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ABSTRACT

The unsteady flow about a section of a modern first stage
transonic compressor rotor was simulated using a finite
difference approximation to the two-dimensional, Reynolds
averaged, unsteady, compressible, viscous Navier-Stokes
equations. The computation was performed in both steady
state and time-accurate modes, and the results compared.
The time-accurate results were analyzed in some detail.

Two frequency regimes were observed. High frequency
unsteadiness due to vortex shedding was found at frequencies
varying between 11 KHz and 19 KHz. A low frequency cycle
was also observed at 365 Hz. The low frequency cycle
produced significant variations in blade force and moment.
It also modulated the strength and frequency of the vortex
shedding.

Arguments were advanced to explain the mechanics of the
vortex street formation in terms of a single free shear
layer instability. The variations in shedding strength and
frequency were related to movement of the separation point.
A wholly satisfactory normalization of the frequencies was
not found.

The low frequency cycle was analyzed as a quasi-steady
sequence of events stemming from movement of a shock wave
spanning the blade passage. The possibility was entertained
that the cycle was due to purely numerical sources, but no
likely mechanism was found.
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CHAPTER 1 INTRODUCTION

The flow through the compressor stage of a gas turbine engine is inherently

unsteady in the laboratory frame of reference. For the purpose of designing and

analyzing these machines, it is traditional (and a tremendous simplification) to

assume that the unsteadiness is purely due to the rotation of the compressor

rotor, i.e. that the flow relative to the compressor blades themselves is

steady. It has become apparent, however, that even in the blade-relative frame

there is considerable unsteadiness in the flow. This has been documented

especially by Ng in [1.1] and [1.2], and by Gertz in [1.3] by use of high

frequency response instrumentation. As the nature of this unsteadiness becomes

better understood, it is expected that the time-averaged performance and

reliability of gas turbine compressors may potentially be improved by accounting

in the design process for the unsteadiness.

The measurements taken to date, however, have given only a limited view of

the actual blade-relative flow field. Indeed, it is impossible to fully

construct many flow details from information sampled at a single location (or

small number of locations) behind a rotating compressor rotor. Ng hypothesized

a high frequency vibration of the rotor shock wave as a cause of much of the

unsteadiness he observed. Gertz hypothesized the presence of a vortex street in

the blade wakes and constructed a model of such a flow which agrees

qualitatively (and in several quantitative respects) with his data. Additional

information about the validity of these hypotheses and about other flow details

is needed in order for a better understanding of blade-relative unsteadiness to

be gained and effectively used.

It is hoped that experimental techniques will be developed to allow the
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direct measurement of additional unsteady flow phenomena in the turbomachinery

environment. For the present, however, resort has been made to computational

simulation of the flow fields in question. Time-accurate computational results

have been published by Scott in [1.4] and by Scott and Hankey in [1.5]. These

efforts have focused on the effects of upstream unsteadiness such as are created

by the wakes of stationary guide vanes entering the rotor flow field. The

results obtained by Ng and Gertz, however, show blade-relative unsteadiness

behind fan rotors the flow upstream of which is steady. The interest in

blade-relative unsteadiness for cases in which the upstream flow is steady has

led to the present study.

The objective of this work is to numerically simulate the two-dimensional

unsteady blade-relative flow field of a modem transonic compressor fan rotor

and examine in some detail the nature of the unsteadiness observed. Chapter 2

surveys the computational algorithm used and the general method of

investigation. Chapter 3 discusses details relating to the specific case

studied. Chapter 4 presents the steady state results for this case. Chapter 5

is an overview of the unsteady results obtained which introduces the two

frequency regimes observed. Chapters 6 and 7 discuss in more detail the high

and low frequency cycles respectively. The final chapter summarizes the

conclusions drawn from this work together with some suggestions for further

study.
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CHAPTER 2 METHOD AND COMPUTATIONAL PROGRAM

2.1 Computational Method

Chapters 4 and following present results and analysis of results from a

numerical simulation of a compressor flowfield. The program used for this

simulation is called ANSI2D. It is a discrete iterative approximation to the

Reynolds averaged, unsteady, compressible, viscous Navier-Stokes equations in

two-dimensions. It is capable of seeking either steady-state or time-accurate

solutions. ANSI2D is an explicit algorithm derived from an earlier implicit

scheme discussed in [2.1].

Like its implicit predecessor, ANSI2D regards state vectors to be stored at

cell centers rather than at grid nodes. This allows for a variety of grid

topologies (including sheared grids with imbedded C-grids and/or O-grids) to be

conveniently handled by the algorithm. The program calculates discrete

differences along lines connecting cell centers, called inversion lines, two of

which pass through each grid cell. Cross-passage inversion lines are called

eta-inversion lines; the others (which run in a generally streamwise direction)

are called xsi-inversion lines. Values at cell faces are obtained by

interpolation between the appropriate cell-centered state vectors.

ANSI2D is also like the implicit scheme discussed in [2.1] in its treatment

of boundary conditions. A dummy cell is created on the opposite side of the

boundary from each interior boundary cell. The flow properties at the boundary

are obtained by interpolation between the interior boundary cell and its dummy

cell just like values at any interior cell face are obtained. A subroutine for

the appropriate boundary type (inflow, outflow, or solid wall) assigns a value

to the state vector for each dummy cell such that the properties interpolated
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for the boundary satisfy the appropriate boundary conditions.

ANSI2D is fully documented in [2.21 The following sections provide a

brief summary of its main features. Where program options are available,

emphasis is placed on those options chosen for the present work.

2.1.1 Normalized Equations

The unsteady Navier-Stokes equations are normalize as follows:

x'=x/L y'=y/L t'=tcTO/L

u'=u/cTO v' =v/cTO IP/1TO

p'I=p/pTO PV=/. TO T =T/TTO

where L is the blade axial chord, cT O is the upstream stagnation speed of sound,

and y is the ratio of specific heats. The subscripting () T denotes an upstream

stagnation quantity. All quantities are in the blade relative frame.

The bulk viscosity in the Navier-Stokes equations is defined using Stokes'

hypothesis that X=-21/3

The resulting equations, expressed in conservation form with primes

dropped, are as follows:

U + F + G
9t x y
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where,

Pu

2
Pu' +p+o

F=
PUV+T xy

puH+ua x+VT +q
xy x

ax- 2 yu+L- - 2 Ru
x 3Re 3x Dy Re x

Pv

PUV T YX

2
pv +p+a

puH+uT +VcY+
yx yY

a _ 211 (_u+v 2p v
y -Re x y Re y

T =Txy yx
= _u+3V

~e y a x x PrRe(y-1) Dx y= PrRe (y-) Dy

E = + (u2+V2)
Y-1 P 2 H = E + = Y-+ I(U2 +V2

p Y-1 P 2

Re is the upstream "stagnation Reynolds number" defined as

Re = pTO CTOL/1JTO

Pr is the Prandtl number whose value for liminar and turbulent flow is specified

by the user. In this work the laminar Pr is taken as 0.72; the turbulent Pr as

0.90.

The equation of state is the perfect gas law which, with the above

normalization, reduces to p = pT/y

Viscosity is calculated using Sutherland's law which normalizes to

T / = + S
T + S

where S is the normalized Sutherland reference temperature which is specified by

P

Pu

Pv

pE

and,

x
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the user. In this work it is taken to be 199 0 R/Tro.

2.1.2 Spatial Discretization and Smoothing

The equations of motion given above are integrated over a closed region R

producing the following.

- U dA +ff (Fn + Gny) ds = 0
t R R:

where n, and n, are unit vector components facing outward from the boundary of

R. Each grid cell is then regarded as an integration region R.

Discretization is performed by regarding each cell as small enough so that

the flux quantities, F and G, may be taken as uniform over the cell face, and

the state vector properties at the cell centers taken as uniform throughout the

cell. This is known as the finite volume approach. Details are given in [2.21

The discretization is such that all flux properties at a given cell's faces

are determined only from state vector properties at that cell and its immediate

neighbors. This results in the basic algorithm being unable to detect or damp

non-physical "sawtooth" oscillations of flow properties in the solution.

Consequently, numerical smoothing must be added to the algorithm to damp these

oscillations. Three types of smoothing are available: fourth-order,

second-order, and implicit.

Fourth-order smoothing makes use of information from cells two removed from

a given cell and hence is very effective in eliminating sawtooth oscillations.

It has been observed by various researchers, however, that in the neighborhood

of strong gradients, such as shocks, fourth-order smoothing is undesirable.
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Second-order smoothing makes use of information only from a cell's nearest

neighbors and is preferable to fourth-order smoothing in the neighborhood of

strong gradients.

The smoothing formulation in ANSI2D allows use of both fourth- and

second-order smoothing in varying proportions for different spacial locations.

In the vicinity of strong pressure gradients such as would be produced by a

shock the program automatically decreases the amount of fourth-order smoothing

while increasing the amount of second-order smoothing. Again, details are given

in [2.2].

For time accurate running, it has been found suitable to eliminate use of

second-order smoothing entirely for the present work. Since the flow field does

include a shock, this means there is very little smoothing at all applied near

the shock. The shock is thus made as clearly defined as possible. No

undesirable oscillations have been observed in the solution. Fourth-order

smoothing was, by trial and error, set to a value believed to be near the

minimum required for stability of the algorithm.

Implicit smoothing is applied to the discrete time integration step to

inhibit the formation sawtooth oscillations. It is suitable only for

steady-state running. It requires the solution of a tri-diagonal system of

equations twice for each cell (once for the xsi-inversion line passing through

the cell and again for the eta-inversion line). It requires approximately 15

percent more CPU time per iteration, but allows the discrete time step to be

increased significantly - by a factor of 5 in the present work. Thus,

implicit smoothing was used to advantage (along with minimal fourth-order

smoothing) in obtaining steady-state results.
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2.1.3 Time Integration and Stability

The spatial discretization outlined above produces a system of ordinary

differential equations in time. These may be symbolically written as

d
d (AkUk) + Rk (U) = 0

where the subscript OK indicates cell k, AK is its area, U is the vector defined

in section 2.2.1, and R K is a non-linear function of U at cell k and its

neighbors corresponding to the spatial flux balance, second-, and fourth-order

smoothing.

Two methods are offered in ANSI2D for the discrete integration of these

equations. The first, dubbed "second-order Runga-Kutta", is a two-step

predictor/corrector. This is the method used for the present work. The second

method, a modified "fourth-order Runga-Kutta" is discussed in [2.21

With either method, as for all explicit schemes, there is a limitation on

the size of the time step to preserve stability of the algorithm. The physical

interpretation of this limitation for the present scheme is as follows. The

spatial discretization approximates the flux balance for a given cell only from

information at that cell and its nearest neighbors. This flux balance

determines the flow properties at the cell at the next time leveL

Consequently, information can only be transmitted over the spatial distance of a

few cells from one time step to the next. In real flows information is

transmitted at a maximum rate of c-+u, the local speed of sound plus the local

flow velocity. Thus, the discrete time step must be less than A L/(c+u), where

AL is the maximum linear dimension of the cell.

As indicated by the title of [2.21 ANSI2D was originally developed to

solve the steady-state Navier-Stokes equations. This was to be done by
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integrating only approximately in time. Since the stability requirement is tied

to the local cell size, a variable time step was to be used: large time steps

for the large cells in the inviscid part of the flow, small time steps for the

small cells in the boundary layer. This is, in fact, the steady-state mode of

operation, and it was employed to obtain the steady-state results to be

presented later.

For time-accurate running, however, it is necessary to use a constant time

step throughout the flow field. This limits the size of the time step to that

associated with the smallest cell in the grid, a very small value.

