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A New Interoperability Framework 

for Data-Driven Building Performance Simulation 

 

Abstract 

Machine learning (ML) and deep learning (DL) have become more prominent in the building, 

architecture, and construction industries. One area ideally suited to exploit this powerful new 

technology is building performance simulation (BPS) for sustainable building design. Physics-

based models have traditionally been used to estimate the energy flow, air movement, and heat 

balance of buildings. The algorithms behind physics-based models, however, involve solving 

complex differential equations that require many assumptions, significant computational power, 

and a considerable amount of time to output predictions. With the advent of DL, which can handle 

large amounts of computation in a short period of time, data-driven models for predicting the 

physical properties of buildings are becoming increasingly popular due to their simplicity and 

efficiency. As such, artificial neural networks (ANNs) with measured or simulated data for 

environmental analysis are likely to be a more feasible option for designers during the early design 

phase.  

To train ANN models, 3D data is an asset to computer vision because they provide rich 

information about the geometry and the related environment. Depending on the 3D data 

representation considered, different challenges may emerge when using trained ANN models.  



 

 
 

Hence, an interoperability framework is required for converting building geometries and 

environment-related information into relevant 3D matrices for model training and utilization. 

However, to date there has been no research on this topic in the BPS field; thus, this research 

proposes a new data interoperability framework for ANN models with 3D buildings serving as 

inputs. The framework has been subjected to a trial investigation using several ANN modeling 

studies on radiation and airflow simulation. The result is a comprehensive process map that 

includes the BPS requirement for ANN modeling, related subprocesses (i.e., building geometry 

and environmental levels), specific rules and methods for modeling, and processing of input and 

output data. To accomplish this, data exchangers for the ANN models, geometry representation 

tool (GRT), and BIM specification tool (BST) were introduced and developed as computational 

tools. The comprehensive framework has been validated using the developed case studies, 

demonstrating its applicability for different Computer-aided design tools (i.e., Rhinoceros and 

Revit) and ANN models (i.e., solar radiation and airflow) and illustrating the future capacity of 

integrated ANNs to serve as a tool for use in BPS and early-stage modeling.
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Chapter 1 
 

Introduction 

 

The modeling of net-zero-energy buildings is of increasing interest in both the architecture and 

sustainable consulting industries. To realize this goal, it is imperative to combine the use of 

passive and active systems. Most passive building design strategies can be implemented in the 

early design stages with few design-cost changes, guiding designers to pursue sustainability in 

built environments and bringing about positive outcomes and low-cost changes (Attia, 2010). 

Figure 1.1 on the left explains the highest effort put into modelling during the construction and 

documentation phase of the timeline. However, the graph on the right illustrates the same peak 

in the schematic design phase yielding the significantly low cost of design changes. 

Integration of building performance simulations (BPS) during the early design phase is one way 

of encouraging designers to participate in this type of endeavor. However, this requires a high 

level of expertise and is computationally expensive and labor-intensive. Moreover, relevant tools 

are currently unavailable in a diverse modeling interface that exhibits proper connectivity 

(Augenbroe et al., 1999). The process of practical building design includes various methodologies 
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with different design objectives such as thermal, daylighting, airflow, and other associated 

metrics. Therefore, relevant BPS tools that allow architects to find optimized solutions regarding 

green design decisions are needed. 

 

Figure 1.1: Time–cost exchange in different design stages 

To achieve this goal, interoperability between diverse models and simulation engines is 

important, especially when analyzing environmental impacts on buildings. At the same time, 

input parameters and tuning processes must be integrated as parts of a comprehensive design-

consulting workflow.  

The present research aimed to develop software and a workflow for early design-decision support 

by bridging different BPS software with different algorithms and data available from diverse 

sources. For example, developing models that easily integrate into the CAD software would be a 

promising approach in early design decision support. Data-driven models have become popular 

for developing high functional approximators for energy, radiation, airflow, and other 

performance metrics because of its simple model architecture and intuitive input–output 

definition. Over the past 40 years, scientific and technological developments have led to an 

increase in predicting skills through the use of artificial intelligence such as machine learning 

(ML) and deep learning (DL). Since current building simulation practices rely substantially on 
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physics-based simulation engines, data-driven models such as ML and DL can be newly deployed 

to predict a performance measure in buildings and built environment. By taking data-driven 

modeling methods, environmental assessment and performance-driven design workflow will be 

integrated into early design decision making process. Therefore, the radical early engagement 

from designers in the performance driven design can be ideally achieved. 

