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Abstract— Real-world dynamical variations make adaptive
control of time-varying systems highly relevant. However, most
adaptive control literature focuses on analyzing systems where
the uncertainty is represented as a weighted linear combination
of fixed number of basis functions, with constant weights. One
approach to modeling time variations is to assume time varying
ideal weights, and use difference integration to accommodate
weight variation. However, this approach reactively suppresses
the uncertainty, and has little ability to predict system behavior
locally. We present an alternate formulation by leveraging
Bayesian nonparametric Gaussian Process adaptive elements.
We show that almost surely bounded adaptive controllers for
a class of nonlinear time varying system can be formulated
by incorporating time as an additional input to the Gaussian
kernel. Analysis and simulations show that the learning-enabled
local predictive ability of our adaptive controllers significantly
improves performance.

I. INTRODUCTION

Adaptive control is a well-established area within control
theory. For adaptation to uncertain, nonlinear elements of
a control system, the Model Reference Adaptive Control
(MRAC) framework provides a means to achieve asymp-
totic tracking error convergence or ultimate boundedness
of tracking error [2, 8, 17, 23]. In real world scenarios
the uncertainty may depend on time, however, much of the
published literature does not account for this case. Specific
examples of such variation include networked systems where
the dynamics change as agents arrive and leave the network,
systems with hybrid or switched dynamics, and systems
where adaptation is required to external disturbances that
are a function of the operating environment. When the
uncertainty is time varying, the standard MRAC adaptive law
does not guarantee asymptotic convergence [25]. Extensions
to handle the linear, time-varying case exist [1, 7, 13, 14, 24].
For nonlinear matched uncertainties, a difference integration
based derivative-free MRAC approaches have been proposed
[25, 26]. Xu’s approach [25] assumes known periodicity
and shows boundedness of the system states, but only for
scalar systems. It can be viewed as a difference integration
scheme for traditional MRAC. Yucelen’s approach ([26])
does not leverage possible knowledge of known periodicity
and guarantees boundedness for multi-state systems. One
special case of it can be viewed as a difference integration
scheme for sigma-mod based MRAC.
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Radial Basis Function (RBF) Neural Networks are a popu-
lar choice of representation for the uncertainty due to being
universal function approximators, linear in the parameters.
Let z ∈ Rn be the input, φi : Rn → R be a radial basis
function, and φ(z) = {φ1(z), . . . , φl(z)}T be the output
of the basis function set. For time-varying uncertainty, the
modeling error can be represented by ∆(z) = W ∗T (t)φ(z),
which then requires knowledge of- or assumptions about-
the time variation of W ∗(t). The net results are control laws
specialized to distinct cases. An alternative solution would
be to incorporate time into the basis set. Doing so without
incurring too high a cost in terms of the quantity, and the
adaptations laws, of the basis functions then becomes a ma-
jor challenge. Fortunately, nonparametric modeling methods
exist which are designed specifically for this problem.

This paper introduces a nonparametric method for adapt-
ing to model-based and time-varying uncertainty. The main
idea is to model the uncertainty probabilistically using
Gaussian Process (GP) models [19]. The probabilistic in-
terpretation is sensible given that sources of uncertainty
include noise, servo chattering, or other non-smooth or non-
deterministic (at the level of the model) effects. A GP is
defined as a collection of random variables, any finite subset
of which has a joint Gaussian distribution and is an example
of a generative model. The advantage of GP models is that
time variation of the uncertainty simply becomes a variable
of the process, leading to a nonparametric model with basis
functions depending on state and time. The uncertainty is
then modeled as W∗TΨ(x, t), with the interpretation that
W∗ is a vector in an infinite dimensional Reproducing
Kernel Hilbert Space (RKHS) H, and Ψ(x, t) is a set of
linear functionals in H derived from the observations. This
strategy offers more flexibility in modeling and provides
theoretical support from the field machine learning, where
these models are employed for (online) regression and are
made viable for real-time use by imposing budgeted learning
via sparsification. Therefore, rather than treating uncertainty
adaptation as a completely input-output driven regression
problem (and possibly suffering from over-learning), we
instead learn a data-driven, probabilistic generative model
of the uncertainty. This approach also provides a means
to quantify the confidence the model has in the estimate.
In short, this paper shows how to incorporate GPs in an
MRAC framework with time varying uncertainty, provides
theoretical guarantees of stability, and presents simulations to
demonstrate performance for various problems. Preliminary
work regarding GP-MRAC appeared first in [3]. The work
in this paper extends the theoretical and algorithmic work