Consequently, a great number of iterations and a large amount of CPU time have

been necessary to obtain the unsteady results to be presented. Approximately

150,000 iterations requiring roughly 1,364 hours (57 days) of CPU time on a

Perkin-Elmer 3240 minicomputer have been necessary to simulate about 8

milliseconds of real flow time. The Perkin-Elmer 3240 is roughly equivalent in

speed to a VAX 11/780.

2.1.4 Boundary Conditions

Four types of boundary conditions exist in the present work: those

associated with the inflow grid boundary, the outflow grid boundary, the blade

surface, and the interblade passage boundaries. These will be discussed

separately in the following paragraphs.

The program normalizes most flow properties to values associated with

blade-relative stagnation quantities at the inflow boundary (see section 2.2.1)

which are taken as uniform along the boundary and constant in time. The user

specifies the "stagnation Reynolds number" at the inflow boundary. The flow

angle (also uniform and constant in time) is specified as well. The "unique
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incidence principle" for supersonic cascades (see [2.3]) precludes the

specification of flow angle for supersonic inflow conditions. Thus, in its

present form, ANSI2D can be used to simulate subsonic inflow conditions only.

This proved to be a significant limitation in the present work, and will be

discussed further in Chapter 3. Regions of supersonic flow in the interior of

the computational domain pose no problems, and do in fact exist in the results

to be presented.

The outflow boundary condition is uniform and time constant static

pressure. This value of static pressure is specified by the user. This

boundary condition is not physically realistic for individual stages of

multistage turbomachines, although a better alternative is difficult to

construct. In the present work, the outflow boundary has been placed far enough

downstream of the blade trailing edge (about 1 chord) so that it is hoped the

uniform static pressure condition does not obscure physical characteristics of

the real flow in a turbomachinery environment. As will be discussed later, it

is believed that this goal has been achieved.

The boundary condition at the blade surface is the usual no-slip,

no-throughflow condition. ANSI2D allows the user to specify the blade surface

to be either adiabatic, or to have a specified constant temperature. In the

present work the adiabatic condition has been chosen.

ANSI2D models the flow in a cascade of blades though only calculating the

flow in a single blade passage. It does so by imposing periodic boundary

conditions on the interblade passage boundaries. This affects the applicability

of calculated results to real turbomachinery flows because it eliminates all

unsteady flows in which there is a blade to blade phase difference in unsteady

events. That is, ANSI2D can only predict flows in which time varying events

occur exactly in phase for all blades in the cascade. This problem is
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unimportant for flows in which blade to blade interactions are small.

2.1.5 Handling of Turbulence

ANSI2D assumes turbulence to be limited to the boundary layers and

simulates it by an increase in the coefficient of viscosity. In effect, then,

ANSI2D approximates the unsteady Navier-Stokes equations after they have been

Reynolds averaged only over the short time scales associated with turbulence.

The turbulent viscosity is approximated by a "zero equation" (algebraic)

model discussed briefly in [2.4]. Specific parameter values are given in [2.2].

The user must specify fixed locations on the blade surface where transition

to turbulence is taken to occur. The estimated turbulent viscosity is added to

the molecular viscosity at and after these specified locations (one for the

pressure surface, one for the suction surface). The present code does not allow

for user-specified re-laminarization. To avoid non-physical gross separation

from separating laminar boundary layers near the leading edge, the transition

locations have both been placed very near the leading edge in the present work

(less than 1 leading edge diameter downstream of the axial leading edge).

2.1.6 Additional Remarks

Shocks are handled by smearing the change in flow properties over several

grid cells. No automated grid adaptation or shock capturing features are

present in the scheme. The Rankine-Hugoniot relations are satisfied

sufficiently well for most applications. As mentioned in section 2.2.2, a

minimum of smoothing was used in the vicinity of the shock allowing it to be as
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sharply defined as possible. In the present work, it appears that flow changes

corresponding to the shock are smeared over about 5 grid points. This is

discussed somewhat further in section 4.2.1.

The presence of numerical smoothing tends to diffuse calculated propagating

structures more quickly than would occur in real flows. The smoothing

formulation allows roughly stationary regions of strong gradients, such as

shocks, to remain undiminished. Other structures involving significant

gradients of flow properties, such as shed vortices, are also allowed to form,

and are a prominent part of the results to be presented. However, these

structures become unrecognizably diffuse within about a 1/4 chord downstream of

the blade trailing edge. In real turbomachinery flows, experimental results

suggest that such vortices may persist for several chord lengths.

2.2 Method of Investigation

After selecting a compressor airfoil geometry and generating a suitable

computational grid (see Chapter 3), ANSI2D was run in steady-state mode until

reasonable convergence was obtained (see Chapter 4). The program was then run

in time-accurate mode using the steady-state solution as a starting point.

ANSI2D produces two outputs: (1) a new flow field file (solution file)

available after each time step (i.e. after each iteration), and (2) a

convergence history file (updated after each iteration). The convergence

history file contains five pieces of information for each iteration: (1) the

iteration number, (2) the root-mean-square (RMS) change in flow properties over

the entire spatial domain from the preceding solution to the current one, (3)

the largest change in flow properties at any computational cell from the

preceding solution to the current one, (4) the location of this largest change,
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and (5) the quantity (p , pu, pv, or pE) in which this largest change

occurred. In steady-state mode it is expected that the changes in flow

properties from one iteration to the next will eventually approach zero. Hence

the convergence history file gives the level of error present in the

computational simulation after each iteration. In time-accurate mode the

program is capable of simulating unsteady flow fields. Hence in this case the

convergence history file does not necessarily indicate the error level, but only

the level of unsteadiness in the flow simulation. As will be shown later, the

time-accurate convergence history is useful in determining the frequency of

periodic flow field changes.

It was unnecessary to examine the solution file after every iteration in

order to adequately analyze the time-accurate results. Further, saving solution

files for every iteration would require prohibitively large storage space.

Therefore, solution files were saved after every 250 iterations. This provided

adequate time resolution for the analysis.

Time-accurate running of ANSI2D was generally done in segments of 2500

iterations. Each segment required approximately 23 hours of CPU time to

complete on a Perkin-Elmer 3240 minicomputer, and saved 10 solution files on

disk.

Certain information was extracted from each solution file and appended to

other files which remained on disk. Analysis of these files yielded complete

time histories of certain flow field properties. The information extracted was

the following:

1. Pressures over the entire surface of the airfoil. From these the force and

moment on the blade (neglecting skin friction) could be calculated at each time

level.
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2. All basic flow properties along specified inflow and outflow boundaries.

From this information many things could be calculated including mass averaged

and "stream-thrust averaged" quantities at each time level, time averaged

quantities along each boundary, and simulated readings from a stationary probe.

These calculated quantities could be presented in either the relative frame or

in a hypothetical absolute frame of reference.

3. Boundary layer separation point locations, and vorticity flux at selected

locations along the blade.

4. Maximum Mach numbers along selected streamwise lines. Since the flow field

included a cross-passage shock, this information gave an indication of the time

varying shock strength and location.

5. Skin friction, temperature, and temperature gradient normal to the wall over

the entire surface of the airfoil.

After this information was extracted from the

solution files were copied onto magnetic tape

convergence history file was also copied onto tape.

these files were then deleted from disk storage

iterations initiated.

solution files on disk, the

for permanent storage. The

To conserve disk space

and another segment of 2500
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CHAPTER 3

AIRFOIL GEOMETRY, HYPOTHETICAL OPERATING CONDITIONS,

AND COMPUTATIONAL GRID

3.1 Airfoil Geometry

The airfoil modeled in the present study is a section of the NASA

Low-Aspect-Ratio first stage fan rotor reported on in [3.1]. This rotor will be

referred to as NASA Rotor 67. The rotor has a hub-to-tip radius ratio of 0.375

at its inlet and 0.478 at its exit. Its aspect ratio is 1.56. Its design speed

is 16042.8 RPM. It has been tested in NASA Lewis's steady-state test rig at 103

percent corrected speed with a mass flow of 34.03 kg/sec (75.0 lbm/sec) and

developed a total pressure ratio of 1.686 with an adiabatic efficiency of 0.906.

These conditions correspond to a tip relative Mach number of 1.31.

This rotor was chosen because extensive unsteady experimental data have

been taken on it by Gertz [3.2]. Most of this data is at a location 60 percent

of the blade span from the hub. This location corresponds approximately to

blade section 5 in [3.1]. A location such as this, near mid-span, is also the

flow region most likely to approximate two-dimensional flow.

Blade section 5 is defined in [3.1] on a shallow cone of inclination -2.073

degrees from horizontal. This approximates a streamline location obtained from

a streamline curvature calculation. A cone cannot be exactly unwrapped into two

dimensions. This section has been unwrapped in such a way as to preserve the

most important geometric parameters. The section is defined by a double

circular arc meanline and a thickness distribution. The two-dimensional

meanline was constructed by preserving the given inlet angle, outlet angle

(hence total geometric turning), axial chord, the ratio of the two radii
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describing the meanline, and the fraction of the axial chord at which these

radii meet. Since the cone is shallow, all other geometric parameters,

including setting angle and total chord, are closely approximated. Table 3.1

summarizes the resulting two-dimensional meanline geometry.

The only thickness information given in [3.1] is the leading edge thickness

(diameter of leading edge arc), trailing edge thickness, the difference between

the meanline angle and the suction surface angle at the leading edge, the

maximum thickness, and the axial location of the maximum thickness. A

polynomial fit consistent with these data was used to complete the thickness

distribution. The maximum thickness to total chord ratio is 4.55 percent.

Figure 3.1 shows the final blade shape.

3.2 Hypothetical Operating Conditions

As implied above, an original goal of this research was to compare

computational results with experimental data for similar operating conditions.

The inlet relative Mach number at 60 percent span for the conditions reported in

[3.2] is approximately 1.17. However, as mentioned in section 2.2.4, ANSI2D is

not capable of handling a supersonic inflow condition. To remedy this would

have involved formulating a new inflow boundary treatment, writing a new

subroutine for ANSI2D, and testing the resulting code on cases in which the

physical flows are known. Instead, a direct comparison against the data of

[3.2] was forfeited in favor of running ANSI2D unmodified with a high subsonic

inflow Mach number.

At a variety of off-design conditions, NASA rotor 67 does operate with

subsonic relative Mach numbers at 60 percent span. One such case (at 100

percent speed) was modeled early in the research program. However, the
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resulting calculated flow field was complicated by large scale separation from

the leading edge. This is probably due to one or both of the following

considerations: (1) this flow had a high leading edge incidence angle of about

6 degrees, and (2) the turbulence transition locations for this case were set

away from the leading edge at roughly mid-chord. It was decided that a simpler

flow field was desirable as a baseline case. The leading edge separation was

eliminated by specifying an inlet flow angle giving zero incidence at the

leading edge, and by moving the turbulence transition locations very near the

leading edge (see section 2.2.5).

ANSI2D normalizes calculated flow quantities to inflow relative stagnation

quantities. A particular real flow can be contemplated by assigning values to

these reference quantities. Further, the rotor can be imagined to be rotating

at a certain speed. Hypothetical absolute conditions can then be found which

correspond to the imagined relative stagnation conditions.

This has been done for the calculated results to be presented. The

complete hypothetical operating conditions are given in Table 3.2. The inlet

quantities are the most significant values in the table, especially the inlet

relative total quantities (PT, IT, MUT). It is to these values that quantities

calculated by ANSI2D are taken to be normalized to in the chapters that follow.