1.1 Research Questions 

The importance of the early design engagement of performance simulation has been highlighted 

to reduce potential cost change loss during the design construction timeline. In both academia 

and industry, building performance simulation tools have become increasingly popular for early 

design decision-making (Attia and Herde, 2011). Figure 1.2 shows an ideal collaboration between 

different domain experts, such as engineers and architects, during the early stage of the design. 

However, currently available BPS software requires a certain amount of domain knowledge and 

high computational power, resulting in workflow being discretely spread among different areas of 

expertise and causing a lack of communication.  

 

Figure 1.2: Early design decision-support tool development for collaborative working 

environments 
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Limitations of the current BPS consulting environment include a lack of domain knowledge for 

assumptions regarding related parameters, computational burden of physics-based numerical 

calculations, lack of software integration and interoperability between CAD and BPS software, 

and complicated user interface. Because it is challenging to involve all individuals with domain 

expertise during the early design and analysis workflow, data-driven surrogate models are an 

attractive alternative providing performance feedback based on physical knowledge (Forrester, 

Sobester, and Keane 2008).  

Historically, the two easily utilized models are the physics-based model and the data-driven 

model. Physics-based models have been used and validated more than three decades. However, it 

requires making many assumptions as inputs and models are computationally expensive yielding 

considerable calculation time. Therefore, the data-driven models have gotten fame due to their 

advantages in the early design adaptation. Data-driven models are simple, computationally 

efficient, and useful for optimization, design space exploration, prototyping, and sensitivity 

analysis (Gorissen and Dhaene 2010). The advantages of data-driven models are; black box 

models do not require many assumptions, the GPU enables training data-driven models 

efficiently with a low calculation time, once trained, the data-driven model can integrate into any 

type of software, the user interface can be easily simplified. Due to their advantages, data-driven 

models have been developed as surrogates of existing physics-based models. Artificial neural 

networks (ANNs), kernel methods, Bayesian inference, and ML are the most popular surrogate 

modeling techniques for facilitating design optimization workflow while also minimizing 

computation time and workflow complexity.  

Because ANNs require fewer inputs and less computational time compared to numerical methods 

(Miller, 1968), offer superior performance (Kalogirou and Bojic, 2000), and have the potential for 

data augmentation (Wang and Perez, 2017), they are widely used in predicting solar radiation and 
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airflow patterns on and around structures, and building energy use. ANNs can rapidly provide 

innovative design solutions, allowing designers to receive instantaneous feedback on the effects 

of a proposed change to a building’s design (Nguyen et al., 2014). The advantages of ANN models 

include reproducibility, time-efficiency, and scalability (Goldstein and Coco, 2015). ANN models 

can reduce the time complexity of calculating optimized design solutions during the iterative 

simulation process and thus are relevant for use in the early design stages. Furthermore, because 

of their lightweight structure, minimizing the computational barriers to BPS modeling can be with 

increments in tool interoperability between CAD software and ANN models. However, there are 

drawbacks to using ANNs, including the limited number of input and output parameters, lack of 

design options for detailed modeling and simulation (Geyer and Schlüter, 2014), and absence of 

interpretability of their mathematical structure (Singaravel et al., 2018b).  

The recent trend of combining the strengths of data-driven and physics-based models in a single 

hybrid model has been suggested as a valuable step forward in the software development industry 

because of potential increases in accuracy (Babovic et al., 2001) and speed (Krasnopolsky and Fox-

Rabinovitz, 2006). A few studies used this approach in the field of environmental science and BPS, 

embedding ML components directly into models for rainfall (Jain and Srinivasulu, 2004) and flow 

simulation (Corzo et al., 2009) and during energy model calibration (Chong and Menberg, 2018). 