presented in a journal submission, preprint of which has
been made available as a technical report [4]. The main
contribution over [4] here is the incorporation of time varying
uncertainty and extensive analysis and simulation study for
three cases of time variations.

II. MODEL REFERENCE ADAPTIVE CONTROL IN
PRESENCE OF TIME VARYING UNCERTAINTY

Consider a time varying uncertain dynamical system with
state vector x(t) = [xT1 (t), xT2 (t)]T ∈ Dx ⊂ Rn, such that
x1(t) ∈ Rns , x2(t) ∈ Rns , and n = 2ns. Let τ : R+ :→ Rm
be an arbitrary signal capturing the time variation of the
system. The following multiple-input time-varying nonlinear
uncertain dynamical system is the object of investigation

ẋ1(t) = x2(t), (1a)
ẋ2(t) = f(x(t), δ(t), τ(t)). (1b)

The function f is assumed to be Lipschitz continuous in
x ∈ Dx and in τ ∈ Dτ ⊂ Rm, with f(0, 0, 0) = 0. The
control inputs δ ∈ Dδ ⊂ Rl are assumed to belong to
the set of admissible control inputs consisting of measurable
bounded functions. Therefore, existence and uniqueness of
piecewise solutions to (1) are guaranteed. Furthermore, it is
assumed that an admissible control input exists that drives
the system to a neighborhood of any arbitrary point in Dx

from any initial condition in Dx in finite time. It is further
assumed that l ≤ ns (while restrictive for overactuated
systems, this assumption can be relaxed through the design
of appropriate control assignment [6]). The signal τ does
not need to be continuous, the only restriction imposed is
that it contains finitely many discontinuities over any finite
time interval. The pure time-varying case where τ = t
is captured by this more general formulation. Furthermore,
this formulation allows for explicit incorporation of sensor
measurements of τ in adaptive control design. For example,
when modeling disturbances due to wind-gusts, τ could
capture gust measurements, which are arbitrary functions of
time.

The Approximate Model Inversion based MRAC approach
used here attempts to feedback linearize the system by
finding a pseudo-control input ν(t) ∈ Rns representative
of the desired acceleration of the system. If the exact plant
model in (1) is known and invertible, the required control
input to achieve the desired acceleration is computable by
inverting the plant dynamics. However, since this usually
is not the case, an approximate inversion model f̂(x, δ) is
employed. The inversion model is chosen to be invertible
w.r.t δ, that is, the operator f̂−1 : Rn → Rl is assumed
to exist and assign for every unique element of Rn+ns a
unique element of Rl. The following assumption guarantees
invertibility of f̂(x, δ) w.r.t. δ

Assumption 1 ∂f̂(x,δ)
∂δ is continuous w.r.t δ and nonzero

over Dx ×Dδ .

Therefore, given a desired pseudo-control input ν ∈ Rns a
control command δ can be found by approximate dynamic

inversion as follows

δ = f̂−1(x, ν). (2)

Let z = (x, δ) for brevity. The use of an approximate model
results in a modeling error ∆ for the system,

ẋ2 = ν(z) + ∆(z, τ), (3)

which explicitly depends on τ ,

∆(z, τ) = f(z, τ)− f̂(z). (4)

Were the control assignment function (the mapping between
control inputs to states) known and invertible with respect
to δ, then an inversion model exists such that the modeling
error is not dependent on the control input δ. A designer
chosen reference model is used to characterize the desired
response of the system

ẋ1rm = x2rm , (5)
ẋ2rm = frm(xrm, r),

where frm(xrm(t), r(t)) denote the reference model dynam-
ics, which are assumed to be continuously differentiable in
xrm for all xrm ∈ Dx ⊂ Rn. The command r(t) is assumed
to be bounded and piecewise continuous, furthermore, frm
is assumed to be such that xrm is bounded for a bounded
reference input.

