.2.3 Probability Distribution Estimation for Robot States

and Control Inputs

Based on the equations of the Kalman filter and LQR control presented in Section

6.2.2, we can estimate in advance the evolution of the true state kt and the esti-

mated state kt at each time step t. This evolution can be expressed by the following

equations [891:

Xt = Akt_i+BtKtkt_1+Vtmt

Rt = Ak~t_1 + BtKtkt_ 1 + Lt(2 - Ht(AtkRt_ 1 + BtKtkt_ 1))

= Atkt_ 1 + BtKtkt_ 1 + Lt(Htkt + Wtnt - Ht(Atit_1 + BtKtkt_ 1))

= At t-1 + BtKtktI 1 + Lt(Ht(Atit_1 + BtK1it 1 + Vtmt) + Wtnt

- Ht(Atit_ 1 + BtKett 1))

= AtkR_ 1 + BtKit k_1 + LtHtAtk1_1 + LtHtVtmt + LtWtnt - LtHtAtit_1

(6.12)

Equation 6.12 can be rewritten into matrix form:

Bt[KX 5t 1 V 0 Mit

At + BtKt - L I HAt I 1 LtHtV LtWJ nt

ntl
~K(O, Mt NJ)

0 Nt

If we define

141

[t]

L 1 tJ

At

Le HtAt

where

(6.13)

(6.14)

Et = At Bt Kt

LtHtAt At + BtKt - LtHtAt
L- 1 (6.15)

[LtHtVt LtWt

Gt = Mt 0
0 Nt

and initialize the variance for estimate state with 0 and the variance for true state

with E 0, then the variance matrix Ct for Xt can be expressed as:

C= EtCt-1Et + FtG[Fo, CO = E0 0 (6.16)
0 0

Therefore, the matrix of true deviation states and estimated deviation states Xt

has the distribution:

Xt ~ V(0, Ct) (6.17)

If we plug this in Equation 6.5 and Equation 6.3, we can get the a priori distributions

of the true states and control inputs during the execution of the desired trajectory:

~ V(, AtCtAt) (6.18)
ut Ut

where

At= I] (6.19)
0 Kt+1

With these a priori distributions of robot states, we can then evaluate the prob-

ability of collision along a given trajectory, in order to find a solution trajectory that

142

can satisfy the given chance constraint.

6.3 Collision Probability Estimation Approach

The estimation of trajectory collision probability has been widely investigated in the

motion planning field, yet no perfect solution has been proposed due to the inherent

difficulties of this problem. For the high-dimensional planning tasks that p-Chekov

deals with, for example manipulation tasks, an additional difficulty is the mapping

between the robot workspace and the configuration space. When the robot has high

Degrees of Freedom (DOFs), the collision checking happens in the 3D workspace

whereas the planning happens in the high-dimensional configuration space. Mapping

the free workspace into the configuration space is nontrivial, which hence becomes

another barrier for trajectory collision probability estimation. In order to approach

this problem, many approximations are usually used, for example the discretization

of time and the convexification of obstacles. In this section, we first discuss several

different ideas of estimating collision probabilities that are currently used in the field

(Section 6.3.1), and then present the approximations we made in p-Chekov in order

to get reasonable estimations of trajectory collision probabilities (Section 6.3.2).

6.3.1 Comparison of Existing Collision Probability Estimation

Methods

It is very difficult to represent the probability of collision along a certain trajectory

without the discretization of time. Therefore, common estimation approaches often

divide the whole trajectory into waypoints, estimate the probability of collision for

each waypoint, and then use an additive or multiplicative approach to estimate the

collision probability of the whole trajectory. This naturally divides the problem into

two parts: how to estimated the collision probability for one single configuration, and

how to consider the risk of collision along the whole trajectory given the collision

probability of several discrete time steps.

143

Let's first consider the problem of estimating collision probability for one single

configuration. When the planning task is 2D or 3D and all the obstacles and robots

are convex (or approximately convex), this estimation is relatively easy and many

approaches are available. For example, in the p-Sulu planner proposed in 1671, each

boundary of each obstacle is formulated into a linear constraint, and the half-spaces

that represent those linear constraints form the feasible regions that are collision-free.

Figure 6-3 is an intuitive illustration of the approximate feasible regions formed by

a set of linear constraints. In this way, the probability of collision is turned into the

probability of violating any of the linear constraints, which can be easily computed

given the probability distribution of robot states.

A very different idea is to take advantage of the Gaussian distribution ellipses or

ellipsoids, as presented in [89]. Assume we have calculated the probability distribu-

tions of robot states at each discrete waypoint along the trajectory, and they are all

Gaussian distributions. In 2D space, the positions within one standard deviation can

be covered by a elliptical level set. Then the maximum factor by which the ellipse

can be scaled before it intersects obstacles gives an indication of the probability of

collisions at that certain configuration, where the scale factor can be computed as

the Euclidean distance to the nearest obstacle in the environment transformed such

that the ellipse becomes a unit disc [89]. In this way, the probability of collision

at each single waypoint along a trajectory can be estimated. Additionally, in [711,

this approach is further investigated and the conditioning relationship between the

collision probability of different time steps is considered. The approach in [71] ac-

counts for the fact that the probability of collision at each stage along a trajectory

is conditioned on the previous stages being collision-free. Based on this fact, the a

priori state probability distributions for different waypoints along a trajectory can

be truncated and the actual collision probabilities can be better reflected.

However, extending the aforementioned approaches to high-dimensional planning

tasks is not trivial. In terms of the method in [671, obstacles defined in workspace can

not be directly mapped into a 6-DOF or 7-DOF configuration space in closed form [161,

hence it is non-trivial to formulate feasible regions. Additionally, the computation

144

h~T T T= hXg
x 1 112x9 2 ITg 2 ~ x

Feasible
region

Obstacle

hj~3 3 3
(a) (b)

Figure 6-3: Approximate representation of feasible regions formed by a set of linear
constraints [67]. (a): the obstacle can be approximated by a triangle; (b): the feasible
region is inside an obstacle and can be approximated by a triangle.

cost of a Mixed Integer Linear Program (MILP) in such high-dimensional spaces

can become another big issue. As for the approach in 189 and 171], they also share

the difficulty caused by obstacle mapping from 3D workspace to high-dimensional

configuration space, which means their application in high-dimensional planning tasks

will be challenging too.

Sun et al. [83] points out the key relation between workspace geometry and con-

figuration geometry: configuration q E C lies on the boundary of a configuration

space obstacle if and only if the workspace distance between the robot configured at

q and the workspace obstacle is zero. Based on this relation, Sun et al. 183] pro-

poses an approach that looks for the point on the boundary of configuration space

obstacles that is closest to the mean configuration 4 by calculating the gradient of

the workspace signed-distance field. With this "closest points" information, the risk

of collision given a Gaussian distribution of the robot configuration q ~ X(4, Eq)

can be estimated using the ellipse transformation technique introduced in 1891. Al-

though this approach builds an important bridge between workspace obstacles and

configuration space obstacles, it relies on the assumptions that the geometries of the

configuration space obstacles are locally convex in the neighborhood of 4, which is

145

often not the case in real applications. Even though [831 points out that the geome-

tries of the robot and workspace obstacles can be decomposed into convex sets, this

adds to the computation cost, yet the accuracy of collision risk estimation can not be

guaranteed.

After estimating the collision probability at each particular configuration, how to

assess the collision probability along the whole trajectory is the next problem. Two

dominating methods of computing trajectory collision probability are the additive ap-

proach and the multiplicative approach. In the additive approach, Boole's inequality

tells us that:

N N

P V , < P ,(6.20)

where Ci is the no-collision constraint at waypoint i. Therefore

N

P(C) < A (6.21)
i=1

is the sufficient condition for

N

P \ _ A, (6.22)
(i=1)

where A is the joint chance constraint for all the waypoints along a certain trajec-

tory [67]. Similarly, the multiplicative approach assumes independence between the

collision probabilities at different waypoints [89], and uses

N

I - r 1 - P (U) < A (6.23)

to approximate

IN

P \/ < A. (6.24)

Since both methods consider only discrete waypoints, the continuous-time safety

along a trajectory highly depends on the density of waypoints. Additionally, the addi-

146

tive method treats the collisions at different waypoints as mutually exclusive, whereas

the the multiplicative method treats them as independent. Neither of them can ac-

curately account for the complex high-dimensional dependence between collisions at

different waypoints 1361. These two approximations mean that the performance of

both methods can be very sensitive to the location and number of waypoints. This

is because as the number of waypoints grow, the error introduced through the first

approximation can decrease, whereas the error introduced through the second ap-

proximation can grow. Furthermore, unlike the additive method, the multiplicative

method is not always conservative. In the case of non-independence, it is possible that

the multiplicative approximation underestimates the risk of collision of the whole tra-

jectory. As a result, there's no guarantee that solutions solved from the multiplicative

approximations will always satisfy the original chance constraint.

Janson et al.136 addresses this issue by introducing a Monte Carlo Motion Plan-

ning (MCMP) approach which is based on the control variates and importance sam-

pling theories 168]. The basic idea of this MCMP approach is to solve the deterministic

motion planning problem with inflated obstacles, and then adjust the inflation so that

the path is exactly as safe as desired. However, since MCMP inflates the obstacles in

the whole planning scene with the same amount, it doesn't account for the different

collision probabilities at different locations along the trajectory due to different robot

configurations and velocities. Furthermore, both this obstacle inflation idea and the

waypoint collision probability estimation approach used in MCMP require obstacles

with simple geometries, which indicates that applying this approach in real-world

planning tasks is non-trivial.

In [66], the conservative shortcoming of the additive approach is addressed by

the application of the Iterative Risk Allocation (IRA) algorithm. By dividing the

whole chance-constrained optimization problem into two stages, IRA seeks the op-

timal risk allocation that allows for a feasible solution. Intuitively speaking, IRA

helps redistribute the risk bounds among different constraints without violating the

joint chance constraint, so that the risk is used at actually risky places instead of

being wasted at safe places. Despite that the IRA algorithm was originally developed

147

for robust Model Predictive Control (RMPC) problems, this two-stage optimization

idea is very general and can easily be applied to other chance-constrained planning

problems. P-Chekov adopted this two-stage risk allocation and optimization idea in

both its planning phase and execution phase. Section 6.4 will further describe both

the original IRA algorithm and the risk reallocation method p-Chekov uses in detail.

6.3.2 P-Chekov Collision Probability Estimation Approach based

on Quadrature-sampling

From Section 6.3.1 we can see that there is no perfect way to estimate the collision

probability along a planned trajectory. Since p-Chekov aims at solving motion plan-

ning problems for high-dimensional manipulators in 3D complex environments where

the original shapes of obstacles can be maintained, applying the waypoint collision

probability estimation methods introduced in the previous section in p-Chekov is very

difficult. Hence in p-Chekov, we decide to estimate the collision probability at indi-

vidual waypoints using a quadrature-sampling-based approach. On the other hand,

trading off the strengths and weaknesses of different trajectory collision assessment

approaches, in p-Chekov we choose to allocate risk bounds to each waypoint and

adjust risk allocations in both planning phase and execution phase so as to allevi-

ate the conservative shortcoming from the additive nature of risk-allocation-based

approaches.

To be a feasible solution to this chance-constrained motion planning problem,

a trajectory must satisfy that at all waypoints, the estimated collision probability

is smaller than or equal to the allocated risk bound for that waypoint. The main

consideration of using this sampling-based risk estimation method is the fact that

most other approaches only work well for planning tasks with low-dimensional robots,

simple system dynamics and convex environmental obstacles. Adapting the "obstacle

boundary mapping" approach introduced in [831 into p-Chekov could be an interesting

extension, but for the current version of p-Chekov, the quadrature sampling approach

is a simple yet well-performing starting point. This section will focus on a detailed

148

description of the sampling-based waypoint collision estimation method used in p-

Chekov, while the risk allocation idea will be presented in Section 6.4.

Given the probability distribution of robot states around a nominal configuration,

the collision probability can be approximated by sampling configurations from this

distribution and checking the percentage of configurations that are in collision. This

type of Monte Carlo method is commonly used for estimating the probability of

complex events. However, as with all Monte Carlo methods, this collision probability

estimation approach would suffer from inaccuracy when the sample size is small and

high computational cost when the sample size is large. The collision checker used in

p-Chekov is the Flexible Collision Library (FCL) from OpenRAVE. We conducted

tests for the Baxter robot in the "kitchen" environment which has 55 kinbodies in it,

and the results show that 100 collision checks with all the 55 obstacles takes about

0.2 s. Although FCL is one of the fastest existing collision checking tools, if we only

conduct random sampling from the probability distribution, it will still take a long

time to check collisions for samples whose size is large enough to accurately reflect

the 7-dimensional configuration space. This will make it impossible for p-Chekov to

become an on-line motion planner. Therefore, a method of intelligently finding the

samples that can well represent the collision probability with only a small number of

them is very important.