Figure 1.3 shows the usage of physics-based numerical rules to develop physics-guided data-driven 

models. Data-driven models’ development and enhancement can be by using physical rules as loss 

functions or constraints for variables or propagating data points with simulated data from physics-

based models.  

The following questions drive the current research for the use of physics-guided data-driven 

models in BPS include: In what ways can data-driven models reduce the need for domain experts, 

How can we achieve a high degree of computational efficiency, How can data-driven models be 
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integrated into CAD modeling software, What is the next generation of BPS interface design with 

data-driven models in terms of usability.  

 

Figure 1.3: Physics-guided data-driven models and the requirement of domain knowledge 

To achieve an efficient performance modeling workflow with an intuitive and user-friendly 

interface in existing CAD software, a seamless framework is required to compute the building 

information to the model and further analyze the results. Therefore, this dissertation addressed 

issues relevant to the realization of early design integration of the proposed modeling methods. 
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1.2 Objectives 

• Develop a framework to integrate physics-guided data-driven models with any type of 

CAD software 

• Investigate if physics-guided data-driven models would reduce the number of 

assumptions needed as inputs, thus enabling the introduction of a simplified user-friendly 

interface 

• Investigate if performance-driven building design can be enhanced by the active use of 

physics-guided data-driven models early in the process of a building’s design 

• Introduce a comprehensive framework for 3D data representation in ANNs that will serve 

as a means of representing the physical properties of buildings and the environment 

The following chapters investigated applicable data-driven models such as ANNs for predicting 

diverse building performance metrics utilizing 3D data schema and data processing methods. 

Based on the proposed ANN models, the potential application of data-driven simulation of 

existing simulation workflow will be validated and highlighted.  

Chapter 2 gives a brief overview of the history of building performance simulation for software 

interoperability and a 3D data representation for ANNs in computer vision. Chapter 3 provides a 

methodology for completing an ANNs-based BPS framework. Chapter 4 includes several 

published works regarding the detailed modeling methods for ANNs for different BPS tasks and 

the algorithms implemented. Chapter 5 delineates the comprehensive interoperability 

frameworks for this dissertation. Chapter 6 validates the proposed interoperability framework 

with current modeling software and newly developed computational tools. Finally, chapter 7 

concludes and discusses the future outlook. 
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Chapter 2 
 

Literature Review 

 

Dynamic data-driven simulations require the ability to incorporate data into existing models, and 

in reverse, the application must have the capacity to steer dynamic modeling processes. In recent 

years, there has been a significant maturation of measurement infrastructures ranging from 

instruments to sensor systems, data storage technologies, and remote data access and prediction 

mechanisms (Darema 2011). Data-driven and self-learning simulation methods promise 

improvements in modeling processes, augmenting the analysis and prediction capabilities of 

building simulations, and advancing the efficiency of simulations and effectiveness of 

measurement systems (Dimitriou et al., 2016). With these trends, the quality advancements in 

dynamic data-driven building simulations will only be accomplished by developing the 

measurement infrastructure for BPS, as well as computational capacities and BIM technology. In 

this chapter, the history of interoperability and the techniques in computer vision were 

comprehensively reviewed. 
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2.1 History of software interoperability and framework  

2.1.1 History of buildingSMART and the industrial foundation 

class 

For many years, the International Alliance for Interoperability (IAI), now called buildingSMART, 

has made efforts for the reliable exchange of Building Information Model (BIM) data among 

stakeholders in the architectural engineering and construction (AEC) industries (Karlshøj et al., 

2012). Autodesk launched the Private Alliance (PA) for interoperability in building design 

industries in 1995. It engaged with a variety of companies around the globe, such as Autodesk, 

Archibus, AT&T; HOK Architects; Honeywell; Jaros, Baum, and Bolles; Lawrence Berkeley 

Laboratory; Primavera Software; Softdesk Software; Timberline Software; and Tishman 

Construction (BuildingSMART, 2018). After a year of effort, the companies reached three critical 

conclusions: the commercial potential of interoperability and the need for open and international 

standards and open parties around the globe. Based on these needs, they established IAI on May 

16, 1996, with representatives from North America, Europe, and Asia. A total of 12 groups and 

several international companies, other than the ones mentioned above, participated. The mission 

of IAI was to provide a universal basis for process improvement and information sharing in AEC 

industries (BuildingSMART, 2018).  