Define the tracking error to be e(t) = xrm(t)− x(t), and
the pseudo-control input ν to be

ν = νrm + νpd − νad, (6)

consisting of a linear feedback term νpd = [K1,K2]e with
K1 ∈ Rns×ns and K2 ∈ Rns×ns ; a linear feedforward term
νrm = ẋ2rm ; and an adaptive term νad(z). Since ∆ is a
function of νad as per (4), and νad needs to be designed to
cancel ∆, the following assumption needs to be satisfied:

Assumption 2 The existence and uniqueness of a fixed-
point solution to νad = ∆(·, νad) is assumed.

Sufficient conditions for satisfying this assumption are avail-
able in [11, 27]. Assumption 2 implicitly requires that the
sign of control effectiveness to be known [11].

Using (3) the tracking error dynamics can be written as

ė = ẋrm −
[

x2

ν + ∆

]
. (7)

Let A =

[
0 Ins
−K1 −K2

]
, B =

[
0
Ins

]
where 0, I ∈

Rns×ns , are the zero and identity matrices, respectively.
From (6), the tracking error dynamics are then,

ė = Ae+B[νad(z)−∆(z, τ)]. (8)

The baseline full state feedback controller νpd is chosen to
make A Hurwitz. Hence, for any positive definite matrix
Q ∈ Rn×n, a positive definite solution P ∈ Rn×n exists
for the Lyapunov equation

0 = ATP + PA+Q. (9)



A. The parametric way of handling time variations

The typical approach to adaptive control of time varying
systems assume that the uncertainty is linearly parameterized
by a set of ideal time varying weights given a fixed basis set:

∆(z) = W ∗T (t)φ(z) + ε(z), (10)

where φ(·) is a vector of universally approximating basis
functions (e.g. Radial Basis Function [12, 21]) and ε(·) is
a bounded approximation error (which vanishes when the
real basis functions are known, whereby the uncertainty is
said to be structured [23]). The adaptive element is chosen
to be νad = WT (t)φ(z) and an update law ν̇ad is sought.
To see the issues with this formulation, let ∆(z, τ) ∈ R,
ε(z) = 0, W̃ (t) = W (t) − W ∗(t), and consider the
Lyapunov candidate traditionally used in adaptive control:
V (e, W̃ ) = 1

2 (eTPe + W̃TΓ−1W̃ ) with Γ > 0 is a matrix
of learning rates. Taking the Lie derivative of this function
and substituting the traditional gradient based adaptive law
Ẇ = −ΓeTPBφ(z) yields

V̇ (e, W̃ ) = −1

2
eTQe+ W̃ΓẆ ∗, (11)

which is not sign definite and requires knowledge of Ẇ ∗(t)
which may not be available to make any statements about
stability (note that a similar analysis was presented by Xu
[25] for scalar systems). To get around this issue, Xu et al.
[25] and Yucelen et al. [26] have used a difference integration
based approach. In this so called “derivative-free” approach
the adaptive law is characterized by

W (t) = α1W (t− T )− α2(t)φ(x(t))e(t)TPB, (12)

where T can capture information about known periodicity. If
we set αi = 1, α2(t) to be a bounded monotone increasing
function, and replace the adaptive law by a continuity guar-
anteeing function until t = T we recover Xu’s adaptive law
which can be viewed as a difference integration scheme for
traditional gradient based adaptive laws [25]. With α1 < 1,
α2 > 0 we recover a special case of the DFMRAC law of
Yucelen, which can be viewed as a difference integration
scheme for σ-modification based MRAC adaptive law [9].