This Monte Carlo collision probability estimation approach is essentially estimat-

ing the expectation of a collision function:

c(xt) 0, if xt is collision free

1, if xt is in collision

along the distribution xt A '(kt, Ex,). Here xt E R' is the robot configuration at

time step t, and the distribution xt N(t, Ex,) is estimated using the LQG-MP

approach described in Section 6.2. Since expectations can be written as integrals,

non-random numerical integration methods (also called quadratures) can be applied

149

to help solving this problem. Denote the probability density function of xt as p(xt),

then the expectation of collision function c(xt) can be expressed as:

IE(c(xt)) = j c(xt)p(xt)dxt (6.26)

Let's define the dimension of xt as d. Since xt ~ AF(kt, Ex,), each component of xt

is Gaussian-distributed. Let x' denote the ith component of xt, then we can assume

t ~. A(pi, of). Then, based on the conditional distribution rule of multivariate

normal distribution [19], we have:

p(xt) = p(x vd) = P(X 1 WX 2:d 1)

ti ~r. M(Pi, ao2) (6.27)

t ~ OU2:d, E2:d)

where P2:d and E2:d denote the mean and variance of x2:d respectively. Since x, is

Gaussian-distributed, its probability density function p(X') can be expressed as:

p(X1) =e 2 1 (6.28)

Then we can write the expectation of the collision function as:

E(c(Xt)) = p(xt) j x d)c(xt)dxt dxl (6.29)

Let g(i) = fRx_1 p(Xd)C(Xt)dd2:, then:

E(c(xt)) = p(xl)g(xz)dx' = fxp (- 2)gzi)di (6.30)
0) --00 -oo o-l12-7 2al

We know that Gauss-Hermite quadrature is a form of Gaussian quadrature for

approximating the value of integrals of the following kind:

0(

150

The value of such integrals can be approximated by calculating the weighted sum of

the integrand function at a finite number of reference points, i.e.

o-00

n

e-Eh(x)dx e Zwh(x,) (6.32)
j= 1

where n is the number of sampled points, xj are the roots of the Hermite polynomial

Hn(x) and the associated weights wj are given by 11]:

(6.33)

A quadrature rule with n sampled points is called a n-point rule.

E(c(xt)) in its form in Equation 6.30 still doesn't correspond to the Hermite

polynomial, therefore we conduct the following variable change:

1
y t - X, = No-1y1 + Al

N/o-1
(6.34)

Through Equation 6.34 and Equation 6.30, E(c(xt)) can be expressed as:

e- (y) 2g(v/%-y1 + pi/t)dyi/ITTIE(c(xt)) = (6.35)

Therefore, the value of E(c(xt)) can then be approximated through Gauss-Hermite

quadrature rule:

E(c(Xt)) wijg(v'o-1y1,j + /11)

where ni is the number of sampled points for integrating the x' component. y1,j (j

1, ... , ni) are the Hermite polynomial roots for integrating the x' component, and

w1, are the associated weights.

If we iteratively conduct this procedure from x1 through x , we will eventually be

able to approximate the value of E(c(xt)) through:

151

(6.36)

- n!v-F
Wi=n2 [Hn_1(X.,)]2

ni n2 n(d

E(c(Xt)) ~ 7rA Z .. .E f wij) g(V'O-1yi,1j + pi, \/-2Y2,j 2 + P2,

j1=1 j2=1 jd= 1 i=1

... , \/2-dYd,jd + Pd)

(6.37)

Note that although quadrature methods are well tuned to one-dimensional prob-

lems, extending them to multi-dimensional problems through iterated one-dimensional

integrals still can't escape the "curse of dimensionality" [6]. The result of a d-

dimensional quadrature rule can not be better than what we would get from the

worst of the rules we have used in each dimension. If we use the same n point one-

dimensional quadrature rule for each of the d-dimensions, then we need to use N = nd

function evaluations. If the one-dimensional rule has error Q(n-r), then the combined

rule has error

11 - Il = 0(n-') = O(N-/d). (6.38)

Even modestly large d can give a very inaccurate result [68]. Additionally, the colli-

sion function c(xt) we are trying to evaluate is not smooth, which also adds to the

inaccuracy of the approximations through this quadrature sampling method. As a re-

sult, this approach of collision probability estimation is relatively rough. Tuning this

quadrature-sampling-based approach in order to better satisfy our need or seeking

more accurate collision probability estimation methods can be interesting extensions

to the current p-Chekov work.

In the p-Chekov implementation for Baxter, the configuration at each time step

xt is 7-dimensional. Since p-Chekov aims at fast motion planning, the number of

sampled points at each dimension cannot be too large. We compared the performance

of two- and three-point rules, and experiment results show that the two-point rule

is more conservative, and hence safer, than the three-point rule. This also makes

sense theoretically, since the abscissas and weights of the two- and three-point Gauss-

Hermite quadrature rules are as follows:

152

Table 6.1: Gauss-Hermite Quadrature Rule Abscissas and Weights
n xi Wi

2

0 2f
33

From Table 6.1 we can see that in the three-point quadrature rule, the mean

value has the most weight, whereas in the two-point rule the mean value is not sam-

pled. In p-Chekov, the nominal trajectories generated by the deterministic planner

are guaranteed to be collision-free, while collisions often happen when the execution

trajectory deviates from the desired trajectory. Therefore, since the two-point rule

only considers the deviation points and doesn't consider the mean point, it tends to

be more conservative than the three-point rule which places the most weight on the

mean point. Additionally, in a 7-dimensional space, the number of sampled points

for the two-point rule is 27 = 128, and for the three-point rule it's 37 = 2187. Even

though we conduct a pruning process for the three-point rule version, which prunes

the highly unlikely samples (the ones where 4 or more than 4 joints are at 106-

or -. v/6- , with a probability lower than 0.0002), the number of samples is still

2187 - (27 + (7) x 26 -+ 7) x 2 - (7) x 24) = 379. Since this collision probability eval-

uation is conducted at each time step in each iteration, the reduction of computation

time by using the two-point rule instead of the three-point rule is considerable. There-

fore, due to the above two considerations, we decide to use the two-point quadrature

rule in p-Chekov.

Another issue requires consideration when estimating the collision probability is

the robot joint limits. The state probability distribution computed from the LQG-MP

algorithm doesn't fully reflect the true probability distribution of robot joints due to

joint limits. In p-Chekov, this issue is addressed by using the upper or lower bound

of joint values instead of the actual point sampled from the estimated distribution

when the sampled point exceeds the joint limit. This method is out of practical

consideration. The root of deviations from the desired configuration is internal or

153

external disturbance to robot joints. When the disturbance tends to push one of

the joints towards a point which exceeds its upper bound, this joint will end up at

its upper bound position instead of the original point which exceeds the joint limit.

Therefore, using the joint limit value to substitute the point sampled from the state

probability distribution which exceeds the joint limit can well represent the original

probability distribution without losing the practical consideration of joint limits.

The p-Chekov approach of estimating the collision probability given a nominal

trajectory and the state probability distributions along this trajectory can be sum-

marized in Algorithm 2, which is based on the Gauss-Hermite quadrature-sampling

theory.

Algorithm 2: GHCollisionProbabilityEstimation
Input:
II: desired trajectory generated from the planner
D: robot configuration probability distribution along the desired trajectory
R: robot collision model
S: environment collision model
dof: manipulator degree of freedom
n: number of samples used in quadrature rule
1,: a list of upper limits of all the joints on the manipulator
11: a list of lower limits of all the joints on the manipulator
Output:
r: a list of collision risk at each waypoint along the desired trajectory

1 Initialize r to a list of zeros with length len(II)
2 for i = 1, 2,..., len(II) - I do
3 Initialize node list nl to empty set
4 for d = 1, 2, ... , dof do
5 (p, -) <- D[i, d] /* From distribution D extract mean and

standard deviation at the ith waypoint dth joint */
6 (nodes, weights) <- QuadratureSampling(p, o-, n)
7 for node in nodes do
8 if node > 1,[d] then node - 4[d]
9 if node < 11[d] then node <- 11[d]

10 end
11 Append (nodes, weights) to nl
12 end
13 Initialize samples to empty set
14 r(i) <- CollisionNumberRecursion(samples, nl, 8, R, dof)
15 end

154

Algorithm 2 first calculates the abscissas and weights for each degree of freedom of

the target robot manipulator using a QuadratureSampling(function (line 5-6). The

details of QuadratureSampling() is not provided in Algorithm 2, but it essentially

takes in the mean and standard deviation of a one-dimensional Gaussian distribu-

tion, and then calculates the abscissas and weights based on the n-point (n = 2 or

3) Gauss-Hermite quadrature rule shown in Table 6.1. After checking joint limits, it

stores the sampled abscissas and weights in a node list called nl (line 7-11). Then

the algorithm takes one sample from each degree of freedom by calling a recursive

function CollisionNumberRecursion(, shown in Algorithm 3. When CollisionNum-

berRecursion() has taken one sample from all the degrees of freedom, it will evaluate

the collision risk of this robot configuration according to Equation 6.37 (line 4-7 in

Algorithm 3). Algorithm 2 iteratively conducts this quadrature-sampling and colli-

sion probability evaluating procedure for each waypoint along the nominal trajectory,

and then returns the collision probabilities as a list r. These probabilities can then

be compared with the allocated risk bound at each waypoint in order to determine

whether the chance constraint is satisfied. A detailed description of the risk allocation

approach will be provided in Section 6.4.

Algorithm 3: CollisionNumberRecursion

i Function CollisionNumberRecursion(samples, nl, E, R, dof):
2 i = len(samples)
3 if i == dof then
4 Initialize collision number c to zero
5 SetRobotDOFValues (samples [nodes])
6 c = CheckCollision(R,E) /* CheckCollision() returns 1 if

collision is detected, else 0 */
7 c +- c x]~{ _ samples [weights, d]
8 else
9 c CollisionNumberRecursion(samples + nl[i, 1], nl, S, R, dof) +

CollisionNumberRecursion(samples + nl[i, 2], nl, E, R, dof)
10 end
11 return c

155

6.4 Risk Allocation Approach

Finding feasible motion plans that satisfy chance constraints is difficult, because the

probability of failure during the entire trajectory, instead of at each time instant, is

constrained. [65] introduced the concept of risk allocation, and proposed the idea of

bi-stage motion planning. Risk allocation decomposes a joint chance constraint by

allocating risk bounds to individual constraints. By using a bi-stage motion planning

method, we can optimize the risk allocation at the upper stage, and optimizes the

control sequence given the fixed risk allocation at the lower stage.

Inspired by the concept of risk allocation and bi-stage motion planning, p-Chekov

decomposes the joint chance constraint into individual risk bounds at each time step,

and then compares the estimated collision risk at each time step with the corre-

sponding risk bound to determine whether the joint chance constraint is satisfied or

violated. P-Chekov starts with a uniform risk allocation, and the planning phase

of p-Chekov aims at finding a feasible trajectory that can satisfy this specific risk

allocation. However, this procedure can sometimes take a long time if the initial tra-

jectory is highly risky. Therefore, p-Chekov uses a risk reallocation approach during

the planning phase to intelligently speed up the process of finding an initial feasible

solution. Although this solution is guaranteed to satisfy the chance constraint, it is

possible that this solution is overly conservative and highly sub-optimal. Therefore,

when executing the initial solution, p-Chekov iteratively improve the trajectory by op-

timizing the upper stage risk allocation. The risk allocation approaches in p-Chekov

planning phase and execution phase are presented in Section 6.4.1 and Section 6.4.2

respectively.

6.4.1 P-Chekov Planning Phase Risk Reallocation

The planning phase of p-Chekov starts with a uniform risk allocation and a nomi-

nal trajectory from the deterministic Chekov. This trajectory should be feasible in

the static environment without any noise. However, considering the process noises

and observation noises, this trajectory might violate the chance constraint. Using

156

Algorithm 2 we can obtain the collision risk estimation for each waypoint along the

nominal trajectory. We compare the estimated collision risk with the allocated risk

bound at each waypoint, and then we can determine whether this trajectory satis-

fies chance constraint or not. If some of the risk bounds are violated, we iterate on

this initial nominal trajectory by adding more constraints and reallocate risk bounds,

until we find a trajectory where all risk bounds are satisfied. Here, risk reallocation

not only helps reduce the number of iteration to get feasible solutions, but also helps

produce less conservative trajectories.

The planning phase risk reallocation relies on the classification of different con-

straints. Denote the estimated collision risk at waypoint i as ri, and allocated risk

as S. When ri exceeds 6 i, we define the chance constraint at the ith waypoint as a

violated constraint. If ri is not larger than 6i, then the chance constraint at waypoint

i is satisfied. For the satisfied constraints, we divide them into active constraints and

inactive constraints by introducing a risk tolerance parameter T1. If the difference

between 6i and ri is larger than the risk tolerance, we view this chance constraint as

underutilized, i.e. the constraint is inactive. Otherwise, the constraint will be viewed

as active. In short, the classification of constraints at different waypoints is as follows:

Constraint Violated: 6i - ri < 0

Constraint Satisfied: Active: 0 < 6i - ri < 1 (6.39)

Inactive: 6i - ri > T1

The key idea of this risk reallocation method is to take risk from inactive con-

straints and give it to those violated constraints. This is different from the Iterative

Risk Allocation (IRA) algorithm introduced in [65]. IRA requires a trajectory where

all the constraints are satisfied, and reallocates risk from inactive constraints to ac-

tive constraints. Here, since we are still trying to find solutions that satisfy the joint

chance constraint, the IRA algorithm is not applicable. The p-Chekov planning phase

risk reallocation approach is illustrated in Algorithm 4.

Before getting to Algorithm 4, we should have already finished the risk test which

157

compared the allocated risk bound and the estimated collision risk at each waypoint,

and have got a list of waypoint indices where the risk bound is violated. If no risk

bound is violated, then we have found a feasible solution and don't need to run the

risk reallocation algorithm. Otherwise, we begin Algorithm 4.