IAI released version R1.0 of the Industrial Foundation Class (IFC) in January 1997. Seventeen 

companies participated in the pilot implementations. Equipped with limited functionality, 

including five processes for architectural design, such as Heating, ventilation, and air 

conditioning (HVAC) design and construction and facilities management (Kiviniemi, 1999), was 

the IFC R1.0. Twenty-seven software vendors spent ten months developing IFC R1.5 (released in 

November 1997). However, the main evolution of the features in the current IFC occurred at the 
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IAI Washington summit in April 1999, as project IFC R2.0. The IFC R2.0 scope included 

architecture extensions, HVAC systems, code checking, cost estimating, occupancy management, 

property management, general-purpose networks, and external document references (Liebich, 

2010). Following the creation of IFC R2.0, in October 2000 and May 2003, released respectively 

were IFC R2x and IFC R2x2. The increased scope included 2D geometry interpretation, structural 

analysis, and detailing (Laakso and Kiviniemi, 2012).  

The ifcXML software, the official XML representation of IFC, was developed and released in late 

2003. It provided XML data structure bindings to the IFC EXPRESS schema. However, the STEP-

File and XML modeling structures were inherently different, so the translation of the IFC STEP-

file to ifcXML resulted in a needlessly significant loss in the un-optimized conversion of XML 

modeling (Behrman, 2002). During this period, the formation and initiation of the ProIT project 

took place, which was a Finnish effort that ran between 2002 and 2005. ProIT (2004) 

demonstrated the importance of using BIM technology in projects, serving as modeling guidelines 

for architectural and structural design (Laakso and Kiviniemi, 2012).  

In January 2008, IAI reformed, changing its name to buildingSMART, to pursue a mature 

reflection on the nature and goals of the organization. Whereas the old vision of IAI aimed “to 

enable software interoperability in the AEC/FM industry,” the new vision went beyond the 

technical aspects to emphasize what interoperability might mean in business: “Improving 

communication, productivity, and delivery time, cost, and quality throughout the whole 

building life cycle” (Stangeland, 2009). Currently, buildingSMART has 13 chapters around the 

world. In each, two delegates meet twice annually in an international council to coordinate 

business and technical strategies.   

In its approach to overall standardization, an increased amount of focus was on the 

minimalistic/bottom-up methods of narrowing down IFC data exchanges into manageable, 
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predictable, and implementable specifications (Hietanen and Lehtinen, 2006). Reducing the 

scope of information exchange from dealing with the entire IFC data model to well-supported and 

predictable workflows, they considered it a gateway through which the industry and implementers 

might increase their support for the standard. Subsequently, incremental increases in the number 

and scope of the supported exchanges would be easy using standard growth (Laakso and 

Kiviniemi, 2012). One outcome of this minimalistic approach was the Information Delivery 

Manuals (IDMs), introduced in 2007 as a part of IFC standardization. Another key feature was 

the IFC Model View Definition (MVD) format, proposed in 2005 by BLIS. The IFC data model 

served as the foundation for defining specific MVDs. The IDMs provided the documentation and 

workflow guidelines for IFC exchanges, designed by acknowledging the functionality of specific 

MVDs. The purpose of both the cross-referenced exchange layers was for facilitating the 

deployment of IFC-supported interoperability (Bell and Bjorkhaug, 2006).  

