TRITERPENES FROM THE STEMS AND LEAVES OF MYXOPYRUM SMILACIFOLIUM (WAII.) BLUME

Đến tòa soạn 02-11-2022

Vu Van Nam¹, Nguyen Thi Hue¹, Pham Thi Hang¹, Vu Thi Hue¹, Le Nguyen Thanh^{1,2}, Nguyen Xuan Nhiem^{1,2}, Pham Van Cuong^{1,2}, Nguyen Quoc Vuong^{1,2}*

 Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam Email: nguyenvuong@imbc.vast.vn

TÓM TẮT

CÁC HỌP CHẤT TRITERPENE TỪ THÂN VÀ LÁ CỦA CÂY NHƯỜNG LE KIM CANG (*MYXOPYRUM SMILACIFOLIUM* (WAIL) BLUME)

Năm hợp chất triterpene đã biết bao gồm ursolic acid (1), uvaol (2), oleanolic (3), betulinic acid (4) và betulin (5) đã được phân lập từ thân và lá loài Nhương lê kim cang (Myxopyrum smilacifolium (Wall.) Blume). Cấu trúc của chúng đã được làm sáng tỏ bằng các phương pháp phổ khối (MS) và phổ cộng hưởng hưởng từ hạt nhân (NMR). Các hợp chất (2 – 5) đã được phân lập lần đầu tiên từ chi Myxopyrum.

Keywords. Myxopyrum smilacifolium, triterpenes, ursolic acid, uvaol, oleanolic, betulinic acid, betulin.

1. INTRODUCTION

Myxopyrum smilacifolium (Wall.) Blume belongs genus Myxopyrum (Oleaceae) found four species distributed at tropical and subtropical East Asia. In Viet Nam, there are 3 species, M. nervosum (Nhuong le gan), M. pierrei, (Nhuong le pierrei) and М. smilacifolium (Nhuong le kim cang)^[1, 2]. M. smilacifolium is also known as "Sam xuyen da" growing at high rock mountains (with altitude around 700 - 1000 m). It was a wellknown herbal medicine traditionally used for the treatment of cough, rheumatism, cephalalgia, notalagia, and otopathy ^[2, 3]. Phytochemical studies of the leaves of M. smilacifolium showed the presence of terpenoids, flavones, anthraquinones, sugars, alkaloids, tannins and saponins ^[2, 3], iridoid glycosides ^[4]. In Viet Nam, the roots of M. smilacifolium is widely used among people for

health promotion. Recently, in our project, six new iridoid glycosides and one new phenylpropanoid glycoside isolated from the roots of *M. smilacifolium* were reported ^[5, 6]. In this paper, we present the isolation and structural elucidation of five known triterpenes from the stems and leaves of *M. smilacifolium* including, ursolic acid (1), uvaol (2), oleanolic (3), betulinic acid (4) and betulin (5) (Figure 1).

2. MATERIALS AND METHODS 2.1. Plants materials

The stems and leaves of *M. smilacifolium* was collected in Vi Xuyen district, Ha Giang province in November 2019 and identified by Dr. Do Van Hai, Institute of Ecology and Biological Resources, VAST. A voucher specimen (DVH3692019) was deposited at the Institute of Ecology and Biological Resources, VAST.

2.2. General experimental procedures

All NMR spectra, including ¹H-NMR (600 MHz), ¹³C (150 MHz), HSQC and HMBC were recorded on a Bruker AvanceNEO 600 MHz spectrometer and TMS was used as an internal standard. ESI-MS were recorded on an Agilent 1100 Series LC/MSD Trap SL. Column chromatography (CC) was performed using a silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck), RP-18 resins (30-50 µm, Fuji Silysia Chemical Ltd.) and sephadex LH-20 (Merck). Thin laver chromatography (TLC) was done using precoated silica gel 60 F₂₅₄ (0.25 mm, Merck) and RP-18 F_{254S} plates (0.25 mm, Merck). HPLC was carried out using an AGILENT 1100 HPLC system.