Algorithm 4: RiskReallocation
Input:
ri: a list of collision risks at each waypoint; i = 1, 2,..., N
6i a list of risk allocations at each waypoint; i = 1, 2,... , N
pj: a list of waypoint indices where the allocated risk bound is violated
a: risk reallocation parameter
A: joint chance constraint
q: risk tolerance
Output:
Pew: new risk allocations for each waypoint; i 1, 2,... , N

1 fori=1,2,...,Ndo
2 if6i-ri>7then
3 1 6new-a6i+(1-a)ri

4 else
5 1 6 new 6

6 end
7 end

8 6 residual i=0 6 new

9 TotalViolation 4- Sum of the excessive risk for all the waypoints where
collision risk violates the allocated risk bound

lo for j = 1, 2,... , Niolated do
11 |6nfew - 6, + 6 residual (rp, - 6pj)/TotalViolation

12 end

When Algorithm 4 starts, it first identifies inactive constraints where the risk

bounds are underutilized, and then takes a fraction of their risk bounds out (line 1-

7). How much risk to take out of these inactive constraints is determined by the risk

reallocation parameter a. After that, it calculates the total residual risk 6 residual (the

portion of the joint chance constraint that is not allocated to any individual chance

constraint) and the total excessive risk TotalViolation (sum of the difference between

the estimated collision risk and the allocated risk bound for each violated constraint).

Then Algorithm 4 reallocates the total residual risk to the violated constraints (line

10 - 12). The fraction of the risk allocated to each constraint pj is proportional to

158

the excessive risk at this waypoint (rP, - 6pi).

Algorithm 4 takes risk bounds from the waypoints where they are underutilized

to the ones where they are violated. In p-Chekov, it is used in each iteration of the

planning phase, after the deterministic planner finds a feasible nominal solution but

it exceeds the chance constraint. The risk test can help us know which risk bounds

are violated and where to add constraints in order to move to a satisfactory solution,

but simply searching for a trajectory that satisfies the initial uniform risk allocation

can end up getting a highly sub-optimal solution. Although the planning phase so-

lution doesn't have to be perfect since p-Chekov does an anytime plan improvement

procedure, we still want the planning phase trajectories to be closer to optimal so-

lutions so as to get a good start at the execution phase. Additionally, fast reaction

is one of the most important features p-Chekov is trying to achieve. Algorithm 4

takes advantage of the guidance provided by the risk test and reallocates risk bounds

in a more intelligent way, which accelerates the planning phase and helps p-Chekov

converge faster to an initial feasible solution.

6.4.2 P-Chekov Execution Phase Iterative Risk Allocation

When p-Chekov finds a solution in its planning phase, it is possible that the solution

is overly conservative since the risk allocation is not optimized. Inspired by the bi-

stage optimization idea from [65], p-Chekov iteratively reallocate the risk bounds for

each waypoint along the trajectory in order to improve the utility. This iterative risk

allocation procedure can be put in the execution phase in order to save the planning

phase time. That is to say, when the initial planning phase returns a feasible solution

that satisfies the chance constraint, the robot starts executing this initial trajectory.

In the meantime, p-Chekov can keep improving the solution through iterative risk

allocation, and update the execution trajectory when it gets a better solution.

The Iterative Risk Allocation (IRA) algorithm used in the execution phase of p-

Chekov is described in Algorithm 5. Algorithm 5 takes as input the estimated collision

risks and allocated risk bounds for each waypoint from the planning phase algorithm,

and then determines active constraints using the ActiveContrainto function described

159

Algorithm 5: IterativeRiskAllocation
Input:
ri: collision risks from p-Chekov planning phase; i = 1, 2,... , N
6i: risk allocations from p-Chekov planning phase; i = 1, 2, ... , N
a: risk reallocation parameter
A: joint chance constraint
r: risk tolerance
e: convergence tolerance
Output:
1: a solution trajectory

1 J +- 00
2 while J(H) - J(Hpreviousl) < c do
3 H previous - -

4 Nective, r =ActiveConstraint(6, r)
5 if 0 <Nactive< N then
6 for i = 1, 2, ... ,N do
7 1 if 6, - ri > T1 then 6i +- a6i + (1 - a)ri
8 end

9 6 residual = A - E O '
10 foreach j where constraint is active at jth waypoint do
11 | 63+- 6 + 6 residual/Nactive

12 end
13 Run p-Chekov planning phase algorithm with new 6 and get new r

associated with the new solution trajectory H
14 else
15 | break
16 end
17 end

Algorithm 6: ActiveConstraint

1 Function ActiveConstraint(3, r):
2 Nactive +- 0
3 while Nactive == 0 do
4 rprevious +- r

5 if No penalty hit-in distance positive then break
6 Reduce the collision penalty hit-in distances for each waypoint by dstep
7 Find new solution with planning phase algorithm and reevaluate

collision risk r
8 for i = 1, 2, ... ,N do
9 if ri > 6i then Nactive - Nactive + 1

10 end

11 end
12 return Nactive, rprevious

160

in Algorithm 6. We remove part of the risk allocation for inactive constraints and

then reallocate them to the active constraints (line 6 - 12). After this risk reallocation

procedure, we run the planning phase algorithm with the new risk allocation, and then

compare the utility of the new solution trajectory J(J) with that of the previous

solution J(lprevious). If the improvement is too small, we say the IRA algorithm

converges and terminate it. Otherwise, we say IRA effectively improved the solution

and repeat this procedure.

Algorithm 5 is adapted from the IRA algorithm introduced in [651, but differs from

it in terms of the active constraint determination method. The way [651's IRA defines

active constraints is the same as the constraint classification method for satisfied con-

straints in Equation 6.39. Here in p-Chekov, however, we use a constraint relaxation

approach to find active constraints, as shown in Algorithm 6. When ActiveCon-

straint() is called, it removes a small part of the collision penalty hit-in distance for

each waypoint and runs the TrajOpt algorithm again with the previous solution tra-

jectory as its seed. Then it uses the planning phase collision risk estimation method

to calculate new ri for each waypoint, and then conducts a risk test (line 7). If some

of the risk bounds are violated, they will be viewed as active constraint (line 8 -

10). If all waypoint chance constraints are still satisfied, it repeats line 4 - 10 until

it detects active constraints. If there is no more collision penalty hit-in distance to

remove, then it will return Nctive = 0 (line 5).

6.5 Detailed P-Chekov Algorithm Illustration

Section 6.2 through 6.4 describe the main components in p-Chekov: the state prob-

ability distribution estimation component, the collision probability estimation com-

ponent, and the risk allocation component. Both the fundamental theories and the

important algorithms in these components have been explained in detail. This sec-

tion mainly focuses on how each component fit into the whole p-Chekov framework

by providing the p-Chekov system pseudo code.

Algorithm 7 is a brief summary of the p-Chekov algorithm. Line 1 - 5 illustrates the

161

deterministic "roadmap + Traj Opt" planner. It first calls the roadmap planner to find

a seed trajectory between the start and the goal. If the roadmap planner fails to find a

seed, it returns failure. Otherwise, it calls the TrajOpt planner to locally optimize this

seed trajectory. Given this nominal trajectory from the deterministic planner, line

6 calls the LQG-MP state probability distribution estimation algorithm introduced

in Section 6.2, and line 7 calls the collision probability estimation algorithm based

on Gauss-Hermite quadrature-sampling theory (Algorithm 2). With the collision risk

estimation and risk allocation, line 8 conducts a risk test to see whether the risk

bounds are satisfied at all waypoints. If all the risk bounds are satisfied, Algorithm 7

goes to the execution phase. Otherwise, the configurations at the violated waypoints

will be added to the penalizing list, and the penalty hit-in distances at those waypoints

will also be increased. A new risk allocation will be calculated by Algorithm 4, and

a new solution will be computed from the TrajOpt planner. This plan improvement

procedure will iterate until the chance constraint is satisfied. In the execution phase,

line 19 calls the Iterative Risk Allocation algorithm (Algorithm 5) to improve the

solution trajectory, and line 20 executes the updated trajectory.

The main difference between p-Chekov and other existing risk-aware motion plan-

ning systems relies on the usage of the deterministic "roadmap + TrajOpt" motion

planner. This deterministic planner has high online planning speed for high-DOF

robots, and can straightforwardly incorporate differential constraints from robot dy-

namics. With this "roadmap + TrajOpt" planner as its core, p-Chekov uses a LQG-

based state estimation approach and a quadrature-sampling-based collision proba-

bility estimation approach in order to predict the influence of process noises and

observation noises during trajectory executions. This prediction as well as the idea

of risk allocation play the role of extracting conflicts and guiding the deterministic

planner to approach a feasible solution whose execution failure rate is bounded by

lower limit specified through the chance constraint. This is the main innovation of

this p-Chekov planning and execution system. In addition, the application of risk re-

allocation and iterative risk allocation is key to the speed of p-Chekov's convergence

to a feasible solution trajectory. The performance of this p-Chekov approach will be

162

Algorithm 7: P-Chekov
Input:
start: starting configuration of the planning query
goal: goal configuration of the planning query
7Z: robot collision model
E: environment collision model
Mt: covariance matrix of process noises
Nt: covariance matrix of observation noises
a: risk reallocation parameter
A: joint chance constraint
rj: risk tolerance
e: convergence tolerance
Output:
H: a solution trajectory

1 seed = RoadmapFindSolution(start, goal)
2 if seed is not None then
3 Initialize collision penalty hit-in distances Dlist with zeros
4 Initialize risk allocation 3 with uniform allocation
5 H= TrajOptPlanner(seed, Dlist)
6 D =LQGEstimation(fl, Mt, Nt)
7 r = GHCollisionProbabilityEstimation(, D, 7Z, 8)
8 violation = RiskTest(r, 6)
9 while violation is True do

10 foreach waypoint i where risk bound is violated do
11 Add the configuration at the ith waypoint to penalizing list
12 Increase the ith item of Dlist by dstep
13 end
14 3 RiskReallocation(r, 3, a, A, r7)
15 H= TrajOptPlanner(H, Dlist)
16 violation = RiskTest(r, 3)
17 end
18 Chance constraint satisfied, start execution
19 H = IterativeRiskAllocation(r, 6, 11, a, A, r1, c)
20 Execute the updated trajectories from IRA
21 return Success
22 else
23 1 return Failure
24 end

163

demonstrated through simulation experiments in Chapter 7.

164

Chapter 7

Risk-aware Planning Experiments

This chapter describes a set of simulation tests on the p-Chekov algorithm and demon-

strates its performance in terms of chance constraint satisfaction rate, planning time

and trajectory length. These experiments are based on the same robot platform and

environments as the tests in Chapter 4 and Chapter 5.

Section 7.1 describes the modeling of system dynamics and observations. It intro-

duces two different ways of modeling the same problem: observing the joint values

through joint encoders, or observing the end-effector location and orientation in the

workspace. Section 7.2 demonstrates the performance of the p-Chekov planning phase

algorithm in two tabletop environments. It first compares the performance of this

planning phase algorithm with two different observation models, and then compares

the performance before and after filtering out potentially infeasible test cases. Sec-

tion 7.3 shows the results after using the p-Chekov execution phase algorithm, the

Iterative Risk Allocation (IRA) algorithm. Note that in this section, robot execution

is not yet incorporated. The IRA layer is simply added to the planning phase without

tracking the changing robot state during the execution. Incorporating IRA into the

actual execution phase is the goal of future work, but Section 7.3 only shows the

potential of performance improvement after using the IRA algorithm.

165

7.1 Experiment Modeling

In the experiments in this chapter, manipulator dynamics are simplified into a discrete-

time linear time-invariant dynamics model. The control inputs are the accelerations

at each time step, and all the joints are assumed to be fully actuated. We assume

the joint dynamics are independent from each other, corrupted by process noise

mtj - /P(O, Mj), where j = 1, 2,..., 7 denotes the degree of freedom (DOF) in-

dex, and

Mtj = 1 (7.1)
0 U2~

Hence the dynamics model for each joint can be expressed as:

I AT AT 2 /2
xt= xt 1 , + ut_,j + mt,3 (7.2)

0 1 AT

where xtj includes the position and velocity of the jth joint at time step t.

In terms of the system observation model, two different approaches are applied: a

joint value observation model and an end-effector observation model.

7.1.1 Joint Value Observation Model

One natural way of formulating the system observation model is to observe the joint

values directly through joint encoders. The value of each joint is corrupted by the

noise from the corresponding joint encoder. Since in most cases, the joint encoder

observation noises are small, we can assume that the joint observation models are

also independent from each other. In this way, all the joints are decoupled from each

other, which helps reduce the computation complexity of state probability distribution

estimation.

For each joint, the joint value observation model can be expressed as:

ztj = xtj + nt,j, ntj ~ M(0, Ne,j) (7.3)

166

..

where Ntj is the noise covariance matrix of the jth joint encoder.