To date, the development and utilization of various versions of the IFC models have been by 

different vendors in the architecture and construction industries. IFC 4 is the most recent version 

of the standard, focuses on placing quality over speed and obtaining the full ISO standard 

(Liebich, 2010). Twelve categories across the various AEC industries are currently available on 

the IFC4 application, such as architecture, building performance energy analysis and simulation, 

data server, facility manager, model viewer, geographic information system, et cetera. Different 

software companies throughout the world’s BIM industries including, Autodesk, ACCA Software, 

Bentley Systems, Tekla, Allplan, Archicad, Trimble, Aconex, Venturis, and DDS-cad 

(BuildingSMART, 2018) have approved the IFC certification process. For example, Autodesk and 

Bentley enable AEC project teams to combine related features in integrated workflows by 

supporting reciprocal use of available resources (Autodesk, 2008).  
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Public sector property owners worldwide are among the most influential supporters of IFC-based 

interoperability in connection with the issuing requirements and guidelines for the increased use 

of BIM technology in situations where IFC plays an integral part in keeping information open and 

non-proprietary. On 17 January 2008, AEC/FM sector government client organizations: from the 

US (GSA), Denmark (DECA), Finland (Senate Properties), Norway (Statsbygg), and the 

Netherlands (Rijksgebouwendienst) issued a signed “Statement of Intention to Support Building 

Information Modeling with Open Standards” (Winstead et al., 2008), which explicitly committed 

signers to facilitate the use of the IFC standard. Scandinavian countries such as Finland and 

Norway have long been pioneers in demanding BIM with IFC deliverables (Kiviniemi et al., 2008; 

Lê et al., 2006). In sum, in the last few decades, both the public and private sectors have 

maintained and renewed the IFC.  

According to (Laakso and Kiviniemi, 2012), IFC development faced challenges in acquiring 

sufficient resources to manage and revise the standard, due to weak levels of coordinated market 

demand and open BIM participation. Despite limitations on market values and profits, the 

development of the standard was organized, and its scope was extended to lifecycle and building 

energy simulations. Thus, rigorous engagement from diverse industry sectors and academia is 

required. Building performance simulation (BPS), the six currently supported IFC-compatible 

tools are IDA ICE, RIUSKA, Simergy, OpenStudio, IES-VE, and TerMus. Except for RIUSKA, all 

tools incorporate an importing function for data deserialization, while serialization is essential in 

sustainably maintaining the data exchange process.  

Moreover, this commercially available IFC-compatible software can dramatically reduce the cost 

and time needed for energy analysis (Bazjanac and Crawley, 1999); therefore, the need for active 

use of IFC in BPS is increasing. 
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2.1.2 Building Information Modeling  

A Building Information Model (BIM) definition by international standards is a “shared digital 

representation of the physical and functional characteristics of any built object that forms a 

reliable basis for decisions” (ISO, 2010). BIM offers solutions to several inefficiencies and systems 

failures plaguing the design, construction, and maintenance industries (Eastman and Jeng, 1999). 

The first introduction of the BIM technique was in the early 2000s through BIM and IFC pilot 

projects that published pragmatic guidelines and instructions for architecture and engineering 

practice (Penttila et al., 2007). The use of BIM incorporates building design, construction, related 

infrastructure, and building lifecycles; it is not limited to simple geometry but rather extends to 

complex systems (Akbarnezhad et al., 2014). According to a recent survey, BIM is adequate for 

larger and more complex geometric and performance management systems and improves the 

quality of projects and collaboration networks among owners and involved stakeholders (Becerik-

Gerber and Rice, 2010).  

BIM is a tool for managing comprehensive building systems throughout a structure’s lifecycle. It 

allows for powerful data maintenance and the sustainable use of involved information 

(Akbarnezhad et al., 2014). The initial purpose of BIM was to support the design construction 

process and information regarding fundamental building attributes already documented, such as 

the coordinates of the geometry, structural elements, and material properties. Adding or updating 

other relevant information such as the Life-cycle assessment (LCA) and building performance 

metrics can be as a functionality requirement (Volk et al., 2014). Because BIM deals with multiple 

information criteria, to realize the software is through object-oriented programming consisting of 

parametric objects representing building components (Lee et al., 2006). According to (Wong and 

Yang., 2010), objects can have geometric and non-geometric attributes communicating through 

functional, semantic, and topological information. To elaborate on this point, functional features 
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contain cost and project durations, while semantic attributes include connectivity, aggregation, 

and intersection. Topological aspects address information regarding location, adjacency, 

coplanarity, perpendicularity, et cetera (Volk et al., 2014). Due to these involved functionalities 

and the complex relationships among them, organizational efficiency concerning data exchange 

and communication processes are crucial.   