2.3. Extraction and separation

The pulverized dry stems and leaves of *M*. smilacifolium (1.7 kg) were sonicated in 85 % MeOH (5 L × 4, each in 30 minus) at 50 °C. The solvent was removed in reduced pressure to give a crude MeOH extract (150 g). The MeOH extract was suspended with water (400 mL), then successively partitioned with *n*hexane and ethyl acetate (EtOAc) to give *n*hexane (MH, 12 g) and EtOAc (ME, 35.0 g) residues and a water layer (MW). The ME residue was applied on a silica gel CC eluting with CH₂Cl₂/EtOAc (20/1, 10/1, v/v) and MeOH to give five fractions (fr. ME1–ME2, ME3–ME4) and ME5, respectively.

The fraction ME2 (2.5)g) was chromatographed on a silica gel column eluting with *n*-hexane/acetone (10/1, v/v) to give five fractions (ME2.1-ME2.5). The fraction ME2.2 (0.8 g) was chromatographed on an RP-18 column eluting with acetone/H₂O (2/1, v/v) to give three fractions (ME2.2.1-ME2.2.3). The fractions ME2.2.1 and ME2.2.3 were purified further by CC on a sephadex LH-20 eluting with MeOH to give compound 1 (5.0 mg) and compound 2 (4.0 mg). The fraction ME2.4 (1.8 g) was chromatographed on an RP-18 column, then on a sephadex LH-20 column eluting with MeOH to obtain compound 4 (6.0 mg).

The fraction ME3 (2.8 g) was chromatographed on a silica gel column eluting with $CH_2Cl_2/MeOH$ (100/1, v/v) to give three fractions ME3.1-ME3.3. The

fraction ME3.2 (1.5 g) was chromatographed on a RP-18 silica gel column eluting with MeOH/H₂O (1/1, v/v) to give four fractions (ME3.2.1-ME3.2.4). The fraction ME3.2.2 (175 mg) was isolated by semi-preparative HPLC using an YMC column eluted wih 45% ACN to give 1 (5 mg) and 3 (4 mg).

Compound 1 (Ursolic acid): White powder. ESI-MS: m/z 457 [M+H]⁺. ¹H-NMR (CD₃OD, 600 MHz): $\delta_{\rm H}$ 5.13 (1H, t, J = 3.6 Hz, H-12), 3.06 (1H, dd, J = 11.5, 4.2 Hz, H-3 α), 2.11 (1H, d, J = 11.5 Hz, H-18 β), 1.94 (1H, td, J = 13.8, 4.2 Hz, H-16), 1.83 (2H, dd, J = 8.4, 4.2 Hz, H₂-11), 1.02 (3H, s, H₃-27), 0.88 (3H, s, H₃-23), 0.87 (3H, d, J = 3.6 Hz, H₃-30), 0.86 (3H, s, H₃-25), 0.79 (3H, d, J = 6.6 H, H₃-29), 0.76 (3H, s, H₃-26), 0.68 (3H, s, H₃-24), 0.65 (1H, dd, J = 12.6, 1.2 Hz, H-5 α); and ¹³C-NMR (CD₃OD, 150 MHz) see Table 1.

Compound **2** (Uvaol): White powder. ESI-MS: m/z 443 [M+H]⁺. ¹H-NMR (CDCl₃, 600 MHz): $\delta_{\rm H}$ 5.14 (1H, t, J = 3.6 Hz, H-12), 3.53 and 3.19 (2H, 2 × d, each J = 11.4 Hz, H₂-28), 3.23 (1H, dd, J = 10.8, 4.8 Hz, H-3 α), 1.10 (3H, s, H₃-27), 1.00 and 0.99 (6H, 2 × s, H₃-23 and H₃-26), 0.95 (3H, s, H₃-25), 0.94 (3H, d, J = 6.6 Hz, H₃-30), 0.81(3H, d, J = 6.0 Hz, H₃-29), 0.79 (3H, s, H₃-24), 0.73 (1H, dd, J = 12.0, 1.2 Hz, H-5); and ¹³C NMR (CDCl₃, 150 MHz,) see Table 1.