Both adaptive laws incorporate a discrete weight update
in a continuous framework and use Lure’-Postnikov type
Lyapunov candidates to get around the issue of knowing
W ∗(t). However, these laws do not attempt to capture
the uncertainty and its local time-variations. Furthermore,
the associated control inputs can become quite aggressive
and difficult to implement (see Section IV for numerical
simulations). The next section describes a nonparametric
approach to handling time variation in adaptive control.

III. A BAYESIAN NONPARAMETRIC APPROACH TO
HANDLING TIME VARIATIONS

Instead of focusing on modeling the uncertainty ∆(z, τ)
as a time-dependent input-output map, we propose instead
to learn a probabilistic generative model of the uncertainty.
That is, it is assumed that the uncertainty can be described
completely through a time varying (prior) mean function and

a covariance function. Bayesian posterior updates are used
to build a generative model of the uncertainty. Learning
generative models is far better approach than learning NN
input-output representation approach [16, 18? ]. Given that
we are attempting to learn continuous functions of time and
state, Gaussian Process (GP) priors are a great fit [18].

A GP is defined as a collection of random variables such
that every finite subset is jointly Gaussian. The joint Gaussian
condition allows GPs to be completely characterized by their
second order statistics [? ]. The GP is a distribution over
functions, that is, a draw from a GP is a function. For the sake
of clarity of exposition, we will assume that ∆(z, τ) ∈ R;
the extension to the multidimensional case is straightforward.
Let m(z, τ) be the mean function, and k(·, ·) be a positive
definite covariance kernel, then GP is represented as

∆(z(t), τ(t)) ∼ GP(m(z(t), τ(t)), k((z(t), τ(t)), (z(t′), τ(t′)))).
(13)

It is assumed that the mean lies in the the class of functions

G =

{
g ∈ RX | g(·) =

∞∑
i=1

αik(zi, ·)

}
(14)

where X = Rn, αi ∈ R, zi ∈ X and ‖g‖H < ∞ s.t.
‖g(·)‖2H =

∑∞
i=1

∑∞
j=1 αiαjk(zi, zj) [22]. In the following,

let z̄ = [z, τ ] for ease of exposition. Let Z̄t = {z̄1, . . . , z̄t} be
a set of state measurements, with outputs yt(z̄i) = ∆(z̄i) +
εi, where εi ∼ N (0, ω2) is Gaussian white measurement
noise. The definition of the GP above implies that the data
{∆(z̄1), . . . ,∆(z̄t)} has prior distribution N (0,K(Z̄t, Z̄t)),
where K(Z̄t, Z̄t) is the Gram matrix of the elements in
Z̄t. It can be shown that given a new input z̄t+1, the joint
distribution of the data available up to t and z̄t under a
Gaussian prior distribution is given by[

yt
yt+1

]
∼ N

(
0,

[
K(Z̄t, Z̄t) + ω2I kz̄t+1

kTz̄t+1
k∗t+1

])
, (15)

where kz̄t+1
= K(z̄t+1, Z̄t) and k∗t+1 = k(z̄t+1, z̄t+1). The

posterior (called the predictive) distribution is obtained by
conditioning the joint Gaussian prior distribution over the
observation z̄t+1 to yield

p(yt+1|Z̄t, yt, z̄t+1) ∼ N (m̂t+1, Σ̄t+1), (16)

where

m̂t+1 = αTt+1kz̄t+1 (17)

Σ̄t+1 = k∗t+1 − kTz̄t+1
Ckz̄t+1

(18)

are the estimated mean and covariance respectively, and
C := (K(Z̄t, Z̄t)+ω2I)−1 and αt+1 := Cyt. Since positive
definite kernels generate a mapping ψ : R → H, where H
is an RKHS and k(x, y) = 〈ψ(x), ψ(y)〉H, any set Z̄t is
associated with a set of elements ψ̄(Z)t in H. This can be
thought of as a subspace of functions FZ̄t in H. In fact,
the vector m̂t+1 is the set of coefficients that realizes one
particular function from this family as an estimate of the
mean.