The Information Delivery Manual (IDM) framework and Model View Definitions (MVD) provide 

relevant information, facilitating data exchange and avoiding uncertainties (Afsari et al., 2016). 

The IDM framework defines the functionality-related exchange process for a particular topic. For 

example, the IDM presentation for energy analysis focuses on energy modeling (US GSA, 2010). 

MVD comprises a subset of the IFC essential to satisfying diverse data exchange requirements. In 

other words, the bases of creating and maintaining MVD are on required functionalities such as 

energy and structural analyses and refer to BIM objects and related attributes in interactive views 

(Volk et al., 2014).  

The Industry Foundation Class (IFC), organized in ISO, is the dominant non-proprietary 

exchange format between AEC and FM software. It was developed to represent building 

information and other details throughout a building’s lifecycle (Cho et al., 2010) and facilitate 

data transfer between BIM modeling software (e.g., Autodesk and Bentley), IFC viewers (e.g., 

IFCStoreyView), and advanced knowledge-based programs (e.g., EnergyPlus and OpenStudio). 

The limitations of BIM’s interoperability are due to the incomplete, vague, black-box language 

type used for IFC denotations and contents (Abanda et al., 2010). Recent developments in IFC 

data exchange focused on implementation of semantic web technologies in open format 

ontologies like HTML, XHTML, gbXML, COBie, ifcXML, IFC, and CIS/2. These enable software 

applications but most are currently unavailable in academia (Eastman et al., 2011; Abanda et al., 

2010; Mohd-Nor and Grant, 2014).  
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To date, there have been tremendous advancements in BIM modeling and maintenance; however, 

a few significant challenges remain, such as automation of the data imputation process, regular 

updating and maintenance of the database, and the handling of uncertain data and object 

notations (Liu et al., 2017). Despite these shortcomings, rapid developments and the recent 

standards release indicate the need for the process automation and functional extension in the 

future (Afsari et al., 2016). The growing capacity of an increased digitalized database and 

automated process is expected to stimulate BIM implementation in building performance 

modeling (BPM) and maintenance through semantic web technology, cloud computing, and 

mobile BIM devices (Nicolle and Cruz, 2011).  

2.1.3 Building Performance Simulation 

Despite the prevalent use of BIM in AEC industries, Building Energy Modeling (BEM) remains 

rarely employed in building design, commissioning, and operation, due to the relatively expensive 

labor cost and computation time. According to (Bazjanac, 2008), BEM’s use in project delivery 

occurs in less than 1 percent of the “run of the mill” new US building stock, and a similar trend is 

noticed even on the global scale. BEM requires architectural definitions and HVAC specifications, 

as well as definitions for plug and lighting loads and occupancy patterns. Such datasets result in 

arbitrary assumptions when preparing the input for a simulation, and the computing process can 

be lengthy, laborious, and resource consuming. All sorts of data change from their original forms, 

whereas others are unavailable in any form. Commonly, these are estimated or guessed at, 

resulting in numerous coding errors. Consequently, arbitrary assumptions are unavoidable when 

preparing input for BEM simulations (Bazjanac, 2008). 

BIM-integrated BEM modeling is an essential factor in the performance-driven design and the 

automated data transfer process (Venugopal and Eastman, 2012). BEM users can efficiently 
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extract BIM data from a digitalized database for individualized use. However, due to the 

tremendous amount of building information and related functionalities, data loss occurs when 

converting variables from BIM to BEM. Moreover, the reconstruction cost is high, requiring 

different areas of expertise (Moon et al., 2013). According to (Hijazi, Kensek, and Konis, 2015), 

project losses caused by interoperability, as issued in August 2004 by the US National Institute of 

Standards and Technology (NIST), estimations were around $15.8 billion annually. To mitigate 

this loss, the creation of a seamless data exchange pipeline between 3D BIM software and BEM 

simulation tools is essential (Hijazi et al., 2015). The US General Services Administration (GSA) 

released the GSA BIM Guide for Energy Performance as a strengthening method for reliability, 

consistency, and usability of predicted building energy use and cost results (GSA, 2009). 