For example, all frequencies to be reported are based on these hypothetical

conditions. (When values such as velocities or pressures are reported later

with no units given, however, they are normalized values as defined in section

2.1.1.) Notice that the rotor is taken to be running at an atmospheric pressure

slightly above sea-level standard (15.056 psi) on a cool day (510.00 - 459.67 =

50.33 degrees F) at 100 percent corrected speed. Prewhirl vanes are imagined to

be in front of the rotor which turn the incoming flow through 24.399 degrees so

that the relative flow angle is 56.810 degrees. Since the leading edge meanline

blade angle is 56.810 degrees, this gives a zero incidence condition. The
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relative Mach number is about 0.92. The relative Reynold's number is
6 (

1.17x10 based on the axial chord. Based on the true chord it is 1.83x10

The exit conditions shown in Table 3.2 correspond only approximately to

those produced by ANSI2D. They were obtained by satisfying continuity of mass

flow from inlet to exit given a value for the loss of relative total pressure

(0.97 in this case which is near the value predicted by ANSI2D). If these

conditions were actually observed, the rotor section would be operating with a

total pressure ratio of 1.29 at an adiabatic efficiency of 88.9 percent.

3.3 Computational Grid

The grid used in this work is a sheared grid with a C-grid imbedded to

better resolve the blade boundary layers and wake. It is shown in Figure 3.2.

Enlargements of the leading edge and trailing edge regions are shown in Figures

3.3 and 3.4. These figures show the grid cells; the inversion lines pass

through the centers of these cells.

The outermost line in the C-grid was defined by a crude estimation of the

boundary layer growth based on expected operating conditions. Fifteen grid

lines (giving 14 xsi-inversion lines) were placed in the C-grid. They are

exponentially spaced giving greatest resolution near the blade surface.

The location of the grid boundary layer edge is only significant in the

turbulence modeling. The molecular viscosity is augmented by the estimated

turbulent viscosity only within the grid boundary layer. The equations of

motion solved by ANSI2D are always the Reynolds averaged Navier-Stokes

equations; the boundary layer approximation is not employed. In the present

work the boundary layer thickness for both surfaces near the trailing edge was
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underestimated. In this region the velocity parallel to the blade surface

reaches its "free stream" value approximately twice as far from the blade

surface as the last inversion line in the C-grid.

The sheared grid fills in the upstream space and the core flow region

between the blades and wake. It has 28 streamwise lines (giving 29

xsi-inversion lines) which are also exponentially spaced so as to give the

greatest resolution near the boundary layer edges. Care was taken to avoid a

large change in cell size at the junction between the sheared grid and the

C-grid.

The cross-passage grid lines (defining the eta-inversion lines) were spaced

so as to adequately resolve the leading and trailing edges and yet keep the

overall number of grid cells reasonable. Exponential spacing was used where

needed to provide smooth transitions in cell size.

The final grid (dubbed the "Pass 45 Grid") has 7108 interior cells and 226

boundary cells for a total of 7334 cells. There are a total of 57 xsi-inversion

lines running in the streamwise direction within the bladed region: 14 in each

boundary layer, 29 in the core. There are a total of 136 eta-inversion lines

(running cross-passage), 70 of which are in the bladed region.
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CHAPTER 4 STEADY STATE RESULTS

4.1 Convergence Behavior

ANSI2D must always start its iterations toward a solution from a file which

approximates the flow field. Usually this is a solution file generated

previously by ANSI2D. However, to start the program on a new grid it is

necessary to generate the "initial solution" file artificially. The steady

state iterations were started from such a file in which the flow conditions were

only crudely approximated. The flow direction was made constant throughout the

region outside the grid boundary layers. The inlet Mach number and exit Mach

number were specified, and interior Mach numbers linearly interpolated from

these. An approximate boundary layer velocity profile was generated within the

grid boundary layers.

ANSI2D was started in steady state mode (variable time step) from this

solution. The local CFL number was specified as 4.0, the second-order smoothing

coefficient set at 0.0, the fourth-order smoothing coefficient set at 0.075, and

the implicit smoothing coefficient set at 4.0. The use of implicit smoothing

allows the large (greater than 1) local CFL number.

Figure 4.1 shows the convergence history for the first 2500 iterations. It

is observed that the error reaches a minimum after about 1700 iterations and

then fails to converge further. In fact, the error tends to increase after 1700

iterations. Experience has shown that the level of convergence never improves

significantly beyond this no matter how many iterations are performed.

Figure 4.2 shows the locations of the maximum errors for the first 2500

iterations. The figure is understood as follows. After each iteration ANSI2D
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identifies the cell at which the maximum change in flow properties occurred from

the previous iteration. A square symbol is plotted in Figure 4.2 at this cell.

The same cell may be the location of the maximum change for other iterations as

well. This is indicated in Figure 4.2 by the size of the square symbol. A

large square indicates that the cell in question was often the site of maximum

error; a small square indicates that the maximum error occurred at the marked

cell only a few times. Figure 4.2 is thus a sort of two-dimensional histogram

of the steady state error.

There are small symbols scattered throughout the flow field in Figure 4.2,

most of them in or near the boundary layer region, which indicate adjustments

made to the starting "solution." It is evident, however, that the trailing edge

is the site of the vast majority of the error. This is typical of flow fields

in which vortex shedding is present. The physical presence of vortex shedding

means that the flow is inherently unsteady: the Navier-Stokes equations have no

steady state solution for such a flow (or if a mathematical steady state

solution exists, it is unstable). Consequently, a steady state approximation to

the Navier-Stokes equations will never fully converge, the error locations being

predominantly near the shedding location (the blade trailing edge in this case).

The failure of the algorithm to converge in steady state is demonstrated by

the variation in mass flow rate through the passage, shown in Figure 4.3. The

total variation upstream of the trailing edge is slightly less than two percent.

The variation near and downstream of the trailing edge is over three percent.

This variation does not decrease to satisfactory levels with more iterations.

4.2 Basic Flow Field Characteristics

Despite the lack of full convergence, the steady state solution
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nevertheless displays the same basic flow phenomena as are found in the

time-accurate solutions. The most important of these are the passage shock and

its effect on the suction surface boundary layer.

4.2.1 Passage Shock

Figure 4.4 is a contour plot of Mach number for iteration 2500. As

indicated by the sonic line, a shock extends across the entire passage

approximately from the 1/4 chord point on the pressure surface to the 3/4 chord

point on the suction surface. The shock may be considered normal to the flow.

Its strength varies across the passage being strongest near the suction surface.

The maximum pre-shock Mach number there is 1.286 and decreases to 1.207 at

mid-passage, and 1.169 near the pressure surface. The complicated nature of the

contour lines downstream of the trailing edge is evidence of the lack of full

steady state convergence.

The shock arises from the passage area becoming critical (probably due to

growth of the boundary layers). Figure 4.4 shows that the flow is sonic or

nearly so across the passage at the inlet throat and shocks about 1/4 chord

further downstream. It is emphasized that the far upstream flow conditions are

subsonic, and thus that the shock is not a bow shock or a swallowed shock as are

found in supersonic compressors.

Determining the actual strength of the shock is complicated by its being

smeared over several grid cells. The problem will be illustrated by considering

the shock at mid-passage. Table 4.1 lists the local Mach numbers at each cell

along a segment of xsi-inversion line 15 (the mid-passage streamwise line

through cell centers). Suppose the shock is considered to begin at cell 53.

Using the normal shock relations, the post-shock flow conditions can be found
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based on the Mach number, pressure, and temperature at cell 53. Flow conditions

at the cells downstream of cell 53 can then be compared against the expected

values until the best match is found. At each cell there will be an error in

the Mach number, pressure, and temperature compared to the expected values. The

root-mean-square (RMS) of these errors gives an indication of the overall error.

The downstream cell at which the RMS error is minimized is considered to be the

termination of the shock. This process can be repeated considering cells other

than 53 to be the beginning of the shock. The results are shown in Table 4.2.

The normal shock relations are best satisfied by considering the shock to

be smeared over five cells from cell 55 to cell 60. This corresponds to a

physical normal shock with pre-shock Mach number of 1.164. The shock is smeared

over a linear distance of approximately 0.085 blade chords. The difference in

flow angle between cells 55 and 60 is 1.4 degrees. This turning would be

produced by an oblique shock at an angle of 84.8 degrees. The normal shock

approximation is thus considered to be justified.

4.2.2 Suction Surface Boundary Layer Separation

Whereas the pressure surface boundary layer remains attached until the

blade trailing edge, the suction surface boundary layer separates. Figure 4.5

shows the location of this separation (as indicated by zero surface shear

stress) together with the approximate smeared shock location. The separation

occurs slightly downstream of the shock and is thus not properly termed

"shock-induced." This is more evident in the time-accurate results in which the

movement of the separation point does not follow the movement of the shock.

There is little doubt, however, that the shock hastens the boundary layer

separation.
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4.3 Blade Performance

Average values on which to base statements of overall blade performance

have been obtained using two methods. The first is the familiar process of mass

averaging. The second will be referred to as "stream-thrust averaging." The

fluxes of mass, momentum, and energy are obtained by integrating the non-uniform

flow conditions at a given location. A uniform flow is then solved for which

has these same fluxes, with pressure differences accounted for in the momentum

equations. The average flow thus calculated is what would result if the actual

non-uniform flow were to mix out in a constant area duct.

Table 4.3 presents the overall blade performance obtained by both averaging

methods applied at an axial location 1.6 trailing edge diameters downstream of

the trailing edge. Absolute quantities are based on the hypothetical operating

conditions discussed in section 3.2. Depending on the averaging method

employed, the blade section produces a total pressure ratio of 1.292 or 1.280.

The meanline blade exit angle is 43.24 degrees. Therefore the relative exit

flow angle of either 48.59 or 51.84 degrees reflects a deviation angle of 5.4 or

8.6 degrees respectively. The stream thrust averaged efficiency is 90.1

percent, more than two points lower than the mass averaged value of 92.8

percent. This is typical of stream thrust averaging, and tends to more

accurately indicate the true performance in an engine environment. The

non-averaged variation in relative total pressure at this station is shown in

Figure 4.6.

Blade forces and moments (from integration of surface pressures) are also

known for the steady state solution. The presentation of these will be delayed,

however, because they are more insightful when viewed in comparison with the

time-accurate results.
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CHAPTER 5 OVERVIEW OF UNSTEADY RESULTS

Time accurate running was initiated from a steady state solution. ANSI2D

was allowed to run for a number of iterations corresponding to about two

computational domain through-flow times before the time-accurate solutions began

to be saved for analysis. The unsteady results to be presented are thus thought

to be due to more than merely computational transients from the unconverged

steady state starting solution. The starting solution did, however, provide a

large perturbation to excite instabilities or natural frequencies in the

time-accurate flow.

5.1 General Nature of the Unsteadiness

A segment of the time-accurate "convergence" history is shown in Figure

5.1. Unlike the steady state convergence plot, this is not a plot of error

level. Figure 5.1 shows the maximum and RMS changes from one iteration to the

next. In time-accurate running this is simply an indication of the unsteadiness

of the flow. Note that periodicity is evident. The primary usefulness of these

plots is in determining from this periodicity the frequencies of the vortex

shedding (discussed in Chapter 6). The locations of maximum changes are shown

in Figure 5.2. As expected, the greatest unsteadiness is near the blade

trailing edge.