Let σ(t) ∈ N denote a switching index which increments
every time a data point is added or removed from basis
vector set. Therefore, when the σth system is active, the
mean function in (17), evaluated using the active set of basis
vectors, is represented as m̂σ . This results in a model of
the stochastic process ∆(z̄) given the sparsified set of all
available data as

ν̄ad(z̄) ∼ GP(m̂σ(z̄), k(z̄, z̄′)). (19)

The adaptive signal νad(z̄) is set to be equal the estimate of
the mean m̂σ(z̄):

νad(z̄) = m̂σ(z̄). (20)

Since both Z̄t and yt grow with data, computing the inverse
in (17) can become computationally intractable. This is
less of a problem for traditional GP regression applications,
which include regression problems with finite learning sam-
ples; however, in an online setting, the cardinality of the
samples need not be bounded. Therefore, in order to extend
GP regression to MRAC, an online method to restrict the
number of data points stored for inference is needed.

One way to restrict the number of updates to Z̄t is to check
to see how much the point contributes to FZ̄t via the linear
independence test. If the contribution is below a threshold γ,
the point is not added to Z̄t. However, if a point needs to be
added, and the budget has been exceeded, one of the points
in Z̄t needs to be deleted. In the Oldest Point scheme, the
oldest point added to Z̄t is deleted. In the KL scheme, the
KL divergences between the GP if the point were added to
Z̄t and the GP’s with one point removed each are computed;
the point with the largest difference is then discarded [5].
For more details on this algorithm, see our preprint on GP-
MRAC (with non-time varying uncertainty) [4].

A. Analysis of Stability

In this section we establish results relating to the stability
of Gaussian process based MRAC using the online GP
sparsification algorithm described in [4]. In particular, the
boundedness of the tracking error dynamics of (8) is shown,
which is represented using the GP adaptive element:

de = Ae dt+B(εσm(z̄)−G dξ), (21)

where νad(z̄) ∼ GP(m̂σ(z̄), k(z̄, z̄′)), G = V(∆(z̄)) is the
variance of ∆(z̄), and εσm(z̄) = m̂σ(z̄)−m(z̄). Note that we
have used a Wiener process representation of the GP, that is
we assume that a draw from the GP ∆(z̄) can be modeled
as m(z̄) +Gξ. While other GP representations can be used,
this approach facilitates our analysis. First it is demonstrated
that due to the nonparametric nature of this algorithm, the
GP never loses its local predictive ability even when the
uncertainty is time varying.

Lemma 1 Let ∆(z̄) be represented by a Gaussian process
as in (13), and m̂σ(z̄) be defined as in (19). Then c1 :=
‖∆(z̄)− m̂σ(z̄)‖ is almost surely (a.s.) bounded for each σ.

Proof: Let BV represent the set of basis vectors selected
by either the OP or the KL variants of Algorithm 1 in [4] at
the instant σ. By definition,

‖∆(z̄)− m̂(z̄)‖

=

∥∥∥∥∥
t∑
i=1

αik(z̄i, z̄)−
∑
i∈BV

ᾱk(z̄i, z̄) +Gξ(z̄)

∥∥∥∥∥
=

∥∥∥∥∥∥
|BV|∑
i=1

(αi − ᾱi)k(z̄i, z̄)

∥∥∥∥∥∥+

∥∥∥∥∥∑
i∈I

ᾱk(z̄i, z̄)

∥∥∥∥∥+ ‖G(z̄)ξ‖ ,

where I is the set of data points that do not include the points
in the basis vector set BV . Since supx |k(x, xi)| = 1, and
because ᾱ is a set of weights that minimizes the ‖∆(z̄i) −
ᾱk(z̄i, z̄)‖H due to the Representer theorem [22], the first
term is bounded by c2 = |BV|maxi ‖αi − ᾱi‖. Due to the
choice of the Gaussian covariance kernel and the class of
functions the mean arises from (14), the infinite term in the
second term converges, hence there exists a constant c3 s.t.
c3 =

∥∥∑
i∈I ᾱk(z̄i, z̄)

∥∥. Finally, ‖Gξ‖ is a.s. bounded above
by a constant c4 dependent on V(∆(z̄)), proving the lemma.