Compound **3** (Oleanolic acid): White powder. ESI-MS: m/z 457 [M+H]⁺. ¹H-NMR (CD₃OD, 600 MHz): $\delta_{\rm H}$ 5.26 (1H, dd, J = 4.2, 3.0 Hz, H-12), 3.17 (1H, dd, J = 11.4, 4.8 Hz, H-3 α), 2.87 (1H, dd, J = 13.8, 4.2 Hz, H-18 β), 2.03 (1H, td, J = 7.8, 4.2 Hz, H-16a), 1.18 (3H, s, H₃-27), 1.00 (3H, s, H₃-23), 0.97 (3H, s, H₃-25), 0.96 (3H, s, H₃-30), 0.93 (3H, s, H₃-29), 0.84 (3H, s, H₃-26), 0.80 (3H, s, H₃-24), 0.77 (dd, J = 11.4, 4.2 Hz, H-5 α); and ¹³C-NMR (CD₃OD, 150 MHz) see Table 1.

Compound **4** (Betulinic acid): White powder. ESI-MS: m/z 457 [M+H]⁺. ¹H-NMR (CD₃OD, 600 MHz): $\delta_{\rm H}$ 4.73 and 4.61 (2H, 2 × d, each J = 2.4 Hz, H₂-29), 3.15 (1H, dd, J = 11.4, 4.8 Hz, H-3 α), 3.04 (1H, ddd, J = 11.4, 4.8 Hz, H-19), 1.71 (3H, s, H₃-30),1.03 (3H, s, H₃-27), 0.99 (3H, s, H₃-26), 0.97 (3H, s, H₃-23), 0.88 (3H, s, H₃-25), 0.77 (3H, s, H₃-24), 0.74 (1H, m, H-5); and ¹³C-NMR (CD₃OD, 150 MHz) see Table 1. Compound **5** (Betulin): White powder. ESI-MS: m/z 442 [M+H]⁺. ¹H-NMR (CDCl₃, 600 MHz): $\delta_{\rm H}$ 4.68 and 4.58 (2H, 2 × d, each J = 10.8 Hz, H₂-29), 3.80 and 3.35 (2H, 2 × d, mõi J = 10.8 Hz, H₂-28), 3.19 (1H, dd, J = 12.0, 4.8 Hz, H-3 α), 1.68 (3H, s, H₃-30),1.03 (3H, s, H₃-27), 0.98 (3H, s, H₃-26), 0.97 (3H, s, H₃-23), 0.83 (3H, s, H₃-25), 0.76 (3H, s, H₃-24), 0.74 (1H, m, H-5); and ¹³C-NMR (CDCl₃, 150 MHz) see Table 1.

3. RESULTS AND DISCUSSIONS

Compound 1 was isolated as a white powder. The ESI-MS spectrum of 1 gave the pseudomolecular ion peak at m/z 457 [M+H]+ suggested for molecular formula of 1 is $C_{30}H_{48}O_3$ (M = 456). The ¹H, ¹³C NMR of **1** (Table 1) indicated signals of an ursane triterpene. The ¹H NMR spectrum showed signals of an olefinic proton at $\delta_{\rm H}$ 5.13 (1H, t, J = 3.6 Hz, H-12); one proton of oxymethine at $\delta_{\rm H}$ 3.06 (1H, dd, J = 11.5, 4.2 Hz, H-3ax); one methine proton at $\delta_{\rm H}$ 2.11 (d, J = 11.5 Hz, H-18 β); and seven methyls including five singlet methyls at $\delta_{\rm H}$ 0.88 (s, H₃-23), 0.68 (s, H₃-24), 0.86 (s, H₃-25), 0.76 (s, H₃-26), and 1.02 (s, H₃-27), and two doublet methyl at $\delta_{\rm H}$ 0.79 (d, J = 5.5 Hz, H₃-29) and 0.87 (d, J = 5.5 Hz, H₃-30). The large proton coupling constant $J_{\text{H-2/H-3}}$ = 11.5 Hz indicated that the H-3 proton was axial orientation and the 3β -OH. The ^{13}C