7.1.2 End-effector Observation Model

Although the joint value observation model is very straightforward, in practice the

joint encoder noises are usually not the most significant source of errors. In com-

parison, camera observations are often less accurate than joint encoder observations

due to the noises from camera themselves and the uncertainties from the objects they

are mounted to. For mobile robots with manipulators, for example, there are often

cameras on their head. Therefore, unexpected movements of the mobile base caused

by arm movements or external disturbances can often lead to inaccurate estimations

of the relative position between the manipulator and the object to be grabbed during

a pick-and-place task. In addition, during underwater manipulation tasks, vehicle

movements are unavoidable due to the movements of the manipulator and the distur-

bances from ocean currents. In this case, the observations of the spatial relationship

between obstacles and the manipulator from cameras mounted on the vehicle will

inevitably be corrupted. As a result, it is practically significant to model camera

observations.

Ideally, observations of the whole arm should be evaluated. However, this is

nontrivial since it requires modeling the forward kinematics mapping of each link. In

addition, directly modeling the observation noises for the relative spatial relationship

between workspace objects and the manipulator is also difficult. Thus as a start,

an end-effector observation model is introduced in this section to approximate the

real-world camera observations.

The transformation matrix between workspace objects and the end-effector can

be expressed as:

Tobj _ee = Tobj camera - Tcameraee (7.4)

where Tob -camera is the transformation from the workspace object to the camera

frame, and Tcamera ee is the transformation from the camera frame to the end-effector.

167

Therefore, the noises for observing Tbee can be transformed into observation noises

for Tcamera_ee through the transformation matrix Tobjcamera. Then Tameraee can be

transformed into Tee_camera through matrix inversion. Therefore, we can approximate

the observation noises by corrupted observations of the end-effector pose through the

camera.

The observations of the end-effector can be expressed in joint space through the

nonlinear relationship:

Zt = h(xt, nt), n ~ .(O, Nt) (7.5)

where h(xt, 0) is the forward kinematics, nt is the observation noise, and Nt is the

covariance matrix of the observation noise. The linearization of this observation model

around the nominal trajectory point x* can be expressed as:

zt - h(x*, 0) = Jt(xt - x*) + Wtnt (7.6)

where

t= (x*, 0) (7.7)
ax

Since h(xt, 0) is the forward kinematics, Jt is the end-effector Jacobian matrix at the

nominal state x*. In this way, the system observation matrix becomes the Jacobian

matrix, which is usually easy to obtain during computation.

If we define the deviations from the nominal states and observations as:

:kt =xt - x*t -(7.8)

t= zt - h(xt, 0)

then the linearized system observation model shown in Equation 7.6 can be rewritten

as:

z= Jtt + Wnt, nt A(0, Nt) (7.9)

168

Equation 7.9 is the end-effector observation model we need for p-Chekov. Com-

pared with the joint value observation model, this end-effector observation model no

longer decouples different joints, thus this model will inevitably require more com-

putation time in the state probability distribution estimation step. However, since

the main timing bottleneck is the collision probability estimation instead of the state

probability distribution estimation, this will not become a big drawback for the end-

effector observation model. As a result, this model is more reasonable than the joint

value model since it is of more practical significance. Incorporating more links than

just an end-effector into the observation model is an active direction of future research

work, but it is beyond the scope of this thesis.

7.2 Planning Phase Experiment Results

Based on the two different observation models introduced in Section 7.1, this section

presents the experiment results on the planning phase of the p-Chekov approach in

two tabletop simulation environments. Section 7.2.1 and Section 7.2.2 picks the first

500 test cases out of the 5000 in both environments and demonstrates the results

in the joint value and end-effector observation models respectively. In comparison,

Section 7.2.3 filters out potentially infeasible cases by checking whether the collision

probability of the start and target poses is too high for the whole trajectory to satisfy

the chance constraint, and then presents the experiment results on 500 potentially

feasible cases. The quality of each trajectory plan is evaluated by 100 executions

corrupted by corresponding level of noises.

7.2.1 Experiment Results for Joint Value Observation Model

Table 7.1 shows the preliminary results of p-Chekov planning phase test, which uses

Baxter in the "tabletop with a pole" environment and sets the collision chance con-

straint to 10% allowed probability of collision. This set of experiments uses the joint

value observation model, and both the process noise and the observation noise have

their standard deviation set to 0.01 rad 2 . Note that this experimental noise level is

169

very high compared to expected noises in practical situations. The step of increasing

collision penalty hit-in distance in each iteration is set to 0.05.

The first six rows of Table 7.1 compare the performance of deterministic Chekov

(roadmap + TrajOpt) and of the p-Chekov planning phase algorithm. In terms of

planning time and the average length of execution trajectories, p-Chekov performs

worse than deterministic Chekov, which is as expected. This is because after the

deterministic Chekov finds a nominal solution, p-Chekov will adjust this solution

iteratively in order to satisfy the chance constraint, which will often push the solution

trajectory further away from the locally optimal solution deterministic Chekov found.

However, the overall collision rate shows the superiority of p-Chekov solutions. Here

the overall collision rate means the average collision rate over 500 test cases times

100 executions per case, which is 50000 executions in total. From the 10.01% overall

collision rate of p-Chekov shown in Table 7.1, we can see that it is about the same as

the chance constraint.

The remaining fourteen rows of Table 7.1 focus on the chance constraint satisfac-

tion performance of p-Chekov. To assess this performance, we rely on the definition

of chance constraint satisfied test cases. For each of the 500 test cases, we assume dif-

ferent executions are independent from each other. If p-Chekov works perfectly, then

the failure probability of each execution should be equal to the allowed probability of

collision. For example, if the chance constraint allows for a 10% probability of colli-

sion, the probability of failure happening to an execution should be 10%. Therefore,

the number of failure cases out of the 100 executions follows a binomial distribution

with the number of independent experiments n = 100 and the probability of occur-

rence in each experiment p = 0.1. The cumulative probability distribution function

of binomial distributions can be expressed as:

k

F(k; n, p) = Pr(X < k) = (n)pi(l - p)fl (7.10)

Based on this cumulative probability function, we can calculate that for n = 100

and p = 0.1, the probability of having less than or equal to 10 failures happening out

170

Table 7.1: Initial Experiments in Tabletop with a Pole Environment with Joint Value
Observations, Chance Constraint 10% and Noise Level 0.01

Measurements Results

Planning Time deterministic Chekov 1.12
p-Chekov 7.21

Overall Collision deterministic Chekov 18.57%
Rate' p-Chekov 10.01%

Average Path deterministic Chekov 0.51
Length (rad)2 p-Chekov 0.59

continuous chance constraint satisfaction rate3 88.15%

continuous average iteration number 1.94

satisfied cases 4 average collision rate 0.02%
average risk reduction9 0.15

continuous average iteration number 4.43
violated cases5 average collision rate 82.90%

P-Chekov average risk reduction -0.41
Performance discrete chance constraint satisfaction rate6 90.36%

discrete satisfied average iteration number 2.11

cases 7 average collision rate 0.02%
average risk reduction 0.12

discrete violated average iteration number 3.37

cases 8 average collision rate 80.49%
average risk reduction -0.47

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution tra-

jectories.
3 Percentage of test cases where the average continuous-time collision rate over

100 noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that

of deterministic Chekov solutions.

171

of 100 executions is only about 56%. Similarly, if the chance constraint is 5%, then

the probability of having less than or equal to 5 failures in 100 executions is about

59%. From these numbers we can see that, since 100 is not a large number, defining

chance constraint violated test cases as the cases where the collision rate out of 100

executions is lower than the chance constraint is not an accurate approximation.

However, for p = 0.1, the probability of having less than or equal to 15 failures out of

100 executions is about 94%, and for p = 0.05 having less than 8 failures occurring has

the probability of 86%. Consequently, we decide to define chance constraint violated

test cases as the ones where the collision rate out of 100 executions is lower than or

equal to 150% of the chance constraint. In this way, we have much more confidence

to say if in a test case there are more than the corresponding number of executions

end up in collision, the solution in that test case probably have violated the chance

constraint.

Since theoretically p-Chekov only has probabilistic guarantees for waypoints in-

stead of edges in a trajectory, when analyzing its performance, we distinguish between

continuous-time chance constraint satisfaction performance and discrete-time chance

constraint satisfaction performance. If the 100 noisy executions of a test cases shows a

continuous-time average collision rate within 150% of the collision chance constraint,

then we say this test case satisfies the continuous-time chance constraint. As shown

in the 7th row of Table 7.1, the percentage of test cases where the continuous-time

chance constraint is satisfied is 88.15%. The definition of the discrete-time chance con-

straint satisfaction performance is similar, but only the continuous-time satisfaction

is the actual criterion for success. The percentage of test cases where the waypoint

collision rate satisfies the chance constraint in this experiment is 90.36%. From the

difference between the discrete-time and continuous-time satisfaction rate, we can tell

that edge collisions are part of the reason for failing to satisfy the chance constraint.

This is an inevitable outcome of the discretization of trajectories. Hence the bal-

ance between edge collision and computation complexity is crucial when deciding the

number of waypoints. In the experiment shown in Table 7.1, the difference between

continuous-time and discrete-time chance constraint satisfaction performance is not

172

very considerable.

When we compare the p-Chekov performance in the continuous chance constraint

satisfied cases and violated cases, we can see from Table 7.1 that the satisfied cases

take much fewer iterations than the violated cases and also have much lower average

collision rate. In addition, in the satisfied cases p-Chekov successfully reduced the

average collision rate by 0.15, meanwhile in the violated cases the collision risk was

actually increased. This means the violated cases are difficult for p-Chekov and it

can't find a safe solution that satisfies the chance constraint. When pushing the

trajectories away from some obstacles, it might get them close to other obstacles, so

the collision rate will still be very high in executions with noises and won't satisfy

the chance constraint. For the chance constraint satisfied cases, in contrast, the

collision rate is much lower than the chance constraint, which means p-Chekov is being

very conservative. This is probably caused by the conservative collision probability

estimation approach and the conservative risk allocation. To make the solutions less

conservative, IRA in execution phase can be applied, and less conservative collision

probability estimation approaches can also be developed.

For Baxter, the worst case accuracy of joints is +/- 0.25 degree, which is about

+/- 0.0044 rad. Therefore, the 0.01 noise level used in Table 7.1 is much higher than

the practical level for Baxter applications. In Table 7.2 and Table 7.3, we show a set

of experiment results with noise standard deviation 0.0044 rad in the "tabletop with

a pole" and the "tabletop with a container" environments respectively, comparing the

p-Chekov performance under different chance constraints. For chance constraint 4%

cases, chance constraint satisfied cases is defined as the ones where the number of

collision failures out of the 100 executions is within 6 (1.5 x 4% x 100). Similarly, the

chance constraint satisfaction threshold number for chance constraint 5% and 10%

cases are set to 7 and 15.

The deterministic Chekov results in Table 7.2 show higher overall collision rate

than the results in Table 7.1 because the collision penalty hit-in distance is set to a

lower level in the experiments in Table 7.2. This can help us see clearly the difference

between the deterministic planner and the p-Chekov approach. From Table 7.2 we

173

Table 7.2: Results in Tabletop with a Pole Environment with Joint Value Observation,
0.0044 Noise Level and Various Chance Constraints

Chance Constraint 10% 5% 4%
Planning deterministic Chekov 1.10 1.38 1.18

Time p-Chekov 5.09 6.44 5.82
Overall deterministic Chekov 33.82% 33.84% 33.74%

Collision Rate' p-Chekov 7.70% 7.63% 8.15%
Average Path deterministic Chekov 0.51 0.51 0.51
Length (rad) 2 p-Chekov 0.54 0.54 0.54

continuous chance constraint satis- 91.57% 91.57% 90.36%
faction rate3

continuous average iteration number 1.41 1.47 1.46
satisfied average collision rate 0.02% 0.01% 0.00%
cases 4 average risk reduction9 0.32 0.32 0.32
continuous average iteration number 2.82 2.93 3.10

P-Chekov violated average collision rate 86.89% 86.30% 84.54%
Performance cases5 average risk reduction -0.35 -0.33 -0.31

discrete chance constraint satisfac- 93.57% 92.77% 92.37%
tion rate6

discrete average iteration number 1.47 1.52 1.53
satisfied average collision rate 0.04% 0.01% 0.01%
cases 7 average risk reduction 0.23 0.22 0.22
discrete average iteration number 2.50 2.64 2.68
violated average collision rate 84.79% 83.14% 83.08%
cases8 average risk reduction -0.40 -0.35 -0.37

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution tra-

jectories.
3 Percentage of test cases where the average continuous-time collision rate over 100

noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that

of deterministic Chekov solutions.

174

TM

Table 7.3: Results in Tabletop with a Container Environment with Joint Value Ob-
servation, 0.0044 Noise Level and Various Chance Constraints

Chance Constraint 10% 5%
Planning deterministic Chekov 1.29 1.61

Time p-Chekov 15.47 19.80
Overall deterministic Chekov 66.56% 66.75%

Collision Ratel p-Chekov 36.29% 36.83%
Average Path deterministic Chekov 0.63 0.63
Length (rad) 2 p-Chekov 0.76 0.77

continuous chance constraint satisfaction rate3 61.30% 60.49%

continuous average iteration number 2.74 2.87

P-Chekov satisfied cases 4 average collision rate 0.09% 0.05%

Performance average risk reduction9 0.54 0.54

continuous average iteration number 6.28 6.38

violated cases5 average collision rate 93.64% 92.66%
average risk reduction -0.08 -0.07

discrete chance constraint satisfaction rate6 69.65% 69.04%

discrete satisfied average iteration number 3.58 3.78

cases 7 average collision rate 0.05% 0.04%
average risk reduction 0.50 0.50

discrete violated average iteration number 5.31 5.36
8 average collision rate 92.80% 92.09%cases

average risk reduction -0.14 -0.13

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution trajec-

tories.
3 Percentage of test cases where the average continuous-time collision rate over 100

noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that

of deterministic Chekov solutions.