The next Lemma shows that because Algorithm 1 in [4] adds
or removes kernels from the basis set BV to keep a metric
of the representation error bounded, εm(z̄) is also bounded
even when the system is time-varying.

Lemma 2 Let ∆(z̄) be represented by a Gaussian process
as in (13), and m̂σ(z̄) be defined as in (19) inferred based on
sparsified data, and let m(z̄) be the mean of the GP without
any sparsification, then εm(z̄) := m(z̄)− m̂σ(z̄) is bounded
almost surely.

Proof: From Equation (22) in [5] and from the non-
parametric Representer theorem (see Theorem 4 of [22])

‖εm(z̄)‖ =
‖∆(z̄)− m̂σ(z̄)‖

ω2
‖k∗t+1 − kTzt+1

K−1
t kz̄t+1

‖,
(22)

where Kt := K(Z̄t, Z̄t) over the basis set BV . The second
term ‖k∗t+1−kTzt+1

K−1
t kz̄t+1

‖ is bounded above by εtol due
to Algorithm 1 in [4]. Using Lemma 1 it follows that

‖εm(z̄)‖ ≤ c̄

ω2
εtol, (23)

where c̄ := c1 + c2 + c3 + c4.
The boundedness of the tracking error can now be proven.

Theorem 1 Consider the time varying system in (1), the
reference model in (5), the control law of (6) and (2). Let
the uncertainty ∆(z̄) be represented by a Gaussian process
as in (13), then Algorithm 1 in [4] and the adaptive signal
νad(z̄) = m̂σ(z̄) guarantees that the system is mean square
ultimately bounded a.s. inside a compact set.

Proof: Let V (e(t)) = 1
2e
T (t)Pe(t) be the Stochastic

Lyapunov candidate, where P > 0 satisfies the Lyapunov
equation (9). It follows that 1

2λminP‖e‖2 ≤ 2V (e) ≤



1
2λmaxP‖e‖2. The Itô differential of the Lyapunov candidate
along the solution of (21) for the σth system is

LV (e) =
∑
i

∂V (e)

∂ei
Aei +

1

2
tr
∑
i,j

BG(BG)T
∂2V (e)

∂ejei

= −1

2
eTQe+ eTPBεσm(z̄) +

1

2
trBG(BG)TP .

Letting c6 = 1
2‖P‖‖BG‖, c7 = ‖PB‖, it follows from

Lemma 2 that

LV (e) ≤ −1

2
λmin(Q)‖e‖2 + c7‖e‖c8σ + c6 (24)

a.s. and where c8σ = c̄
ω2 εtol. Therefore outside of the

compact set ‖e‖ ≥ −c7c8σ+
√
c27c

2
8σ

+2λmin(Q)c6

λmin(Q) , LV (e) ≤ 0
a.s. Since this is true for all σ, (21) is mean square uniformly
ultimately bounded in probability inside of this compact set
a.s. (see [10]).

IV. APPLICATION TO TRAJECTORY TRACKING IN
PRESENCE OF WINGROCK DYNAMICS

Modern highly swept-back or delta wing fighter aircraft
are susceptible to lightly damped oscillations in roll known
as “Wing Rock”. Wing rock often occurs at conditions
commonly encountered at landing ([20]), making precision
control in presence of wing rock critical. In this section
we use the GP-MRAC approach to track a sequence of roll
commands in the presence of simulated wing rock dynamics.
However, unlike in [4], we introduce several different classes
of time variations in the wing rock dynamics. Let θ denote
the roll attitude of an aircraft, p denote the roll rate and
δa denote the aileron control input. Then a model for time
varying wing rock dynamics is [15]