NMR, DEPT, HSQC and HMBC spectra of 1 indicated signals of 30 carbon, including a carbonyl at δ_C 181.5 (C-28, identified by HMBC spectrum); seven methines, one oxymethine at δ_C 79.7 (C-3), one olefnic methine at δ_C 126.9 (C-12), and five saturated methines at δ_C 56.8 (C-5), 49.0 (C-9), 54.4 (C-18), 40.5 (C-19), and 40.4 (C-20); nine methylenes at δ_{C} 40.0 (C-1), 27.9 (C-2), 19.5 (C-6), 34.4 (C-7), 24.4 (C-11), 29.3 (C-15), 25.4 (C-16), 31.8 (C-21), and 38.1 (C-22); and seven methys at δ_{C} 28.8 (C-23), 16.4 (C-24), 16.0 (C-25), 17.9 (C-26), 24.1 (C-27) 17.7 (C-29) and 21.6 (C-30); six quaternary carbons at δ_C 39.8 (C-4), 40.8 (C-8), 38.2 (C-10), 139.7 (C-13), 43.3 (C-14), and 49.0 (C-17). The HMBC correlations between H-3 (& 3.06) and C-1/C-24/C-23, H-12 (\delta_H 5.13) and C-27/C-14/C-9, H-18β (δ_H 2.11) and C-12/C-13/C-28/C-17/C-19, H₃-23/H₃-24 and C-4, H₃-25 and C-5/C-9, H₃-26 and C-8/C-9/C-14, H₃-27 and C-13/C-14/C-8/C-15, H₃-29 and C-18/C-19/C-20, and H₃-30 and C-19/C-18/C-21 revealed the positions of the groups 3β -OH, 12-CH=, H-18, H-19, and methyls respectively. The ESI-MS and 1D, 2 D NMR spectral data analysis of 1 and comparison with those in literature (Table 1) [7] determined the compound 1 as ursolic acid (3\beta-hydroxyurs-20-en-28-oic acid).

Figure 1. Chemical structure of compounds 1-5

С	1	2	3	4	5
	$\delta_{\rm C}{}^a$	$\delta_{C}{}^{b}$	$\delta_{\rm C}{}^a$	$\delta_{\rm C}{}^a$	$\delta_{\rm C}{}^{b}$
1	40.0	38.8	39.8	40.1	38.7
2	27.9	27.3	28.9	28.1	27.4
3	79.7	79.1	79.7	79.7	79.0
4	39.8	38.8	39.8	40.0	38.9
5	56.8	55.2	56.8	56.9	55.3
6	19.5	18.4	19.5	19.5	18.3
7	34.4	32.9	34.0	35.6	34.3
8	40.8	40.0	39.8	41.9	40.9
9	49.0	47.7	49.1	52.0	50.4
10	38.1	36.9	38.2	38.3	37.2
11	24.4	23.4	24.1	22.1	20.9
12	126.9	125.1	123.6	26.9	25.2
13	139.7	138.7	145.3	39.7	37.3
14	43.3	42.1	42.9	43.6	42.7
15	29.3	26.0	27.9	30.8	27.1
16	25.4	23.3	24.5	33.4	29.2
17	48.9	38.0	47.3	57.5	47.8
18	54.4	54.1	42.8	50.5	48.8
19	40.5	39.5	47.3	48.6	47.8
20	40.4	39.4	31.6	152.0	150.5
21	31.8	30.6	34.9	31.7	29.8
22	38.2	35.2	33.9	38.1	34.0
23	28.8	28.1	28.8	28.6	28.0
24	16.4	15.7	16.3	16.1	15.4
25	16.0	15.6	15.9	16.6	16.1
26	17.9	16.8	17.8	16.7	16.0
27	24.1	23.3	26.4	15.1	14.8
28	#181.5	70.0	#181.4	180.1	60.6
29	17.7	17.4	33.6	110.2	109.7
30	21.6	21.3	24.0	19.6	19.1

Table 1. ¹³C-NMR spectral data of compounds 1-5 and references

^aRecorded in CD₃OD, ^bCDCl₃, at 150 MHz, [#]Signal identified by HMBC spectrum.