175

can see that the overall collision rate is reduced by more than 20% compared with

deterministic solutions, while the average path length is only increased by 0.3. The

chance constraint satisfaction rates for all the three chance constraints are all above

90%, and the average collision risk reductions for continuous chance constraint satis-

fied cases are all above 0.3. This means p-Chekov is very effective in this relatively

simple environment with joint value observations.

In Table 7.2, the difference between discrete and continuous chance constraint

satisfaction performance is not very remarkable, which means edge collisions in this

set of experiments are not causing significant influence. Compare the p-Chekov per-

formance with three difference chance constraints, we can see that the overall collision

rate is not going in a fully downward trend when decreasing the chance constraint

level. Instead, the collision rate for 4% is actually higher than that of 5% and 10%,

and the chance constraint satisfaction rate for 4% is also lower. One possible cause

for this is, when the chance constraint is getting tighter, there would be more test

cases that can't satisfy the chance constraint, and for those test cases p-Chekov can't

work effectively. Thus, the solutions p-Chekov gets for those cases are likely to end

up in collision, and this will bring up the overall collision rate.

Table 7.3 shows the experiment results in "tabletop with a container" environment

with joint value observations. All the parameters are set to the same as in Table 7.2,

and results with chance constraint 10% and 5% are compared. We can see that this

environment is much more complicated and p-Checkov fails in more test cases than

in this environment than the "tabletop with a pole" one. One of the reasons that

this environment is difficult is that we used a larger sampling range when randomly

sampling the start and goal pairs. In the first tabletop environment samples are

only taken from above the tabletop and relatively close to the robot arm base; in

this environment, in contrast, some sample points are taken from underneath the

table and some are far away from the robot. At those points, the manipulator is

more likely to get close to joint limits, and to reach the start and goal themselves

the manipulator might also have to be very close to obstacles, making it infeasible

to satisfy the chance constraint. Another reason for difficulty is the narrow spaces

176

IM". -

inside the container. Since we know the p-Chekov solutions from the planning phase

is often more conservative than it needs to be, these narrow spaces might make a lot

of feasible cases infeasible for p-Chekov too. Section 7.2.3 will talk about filtering out

these potentially infeasible test cases.

In this "tabletop with a container" environment, the time p-Chekov takes is much

longer than the previous environment, and the chance constraint satisfaction rate is

much lower. From the above 66% overall collision rate for deterministic Chekov

solutions we can also tell that this environment is much more difficult. Despite

the difficulty, p-Chekov can reduce this collision rate to about 36% in both chance

constraints cases, and in the constraint satisfied test cases the average risk reduction

is above 0.5. Compare the continuous constraint satisfied cases and the violated

cases, we can see that the average p-Chekov iteration number in violated cases is

much higher than in satisfied cases, but not as high as the iteration number upper

bound 50. This means p-Chekov can't satisfy the chance constraint for those difficult

test cases within a few iterations so it will keep trying. However, since the p-Chekov

approach of collision probability estimation has very sparse samples, it is possible that

at a certain iteration p-Chekov believes it got the solution safe enough to satisfy the

chance constraint, but it actually didn't. This is a possible reason why in a lot of test

cases p-Chekov terminates before the iteration bound but the execution tests show

that the chance constraint is not satisfied. In order to avoid this phenomenon, further

exploration of better collision probability estimation approaches will be necessary.

7.2.2 Experiment Results for End-effector Observation Model

In order to see p-Chekov's performance with the end-effector observation model, we

conducted experiments in both tabletop environments with 10% chance constraint and

noise level 0.0044. Figure 7-1 and Figure 7-2 show the breakdown of the experiment

results in the "tabletop with a pole" environment and the "tabletop with a container"

environment respectively. In Figure 7-1 and Figure 7-2, all the test cases are divided

into five groups: (1) the chance constraint is satisfied by the initial deterministic

Chekov solution, (2) the continuous-time collision rate satisfies the chance constraint,

177

(3) the continuous-time collision rate violates the chance constraint but the discrete-

time collision rate satisfies it, (4) the discrete-time collision rate violates the chance

constraint but the p-Chekov algorithm terminated before it hits its iteration number

upper bound, and (5) the p-Chekov algorithm terminated because it hit the iteration

limit.

From Figure 7-1 we can see that in 60.64% of the test cases the chance constraint

is satisfied through the risk-aware p-Chekov's effort based on the average continuous-

time collision rate of 100 noisy executions, meanwhile in 9.84% of the test cases

this constraint is violated by the continuous-time collision rate but satisfied by the

waypoint collision rate. As mentioned previously, this is one of the drawbacks of

trajectory discretization, and we need to balance the computation complexity and

edge collision when deciding waypoint numbers. Figure 7-1 also shows that in a small

portion (16.87%) of the test cases, the deterministic Chekov solutions have already

satisfied the chance constraint and no p-Chekov iterations are needed. In 0% test

cases p-Chekov hits the iteration upper bound. 12.65% of the test cases are failures

caused by other reasons than edge collisions. We picked some test cases out of this

12.65% to closely inspect the failure reason, and we noticed that most of these test

cases have either start or goal pose very close to obstacles. This means a lot of these

cases might be infeasible because the start or goal collision probability has already

violated the chance constraint. Therefore, in Section 7.2.3 we will show the results

after filtering out these type of potentially infeasible test cases.

In Figure 7-2 we can see that 11.40% of these test cases fail because of edge

collisions, and 41.35% fail because of other reasons. In only 4.68% of the test cases

the chance constraint is already satisfied by the deterministic Chekov solutions. This

agrees with our finding in Table 7.3 that the test cases in this environment is much

more difficult for p-Chekov.

To further investigate p-Chekov's performance under different disturbance levels

while using the end-effector observation model, we conducted experiments on the first

500 test cases in the 5000 case sets for both tabletop environments with chance con-

straint 10% and various noise levels. Table 7.4 shows the p-Chekov experiment results

178

Tabletop with a Pole

0 Initial deterministic solution

12.65% 0.0 6.87% satisfies continuous chance
constraint

. Continuous chance constraint
........... satisfied after risk-aware

A m iterations

* Continuous chance constraint
violated, but discrete chance
constraint satisfied

Discrete chance constraint

60.64% violated

* Risk-aware planning terminated
because of iteration upper
bound

Figure 7-1: Statistics Breakdown for Tabletop with a Pole Experiment with End-
Effector Observation, Noise Level 0.0044 and Chance Constraint 10%

Tabletop with a Container

* Initial deterministic solution

3.05%4.68% satisfies continuous chance
constraint

* Continuous chance constraint
satisfied after risk-aware

41.35% 39.52 iterations

* Continuous chance constraint
violated, but discrete chance
constraint satisfied

-i Discrete chance constraint

11.40% violated

* Risk-aware planning terminated
because of iteration upper
bound

Figure 7-2: Statistics Breakdown for Tabletop with a Container Experiment with
End-Effector Observation, Noise Level 0.0044 and Chance Constraint 10%

179

in the "tabletop with a pole" environment with the end-effector observation model.

Comparing Table 7.4 and Table 7.2, we can see that using end-effector observation

model makes it much more difficult for p-Chekov to find feasible solutions that sat-

isfy the chance constraint. This is as expected as the joint value observation model

directly observes the joint values whereas the end-effector observation model observes

through linearizations (the Jacobian matrix at each waypoint). Additionally, with

the joint value observation model the system is fully observable, while it is not with

the end-effector observation model. Hence, the noises will propagate to a higher level

than with the joint value observations and the estimated collision probability will also

be higher, leading to p-Chekov's failure to find feasible solutions in more test cases.

Additionally, compared with Table 7.2, Table 7.4 shows a larger difference between

continuous-time and discrete-time chance constraint satisfaction performance. This

means in more cases the chance constraint is violated because of edge collisions. This

difference can also be viewed from Figure 7-1.

In Table 7.4, the overall collision rate is reduced at the expense of average path

length. Comparing the results with different noise levels, we can see that the de-

terministic Chekov solutions have similar collision rates but the p-Chekov solutions

collide much less with lower noise levels. This means p-Chekov with end-effector

observations is failing in much fewer cases when the noise level is low. This is proba-

bly related to the fact that noises propagate more with the end-effector observation

model, and in a lot of cases with noise level 0.0044 the estimated collision risk is so

high that p-Chekov can't find feasible solutions. In the constraint satisfied test cases,

p-Chekov is taking many more iterations when the noise level is high, but the average

risk reductions with different noise levels are similar. Generally speaking, in this set

of experiments, p-Chekov performs better in low noise test cases.

Table 7.5 shows the experiment results in the "tabletop with a container" envi-

ronment with end-effector observations. In this environment, the chance constraint

satisfaction rates under all the three noise levels are only about 50%, and the overall

collision rates are also about 50%. Despite the high overall collision rates, Table 7.5

still shows that in the constraint satisfied test cases p-Chekov successfully reduced the

180

Table 7.4: Results in Tabletop with a Pole Environment with End-effector Observa-
tion Model, Chance Constraint 10% and Various Noise Levels

Noise Standard Deviation 0.0044 0.0022 0.0011
Planning deterministic Chekov 1.13 1.36 1.11

Time p-Chekov 24.17 16.08 8.38
Overall deterministic Chekov 35.88% 34.27% 33.40%

Collision Ratel p-Chekov 21.46% 17.42% 14.12%
Average Path deterministic Chekov 0.51 0.51 0.51
Length (rad) 2 p-Chekov 0.75 0.63 0.57

continuous chance constraint satis- 77.51% 81.33% 85.34%
faction rate3

continuous average iteration number 5.41 3.57 2.25
satisfied average collision rate 0.13% 0.05% 0.02%
cases4 average risk reduction' 0.30 0.29 0.30
continuous average iteration number 9.48 6.63 5.01

P-Chekov violated average collision rate 91.70% 93.05% 96.21%
Performance cases5 average risk reduction -0.37 -0.37 -0.40

discrete chance constraint satisfac- 87.35% 86.55% 88.96%
tion rate6

discrete average iteration number 5.91 3.80 2.43
satisfied average collision rate 0.12% 0.06% 0.05%
cases 7 average risk reduction 0.25 0.22 0.21
discrete average iteration number 8.99 6.32 4.39
violated average collision rate 74.10% 85.76% 93.02%
cases8 average risk reduction -0.26 -0.41 -0.48

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution tra-

jectories.
3 Percentage of test cases where the average continuous-time collision rate over 100

noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that

of deterministic Chekov solutions.

181

Table 7.5: Results in Tabletop with a Container Environment with
servation Model, Chance Constraint 10% and Various Noise Levels

End-effector Ob-

182

Noise Standard Deviation 0.0044 0.0022 0.0011
Planning deterministic Chekov 1.31 1.52 1.24

Time p-Chekov 49.60 34.67 17.47
Overall deterministic Chekov 66.95% 65.77% 65.04%

Collision Rate' p-Chekov 53.11% 48.82% 43.51%
Average Path deterministic Chekov 0.63 0.63 0.63
Length (rad) 2 p-Chekov 1.11 0.91 0.76

continuous chance constraint satis- 44.20% 49.08% 54.79%
faction rate3

continuous average iteration number 6.90 4.81 3.50
satisfied average collision rate 0.20% 0.11% 0.10%
cases 4 average risk reduction9 0.46 0.48 0.48
continuous average iteration number 12.12 9.11 6.26

P-Chekov violated average collision rate 95.01% 95.02% 95.25%
Performance cases5 average risk reduction -0.12 -0.12 -0.11

discrete chance constraint satisfac- 55.60% 59.27% 62.32%
tion rate6

discrete average iteration number 7.87 5.74 3.83
satisfied average collision rate 0.16% 0.33% 0.14%
cases 7 average risk reduction 0.47 0.45 0.43
discrete average iteration number 12.20 8.84 6.27
violated average collision rate 88.27% 92.54% 94.60%
cases8 average risk reduction -0.11 -0.17 -0.16

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution tra-

jectories.
3 Percentage of test cases where the average continuous-time collision rate over 100

noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that

of deterministic Chekov solutions.

Table 7.6: Penalty Hit-in Distance Increase Step Comparison in Tabletop with a Pole
Environment, with End-effector Observation Model and Chance Constraint 10%

Penalty Hit-in Distance Increase Step 0.03 0.04 0.05 0.06
Planning deterministic Chekov 1.35 1.39 1.13 1.35

Time p-Chekov 51.92 37.00 24.17 26.08
Overall deterministic Chekov 35.89% 35.87% 35.88% 36.05%

Collision Rate p-Chekov 21.95% 21.82% 21.46% 23.48%
Average Path deterministic Chekov 0.51 0.51 0.51 0.51
Length (rad) p-Chekov 0.72 0.74 0.75 0.78

continuous chance constraint 76.91% 76.71% 77.51% 74.50%
satisfaction rate

average iteration 8.04 6.61 5.41 4.41
continuous number

satisfied average collision 0.11% 0.17% 0.13% 0.18%
rate

cases average risk 0.30 0.30 0.30 0.29
reduction

average iteration 13.87 11.38 9.48 8.57
continuous number

P-Chekov violated average collision 92.28% 92.32% 91.70% 90.13%
Performance rate

cases average risk -0.38 -0.37 -0.37 -0.34
reduction

discrete chance constraint 85.94% 84.74% 87.35% 83.73%
satisfaction rate

average iteration 8.93 7.04 5.91 4.87
discrete number

satisfied average collision 0.19% 0.16% 0.12% 0.11%
rate

cases. average risk 0.25 0.24 0.25 0.24
reduction

average iteration 12.27 11.27 8.99 8.62
discrete number

violated average collision 75.30% 79.85% 74.10% 77.45%
rate

cases rtaverage risk -0.28 -0.30 -0.26 -0.29
reduction

183

collision risk by over 0.45. This means that in the success cases, p-Chekov performs

very effectively. In the test cases where p-Chekov struggles, as we mentioned before,

it is very likely that a lot of them are infeasible since their start or goal poses are very

close to obstacles.