The most significant aspect of the time-accurate results to be presented is

the presence of two distinct frequency regimes. The high frequency variations

are due to vortex shedding. This phenomenon (discussed in detail in Chapter 6)

was expected from the experimental data reported in [3.2] and serves to confirm
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many of the conclusions drawn in that work. The frequency of the shedding

computed by ANSI2D is 11 KHz and higher. The low frequency variation was

unexpected, and occurs at approximately 365 Hz. It will be discussed in detail

in Chapter 7.

Figures 5.3 through 5.5 present time histories of the blade lift, drag, and

moment normalized to the upstream dynamic pressure and the blade axial chord.

Lift and drag are calculated in analogy with isolated airfoil theory, lift being

defined as the component of force normal to the upstream flow direction, drag

parallel to the upstream flow. Figure 5.6 shows the moment center on which

Figure 5.5 is based. Several observations may be drawn from these figures, and

are discussed in the following paragraphs.

The two frequency regimes are easy to see. The small ripples in these

curves are due to the vortex shedding, which is superimposed upon a variation of

much lower frequency.

The frequency and character of the vortex shedding are modulated by the low

frequency variation. The shedding is strong during part of the low frequency

cycle, i.e. its presence is easily seen in the overall blade force and moment.

During the other part of the low frequency cycle, the shedding is weak being at

times virtually undetectable in the overall force and moment. The strong

shedding occurs at lower frequencies than the weak shedding. The total

frequency range is approximately 11 KHz to 19 KHz.

The variation in vortex shedding strength is also evident in the

convergence history plots. Figure 5.1 is a segment of the convergence history

during which the shedding was strong. The periodicity is easy to see and

measure. Figure 5.7 is a segment during which the shedding was weak.

Periodicity is not obvious. The exact frequency of the weak shedding could not
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always be determined.

The frequencies of the vortex shedding observed in the computation are in

the range expected from Gertz's data presented in [3.2]. The shedding measured

by Gertz was estimated to have a frequency f of approximately 15 KHz. The inlet

relative Mach number at 60 percent span in his tests was about 1.17. The inlet

relative Mach number in the computation is about 0.92. Assume that the shedding

frequency is normalized by a length L and a velocity V. Assume also that the

normalized shedding frequency fL/V is approximately the same for both experiment

and computation, and that the length L is approximately the same in both cases.

The expected shedding frequency for the computation would then be about 11.8

KHz. The average shedding frequency (total number of cycles divided by total

time) observed in the computation is 13.8 KHz (17 percent greater than 11.8

KHz). This is considered to be good agreement given the approximate nature of

the assumptions made above.

The lift, drag, and moment all vary significantly over the low frequency

cycle. The total variation is defined as (maximum value - minimum value) / mean

value. The total variation of lift is 5.21 percent, the total variation of drag

is 13.13 percent, and the total variation of moment is 31.53 percent.

The flow variations due to the low frequency cycle are much greater than

those due to the vortex shedding. Consider the blade moment for example. The

largest variation in moment over one vortex shedding cycle is only about 1

percent of the time averaged moment. However, the largest variation due to the

low frequency cycle is over 30 percent of the time averaged moment, as mentioned

above. As will be discussed later, other gross flow field changes such as shock

and separation point movement also occur at the low frequency; they are not

seen to vary at the vortex shedding frequencies.
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The large variations in blade forces due to the low frequency cycle are

potentially important structural concerns. It happens that the frequency of

these variations in the present computation (365 Hz) is near the real rotor's

first bending frequency.

The low frequency variations of drag and moment appear to be in phase with

one another, both lagging the lift by about 90 degrees.

The low frequency variations seem to be damping out. The decrease in the

AC components is approximately exponential, the amplitude being multiplied by

1/e about every 4.7 milliseconds. This feature especially raises the question

of whether these variations are mere numerical artifacts. The present

investigation cannot answer this question conclusively. However, the nature of

the low frequency cycle is worth studying seriously for several reasons.

(1) A mechanism whereby these fluctuations might be created by the numerical

approximation is not evident at present. Several possibilities are considered

in Chapter 7.

(2) A mechanism by which a real fluid dynamical cycle might be artificially

damped by the numerical approximation is evident. The damping could be due to

the effects of numerical smoothing over a large number of iterations. (Each low

frequency cycle requires about 41000 iterations to complete.)

(3) The low frequency cycle is physically realistic. It is similar in many

respects to cycles observed in transonic diffusers.

(4) The magnitude of these fluctuations is large enough to make them a

significant factor in the design of transonic compressors if in fact they do

represent a physical phenomenon.

Figure 5.8 presents instantaneous surface temperature distributions along
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the blade for two different times in the low frequency cycle. The "surface

length" is defined as negative along the pressure surface (with the most

negative value being the trailing edge), zero at the leading edge, and positive

along the suction surface (ending again at the trailing edge). Recall that the

blade surface is given an adiabatic (zero heat transfer) boundary condition in

the work presented here. It is clear from Figure 5.8 that the temperature

distributions necessary to support the adiabatic boundary condition would lead

to significant heat transfer along the surface of the blade itself. In the

shock regions, heat fluxes of 13 to 43 KW/mI would exist along the blade surface

(taking the blade to be titanium with a thermal conductivity of 9 BTU/hr/ft/ 0 F).

The temperature distribution continually adjusts itself to maintain zero heat

flux between the blade and the fluid. Such an adiabatic condition is very

unlikely in a real unsteady flow. Perhaps a better approximate boundary

condition is one in which the blade is assumed to have a high enough thermal

inertia to maintain a constant temperature distribution. In this case, heat

will be transferred from the flow to the blade and vice versa over the course of

a time-varying flow cycle.

5.2 Comparison with Steady State Results

Table 5.1 presents the maximum range of unsteady values, the time averaged

values, and values obtained from steady state iteration 2500 for a number of

quantities of interest.

Table 5.2 is a further analysis of the information presented in Table 5.1.

The total variations are calculated by dividing the difference between the

maximum value and the minimum value by the time averaged value. For flow angles

and efficiencies only the difference between the maximum and minimum values are

tabulated (indicated by the symbol A ). The last column is calculated by
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subtracting the time averaged value from the steady state value and dividing by

the time averaged value. Again, the symbol A is used to indicate when only the

difference appears.

It may be observed that the steady state solution significantly

underpredicts the lift on the airfoil leading to a mild underprediction of the

absolute total pressure ratio. It is also noteworthy that regardless of the

averaging technique used, the steady state solution significantly overpredicts

the adiabatic efficiency.

In this connection, it should be noted that the time-averaged efficiencies

presented in Tables 5.1 and 5.2 have been obtained by using the time-averaged

total pressure and total temperature ratios in the standard formula; they are

not the result of time averaging all the instantaneous efficiencies. As Gertz

has shown in [3.2], the instantaneous efficiency is not a good indication of the

local instantaneous loss in an unsteady flow. The large difference between the

time-averaged and steady state efficiencies is therefore the result of the

seemingly small differences in the total temperature and total pressure ratios.

The efficiency (and entropy change as well) is quite sensitive to small changes

in these ratios, especially in the total temperature ratio, as demonstrated by

the sample calculations presented in Table 5.3.

These comparisons have been made against steady state iteration 2500.

Because of the lack of convergence, the steady state "solution" changes with the

number of iterations. Somewhat different quantitative results would be obtained

by examining different steady state solutions, but the qualitative character of

the solution and its general relation to the time-accurate solutions is thought

to be well represented by iteration 2500 discussed above.
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CHAPTER 6 HIGH FREQUENCY UNSTEADINESS: VORTEX SHEDDING

As mentioned in Chapter 5, the strength and frequency of the vortex

shedding is modulated by the low frequency cycle. Vortex shedding is described

as "strong" or "weak" in this context based on the magnitude of the effect it

has on the blade force and moment. The details of the strong shedding will be

discussed first followed by a briefer discussion of the weak shedding. Finally

the normalization of the frequencies and the mechanics of the strength variation

will be discussed.

6.1 Strong Shedding

That the high frequency unsteadiness near the blade trailing edge is in

fact due to the shedding of vortical structures into the wake can be seen by

examining a plot of velocity vectors. Figure 6.1 is such a plot. A vector is

plotted at every state vector location (each cell center) and also at cell faces

(interpolated between cell centers). The length of each arrow is proportional

to the magnitude of the instantaneous velocity at the origin of the arrow, and

it points in the direction of the velocity. Figure 6.1 clearly shows the

presence of vortical structures in the wake.

Figure 6.1 is misleading, however, as to the number and location of the

vortices. This is because the vortices themselves are moving with a velocity

that cannot be neglected. The zero velocity points in Figure 6.1 are not vortex

centers since the vortex centers do not have zero velocity in this frame of

reference. To reveal the true location and structure of each vortex, one must

view velocity vectors in the instantaneous frame of reference of that moving

vortex. In such a frame of reference the vortex center will be a point of zero
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velocity.

A convenient method of locating the vortices is thus desired. Ideally, a

scalar quantity which is independent of the frame of reference and which reveals

the vortex locations is desired. Static pressure is such a quantity. The

vortex centers must be local minima in the instantaneous static pressure field.

Figures 6.2 through 6.4 each show a small number of pressure contours from

the same instantaneous solution as shown in Figure 6.1. The three figures

reveal the locations of three vortices. As will be shown momentarily, two are

of counterclockwise rotation and were shed from the pressure surface boundary

layer, and one is of clockwise rotation shed from the suction surface.

Two methods may be used to determine the instantaneous propagation velocity

of vortices whose locations have been determined. First, the location of the

same vortex may be found at different times and its velocity estimated by a

finite difference formula. Second, the velocity in the blade relative frame at

the location of the vortex center may simply be read off the velocity vector

plot for the same instant of time. The latter method is, of course, more

expedient, but it has been verified that the two techniques do give the same

result within reasonable bounds.

Velocity vector plots in the instantaneous frame of reference of each

vortex identified in Figures 6.2 through 6.4 are presented in Figures 6.5

through 6.7. In these figures a circle has been drawn at the center of the

vortex into whose frame of reference the velocities have been translated. The

normalized velocity of the vortex (which has been subtracted from the

blade-relative velocities to produce the figure) is also indicated. It can be

seen that the sign of rotation is as was indicated in the earlier figures. It

is noteworthy that the second pressure surface vortex is greatly weakened and
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diffuse at a downstream distance from the trailing edge of only about 0.1 blade

chords. Vortices could not be positively identified at distances greater than

0.2 blade chords downstream. This rapid diffusion is due to the numerical

smoothing in the algorithm (see section 2.1.2).

Figure 6.8 is a master plot of the locations of all vortex cores found in

solutions stored between and including iterations 42000 and 43500. Since

solutions were stored every 250 iterations, this comprises iterations 42000,

42250, 42500, 42750, 43000, 43250, and 43500. These solutions are like

snapshots of the flow at seven equally spaced instants of time. Pressure

surface vortices may be seen at nearly identical positions near the trailing

edge for iterations 42250 and 43500. This sequence thus corresponds to slightly

more than one shedding cycle. The figure approximates a locus of vortex core

locations showing the paths followed by the vortices as they propagate

downstream. Notice that the distance between the locations of the same vortex

at consecutive times increases as the vortex moves further from the trailing

edge. This means that the vortex propagation speed increases downstream of the

trailing edge region.

The vortex street spacing ratios can be found by examining the locations of

vortices at a given time level. Figure 6.9 shows the vortex centers for

iteration 42250. As shown in the figure, the normal distance between vortex

rows is called h whereas the streamwise distance between vortices in a row is

called b. The spacing ratio b/h at this instant in time is 2.82 (h/b = 0.35).