Compound **2** was obtained as a white powder. The ¹H and ¹³C-NMR (Table 1) of **2** gave the very similary signals to those of **1** except the absence of the 28-carbonyl, which was replaced by an oxymethylene at $\delta_{\rm H}$ 3,53 (1H, d, J = 9.5 Hz, H-28 β) and 3.19 (1H, d, J =9.5 Hz, H-28 α)/ $\delta_{\rm C}$ 70.0 (C-28). The signals of an ursane triterpene of **2** indicated with 30 carbons including: seven methyls, in which five singlet methyls and two doublet methyls, seven methines, ten methylenes, six quaternary carbons. The ESI-MS spectrum of **2** gave the pseudomolecular ion peak at m/z 443 [M+H]⁺ together its ¹³C NMR spectrum suggested for molecular formula of **2** was $C_{30}H_{50}O_2$ (M = 442). The ESI-MS and the NMR spectral data analysis of **2** and comparison to those in literature (Table 1) [8] determined the compound **2** as uvaol (3 β ,28-dihydroxyurs-12ene). Compound 3 was isolated as a white powder. The ¹H NMR spectra of **3** gave signals of an oleane triterpene including one olefinic proton at $\delta_{\rm H}$ 5.26 (dd, J = 4.2, 3.0 Hz, H-12), a proton of an oxymethine at $\delta_{\rm H}$ 3.17 (dd, J = 11.4, 4.8 Hz, H-3 α), and seven singlet methyls at $\delta_{\rm H}$ 1.18 (H₃-27), 1.00 (H₃-23), 0.97 (H₃-25), 0.96 (H₃-30), 0.93 (H₃-29), 0.84 (H₃-26), 0.80 (H₃-24). The large proton coupling constant $J_{\text{H-2/H-3}}$ = 11.4 Hz revealed the orientation of the 3β -OH. The ¹³C NMR, DEPT, HSQC and HMBC spectra of 3 showed signals of 30 carbons, including one carbonyl at δ_C 181.4 (C-28); five methines, in which one oxymethine at δ_C 79.7 (C-3), one olefinic methine at $\delta_{\rm C}$ 123.6 (C-12) and three saturated methines at $\delta_{\rm C}$ 56.8 (C-5), 49.1 (C-9), 42.8 (C-18); ten methylenes at δ_C 39.8 (C-1), 28.9 (C-2), 19.5 (C-6), 34.0 (C-7), 24.1 (C-11), 27.9 (C-15), 24.1 (C-16), 47.3 (C-19), 34.9 (C-21), and 33.9 (C-22); seven methyls at δ_C 28.8 (C-23), 16.3 (C-24), 15.9 (C-25), 17.8 (C-26), 26.4 (C-27), 33.6 (C-29) and 24.0 (C-30); and seven quaternary carbons at δ_{C} 39.8 (C-4), 39.8 (C-8), 38.2 (C-10), 145.3 (C-13), 42.9 (C-14), 47.3 (C-17), and 30.7 (C-20). The HMBC correlations between H-3 (δ 3.17) and C-2/C-24/C-23; H-12 (δ_H 5.26) and C-13/C-14/C-9/C-18; H-18 (\delta_H 2.87) and C-12/C-13/C-17/C-19; H₃-23/H₃-24 and C-3/C-4/C-5; H₃-25 and C-5/C-9; H₃-26 and C-8/C-9/C-14; H₃-27 and C-13/C-14/C-8/C-15; H₃-29/H₃-30 and C-19/C-20/C-21; indicated the locations of the goups 3β -OH, 12-CH=, H-18, and methyls, respectively. The ESI-MS spectrum of 3 gave the pseudomolecular ion peak at m/z 457 [M+H]⁺ together its ¹³C NMR spectrum suggested for molecular formula of 3 as $C_{30}H_{48}O_3$ (M = 456). The ESI-MS and the 1D, 2D NMR spectral data analysis of 3 and comparison to those in literature (Table 1) [7] determined the compound 3 as oleanolic acid (3β-Hydroxyolean-12-en-28-oic acid).

Compound 4 is a white powder. The ¹H, ¹³C NMR and DEPT spectra of 4 showed signals of lupane triterpene with 30 carbons, including one isopropylene at $\delta_{\rm H}$ 4.73 and 4.61/ $\delta_{\rm C}$ 110.2 (29-CH₂=) and δ_C 152.0 (C-20), and δ_H 1.71/ δ_C 19.6 (30-CH₃); one oxymethine at $\delta_{\rm H}$ 3.15 (dd, $J = 11.4 \, 4.8 \, \text{Hz}, \, \text{H}-3\alpha)/\delta_{\text{C}} \, 79.7$ (C-3); five singlet methyl $\delta_{\rm H}$ 1.03 0.99 0.97 0.88 0.77; five methines at δ_C 56.9 52.0 39.7 50.5 48.6; ten methylenes tại δ_C 40.1 28.1 19.5 35.6 22.1 26.9 30.8 33.4 31.7 38.1; and five quaternary carbons at δ_C 40.0 41.9 38.3 43.6 57.5. The ESI-MS together ¹³C NMR of 4 suggested the molecular formula as $C_{30}H_{48}O_3$ (M = 456). The ESI-MS and NMR spectral data analysis of 4 and comparison to those in literature (Table 1) [9] determined the compound 4 as betulinic acid (3β-Hydroxylup-20(29)-en-28-oic acid).