θ̇ = p (25)
ṗ = Lδaδa + Θ(x, t), (26)

where the generative model of Θ(x, t) is a GP, that is Θ(z̄) ∼
GP(Θ̄(z̄), k(z̄, z̄′). The time-varying mean of this GP is

∆̄(z̄) = W ∗0 (t) +W ∗1 (t)θ(t) +W ∗2 (t)p(t)+

W ∗3 (t)|θ(t)|p(t) +W ∗4 (t)|p(t)|p(t) +W ∗5 (t)θ3(t),

and the variance is w2
n. The chosen inversion model has the

form ν = 1
Lδa

δa, with Lδa = 3. Therefore, the mean of
the modeling uncertainty of (4) ∆̄(z̄) = Θ̄(z̄). The states
are assumed to be corrupted with Gaussian white noise.
The adaptive controller uses the control law of (6). The
gain for the linear part of control law (νpd) is given by
K1 = 1.2,K2 = 1.2. A second order reference model
with natural frequency of 1 rad/sec and damping ratio of
0.5 is chosen. The simulation uses a time-step of 0.05 sec.
The maximum size of the basis set BV (pmax) was set to
100, and points were selected for storage based on both the
oldest point (OP) and KL divergence (KL) schemes (see
[4]). For DF-MRAC we chose α1 = 0.9, α2 = 10, and
T = 10 seconds (roughly equal to the largest period as
suggested by [25]). In order to show the efficacy of our

approach, we perform comparisons with different types of
time variation by changing the weights W ∗(t) according to
different schemes. These are a) smoothly varying, periodic
functions of time b) smoothly varying periodic functions with
switching and c) arbitrary non-periodic smooth functions of
time. The weight variations for the schemes are depicted in
Figure 1.

Figure 2 presents a comparison between the states of the
system and the reference model for DF and GP-MRAC for
all the three time variation schemes. It can be seen that both
the KL and OP GP-MRAC outperform the DF scheme for
the periodic and switching cases of time variations. This
indicates that these schemes are better at handling the sudden
jump in the ideal weights of the uncertainty in the first few
seconds. For the smooth arbitrary time variation case, the
performance of the DF and OP GP-MRAC controllers is
comparable, while the KL GP-MRAC suffers slightly. This
is possibly because the linear independence test employed in
KL GP-MRAC does not remove older (somewhat irrelevant)
points sufficiently fast due to the smooth variations in the
weights, the output however is bounded. The tracking error
is better visible in Figure 3. It can therefore be argued that
all three algorithms give a comparable performance with
respect to the tracking error metric, although DF-MRAC
has poor transient performance (for the chosen parameters).
Figure 4 plots the pointwise error between the mean of the
true uncertainty and the adaptive element’s estimate of the
mean of the true uncertainty. After a poor initial transient
performance for the smooth and switching schemes, DF-
MRAC settles into a smaller error around zero, while the OP
and KL algorithms perform very well for all time, as seen in
Figures 4(a) and 4(b). In Figure 4(c) however, one can see
that DF-MRAC’s performance is quite poor, while both GP-
MRAC controllers performs well, suggesting that the DF-
MRAC adaptive element is not capturing the uncertainty.
This is rather interesting, and points to the instantaneous
reactive-learning nature of DF-MRAC, since for the same
case, DF-MRAC did well with tracking. However, Figure 5
shows that DF-MRAC’s good tracking performance comes
at a much higher control cost: while the DF-MRAC control
input has similar peak magnitudes, it is in general more
“noisy”, which is indicative of the controller taking possibly
unnecessary actions (in response to the noise and time
variations in the system) to reactively keep the tracking
error low. On the other hand, both GP schemes have much
smoother control response, indicating that its ability to learn
the uncertainty results in better local prediction that pays off
in control cost reduction too.