Figure 6.10 shows the same vortex centers at the next time level (iteration

42500). Here b/h is 3.53 (h/b = 0.28) which is very near the Karman value of

3.56. Figure 6.11 shows the spacing at iteration 42750 where b/h is 4.36 (h/b =

0.23). It is observed that the vortex street tends to "stretch" (b/h increases)

with increasing distance from the trailing edge. This contrasts with

experimental measurements of vortex streets behind bluff bodies at low Reynolds
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numbers (see for example [6.1D. The experiments in [6.1] show the street

tending to "broaden" (b/h decreasing). A possible reason for this difference as

well as others between classical vortex streets and the one encountered in the

present computation will be discussed in the following paragraphs.

The classical Karman vortex street is the result of the instability of two

initially parallel free shear layers. These layers are usually the two

separated boundary layers which emerge behind a bluff body. As shown by Roshko

in [6.2], the resulting normalized frequency (Strouhal number) based on the

initial separation between the free shear layers and the free stream velocity at

their separation locations is of order 0.2 over a broad range of Reynolds

number.

In most cases these layers can be well approximated as infinitely thin

vortex sheets, and can be further approximated numerically as rows of discrete

vortices (as in [6.3] and elsewhere). As demonstrated in [6.3], initially

parallel vortex sheets are unstable to general perturbations (both in local

vortex strength and in shape of the sheet). When perturbed, the two sheets

interact with each other so as to form regions of concentrated vorticity in the

configuration of a vortex street. As shown in [6.3], the details of this

interaction explain both why the vortex street tends to broaden with downstream

distance and why each region of concentrated vorticity contains only about 60

percent of the vorticity found in the originating boundary layers. Flow

visualizations of flow around circular cylinders in the "subcritical" Reynolds

number range (i.e. before turbulent reattachment occurs) show that the first

vortex arising from the twin layer instability forms no closer than about one

cylinder diameter downstream of the cylinder (e.g. figures 94, 96, and 47 in

[6.4]; also 32 for shedding from an ellipse).

Single shear layers are also unstable to perturbations and tend to roll up
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into regions of concentrated vorticity (see [6.3] and [6.5]). This is a

distinct phenomenon from the twin layer instability and, in fact, the two can

occur side by side in the same flow (see [6.5D.

An examination of Figure 6.8 reveals that the vortex shedding observed in

the present computational results is not likely to be due primarily to the twin

shear layer instability. The pressure surface vortices are seen to originate

very close to the trailing edge: too close for significant interaction with the

suction surface boundary layer to likely have occurred. The suction surface

vortex forms at a location such that the pressure surface boundary layer is

almost hidden by the blade itself making interaction between the two free shear

layers unlikely.

The formation of the intense pressure surface vortex very near the trailing

edge appears to be a single shear layer rollup which is accelerated by an

instantaneous pressure gradient across the (blunt) trailing edge (which is timed

to the passing of the suction surface vortices). It bears resemblence to

starting vortices (see, for example, Figures 5.10.5 number 1, 6.7.2, and 6.7.5

in [6.6]).

The suction surface shear layer exists as a free shear layer for a distance

of several boundary layer thicknesses as shown by the typical suction surface

separation location indicated in Figure 6.12. It thus has the opportunity to

roll up due to the single layer instability as well. There is no evidence that

the suction surface vortex actually forms, however, until the proximity of the

trailing edge as shown in Figure 6.8. Although the vortex is thought to be

formed from the suction surface shear layer alone, its formation is prompted by

the proximity of the strong pressure surface vortex. Notice that the suction

surface vortex forms at a normal distance from the suction surface of several

trailing edge thicknesses.
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The suction surface vortex falls into line with the previously formed

vortices at roughly the Karman spacing ratio (which has a certain degree of

stability associated with it). The twin layer interactions discussed in [6.3]

which cause street broadening are not present, or at least do not appear to be

dominant. Since the vortices gain speed as they leave the trailing edge region

the street tends instead to stretch.

When vortex shedding was first identified in compressors, it was natural to

view the thin but locally blunt trailing edge as the rear face of a classical

bluff body. However, the shedding frequencies observed in compressors do not

typically yield a Strouhal number of order 0.2 based on the trailing edge

thickness. For example, the shedding frequency in the present case would have

to be 83 KHz (over four times the observed values) in order to yield a trailing

edge thickness Strouhal number of 0.2. Part of the reason for this is no doubt

to be found in the fact that the boundary layers in compressors are usually

thick compared to the trailing edge thickness, and are not well approximated as

infinitely thin vortex sheets (see the discussion of this approximation in

[6.3]). The mechanics of the street formation suggested above, however, may

further explain the situation. A Strouhal number of about 0.2 is expected only

for a vortex street arising from a twin shear layer instability which does not

seem to be dominant here. An alternate length and velocity scale with which to

normalize the shedding frequencies will be discussed in section 6.3.

6.2 Weak Shedding

The mechanics of the weak shedding appear to be the same as for the strong

shedding. The shedding is "weak" in that it does not have as noticeable an

effect on the blade forces and other flow parameters as the strong shedding

does. This is because the vortices which form the vortex street are themselves

weaker than in the strong shedding case.
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An indication of vortex strength is the approximate pressure at the vortex

core (a local minimum). A sample of approximate vortex core pressures for both

the strong shedding and the weak shedding cases is presented in Table 6.1. As

indicated by the sketch below the table, each column follows the same vortex,

each identified by its relative position in the street and by whether it formed

from the pressure surface boundary layer (PS) or the suction surface boundary

layer (SS). The table entries in the first two columns are blank when the

vortex has not yet formed; question marks appear in the table where the vortex

is believed to exist, but its core pressure is uncertain; dashes appear where

the vortex could no longer be found. Two observations may be made. First, in

the strong shedding case, the core pressure of a given vortex is sometimes seen

to decrease as it propagates downstream. This is because the vortex is still

forming: its strength is increasing as it continues to be fed by vorticity from

the appropriate boundary layer. Eventually all vortices are seen to decay as

they propagate away from the trailing edge. Second, the minimum core pressure

of vortices in the weak shedding case is always greater than vortices in the

strong shedding case. That is, the static pressure "well" is not as deep for

the vortices formed in the weak shedding phase. This indicates that these

vortices are, in fact, weaker. Reasons for the decrease in vortex strength will

be discussed in section 6.3.

These weaker vortices are more difficult to identify from the static

pressure contour plots and become unrecognizably diffuse at a distance closer to

the trailing edge than in the strong shedding case. Figure 6.13 shows all the

vortex core locations that were identified for a typical weak shedding cycle.

The locations of formation and general propagation paths are seen to be similar

to those in the strong shedding case presented in Figure 6.8.

Figure 6.14 shows the vortex core locations at iteration 61250. The

spacing ratio b/h is 2.64. This, again, is similar to the value found for
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vortices in the strong shedding case (compare with Figure 6.9).

6.3 Frequency Normalization

As discussed above, the mechanism of shedding in this case is suggested to

be somewhat different than in classical vortex shedding from bluff bodies at

moderate Reynolds numbers. Consequently, a Strouhal number of about 0.2 based

on some transverse length scale is not necessarily to be expected. A value of

order 0.2 can, in fact, be obtained by using an average value for the vortex

street width h as the normalizing length scale. However, since this value is

not known a priori, it is of little use in predicting the approximate shedding

frequency of new designs.

As has been discussed, the suction surface vortex is hypothesized to form

near the trailing edge, due primarily to the single shear layer instability,

from vorticity in the suction surface boundary layer which has convected

downstream as a free shear layer from the suction surface separation point.

This hypothesis is schematically represented in Figure 6.15. It is applicable

to compressor sections in which the flow is approximately two-dimensional and in

which the suction surface boundary layer separates upstream of the trailing edge

while the pressure surface boundary layer remains attached until the trailing

edge. If this hypothesis is correct, a likely characteristic time scale seems

to be the propagation time in the separated shear layer from the suction surface

separation point to the blade trailing edge. The shedding frequency normalized

to this time scale should be of order 1.

The propagation speed within the shear layer will be approximately

proportional to the boundary layer edge velocity at the separation point (Ue).

This velocity together with the distance from the separation point to the

trailing edge (L) has been used in the normalizations which follow.
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As discussed earlier, the most accurate way to determine the time interval

between consecutive vortices (Tp) is by observing the interval between spikes on

the time-accurate convergence history plot. This is not always possible,

however, for the weak shedding phase. The normalizations which follow are

therefore only for shedding cycles in which the exact frequency could be

determined from the convergence history.

Since the location of the separation point and the magnitude of the edge

velocity at the separation point are both continuously changing in time, there

is a question as to which values should be used to normalize a given shedding

cycle. Consequently, two normalized frequencies have been calculated for each

shedding cycle, one based on conditions at the approximate start of the shedding

cycle, the other based on conditions at the approximate end of the cycle. The

two values are connected by a straight line in the plots which follow. There is

generally only a small difference between them.

Figure 6.16 shows the normalized frequencies calculated together with the

actual frequencies observed. The normalized values are of order 1 as expected,

having an average value of 1.113. However, the normalized frequency parameter

is not as constant as desired. The actual frequencies have a total range of

variation, defined as (maximum frequency - minimum frequency) / mean frequency,

of about 53 percent. The normalized frequency parameter has a total range of

variation of about 33 percent.

As an effort to improve the correlation, the boundary layer displacement

thickness at the separation point (W' ) may be included. The displacement

thickness is greater when the separation point is near the trailing edge.

Dimensional arguments lead to the hypothesis that L/(Ue Tp) = fnct(L/ S* ). The

frequency parameter L/(Ue Tp) is plotted against L/6 in Figure 6.17. Each

rectangular region is obtained from the two values of the frequency parameter
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and the two values of the displacement thickness found at the beginning and end

of each shedding cycle. Unfortunately, no useful relation between the frequency

parameter and L/ 6 is apparent.

It is concluded, then, that factors other than variations in the separation

point location and boundary layer displacement thickness at separation are

involved in the variation of the shedding frequency over the course of a low

frequency cycle. These factors have not been identified, and a completely

satisfactory frequency normalization has not been found. It is tentatively

suggested, however, that the average shedding frequency may be of the same order

as the average convection time from separation point to trailing edge in other

compressors in which the flow is approximately two-dimensional and in which only

the suction surface boundary layer separates. When the average separation

location and separation edge velocity are known, this suggestion may be useful

in predicting the general neighborhood of the shedding frequencies.

6.4 Mechanics of Vortex Strength Variation

A mechanism by which the shedding strength is varied by the low frequency

cycle is suggested by again examining the movement of the separation point.

Three factors may be mentioned.

First, the discussion in section 6.2 mentioned that the vortex strength

continues to increase as long as the vortex is fed by vorticity from the

appropriate boundary layer. If the hypothesis advanced above concerning the

formation of the suction surface vortex is correct, then there is more vorticity

available in the free shear layer to form a strong vortex when the separation

point is far from the trailing edge. This is illustrated schematically in

Figure 6.18.
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Second, the average vorticity in the boundary layer at any location is

determined by the edge velocity and the boundary layer thickness as illustrated

in Figure 6.19. A compressor boundary layer over the last quarter chord of the

blade is expected to be in a region of adverse pressure gradient and decreasing

edge velocity. Thus, when the boundary layer separates far from the trailing

edge (where the edge velocity is higher and the boundary layer thinner) the

resulting free shear layer is expected to have more average vorticity at any

location than when the boundary layer separates near the trailing edge. This

also should lead to the formation of stronger vortices when the separation point

is further from the trailing edge.

Third, it is observed that lower frequencies result when the separation

point is far from the trailing edge. This allows more time for the pressure

surface vortex to be fed by the pressure surface boundary layer thus forming a

stronger vortex.