Besides noise levels and chance constraints, the collision penalty hit-in distance

increasing step in each p-Chekov iteration is another parameter that might influence

its performance. Table 7.6 compares the performance of p-Chekov in the "tabletop

with a pole" environment using different collision penalty hit-in distance steps. The

chance constraint is set to 10% and the noise level is 0.0044. Compare different

columns in Table 7.6, we can see that using a smaller penalty distance increase step

doesn't make a big difference in p-Chekov performance except making it take more

iterations and a longer running time. Therefore, setting the collision penalty hit-in

distance increasing step to 0.05, as is the case in Table 7.1 through Table 7.5, is a

reasonable choice.

7.2.3 Results after Filtering out Potentially Infeasible Test

Cases

As mentioned in Section 7.2.1, a lot of test cases where p-Chekov fails have the start

or goal very close to obstacles. In these cases, there might not exist feasible solutions

where the chance constraint can be satisfied since the collision probability of the

start or goal has already exceeded the risk bound. Therefore, in this section, a pre-

processing procedure is added before running p-Chekov iterations in order to filter out

these potentially infeasible test cases. We estimate the collision probability of the start

and goal based on the nominal trajectory computed by deterministic Chekov, and skip

the test cases where the collision probability of the start or goal is above 150% of the

chance constraint. It is not guaranteed that these cases are infeasible, since there

might be other trajectories with different state probability distributions that have

lower collision risk for the goal pose, and the collision probability estimation might also

be inaccurate. Nevertheless, these cases are highly likely to be infeasible compared

184

M, 11111M W 1P

to other cases where the start and goal has low estimated collision probabilities. As

a result, viewing these cases as potentially infeasible cases and skipping them is a

reasonable assumption. The results shown in this section is based on the first 500

potential feasible tests cases out of the 5000 in each environment.

Figure 7-3 and Figure 7-4 show the statistics breakdown for the experiments with

the end-effector observation model in the two tabletop environments after filtering out

the potentially infeasible test cases. The chance constraint is set to 10% and the noise

level is 0.0044. Compare Figure 7-3 and 7-4 with Figure 7-1 and 7-2, it is obvious

that the percentage of chance constraint satisfied cases is significantly increased. In

"tabletop with a pole" environment, we can see that in 25.20% of the test cases, the

initial deterministic solution has already satisfied the chance constraint, and there

are 62.40% test cases where the chance constraint is satisfied after the risk-aware

iterations of p-Chekov. Only 6.80% of the test cases fail because of edge collisions,

and 5.40% fail for other reasons. These statistics are very encouraging since they tell

us that it is very likely that a large portion of the failures in the experiments in the

last two sections are caused by infeasibility rather than p-Chekov's failure.

Similarly, the statistics shown in Figure 7-4 also help justify p-Chekov's perfor-

mance. Compared with Figure 7-2, 65.20% instead of 30.52% of the 500 test cases

in Figure 7-4 can satisfy the chance constraint after p-Chekov's risk-aware iterations.

Together with the 17.00% cases where initial deterministic solutions can satisfy the

chance constraint, the overall chance constraint satisfaction rate is 82.20% after fil-

tering out the potentially infeasible test cases. From the comparison between Figure

7-2 and Figure 7-4 we can see that in the "tabletop with a container" environment,

the difference between the experiment results before and after filtering is much more

noticeable than in the "tabletop with a pole" environment. This also proves that the

test cases in the "tabletop with a container" environment are much more difficult for

p-Chekov and there are many more cases with too high risk of collision at the start

or goal to satisfy the trajectory chance constraint.

To further investigate the p-Chekov's performance in potentially feasible test cases,

we also compare the experiment results with joint value observations and with end-

185

Tabletop with a Pole

E Initial deterministic solution

5.40%0120% satisfies continuous chance
6.80% constraint25.20%

w Continuous chance constraint
satisfied after risk-aware
iterations

m Continuous chance constraint
violated, but discrete chance
constraint satisfied

Discrete chance constraint
2.40% violated

M Risk-aware planning terminated
because of iteration upper
bound

Figure 7-3: Statistics Breakdown for Feasible Cases in Tabletop with a Pole Ex-
periment with End-Effector Observation, Noise Level 0.0044 and Chance Constraint
10%

Tabletop with a Container

is Initial deterministic solution

0. % satisfies continuous chance
12.40% 17.00% constraint

4 Continuous chance constraint
satisfied after risk-aware
iterations

* Continuous chance constraint
violated, but discrete chance
constraint satisfied

Discrete chance constraint

65.20% violated

* Risk-aware planning terminated
because of iteration upper
bound

Figure 7-4: Statistics Breakdown for Feasible Cases in Tabletop with a Container Ex-
periment with End-Effector Observation, Noise Level 0.0044 and Chance Constraint
10%

186

.1

effector observations. Table 7.7 and Table 7.8 show a detailed experiment result

analysis for p-Chekov with joint value observations and end-effector observations re-

spectively in the potentially feasible test cases in both environments. For the exper-

iments shown in Table 7.7, the joint value observation model is used, the noise level

is set to 0.0044, and the chance constraint is set to 5%. The experiments shown in

Table 7.8 uses the end-effector observation model and a 0.0044 noise level, and the

chance constraint is set to 10%. Compared with Table 7.2 to 7.5, we can see that

p-Chekov's performance is significantly improved after filtering out potentially infea-

sible test cases. In Table 7.7 we can see that with joint value observations, p-Chekov

can achieve an above 90% chance constraint satisfaction rate in both environments.

Especially in the "tabletop with a container" environment, p-Chekov shows powerful

collision risk reduction ability by having an overall collision rate of 6.13% and an

average risk reduction of 0.41 in satisfied cases. In addition, the average execution

trajectory lengths are not significantly increased in both environments.

Table 7.8 shows p-Chekov's performance in potentially feasible test cases in both

environments with end-effector observations. Even though the performance is not

as good compared to Table 7.7, it is still satisfactory as the constraint satisfaction

rates in both environments are above 80%. The overall collision risk is significantly

reduced compared to deterministic Chekov solutions. In constraint satisfied cases, the

average risk reductions are also very high in both environments. However, in these

satisfied cases, the collision risk is much lower than the chance constraint level, and

the average execution trajectory lengths are much longer compared with deterministic

Chekov solutions. This means when we only use the p-Chekov planning phase algo-

rithm, the solutions can be overly conservative and utilities are sacrificed. Taking this

into consideration, using the Iterative Risk Allocation (IRA) algorithm in p-Chekov's

execution phase can potentially improve the solution quality. The improvement from

IRA is presented in Section 7.3.

187

Table 7.7: Results in Potentially Feasible Test Cases with Joint
Noise Level 0.0044 and Chance Constraint 5%

Value Observation,

Tabletop Tabletop
Environment with a with a

Pole Container
Planning deterministic Chekov 1.28 1.29

Time p-Chekov 5.40 10.44
Overall deterministic Chekov 28.98% 43.49%

Collision Rate' p-Chekov 1.60% 6.13%
Average Path deterministic Chekov 0.51 0.59
Length (rad) 2 p-Chekov 0.52 0.64

continuous chance constraint satisfaction rate 3 98.40% 93.80%

continuous average iteration number 1.15 2.02

satisfied cases 4 average collision rate 0.00% 0.01%
average risk reduction 0.29 0.41

continuous average iteration number 4.00 8.19
P-Chekov violated cases5 average collision rate 100.00% 98.68%

Performance average risk reduction -0.43 -0.16
discrete chance constraint satisfaction rate6 99.00% 96.20%

discrete average iteration number 1.18 2.25

satisfied cases7 average collision rate 0.00% 0.01%
average risk reduction 0.19 0.31

discrete average iteration number 3.20 6.37

violated cases8 average collision rate 100.00% 98.47%
average risk reduction -0.62 -0.15

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution trajectories.
3 Percentage of test cases where the average continuous-time collision rate over 100

noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that of

deterministic Chekov solutions.

188

Table 7.8: Results in Potentially Feasible Test Cases with End-effector Observation,
Noise Level 0.0044 and Chance Constraint 10%

Tabletop Tabletop
Environment with a with a

Pole Container
Planning deterministic Chekov 1.10 1.27

Time p-Chekov 19.34 31.17
Overall deterministic Chekov 27.51% 41.04%

Collision Rate' p-Chekov 11.39% 16.46%
Average Path deterministic Chekov 0.51 0.60
Length (rad) 2 . p-Chekov 0.68 0.84

continuous chance constraint satisfaction rate 3 87.60% 82.20%

continuous average iteration number 4.14 5.19

satisfied cases 4 average collision rate 0.08% 0.11%
average risk reduction9 0.25 0.33

continuous average iteration number 10.52 10.35
P-Chekov violated cases 5 average collision rate 88.50% 88.02%

Performance average risk reduction -0.44 -0.13
discrete chance constraint satisfaction rate6 94.40% 86.80%

discrete average iteration number 4.82 5.49

satisfied cases 7 average collision rate 0.13% 0.10%
average risk reduction 0.19 0.28

discrete average iteration number 6.94 10.32

violated cases 8 average collision rate 73.39% 86.59%
average risk reduction -0.39 -0.23

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories instead of nominal solution trajectories.
3 Percentage of test cases where the average continuous-time collision rate over 100

noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where chance constraint is satisfied by

continuous-time collision rate (viewed as success cases).
5 P-Chekov performance over the test cases where chance constraint is violated by

continuous-time collision rate (viewed as failure cases).
6 Percentage of test cases where the average waypoint collision rate over 100 noisy

executions satisfies the chance constraint.
7 P-Chekov performance over the test cases where chance constraint is satisfied by

waypoint collision rate.
8 P-Chekov performance over the test cases where chance constraint is violated by

waypoint collision rate.
9 The difference between the average collision rate of p-Chekov solutions and that of

deterministic Chekov solutions.

189

7.3 Improvement from Iterative Risk Allocation

This section presents the improvement from using the IRA algorithm introduced in

Section 6.4.2. As mentioned at the beginning of this chapter, the results shown in

this section don't take into account the changing start poses during actual executions.

These are just preliminary results of adding an IRA procedure to the original planning

query based on the solution found by the p-Chekov planning phase. Despite this fact,

these results can still reflect the potential of the execution phase IRA algorithm.

Applying this IRA procedure in real robot executions is a main direction for future

work.

Table 7.9 and Table 7.10 compare the solution quality between the planning phase

algorithm only and the planning phase algorithm plus an IRA procedure in the "table-

top with a pole" environment with joint value observations and end-effector obser-

vations respectively. The comparison considers three main aspects: the percentage

of test cases where the continuous-time collision rate satisfies the chance constraint,

the percentage of test cases where the waypoint collision rate satisfies the chance

constraint, and the average trajectory length over 100 noisy executions. The column

of "All Cases" refers to the results of the original 500 test cases, and the column of

"Feasible Cases" refers to the results of the 500 test cases after filtering out poten-

tially infeasible cases based on the collision probability of start and end poses. From

Table 7.9 and Table 7.10 we can see that using IRA can slightly improve the chance

constraint satisfaction rate, for both continuous-time and discrete-time satisfactions.

The improvement on average path length is the main improvement that we are ex-

pecting, since it represents the plan utility. From the results, especially Table 7.10,

we can see that IRA made noticeable improvements in terms of path length. This

means the solutions of IRA are less conservative, so that the path quality is improved

without sacrificing the chance constraint satisfaction rate.

Table 7.11 and Table 7.12 show a similar comparison in the "tabletop and a con-

tainer" environment. In this environment, the results of using the planning phase

algorithm only are less satisfactory compared to the ones in the "tabletop with a

190

Table 7.9: IRA Performance in Tabletop with a Pole Environment with Joint Value
Observation, Noise Level 0.0044 and Chance Constraint 5%

Feasible
Test Case Filtering All Cases Case

Cases
Continuous Chance Constraint Without IRA 85.62% 96.58%

Satisfaction Rate' With IRA 88.44% 97.72%
Discrete Chance Constraint Without IRA 88.44% 97.83%

Satisfaction Rate 2 With IRA 90.00% 98.86%
Without IRA 0.62 0.64

Average Path Length (rad)3 With IRA 0.60 0.63

1 Percentage of test cases where the average continuous-time collision rate over 100
noisy executions satisfies the chance constraint.

2 Percentage of test cases where the average waypoint collision rate over 100 noisy
executions satisfies the chance constraint.