In order to quantify these algorithms’ effective perfor-
mance, a metric is needed that takes into account a) the
tracking error (e(t)) b) the control output (u(t)) and c) the
derivative of the control output (u̇(t)). This is given by

C =

∫
(eT (t)Pe(t) + uT (t)Qu(t) + u̇T (t)Ru̇(t))dt, (27)

where P,Q and R are positive weighting matrices. Fur-
thermore, the presence of noise necessitates evaluation over



multiple simulation runs. Figure 6 presents the results using
(27) over fifty runs, with the lowest, highest and mean
values plotted. The figures show that GP-MRAC significantly
outperforms DF-MRAC over multiple-runs, with OP being
the most effective scheme.

Overall, these results show that GP-MRAC is successful in
capturing and (locally) adapting to time varying uncertainty
with minimal prior domain knowledge. The addition of time
as data to the algorithm allows it more flexibility than
RBFN based DF-MRAC methods that have been proposed
for adaptation to time-varying uncertainty, because it can
create (and remove) basis functions that are localized in
time as well as space. The ability to create and update
a budgeted dictionary of bases and associated parameters
to learn and predict (locally) the uncertainty is a hallmark
of our nonparameteric GP-MRAC method. The results here
indicate that this ability greatly helps when dealing with
time-varying uncertainties. Since the goal of GP-MRAC is
to model the uncertainty as accurately as possible, it is able
to perform well not only in terms of the tracking error,
but also in terms of control cost (since it is not forced to
constantly adapt in order to reduce the tracking error). It
should be noted that tuning α1 may lead to better tracking
performance by DF-MRAC, however, in our experience its
ability to locally predict the uncertainty and consequently
generating an efficient input in presence of noise is not
comparable with GP-MRAC. Finally, in the results presented
here, τ = t, therefore, the KL GP-MRAC method was not
able to leverage its ability to keep older centers. If τ is some
other external variable that takes on recurring values, the KL
scheme could well outperform the OP scheme, as is the case
when the uncertainty is not time-varying [4].

V. CONCLUSION

In this paper we presented a Bayesian nonparametric
approach to Model Reference Adaptive Control (MRAC)
of time varying systems. Gaussian Process (GP) adaptive
elements were used to capture time varying uncertainties by
adding a time-dependent variable to the kernel function. The
performance of this adaptive control approach was shown to
be superior in terms of tracking and control cost as com-
pared to existing derivative-free approaches that have been
suggested for control of time varying systems. These results
bring out the benefits of using a nonparametric adaptive
elements, as it is not possible to have a time dependent
universally approximating basis with fixed, finite number of
basis functions for systems that operate over long intervals.
Furthermore, for a wide variety of possible kernel based data-
driven adaptive control algorithms, the techniques presented
here can be used to lay to rest the concern that learning-
focused data-driven adaptive controllers can become over-
burdened with irrelevant data in presence of time-variation.
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ė
(d
eg
/
s)

Angular Rate Error

 

 

DF−MRAC
GP−OP
GP−KL

DF−MRAC
GP−OP
GP−KL

(a) Smoothly varying periodic parameters

0 10 20 30 40 50
−4

−2

0

2

4

time (seconds)

e
(d
eg
)

Position Error

 

 

0 10 20 30 40 50
−20

−10

0

10

time (seconds)

ė
(d
eg
/
s)

Angular Rate Error

 

 

DF−MRAC
GP−OP
GP−KL

DF−MRAC
GP−OP
GP−KL

(b) Switching periodic parameters

0 10 20 30 40 50
−2

0

2

4

time (seconds)

e
(d
eg
)

Position Error

 

 

0 10 20 30 40 50
−2

−1

0

1

2

time (seconds)

ė
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Fig. 5. Comparison of control output when using GP regression based
MRAC and DF-MRAC with uniformly distributed centers over their re-
spective domains.
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Fig. 6. The mean and the highest value achieved of the cost metric in 27
for the three different controllers over 50 simulations runs. It can be seen
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