For these reasons, then, strong shedding is expected when the separation

point is far from the trailing edge; weak shedding when it is near. That this

is in fact the case is shown in Figure 6.20. Here the separation point location

is shown together with the time varying static pressure on the blade surface at

the tip of the trailing edge (for a bluff body this would be the "base

pressure"). This pressure clearly shows the presence of vortex shedding, and

the amplitude of its fluctuations give an indication of the shedding strength.

As can be seen, phases of weaker shedding correspond to times in which the

separation point is nearer the trailing edge.
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CHAPTER 7 LOW FREQUENCY UNSTEADINESS

As mentioned in Chapter 5, the vortex shedding is superimposed upon a low

frequency cycle of relatively large amplitude. It is important to explore

whether this low frequency cycle is merely induced by the numerical scheme, or

whether it is likely to be found in real transonic compressors. This is a

difficult problem to solve short of attempting to measure the phenomenon in a

real machine, and no truly conclusive answer can be provided here. The

possibility, however, that the low frequency cycle could be due to wave

reflection off the downstream computational boundary is examined in the first

section of this chapter and shown to be unlikely. The second section briefly

compares the present computational results with experimental data taken on the

same rotor. The remainder of the chapter discusses the details of the low

frequency cycle as though it represents a phenomenon observable in a real

turbomachine.

7.1 Possible Frequencies from Wave Reflection Off Downstream Boundary

As discussed in Chapter 2, the flow condition imposed at the downstream

boundary is spacially uniform and time-constant static pressure. This is a

reflective boundary condition which does not have a physical counterpart in the

real turbomachinery the program is designed to simulate. Consequently, an

oscillation whose existence is due purely to wave reflection off this boundary

will probably not be observed in real turbomachines.

A test which would show with a high degree of certainty whether the low

frequency fluctuation is due to reflection off the downstream boundary would be
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to rerun the entire calculation with a new grid identical to the present one,

but extended in the downstream direction so as to locate the downstream boundary

further downstream. If the frequency of the fluctuation changed significantly,

then reflection from the downstream boundary would be identified as an important

factor in creating the fluctuation. Unfortunately, due to the excessive

computer time required, it has not been possible to perform this experiment.

What has been done is to examine the frequencies of oscillation which would

be expected in the present calculation from various forms of downstream boundary

wave reflection. Five basic mechanisms have been considered as possible sources

of the low frequency unsteadiness. These five are various combinations of three

possible disturbance transport vehicles: (1) convection through the boundary

layers, (2) convection through the free stream (core flow), and (3) acoustic

propagation. They are as follows (and will be referred to occasionally by the

following numbers):

1. Disturbance convection from the shock to the trailing edge through the

pressure surface boundary layer, free stream convection to the downstream

boundary, reflection and acoustic propagation back to the shock.

2. Disturbance convection from the shock to the trailing edge through the

suction surface boundary layer, free stream convection to the downstream

boundary, reflection and acoustic propagation back to the shock.

3. Disturbance convection from the shock to the trailing edge through the

pressure surface boundary layer, acoustic propagation to the downstream

boundary, reflection and acoustic propagation back to the shock.

4. Disturbance convection from the shock to the trailing edge through the

suction surface boundary layer, acoustic propagation to the downstream boundary,

reflection and acoustic propagation back to the shock.

5. Acoustic propagation from the shock to the downstream boundary, reflection
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and acoustic propagation back to the shock.

For each of these mechanisms an effort has been made to identify the

broadest realistic range of frequencies possible. The total signal travel times

depend on the following distances: (1) the distance from the shock to the

trailing edge along the pressure surface, (2) the distance from the shock to the

trailing edge along the suction surface, (3) the axial distance from the shock

to the downstream boundary, and (4) the axial distance from the trailing edge to

the downstream boundary. Minimum and maximum values for each of these distances

(except the fourth which remains constant) were identified as illustrated in

Figure 7.1. The sonic lines from Mach number contour plots at various times

were used to determine the extreme shock locations.

The various signal speeds depend on the following quantities: (1) the

boundary layer edge velocity between the shock and the trailing edge for

pressure surface and suction surface boundary layers, (2) the free stream axial

velocity between the shock and the trailing edge, and between the trailing edge

and the downstream boundary, and (3) the static temperature (for determining the

acoustic speed) between the shock and the trailing edge, and between the

trailing edge and the downstream boundary. These were determined by examining

flow properties along three xsi-inversion lines (numbers 5, 15, and 25) shown in

Figure 7.2. Recall from section 2.1 that xsi-inversion lines are lines through

grid cell centers running in the streamwise direction. For each line, the

termination of the shock region was estimated, and the minimum and maximum

values for the axial velocity u, the downstream acoustic speed c+u, and the

upstream acoustic speed c-u were determined for the regions between the shock

and the trailing edge, and between the trailing edge and the downstream

boundary. For lines 5 and 25, which approximate the boundary layer edges, the

extremes in the total streamwise velocity were also found for the region

between the shock and the trailing edge.
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This process identified the spacial extremes in relevant velocities at a

given time. The process was repeated for several times selected at various

points in the largest low frequency cycle. The times selected are indicated in

Figure 7.3 with the plot of airfoil moment included for reference.

The extreme values in the relevant quantities are summarized in Table 7.1.

They were used to estimate the extreme frequencies possible from each of the

five mechanisms listed above. The minimum boundary layer convection speed was

taken to be 0.3 times the appropriate minimum edge velocity; the maximum was

taken as equal to the maximum edge velocity. The minimum free stream convection

speed was taken to be 0.9 times the minimum axial velocity for any of the

inversion lines; the maximum was taken as equal to the maximum axial velocity.

Notice that in calculating minimum and maximum frequencies, the extreme

distances and extreme transport velocities found at isolated locations and at

specific times are used in the calculations as though they were constant

throughout the region of the flow field of interest, and constant in time.

Therefore, the minimum and maximum frequencies calculated are almost certain to

be exaggerations of the actual frequency range possible. A sample calculation

is presented in Table 7.2.

Figure 7.4 presents all the known frequencies of interest for the present

computation. Included are the range of frequencies for the observed vortex

shedding, the observed low frequency unsteadiness, frequencies corresponding to

exaggerated extremes for the blade and computational domain through-flow times,

and the frequency ranges described above corresponding to wave reflection off

the downstream boundary.

It is observed that only for one mechanism does the maximum estimated

frequency range include the frequency of interest (that of the low frequency
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cycle). This is the mechanism labeled (1) corresponding to disturbance

convection through the pressure surface boundary layer, free stream convection

to the downstream boundary, and acoustic propagation back to the shock. All

other mechanisms considered yield frequencies too high to produce the low

frequency unsteadiness observed at 365 Hz. Even the mechanism just mentioned

barely includes 365 Hz within its frequency range, its lowest frequency being

355 Hz. As mentioned earlier, this lower bound is likely to be unrealistically

low. For example, consider Table 7.2 again which gives the details for the

calculation of the bounding frequencies for this mechanism. The low frequency

of 355 Hz is found by assuming that the convection velocity downstream of the

trailing edge is equal to the very low value of 0.9 x 0.183. Figure 7.5 shows

the velocity distribution along the entire xsi-inversion line on which this

minimum was found. Clearly the minimum value is not a good average value along

this inversion line. If, instead of 0.183, a minimum velocity only about ten

percent larger was used (e.g. 0.200), then the lowest estimated frequency for

this mechanism would be greater than the observed frequency of 365 Hz. In the

judgement of the author, therefore, this mechanism is not a likely cause of the

low frequency unsteadiness.

The fifth mechanism considered, that of acoustic propagation from the shock

to the downstream boundary and back, deserves an additional note. This is a

purely acoustic resonance, such as occurs in organ pipes, and the resonant

frequency depends on the reflection conditions at both ends of the region. At

the downstream boundary, the reflection is off a uniform and constant static

pressure boundary and corresponds to a classical open-ended pipe. The

reflection condition at a normal shock in a diverging passage has been worked

out as a function of frequency and channel geometry by Culick and Rogers in

[7.1] and given minor corrections by Sajben and Bogar in [7.2]. The normalized

frequency on which these analyses are based involves the local speed of sound

just downstream of the shock, the passage area, and the rate of change of area
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at the mean shock location. For the present case, this parameter is estimated

to be no greater than 0.252. For a frequency parameter in this range, [7.2]

indicates that the shock acts much like a closed end to an acoustic wave. In

this limiting case (that of a pipe closed at one end but open at the other) the

resonant frequency is half the value calculated by adding propagation times as

done above (see, for example, [7.3]). The frequency range resulting from

halving the bounding frequencies calculated above for mechanism 5 are also

presented in Figure 7.4. Even in this case, the lowest bounding frequency is

474 Hz, considerably greater than the observed 365 Hz.

The theory just cited (from [7.1] and [7.2]) strictly applies only to shock

displacements which are linearizably small, which is not the case in the present

computation. Large wave amplitudes will propagate at speeds greater than the

speed of sound tending to raise the frequency range even higher. Whether any of

the mechanisms considered above could exist at significantly lower frequencies

due to non-linear interactions with the shock cannot be answered here.

Based on the above considerations, therefore, it is concluded that a

mechanism by which the large amplitude low frequency oscillation could be

produced purely by wave reflection off the downstream computational boundary is

not immediately apparent. It is noteworthy, however, that the frequencies

estimated for the mechanisms mentioned above are too high. Information travels

fast enough to produce a frequency of 365 Hz. The specifics of how this

frequency would be produced might involve complex non-linear interactions with

the shock, however, and will not be speculated upon here. In absence of further

analytical, computational, or experimental results, therefore, the computed

unsteadiness will be treated in the remainder of this chapter as a phenomenon

which might be present in real turbomachines.
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7.2 Brief Comparison with Experimental Results

For reasons described in section 3.2, the hypothetical operating conditions

for the present computation do not directly correspond to any available data for

this compressor rotor. In particular, the extensive high frequency response

data taken by Gertz in [3.2] corresponds to a higher blade relative Mach number

than for the present computation. In fact, for the operating conditions Gertz

measured, a bow shock should be present at the blade section simulated in the

present work (see section 3.2). Nevertheless, there is qualitative agreement

between the present computational results and the data reported in [3.2] as

Figure 7.6 shows. The upper curve has been obtained by translating into the

blade relative frame measurements taken by Gertz using a stationary probe

downstream of the rotor. The lower curve is a simulation of what such a

stationary probe would see if sampling the flow computed by ANSI2D. The

significant variations in the total pressure defect blade to blade are due to

the probe passing through the shed vortex street as discussed in [3.2]. Note

that in either curve the presence of the low frequency oscillation is not

obvious to the eye. The period of the computed low frequency cycle has been

indicated on the figure.

Spectral analyses of Gertz's data show some frequency content below 1 KHz,

but this is inadequate to either prove or disprove the existence of the type of

low frequency oscillation observed in the computational results.

7.3 Nature of the Oscillation

The various events observed over one cycle of the low frequency

unsteadiness will be presented in this section as stemming from the movement of

the shock wave. It should be remembered, however, that when observing a
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sequence of interrelated events, the separation of cause from effect is usually

difficult and sometimes ambiguous. For example, when a shock is observed to

move in a diverging channel, a change of pressure downstream of the shock is

also observed to occur. Since the two events always occur together, it is

pointless to debate over whether the shock's movement is to be thought of as

causing the pressure change, or vice versa. Similarly, in the discussion which

follows, the shock's movement will be taken as a convenient starting point in

describing the other related events in the low frequency cycle. This does not

necessarily imply, however, that the shock movement is best viewed as the cause

of the other events.