3 Average length of actual execution trajectories instead of nominal solution trajec-
tories.

Table 7.10: IRA Performance in Tabletop with a Pole Environment with
Observation, Noise Level 0.0044 and Chance Constraint 10%

End-effector

Feasible
Test Case Filtering All Cases Case

Cases
Continuous Chance Constraint Without IRA 69.92% 82.16%

Satisfaction Rate' With IRA 69.92% 84.21%
Discrete Chance Constraint Without IRA 81.49% 90.35%

Satisfaction Rate2 With IRA 82.26% 91.23%

Average Path Length (rad) 3 Without IRA 0.85 0.81
With IRA 0.80 0.77

1 Percentage of test cases where the average continuous-time collision rate over 100
noisy executions satisfies the chance constraint.

2 Percentage of test cases where the average waypoint collision rate over 100 noisy
executions satisfies the chance constraint.

3 Average length of actual execution trajectories instead of nominal solution trajec-
tories.

191

Table 7.11: IRA Performance in Tabletop with a Container Environment with Joint
Value Observation, Noise Level 0.0044 and Chance Constraint 5%

Feasible
Test Case Filtering All Cases Case

Cases
Continuous Chance Constraint Without IRA 53.57% 90.94%

Satisfaction Ratel With IRA 55.00% 93.44%
Discrete Chance Constraint Without IRA 64.29% 94.06%

Satisfaction Rate 2 With IRA 63.81% 95.94%
Average Path Length (rad)3 Without IRA 0.81 0.74
A verage_ P ath_ Length_ (rad)3 W ith IR A 0.78 0.72

Percentage of test cases where the average continuous-time collision rate over 100
noisy executions satisfies the chance constraint.

2 Percentage of test cases where the average waypoint collision rate over 100 noisy
executions satisfies the chance constraint.

3 Average length of actual execution trajectories instead of nominal solution trajec-
tories.

Table 7.12: IRA Performance in Tabletop with a Container Environment
effector Observation, Noise Level 0.0044 and Chance Constraint 10%

with End-

Feasible
Test Case Filtering All Cases Case

Cases
Continuous Chance Constraint Without IRA 41.72% 76.80%

Satisfaction Rate' With IRA 43.08% 77.87%
Discrete Chance Constraint Without IRA 55.33% 82.67%

Satisfaction Rate 2 With IRA 54.20% 83.47%

Average Path Length (rad)3 Without IRA 1.10 0.94
A verage_ P ath_ L ength_ (rad) _ W ith IR A 1.03 0.88

Percentage of test cases where the average continuous-time collision rate over 100
noisy executions satisfies the chance constraint.

2 Percentage of test cases where the average waypoint collision rate over 100 noisy
executions satisfies the chance constraint.

3 Average length of actual execution trajectories instead of nominal solution trajec-
tories.

192

pole" environment, since this is a relatively difficult environment. However, the im-

provement from IRA on average path length is more notable. Generally speaking

using IRA can slightly improve the chance constraint satisfaction rate, as well as sig-

nificantly shorten the path length by being less conservative and using risk bounds

wisely.

The results in Table 7.9 through Table 7.12 tell us that using IRA can effectively

redistribute risk bounds among different constraints, and improve the solution qual-

ity by providing less conservative solutions that also satisfy the chance constraint.

Therefore, implementing the p-Chekov execution phase idea of anytime trajectory

improvement could potentially bring about important improvement to the p-Chekov

planning phase algorithm.

193

194

Chapter 8

Summary

This chapter first summarizes the content of the whole thesis, and then discusses its

main contributions and potential directions of future research.

8.1 Main Content Summary

This thesis first presented an evaluation of several representative sampling-based and

optimization-based motion planners, and then introduced a risk-aware motion plan-

ning and execution system called p-Chekov. The development of p-Chekov included

a deterministic stage, which leveraged the recent advances in obstacle-aware trajec-

tory optimization to improve the original tube-based-roadmap Chekov planner, and

a risk-aware stage that accounted for chance constraints through state probability

distribution estimation and collision probability estimation.

Through experiments in 4 common application scenarios with 5000 test cases each,

this thesis showed that optimization-based or sampling-based planners alone are not

effective for realistic problems where real-time planning is required. It concluded

that using sampling-based planners alone on high degree-of-freedom robots could not

achieve a high enough reaction speed in our benchmark. In comparison, TrajOpt

with naYve straight-line seed trajectories could plan very fast but had very a high

collision rate. Therefore, this thesis then showed the performance of the combined

sampling-based plus TrajOpt planner, and concluded that the performance of Tra-

195

jOpt was significantly improved when provided with a collision-free seed trajectory

instead of a joint-space straight-line trajectory. After that, this thesis presented an

in-depth sensitivity analysis for different parameters in TrajOpt. To the best of our

knowledge, this is the first work that presents such a systematic and comprehensive

evaluation of state-of-the-art motion planners, which is based on a significant amount

of experiments.

The planner evaluation results inspired us to combine a sparse roadmap that

represents the static collision-free configuration space and an online obstacle-aware

trajectory optimizer, which formed the deterministic planner of p-Chekov. The static

roadmap here is sparse because a dense roadmap for high-dimensional robots takes a

lot of memory to store and a lot of effort to search through, whereas online algorithms

require fast solutions. However, an inevitable consequence of sparse roadmaps is that

the solution found by the roadmap will tend to be sub-optimal, which motivated the

use of a trajectory optimizer. In p-Chekov, whenever a roadmap is constructed, all

the shortest path solutions between each pair of roadmap nodes are cached offline,

so that the online query only requires the connection from start and target pose to

the roadmap nodes. The solution path found by this sparse roadmap is used to seed

the trajectory optimizer, which then locally optimizes and smooths the solution. By

using a multi-query roadmap instead of generating completely new trajectories for

each planning problem, our approach allows for extensions such as persistent control

policy information associated with a trajectory across planning problems. Also, the

sub-optimality resulting from the sparsity of the roadmap, as well as the unexpected

disturbances from the environment, can both be overcome by the real-time trajectory

optimization process. Simulation results showed that, in typical real-life manipulation

applications, this "roadmap + TrajOpt" approach took about 1 s to plan and the

failure rate of its solutions was under 1%.

Based on the deterministic "roadmap + TrajOpt" planner, p-Chekov incorporated

the linear-quadratic Gaussian motion planning (LQG-MP) approach of estimating

state probability distributions and the idea of risk allocation in order to turn into a

risk-aware planner. It first estimates the robot state probability distributions along a

196

-11 111111 P11 11 1 IM pill I 11 911 M"

nominal trajectory based on the controller and observer models and noise levels. With

this distribution information, it can estimate the risk of collision at each waypoint

through a quadrature-sampling-based approach. By comparing these estimated colli-

sion risks with the allocated risk bounds for each waypoint, p-Chekov can determine

whether a nominal trajectory satisfied the joint chance constraint. If the constraint is

not satisfied, then new constraints will be added to the waypoints where the allocated

risk bounds are violated so that p-Chekov will be guided to move to a safer trajectory

in the next iteration. Otherwise, p-Chekov will start to execute the trajectory. An

Iterative Risk Allocation (IRA) approach was also introduced in this thesis which

could be applied in the execution phase to iteratively improve the solution trajectory.

After describing p-Chekov, this thesis also presented the experimental results on

this risk-aware planning system. Simulation tests showed that, compared with de-

terministic solutions, the risk-aware p-Chekov solutions had a much lower collision

rate. In addition, for potentially feasible test cases (after filtering out the cases where

the start or goal had already violated the collision chance constraint), the chance

constraint satisfaction rate was above 90% with joint value observations and above

80% with end-effector observations across various simulation environments. It over-

came existing risk-aware planners' limitation in real-time motion planning tasks with

high-DOF robots in 3-dimensional non-convex environments. Initial tests on the IRA

algorithm showed that the average path length was reduced by its application to the

p-Chekov planning phase solutions. Therefore, we can see that further developing

the execution phase anytime plan improving algorithm based on IRA is a potential

direction for future research work.

8.2 Main Contributions

The main contributions of this thesis include:

1. A systematic evaluation of several popular motion planners through extensive

simulation tests in realistic planning scenarios, including RRT, RRT*, Lazy PRM,

PRM*, and TrajOpt.

197

2. The incorporation of trajectory optimization into the roadmap-based Chekov

motion planning system, which establishes a "roadmap + TrajOpt" deterministic

planning system that shows superior performance in many practical planning tasks

in terms of solution feasibility, optimality and reaction time.

3. The application of quadrature-sampling theories into collision probability es-

timation, which helps achieve better estimations with a limited number of sampled

nodes.

4. The adaptation and application of risk allocation in the planning phase and

the execution phase algorithms in p-Chekov.

5. The development of the whole p-Chekov risk-aware motion planning and ex-

ecution system that can handle high-DOF robotic planning tasks in 3-dimensional

non-convex environments.

8.3 Discussions about Future Work

Despite the encouraging performance p-Chekov showed, it still inevitably has some

limitations and a lot of further research efforts are needed to make it more widely

applicable.

First, collision probability estimation is the main bottleneck of p-Chekov. Using

sampling-based approaches to obtain collision risks for high-dimensional robots can

be very time-consuming. In addition, from the experiment statistics breakdown in

Chapter 7 we can see that, even though quadrature-based sampling is applied, there

is still a portion of cases where p-Chekov converged but execution tests show that the

collision risk of the solution trajectory exceeds the chance constraint. This means the

accuracy of collision risk estimation can still be improved. Therefore, exploring other

approaches to improve the collision probability estimation speed and accuracy is one of

the most important ways to improve the performance of p-Chekov. Potential methods

that can be applied include saving sampled points over iterations and re-weighting

them in order to improve the collision risk estimation in a new iteration, incorporating

the concept of workspace geometry and configuration geometry boundaries introduced

198

in [831 to speed up the collision risk estimation, as well as exploring ways to apply

importance sampling theories in p-Chekov collision risk estimation so as to improve

its accuracy.

Second, more intelligent ways of adding constraints to TrajOpt when some of the

waypoints violate their risk bounds should be explored so that TrajOpt can be better

guided to move to more reasonable trajectories. Currently, increasing the collision

penalty hit-in distance for waypoints that violate risk bounds is how we guide TrajOpt

to improve solutions over iterations. However, in the current version, the step of

distance increase at each iteration is uniform and the amount of risk violation is

not taken into account. In addition, repeatedly pushing up the penalty distance can

sometimes mess up TrajOpt's ability of finding reasonable solutions, especially for

difficult test cases like environments with narrow spaces. For example, if one of the

waypoints can't satisfy the risk bound and its penalty distance is increased to an

unreasonably high level, to minimize the total collision cost, TrajOpt might go for a

trajectory that pushes another waypoint into collision to keep this waypoint safer. To

avoid this phenomenon and give TrajOpt better guidance when some risk bounds are

violated, more efforts need to be invested into the constraint development for violated

waypoints.

Third, as mentioned in Section 7.3, the current experiments about the execution

phase IRA algorithm simply run IRA on the solution the planning phase algorithm

returned, without considering the anytime plan improvement during actual execu-

tions. Since the experiment results in Section 7.3 show the potential of performance

improvement from this execution phase IRA algorithm, developing the complete exe-

cution phase algorithm that takes into account the changing start pose and changing

chance constraint for the planner during real execution is another promising extension

to the current p-Chekov system.

Fourth, being flexible with roadmap seed trajectories can also help p-Chekov to

find fundamentally different trajectories and converge faster to feasible solutions. For

example, one way of doing this is to go back to the roadmap and ask for a different

seed trajectory if p-Chekov still can't find a feasible solution after a certain number of

199

iterations. Another idea of improving the quality of roadmap seeds is to incorporate

risk information into the roadmap nodes and conduct heuristic search to find the best

candidate path with low risk of collision and short path length.

Finally, many other extensions of the current p-Chekov system are also worthwhile

to explore. For example, the incorporation of non-Gaussian noise, the consideration

of environmental noise and temporal uncertainties, and the development of other

observation models are all interesting directions that future research work can focus

on.

200

Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions:
with formulas, graphs, and mathematical tables, volume 55. Courier Corporation,
1964.

12] Baris Akgun and Mike Stilman. Sampling heuristics for optimal motion planning
in high dimensions. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 2640-2645. IEEE, 2011.

[3] Ron Alterovitz, Andrew Lim, Ken Goldberg, Gregory S Chirikjian, and Alli-
son M Okamura. Steering flexible needles under markov motion uncertainty.
In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pages 1570-1575. IEEE, 2005.

[4] Ron Alterovitz, Thierry Simeon, and Kenneth Y Goldberg. The stochastic mo-
tion roadmap: A sampling framework for planning with markov motion uncer-
tainty. In Robotics: Science and systems, volume 3, pages 233-241, 2007.

15] Oktay Arslan and Panagiotis Tsiotras. Machine learning guided exploration for
sampling-based motion planning algorithms. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pages 2646-2652. IEEE,
2015.

[6] Richard Ernest Bellman. Dynamic programming. 1957.

[7] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P
Bertsekas. Dynamic programming and optimal control, volume 1. Athena scien-
tific Belmont, MA, 1995.

[8] Lars Blackmore, Hui Li, and Brian Williams. A probabilistic approach to optimal
robust path planning with obstacles. In American Control Conference, 2006,
pages 7-pp. IEEE, 2006.

[9] Lars Blackmore, Masahiro Ono, Askar Bektassov, and Brian C Williams. A prob-
abilistic particle-control approximation of chance-constrained stochastic predic-
tive control. IEEE transactions on Robotics, 26(3):502-517, 2010.