Compound **5** is a white powder. The ¹H and ¹³C-NMR (Table 1) of **5** gave the very similary signals to those of **4** except the absence of the 28-carbonyl, which was replaced by a new hydroxymethylene at $\delta_{\rm H}$ 3.80 and 3.35 (2 × d, each J = 10.8 Hz, H₂-28)/ $\delta_{\rm C}$ 60.6 (C-28). The ESI-MS together ¹³C NMR of **5** suggested the molecular formula as C₃₀H₅₀O₂ (M = 442). The ESI-MS and NMR spectral data analysis of **5** and comparison to those in literature (Table 1) [10] determined the compound **5** as betulin (lup-20(29)-ene-3 β ,28-diol)

4. CONCLUSION

From the stems and leaves of *M. smilacifolium*, five known triterpenes including, ursolic acid (1), uvaol (2), oleanolic (3), betulinic acid (4) and betulin (5) were isolated. The structures were elucidated by means of ESI-MS and NMR spectroscopic methods. The compounds (2 - 5) were isolated for the first time from the genus *Myxopyrum*.

Acknowledgement. This research is funded by Institute of Marine Biochemistry under grant number HSB22-CS07.

REFERENCES

1. Chi V. V. - Dictionary of Vietnamese medicinal plants, Medicine Publishing House, Ha Noi, 2012, 2, 369 (in Vietnamese).

2. Raveesha P. and Chandrasekhar K. B., Pharmacognostical Investigation and Screening Preliminary Phytochemical of Leaves of Myxopyrum smilacifolium B., Pharmacognosy Journal (2016), 8(2), 159-164. 3. Sudharmini D. and Ashalatha S. N., Antimicrobial studies of triterpenoid fractions Myxopyrum smilacifolium from Blume, Ethnobotanical Leaflets (2008) 12, 912-915.

4. Franzyk H., Jensen S. R., Olsen C. E., Iridoid glucosides from *Myxopyrum smilacifolium*, *Journal of Natural Products* (2001) 64, 632-633.

5. Vuong N. Q., Chien V. V., Hue N. T., Hang P.T., Hieu T. V., Nam N. H., Cuong P. V., Nhiem N. X., Six new iridoid glucosides from *Myxopyrum smilacifolium* (Wall.) Blume, *Magn Reson Chem.* (2022) 60, 247–254.

6. Vuong N. Q., Chien V. V., Hue N. T., Hang P.T., Hieu T. V., Nam N. H., Cuong P. V., Nhiem N. X., One new phenylpropanoid glycoside from *Myxopyrum smilacifolium* with α-glucosidase inhibitory activity, *J. Asi. Nat. Prod. Res.*, (2022) 24(9), 891–897.

7. Seebacher W., Simic N., Weis R., Saf R., Kunert O. - Complete assignments of ¹H and ¹³C NMR resonances of oleanolic acid, 18 α -oleanolic acid, ursolic acid and their 11oxo derivatives, *Magn. Reson. Chem.*, (2003) 41, 636–638.

8. Collinsa D. O., Ruddocka P. L. D., Grassea J. C., Reynoldsb W. F., Reesea B. P., Microbial transformation of cadina-4,10(15)dien-3-one, aromadendr-1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC 4740, *Phytochemistry* (2002) 59, 479–488.

9. Siddiqui S., Hafeez F., Begum S., and Siddiqui S. B.- Oleanderol, a new pentacyclic triterpene from the leaves of *Nerium oleander*, *J. Nat. Prod.*, (1988) 51(2), 229-233.

10. Kim D. K., Nam I. L., Kim J. W., Shin T. Y., and Lim J. D.-Pentacyclic triterpenoids from *Ilex mcropoda*, *Arch. Pharm. Res.* (2002) 25(5), 617-620.