The reduced frequency of the low frequency cycle (normalized by the blade

through-flow time) is about 0.1. Even using the exaggerated bounds for blade

through-flow time presented in Figure 7.4, the reduced frequency is no greater

than 0.18. A reduced frequency of 0.1 means that one low frequency cycle takes

place over about ten through-flow times. Such a low reduced frequency means

that a quasi-steady analysis may be employed to a good approximation. This is

the type of analysis presented in the remainder of this chapter.

Figure 7.7 presents the time varying maximum Mach numbers along three

xsi-inversion lines. These are the same lines drawn in Figure 7.2, line 5 being

near the suction surface, line 15 at mid-passage, and line 25 near the pressure

surface. These maximum Mach numbers are not necessarily equal to the actual

pre-shock Mach numbers (see section 4.2.1) but are, nevertheless, an indication

of relative shock strength. It is observed that, except for a single brief

period of time, the shock monotonically decreases in strength from the suction

surface to the pressure surface. The shock strength also varies with time at

all three cross-passage locations. The variation in shock strength is

relatively large near the suction surface and at mid-passage, and the variations

at these two locations are in phase with each other. The variation near the
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pressure surface is relatively small and more complex, appearing at later times

to be nearly 180 degrees out of phase with the variations at the other

locations.

The variations in maximum Mach number with time indicate movement of the

shock. Since the shock exists in a diverging channel, an increase in maximum

Mach number indicates a downstream displacement of the shock. Figure 7.8 shows

the extremes in the sonic line location. The total displacement of the shock

shown in Figure 7.8 is a distance of about 0.05 blade chords, and 0.15 passage

widths.

It is to be observed at this point that movement of the shock is evident

only at the low frequency and not at the high frequencies of the vortex

shedding. This does not, however, necessarily preclude the possibility of high

frequency shock movement the presence of which has been suggested by Ng in

[1.2]. The shock displacements hypothesized by Ng are of the same order or

smaller than the grid spacing used in the present computation and may therefore

be expected to be obliterated by the computation. More information on the

existence and character of high frequency shock motion must await another

investigation.

Figure 7.8 also shows the extremes in suction surface separation point

location. The total displacement is about 0.12 blade chords. Figure 7.9 shows

the time varying separation point location relative to the maximum Mach number

variation near the suction surface. It is observed that the separation point

moves upstream when the shock foot near the suction surface moves downstream

(though the shock movement and separation point movement are not exactly 180

degrees out of phase). This substantiates the assertion made in section 4.2.2

that the separation is not properly termed "shock induced," i.e. it does not

always occur at the shock location. (The separation occurs approximately at the
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shock location only when the separation point is in its most extreme excursion

upstream during the first cycle of the low frequency fluctuation.) The shock,

however, definitely has a strong effect on the separation location. When the

shock is displaced downstream its strength is greater meaning that there is a

greater pressure rise across the shock. This provides a greater adverse effect

on the boundary layer promoting earlier separation (movement of the separation

location upstream).

The movement of the separation point affects the amount of vorticity shed

into the wake. The flux of vorticity leaving the airfoil and entering the wake

is found by examining the boundary layer at the separation point. This is

discussed by Sears in [7.4] and is illustrated in Figure 7.10 where ue is the

boundary layer edge velocity and usep is the velocity of the separation location,

both measured in the blade's frame of reference.

Figure 7.11 shows the time varying vorticity flux from each surface (both

plotted as positive values). The pressure surface boundary layer remains

attached until the trailing edge; consequently the flux has been calculated at

an arbitrary fixed point about one boundary layer thickness upstream of the

trailing edge (a location where the boundary layer approximation on which the

formula for vorticity flux is based is still good). The time averages of the

vorticity fluxes from the suction and pressure surfaces are found to be unequal

using this method. Therefore a constant has been added to the pressure surface

flux to make the time average of the difference between the suction surface flux

and the pressure surface flux equal to zero.

Figure 7.12 shows the suction surface separation point velocity

use p together with the total suction surface vorticity flux. The movement of the

suction surface separation point is the primary cause of the significant

variations in suction surface vorticity flux. The pressure surface vorticity
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flux is evaluated at a fixed point (use p = 0) and the variations in pressure

surface vorticity flux are much smaller than for the suction surface.

As described in [7.4], the vorticity flux from each surface can be

subtracted from each other to yield the net vorticity shed into the wake. By

Kelvin's theorem this must be the opposite of the instantaneous rate of change

of circulation about the airfoil. The airfoil circulation calculated in this

way (defined as positive clockwise and arbitrarily having value zero at time

zero) is plotted in Figure 7.13 together with the airfoil lift found by

integrating surface pressures. In analogy with isolated airfoils, an increasing

clockwise circulation should produce increasing lift. Although the airfoil here

is not isolated (there are cascade effects, wake effects, and the recirculation

region beneath the separated suction surface boundary layer to consider) the

lift nevertheless follows the general trend expected. The lift is not exactly

proportional to the circulation, however, and seems to lead it in phase

slightly.

7.4 Summary

In summary, the low frequency cycle may be viewed as a quasi-steady

sequence of events stemming from movement of the shock. When the shock

displaces downstream it becomes stronger promoting earlier boundary layer

separation. The upstream movement of the separation point gives rise to strong

shedding and lower shedding frequencies (as described in Chapter 6). The

upstream movement of the separation point also produces a larger flux of suction

surface vorticity into the wake. By Kelvin's theorem this must mean a change in

the airfoil circulation such as to tend to decrease the airfoil lift thus

decreasing the instantaneous work done by the blade. When the system limit is

reached and the shock moves upstream again, the above sequence of events
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reverses to complete the cycle.

The factors determining the frequency of the cycle are unknown to the

author at present. They are similar in many respects to phenomena observed in

transonic diffusers (see [7.5] and papers referenced there). The frequencies

observed in transonic diffusers are thought to be determined by wave reflection

off a uniform static pressure boundary (which exists physically in diffuser

experiments) or off the merging point of the sidewall boundary layers (see

[7.5D. A computational simulation of transonic inlet flows using an algorithm

similar in many respects to ANSI2D has predicted oscillations closely resembling

those observed experimentally, but with the frequency depending on the placement

of the downstream boundary (see [7.6D. Nevertheless, no mechanism of wave

reflection has been identified by the present author which readily accounts for

the frequency observed in the compressor simulation presented above.

Finally, the damping of the low frequency cycle is hypothesized to be due

primarily to the numerical smoothing used to stabilize the numerical algorithm.

The testing of this hypothesis must await other time-accurate codes using

different smoothing strategies, or the documentation of similar oscillations in

real transonic rotors.
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CHAPTER 8 CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

8.1 Conclusions

A summary of the principal conclusions drawn from the work presented above

is as follows:

A numerical simulation of the flow about a two-dimensional section from a

transonic compressor rotor (the flow upstream of which is steady) does predict

significant blade-relative flow unsteadiness.

The simulation predicts vortex shedding to exist at frequencies ranging from 11

KHz to 19 KHz.

These frequencies are in the range expected from experiments performed on the

actual compressor rotor simulated here.

The geometry of the vortex street bears similarity to the classical Karman

vortex street.

It is suggested, nevertheless, that the physics giving rise to the formation of

the vortex street are somewhat different than those giving rise to classical

Karman vortex streets. Specifically, it is suggested that the street arises

primarily due to the single shear layer instability rather than the twin shear

layer instability.

The average time interval between adjacent vortices (average period) is of the

same order as the average convection time in the free shear layer from

separation point to trailing edge. It is suggested that this may be true in

general for compressor sections in which the flow is approximately

two-dimensional and only the suction surface boundary layer separates.

A low frequency cycle was also observed in the computation. It occurs at a



Page 55

frequency of about 365 Hz.

The low frequency cycle produces variations in blade force and moment large

enough to be important structurally.

The low frequency cycle is described as a quasi-steady sequence of events

related to movement of the shock and involving movement of the suction surface

separation point and changes in vorticity flux from the blade boundary layers.

The frequency and strength of the vortex shedding are modulated by the low

frequency cycle.

It is suggested that the variations in both shedding frequency and strength are

related to movements of the suction surface separation point. This factor

alone, however, fails to fully account for the frequency variation observed.

Several mechanisms involving wave reflection off the downstream boundary were

considered as possible numerical causes of the low frequency cycle, but none of

them appear to be likely causes. The low frequency cycle is thus regarded as

corresponding to a real flow phenomenon observable in real turbomachinery.

8.2 Suggestions for Further Study

All of the results presented above were obtained with a single algorithm

and a single computational grid. More refined grids should be used with the

same algorithm to test the dependence of the results on grid resolution. It is

hoped as well that the case studied here will again be studied with other

(hopefully faster) time-accurate algorithms as they become available.

Cases should be studied in which the downstream boundary is located at

different distances from the trailing edge. The frequency and character of the

low frequency cycle should be observed to see the effects of boundary position.
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In addition, since the upstream flow is not axially supersonic, any possible

effects of the upstream boundary placement should be considered.

Tools to predict the frequency and amplitude of the low frequency cycle

should be developed. In this regard, consideration should be given to ways in

which the cycle could be driven or damped by factors in the turbomachinery

environment such as rotor-stator interactions, duct resonant modes, upstream

flow non-uniformities, three-dimensional effects, and aeroelasticity.

The implications of the low frequency cycle on the time-averaged

performance and structural integrity of real turbomachinery should be studied.

Designers of turbomachinery should be alerted to these implications and to ways

in which the character and frequency of the low frequency cycle may be modified

to best suit new designs.

Finally, further insight is needed to more accurately predict the frequency

of vortex shedding in turbomachines.
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TABLE 3.1
SUMMARY OF NASA ROTOR 67 SECTION 5
TWO-DIMENSIONAL MEANLINE GEOMETRY

All lengths are centimeters.
All angles are degrees.

MEANLINE GEOMETRY

Inlet Radius, R1 = 19.81
Exit Radius, RO = 19.59
Mean Radius, RM = 19.70

Cone Angle - -2.073

Inlet Point: XI = 0.0, YI = 0.0
Axial Leading Edge, XAXLE = -0.01133
Leading Edge Radius, RLE = 0.02504
Centered at XCI = 0.01371, YCI = 0.02095

Inlet Angle = 56.810

Upstream Meanline Arc Radius, R1 = 43.53
Centered at Xl = 36.43, Y1 = -23.83

Curvature Transition Point: XTC = 2.668, YTC = 3.650
TRANS = (XTC-XI)/(XO-XI) = 0.4498
Angle at Curvature Transition, THT = 50.858

Downstream Meanline Arc Radius, R2 = 36.05
Centered at X2 = 30.62, Y2 = -19.10

Meanline Arc Ratio, R1/R2 = 1.208

Exit Angle, THO = 43.240
Exit Point: XO = 5.931, YO = 7.155
Axial Trailing Edge, XAXTE = 5.938
Trailing Edge Radius, RTE = 0.02666
Centered at XCO = 5.911, YCO = 7.137

Setting Angle = 50.343
True Chord = 9.293
Axial Chord = 5.931
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TABLE 3.1 (CONT.)