[10] Robert Bohlin and Lydia E Kavraki. Path planning using lazy prm. In Robotics
and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference
on, volume 1, pages 521-528. IEEE, 2000.

201

[11] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion
planning under uncertainty. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 723-730. IEEE, 2011.

[12J Julien Burlet, Olivier Aycard, and Thierry Fraichard. Robust motion planning
using markov decision processes and quadtree decomposition. In Robotics and
Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference
on, volume 3, pages 2820-2825. IEEE, 2004.

[13] Mylene Campana, Florent Lamiraux, and Jean-Paul Laumond. A simple path
optimization method for motion planning. 2015.

[14 Peng Cheng and Steven M LaValle. Resolution complete rapidly-exploring ran-
dom trees. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE
International Conference on, volume 1, pages 267-272. IEEE, 2002.

[15] Sachin Chitta. Motion planning. http://www.sachinchitta.org/motion-
planning.html.

1161 Howie M Choset. Principles of robot motion: theory, algorithms, and implemen-
tation. MIT press, 2005.

[17] Benjamin J Cohen, Sachin Chitta, and Maxim Likhachev. Search-based planning
for manipulation with motion primitives. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 2902-2908. IEEE, 2010.

[18] Siyu Dai, Matthew Orton, Shawn Schaffert, Andreas Hofmann, and Brian C
Williams. Improving trajectory optimization using a roadmap framework. In
28th International Conference on Automated Planning and Scheduling (ICAPS
2018) Workshop on Planning and Robotics, 2018.

[191 Morris L Eaton. Multivariate statistics: a vector space approach. JOHN WILEY
& SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, USA, 1983, 512,
1983.

[20] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning:
A review. IEEE Access, 2:56-77, 2014.

[211 Christer Ericson. Real-time collision detection. CRC Press, 2004.

[22] Pedro Felzenszwalb and Daniel Huttenlocher. Distance transforms of sampled
functions. Technical report, Cornell University, 2004.

[231 Dave Ferguson and Anthony Stentz. Anytime rrts. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pages 5369-5375. IEEE,
2006.

[24] Arthur Gelb. Applied optimal estimation. MIT press, 1974.

202

1251 Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast procedure
for computing the distance between complex objects in three-dimensional space.
IEEE Journal on Robotics and Automation, 4(2):193-203, 1988.

[26] Leonidas Guibas, David Hsu, Hanna Kurniawati, and Ehsan Rehman. Bounded
uncertainty roadmaps for path planning. Algorithmic Foundation of Robotics
VIII, pages 199-215, 2009.

127] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100-107, 1968.

[281 Carlos Hernmndez, Pedro Meseguer, Xiaoxun Sun, and Sven Koenig. Path-
adaptive a* for incremental heuristic search in unknown terrain. In ICAPS,
2009.

[291 Wassily Hoeffding, Herbert Robbins, et al. The central limit theorem for depen-
dent random variables. Duke Mathematical Journal, 15(3):773-780, 1948.

1301 Andreas Hofmann, Enrique Fernandez, Justin Helbert, Scott Smith, and
Brian Williams. Reactive integrated motion planning and execution. AAAI
Press/International Joint Conferences on Artificial Intelligence, 2015.

1311 Huosheng Hu and Michael Brady. Dynamic global path planning with uncer-
tainty for mobile robots in manufacturing. IEEE Transactions on Robotics and
Automation, 13(5):760-767, 1997.

132] Vu Anh Huynh and Nicholas Roy. iclqg: combining local and global optimization
for control in information space. In Robotics and Automation, 2009. ICRA'09.
IEEE International Conference on, pages 2851-2858. IEEE, 2009.

1331 Woods Hole Oceanographic Institution. Nui manipulator integration. [Online;
accessed January 27, 2018j.

[341 Lonard Jaillet, Judy Hoffman, Jur Van den Berg, Pieter Abbeel, Josep M Porta,
and Ken Goldberg. Eg-rrt: Environment-guided random trees for kinodynamic
motion planning with uncertainty and obstacles. In Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RSJ International Conference on, pages 2646-2652.
IEEE, 2011.

[35] Leonard Jaillet, Anna Yershova, Steven M La Valle, and Thierry Simeon. Adap-
tive tuning of the sampling domain for dynamic-domain rrts. In Intelligent Robots
and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on,
pages 2851-2856. IEEE, 2005.

[361 Lucas Janson, Edward Schmerling, and Marco Pavone. Monte carlo motion plan-
ning for robot trajectory optimization under uncertainty. In Robotics Research,
pages 343-361. Springer, 2018.

203

1371 Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. Stomp: Stochastic trajectory optimization for motion planning.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pages 4569-4574. IEEE, 2011.

[38] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846-894,
2011.

[391 Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566-580, 1996.

[40] Sven Koenig and Maxim Likhachev. D* lite. AAA IA AI, 15, 2002.

[411 Sven Koenig and Maxim Likhachev. Incremental a. In Advances in neural in-

formation processing systems, pages 1539-1546, 2002.

[42] Sven Koenig and Maxim Likhachev. Fast replanning for navigation in unknown
terrain. IEEE Transactions on Robotics, 21(3):354-363, 2005.

[431 Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning aAiLU.
Artificial Intelligence, 155(1-2):93-146, 2004.

144] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Robotics and Automation, 2000. Proceedings.
ICRA '00. IEEE International Conference on, volume 2, pages 995-1001. IEEE,
2000.

[451 Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces. In Robotics:
Science and systems, volume 2008. Zurich, Switzerland., 2008.

[46] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 1998.

1471 Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and
Sebastian Thrun. Anytime dynamic a*: An anytime, replanning algorithm. In
ICA PS, pages 262-271, 2005.

[481 Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. Ara*: Anytime
a* with provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems, pages 767-774, 2004.

[491 Maxim Likhachev and Sven Koenig. Lifelong planning a* and dynamic a* lite:
The proofs. Technical report, 2001.

[501 Wei Liu and Marcelo H Ang. Incremental sampling-based algorithm for risk-
aware planning under motion uncertainty. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 2051-2058. IEEE, 2014.

204

[511 Brandon Luders, Mangal Kothari, and Jonathan How. Chance constrained rrt
for probabilistic robustness to environmental uncertainty. In AIAA guidance,
navigation, and control conference, page 8160.

[52] David G Luenberger. Introduction to dynamic systems: theory, models, and
applications, volume 1. Wiley New York, 1979.

[53] Ryan Luna, Joan A $ucan, Mark Moll, and Lydia E Kavraki. Anytime solution
optimization for sampling-based motion planning. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 5068-5074. IEEE, 2013.

154] Hang Ma, Sven Koenig, Nora Ayanian, Liron Cohen, Wolfgang Hdnig, TK Ku-
mar, Tansel Uras, Hong Xu, Craig Tovey, and Guni Sharon. Overview: Gen-
eralizations of multi-agent path finding to real-world scenarios. arXiv preprint
arXiv:1 702.05515, 2017.

[55] Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig. Lifelong multi-agent path
finding for online pickup and delivery tasks. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, pages 837-845. International
Foundation for Autonomous Agents and Multiagent Systems, 2017.

[56] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics Research,
36(8):947-982, 2017.

[571 Nik A Melchior and Reid Simmons. Particle rrt for path planning with uncer-
tainty. In Robotics and Automation, 2007 IEEE International Conference on,
pages 1617-1624. IEEE, 2007.

[58] Mustafa Mukadam, Xinyan Yan, and Byron Boots. Gaussian process motion
planning. In Robotics and Automation (ICRA), 2016 IEEE International Con-
ference on, pages 9-15. IEEE, 2016.

1591 Alex Nash, Sven Koenig, and Maxim Likhachev. Incremental phi*: Incremental
any-angle path planning on grids. In IJCAI, pages 1824-1830, 2009.

[601 Alex Nash, Sven Koenig, and Craig Tovey. Lazy theta*: Any-angle path planning
and path length analysis in 3d. In Third Annual Symposium on Combinatorial
Search, 2010.

[61] Radford M Neal. Probabilistic inference using markov chain monte carlo meth-
ods. 1993.

[62J Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2(11), 2011.

[63] Evdokia Nikolova, Matthew Brand, and David R Karger. Optimal route planning
under uncertainty. In ICAPS, volume 6, pages 131-141, 2006.

205

[64] Kyel Ok, Sameer Ansari, Billy Gallagher, William Sica, Frank Dellaert, and Mike
Stilman. Path planning with uncertainty: Voronoi uncertainty fields. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 4596-
4601. IEEE, 2013.

[65] Masahiro Ono and Brian C Williams. An efficient motion planning algorithm for
stochastic dynamic systems with constraints on probability of failure. 2008.

[66] Masahiro Ono and Brian C Williams. Iterative risk allocation: A new approach
to robust model predictive control with a joint chance constraint. In Decision and
Control, 2008. CDC 2008. 47th IEEE Conference on, pages 3427-3432. IEEE,
2008.

[67] Masahiro Ono, Brian C Williams, and Lars Blackmore. Probabilistic planning
for continuous dynamic systems under bounded risk. Journal of Artificial Intel-
ligence Research, 46:511-577, 2013.

[68] AB Owen. Monte carlo theory, methods and examples (book draft), 2014.

[69] C Park, F Rabe, S Sharma, Christian Scheurer, Uwe E Zimmermann, and Dinesh
Manocha. Parallel cartesian planning in dynamic environments using constrained
trajectory planning. In Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th
International Conference on, pages 983-990. IEEE, 2015.

[70] Chonhyon Park, Jia Pan, and Dinesh Manocha. Itomp: Incremental trajectory
optimization for real-time replanning in dynamic environments. In ICAPS, 2012.

[71] Sachin Patil, Jur Van Den Berg, and Ron Alterovitz. Estimating probability of
collision for safe motion planning under gaussian motion and sensing uncertainty.
In Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 3238-3244. IEEE, 2012.

[721 Mathew Penrose. Random geometric graphs. Number 5. Oxford University Press,
2003.

[731 Alejandro Perez, Sertac Karaman, Alexander Shkolnik, Emilio Frazzoli, Seth
Teller, and Matthew R Walter. Asymptotically-optimal path planning for ma-
nipulation using incremental sampling-based algorithms. In Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 4307-
4313. IEEE, 2011.

[74] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas
Lozano-Perez. Lqr-rrt*: Optimal sampling-based motion planning with automat-
ically derived extension heuristics. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2537-2542. IEEE, 2012.

[75] Robert Platt, Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-perez. Belief
space planning assuming maximum likelihood observations. In In Proc. Robotics:
Science and Systems, 2010.

206

[761 Ganesan Ramalingam and Thomas Reps. On the computational complexity of
dynamic graph problems. Theoretical Computer Science, 158(1):233-277, 1996.

177] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa.
Chomp: Gradient optimization techniques for efficient motion planning. In
Robotics and Automation, 2009. ICRA'09. IEEE International Conference on,
pages 489-494. IEEE, 2009.

[78J RethinkRobotics. Baxter. http://www.rethinkrobotics.com/baxter/.

[791 John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Brad-
low, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning
with sequential convex optimization and convex collision checking. The Interna-
tional Journal of Robotics Research, 33(9):1251-1270, 2014.

[801 John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Robotics: science and systems, volume 9, pages 1-10.
Citeseer, 2013.

[81] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-guided
sampling for planning under differential constraints. In Robotics and Automation,
2009. ICRA'09. IEEE International Conference on, pages 2859-2865. IEEE,
2009.

[821 Anthony Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE Interna-
tional Conference on, pages 3310-3317. IEEE, 1994.

[83] Wen Sun, Luis G Torres, Jur Van Den Berg, and Ron Alterovitz. Safe mo-
tion planning for imprecise robotic manipulators by minimizing probability of
collision. In Robotics Research, pages 685-701. Springer, 2016.

[841 Xiaoxun Sun, William Yeoh, and Sven Koenig. Moving target d* lite. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multi-
agent Systems: volume 1-Volume 1, pages 67-74. International Foundation for
Autonomous Agents and Multiagent Systems, 2010.

1851 Xiaoxun Sun, William Yeoh, Tansel Uras, and Sven Koenig. Incremental ara*:
An incremental anytime search algorithm for moving-target search. In Twenty-
Second International Conference on Automated Planning and Scheduling, 2012.

186] Petr Svestka. On probabilistic completeness and expected complexity for proba-
bilistic path planning, volume 1996. Utrecht University: Information and Com-
puting Sciences, 1996.

[87] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. Lqr-
trees: Feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research, 29(8):1038-1052, 2010.

207

[88] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[89] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state information.
The International Journal of Robotics Research, 30(7):895-913, 2011.

190] Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under
uncertainty using iterative local optimization in belief space. The International
Journal of Robotics Research, 31(11):1263-1278, 2012.

191] Anna Yershova, Leonard Jaillet, Thierry Simeon, and Steven M LaValle.
Dynamic-domain rrts: Efficient exploration by controlling the sampling domain.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 3856-3861. IEEE, 2005.

[92] Matt Zucker, James Kuffner, and J Andrew Bagnell. Adaptive workspace biasing
for sampling-based planners. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 3757-3762. IEEE, 2008.

[93] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa.
Chomp: Covariant hamiltonian optimization for motion planning. The Interna-
tional Journal of Robotics Research, 32(9-10):1164-1193, 2013.

208