THICKNESS DISTRIBUTION

Inlet Thickness, TI = 0.05
at XRI = 0.01296, YT1 = 0.01981

Max Thickness, TM = 0.4234
AT XTM = 3.272, YTM = 4.373

THKX = (XTM-XI)/(XO-XI) = 0.5517

Exit Thickness, TO - 0.053
at XTO = 5.914, YTO = 7.139

T(x) - C1 + C2 x + C3 x + C4 x + CS x + C6 x
where C1 = 0.04741

02 = 0.2002
C3 = -0.01764
C4 = -0.2448E-2
C5 = -0.4074E-4
C6 = -0.7545E-6

NUMBER OF BLADES = 22
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TABLE 3.2 HYPOTHETICAL OPERATING CONDITIONS

NASA ROTOR 67, SECTION 5, ZERO INCIDENCE. PDS-0.51

GAM=1.4000 RGAS= 1716.58 L=0. 194600

R1-0.646300 R2=0.646300

INLET
ABSOLUTE RELATIVE

EXIT
ABSOLUTE

15.056
510.00

2.4766E-03
3.6888E-07
1.4464E+06

12.213
480.40

2.1327E-03
3.5193E-07
7.0333E+05

0.5055
0.2293
0.5551

21.192
562.32

3.1615E-03
3.9773E-07
1.7982E+06

1.1701E+06

0.7728
0.9234

19.447
553.48
2.9475E-03
3.9295E-07
1.6835E+06

15.131
515.19
2.4638E-03
3.7180E-07
8.7477E+05

0.4225
0.4395
0.6096

20.556
562.32

3.0666E-03
3.9773E-07
1.7442E+06

9.7050E+05

0.5281-
0.6764

ANGLE 24.399

VZ
VTH
V

U
RPM
RPMC
ZSPEED

MDOT/A

PTA2/PTA1 -

PTR2/PTR1 -

TTA2/TTA1 -

5.4314E+02
2.4636E+02
5.9640E+02

1.0767E+03
1.5908E+04
1. 6043E+04

100.00

1.1584

1.2916

0.9700

1.0853

PS2/PS1 - 1.2389

PS2/PTA1 - 1.0050

PS2/PTR1 - 0.7140

PDS - 0.5100

PT
TT
RHOT
MUT
"RET"

PS
TS
RHOS
MUS
RE

MZ
MTH
M

RELATIVE

56.810

8.3030E+02
9.9217E+02

46.126 51.340

4.7014E+02
4.8900E+02
6.7835E+02

1.0767E+03

5.8767E+02
7.5259E+02
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TABLE 4.1
MACH NUMBERS AT CELLS ALONG XSI-INVERSION LINE 15

STEADY STATE ITERATION 2500

Cell Number

53
54
55
56
57
58
59
60
61
62
63
64
65

Mach Number

1.207
1.204
1.164
1.093
1.008
0.935
0.886
0.860
0.849
0.842
0.833
0.823
0.816

Maximum Mach number along this inversion line

TABLE 4.2
EXTENT OF SHOCK SMEARING BASED ON
DIFFERENT SHOCK START LOCATIONS

Cell Number at
Shock Start

53
54
55
56

Cell Number at
Shook Termination

64
63
60

RMS
Error
1.03%
1.04%
0.84%
8.35%
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TABLE 4.3
OVERALL BLADE PERFORMANCE AVERAGED 1.6 TRAILING EDGE

DIAMETERS DOWNSTREAM OF BLADE TRAILING EDGE
STEADY STATE ITERATION 2500

Mass
Averaged

Abs

Stream Thrust
Averaged -

Rel Abs Rel

Total Pressure Ratio
Total Temperature Ratio

Static Pressure Ratio
Static Temperature Ratio

Flow Angle

Mach Number

1.292 0.977
1.082 0.999

0.978 0.695
0.999 0.906

42.86 48.59

0.644 0.714

1.280 0.970
1.081 0.999

1.000 0.711
1.008 0.914

45.84 51.84

0.604 0.681

Adiabatic Efficiency 92.8%

* Constant area duct

90.1%
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TABLE 5.1

TIME AVE STEADY STATE
ITER 2500

Lift Coeff.
Drag Coeff.
Moment Coeff.

Pt ratio, ab
re

Tt ratio, ab

Flow Angle, ab
re

Mach Nr., ab
re

Adiabatic Eff.

MASS AVERAGED VALUES

s 1.285 1.313
1 0.975 0.984

s 1.083 1.091

s 42.35 44.31
1 47.81 49.44

s 0.632 0.652
1 0.696 0.718

89.1% 92.0%

1.299
0.978

1.086

43.75
48.80

0.640
0.702

90.6%

STREAM THRUST AVERAGED VALUES

Pt ratio, abs 1.284 1.296 1.292
rel 0.966 0.975 0.971

Tt ratio,

Flow Angle,

Mach Nr.,

abs 1.076 1.090

abs 45.78 46.42
rel 51.11 51.92

abs 0.604 0.613
rel 0.673 0.684

1.086

46.13
51.38

0.609
0.676

85.2% 97.6% 88.6%

1.292
0.977

1.082

42.86
48.59

0.644
0.714

92.8%

1.280
0.970

1.081

45.84
51.84

0.604
0.681

90.1%

MIN MAX

0.381
0.0348
0.100

0.401
0.0397
0.136

0.396
0.0371
0.114

0.366
0.0364
0.120

Adiabatic Eff.
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TABLE 5.2

TIME AVE TOTAL
VARIATION

DIFF. FROM TIME AVE
STEADY STATE ITER 2500

Lift Coeff.
Drag Coeff.
Moment Coeff.

Pt ratio,

Tt ratio,

Flow Angle,

Mach Nr.,

Adiabatic Eff.

abs 1.299
rel 0.978

abs 1.086

abs 43.75
rel 48.80

abs 0.640
rel 0.702

MASS AVERAGED VALUES

90.6%

2.2%
0.9%

0.7%

A =1.96
A=1.63

3.1%
3.1%

A =2.9%

-0.5%
-0.1%

-0.4%

A=-0.9
A =-0.2

+0.6%
+1.7%

A =+2.2%

Pt ratio,

Tt ratio,

STREAM THRUST AVERAGED VALUES

abs 1.292
rel 0.971

abs 1.086

Flow Angle, abs 46.13
rel 51.38

0.9%
0.9%

1.3%

=0.6
A=0.8

Mach Nr., abs 0.609
rel 0.676

Adiabatic Eff. 88.6%

0.396
0.0371
0.114

5.1%
13.2%
31.6%

-7.6%
-1.9%
+5.3%

-0.9%
-0.1%

-0.5%

A1=-o.3
A1=+o.5

1.5%
1.6%

-0.8%
+0.7%

,L*i-=12. 4%



67

TABLE 5.3
SENSITIVITY OF ADIABATIC EFFICIENCY TO SMALL CHANGES IN

TOTAL PRESSURE AND TOTAL TEMPERATURE RATIOS

Let Pt be the total pressure ratio;
Tt the total temperature ratio;

the adiabatic efficiency (based on 7 = 1.4).

Baseline: Pt = 1.295
Tt - 1.085

= 90.2%

Case 1: Increase Pt by one significant digit
Pt = 1.296
Tt = 1.085

= 90.5% ( = 0.3)

Case 2: Decrease Tt by one significant digit
Pt = 1.295
Tt = 1.084

= 91.3% (A= 1.1)

Case 3: Both changes in Pt and Tt together
Pt = 1.296
Tt = 1.084

= 91.5% (A= 1.3)

(0.08 percent)

(0.09 percent)
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TABLE 6.1
SAMPLE OF APPROXIMATE VORTEX CORE PRESSURES

STRONG SHEDDING
Near TE . . . . .. .. .. .

Iter PS ss PS SS

? 0.468
0.456 0.444
0.433 0.477
0.431 0.484
0.439 0.492

0.470 0.457 0.500
0.472 0.478 0.504

Far from TE
PS SS

0.461
0.481
0.497
0.505
0.510

0.501
0.505

Near TE .
Iter PS SS

WEAK SHEDDING

PS SS
Far from TE
PS SS

? 0.499
0.494 0.500

0.498 0.494 0.501
? 0.499 0.496 0.503

0.494 0.500 0.499 -

42000
42250
42500
42750
43000
43250
43500

61000
61250
61500
61750
62000

0.498
0.501
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TABLE 7.1
DISTANCES AND VELOCITIES USED IN ESTIMATING
EXTREME FREQUENCIES DUE TO WAVE REFLECTION
OFF THE DOWNSTREAM COMPUTATIONAL BOUNDARY

DISTANCES (Normalized to Axial Chord)
MIN MAX

Shock to Trailing Edge (S.S.) 0.424 0.493
Shock to Trailing Edge (P.S.) 1.15 1.23
Shock to Boundary (Axial Distance) 1.32 1.79

VELOCITIES (Normalized to Upstream Stag. Speed
MIN

Shock to T.E., xsi-inv 5 0.510
xsi-inv 25 0.684

of Sound)
MAX

0.825
0.733

u, Shock to Trailing Edge
Trailing Edge to Boundary

c+u, Shock to Trailing Edge
Trailing Edge to Boundary

c-u, Shock to Trailing Edge
Trailing Edge to Boundary

0.337 0.558
0.183 0.452

1.32
1.18

1.49
1.40

0.374 0.644
0.496 0.811
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TABLE 7.2
SAMPLE CALCULATION OF EXTREME FREQUENCIES DUE TO WAVE

REFLECTION OFF OF DOWNSTREAM BOUNDARY

DISTANCE VELOCITY
Boundary layer convection,
shock to t.e. along p.s. D1 V1

Free stream convection,
shock to downstream boundary D2 V2

Acoustic propagation,
downstream boundary to shock D3 V3

LONGEST PERIOD: DI = Max. p.s. value = 1.23
V1 = 0.3 x min. xsi-inv 25 value

= 0.3 x 0.684 = 0.205

D2 = 1.00
V2 = 0.9 x min. t.e. to boundary value

= 0.9 x 0.183 = 0.165

D3 = max. distance = 1.79
V3 = min. c-u = 0.374

D1/V1 + D2/V2 + D3/V3 - 6.00 + 6.06 + 4.79
= 16.85
-> 2.82 msec => 355 Hz

SHORTEST PERIOD: D1 = min p.s. value = 1.15
V1 = max xsi-inv 25 value = 0.733

D2 = 1.00
V2 = max t.e. to boundary value

= 0.452

D3 = min distance = 1.32
V3 = max c-u = 0.811

D1/V1 + D2/V2 + D3/V3 = 1.57 + 2.21 + 1.63
= 5.41
=> 9.06 msec => 1100 Hz
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FIGURES
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Figure 3.1 NASA Rotor 67 Section 5 Blade Shape
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Figure 3.3 Pass 45 Grid, Leading Edge Detail
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Figure 3.4 Pass 45 Grid, Trailing Edge Detail
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Figure 4.2 Steady State Error Locations
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Figure 5.2 Maximum Change Locations for Convergence History

Segment Presented in Figure 5.1
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Figure 5.6 Location of Moment Center Used in Figure 5.5
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Figure 6 1 Velocity Vectors in the Blade Frame of Reference

f or Iteration 42500
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Figure 6.2 Static Pressure Contours from Iteration 42500 Showing

First Pressure Surface Vortex Near Trailing Edge
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Figure 6.3 Static Pressure Contours from Iteration 42500 Showing

Suction Surface Vortex
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Figure 6.4 Static Pressure Contours from Iteration 42500 Showing

Second Pressure Surface Vortex
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Figure 6.6 Velocity Vectors from Iteration 42500 in Frame of Reference

of Suction Surface Vortex
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of Second Pressure Surface Vortex
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Figure 6.12 Typical Suction Surface Separation Location
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Figure 6.14 Vortex Core Locations at Iteration 61250
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Figure 6.15 Schematic of Hypothesized Vortex Shedding Mechanics
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