Currently, conducting rudimentary building performance analyses may be direct via a few existing 

BIM tools (e.g., Revit® MEP, Rhinoceros 3D, etc.). However, these tools are not comparable to 

typical, full-scale simulations conducted using standalone analysis mechanisms such as 

EnergyPlus™ and DOE-2 algorithms due to the current absence of data exchange capacity.  

2.1.4 History of Building Performance Simulation and software 

Interoperability 

Importantly, traditional applications and systems for building performance simulations (BPS): 

though complex, have lacked accuracy in predictions. This is because the various input 

parameters have, for decades, relied on empirical models, averaged data values, and modelers’ 

assumptions (Nouidui et al., 2018). Several parameters and associated equations can lead to 

inaccurate results and range gaps (Malkawi and Augenbroe, 2004). Quality advancements in 

dynamic data-driven building simulations can only be through developments in the measurement 

infrastructure for buildings, data from the high-fidelity simulation engines, better computational 

capacities, and the use of BIM technology. 
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BPS software packages, depending on their intended purpose, can differ in terms of the input, 

output, programming language, and Graphical User Interface (GUI) platform. Currently, BPS 

professionals frequently use dedicated GUI such as Simergy (Karlshøj, See, and Davis, 2012), 

OpenStudio (Guglielmetti, 2011), DesignBuilder (Tindale, 2005), and IES-VE™ to facilitate 

environmental and energy analyses (Shelden, 2009). To date, contemporary industrial users have 

often employed BIM. Revit Architecture (Autodesk, 2018), Building Designer V8i (Bentley 

System, 2018), and ArchiCAD (GRAPHSOFT, 2018), also assist in the design process in 

comprehensive ways. The past and ongoing research are aimed toward integrating BIM into BPS; 

however, there continues to be a lack of interoperability and connectivity between the BIM and 

BPS tools.  

A typical BIM to BPS workflow transfers the data input for the energy analysis from a BIM to a 

BPS engine (Appendix A). Sometimes, the BPS to BEM transfer is necessary for visualization and 

documentation (Bazjanac, 2008). In the 1990s, IDD and GLIDE (Eastman, 1977), ARMILLA 

(Gauchel and Hovestadt, 1992), COMBINE and COMBINE 2 (Augenbroe, 1992, 1995), 

Knowledge-based Design Support (KNODES) (Rutherford, 1993), SEMPER (Mahdavi et al., 

1997), and BDA (Papamichael, 1999) were developed as consecutive efforts to integrate BIM into 

the BPS software. The COMBINE and COMBINE-2 projects demonstrated the potential of linking 

existing tools such as those for energy, daylighting, and other aspects. The EXPRESS language 

has become the binding block for the KNODES framework (Rutherford, 1993). 

The realization of significant advancements in integration tools; was through Design Analysis 

Integration (DAI) and SEMPER (Mahdavi et al., 1997). The DAI workbench offers a process-

centric toolkit for overcoming the limitations of data-centric interoperability approaches 

(Augenbroe and de Wilde, 2003). SEMPER provided a more active, multi-aspect design 

environment that later expanded to the web-based SEMPER II or S2 (Lam et al., 2004). In this 
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building model representation, the improvising of IFC is through the dynamic capabilities of 

temporal databases to mine, learn, and dynamically respond to changes in building states. 

Continuous developments include DeST (Yi et al., 2007), BCVTB (Wetter, 2011), SimModel (J. O. 

Donnell et al., 2011), Simergy (See et al., 2011), CBEMS (Wang et al., 2011), and D-BIM (Ravi 

Srinivasan, Charles Kibert, Paul Fishwick, Zachary Ezzell, Siddharth Thakur, Ishfak Ahmed 

2016). The development of DeST was to share generic data in IFC with other BPS simulations 

such as ventilation and lighting analyses. The creation of BCVTB was to incorporate design 

optimization processes into BPS. CBEMS uses a tiered integration application of different BPS 

matrices with policy learning and artificial intelligence techniques: while D-BIM offers an open-

source graphical engine and user-friendly GUI for early design support. Most of the tools 

presented after the late 1990s actively use the IFC (IAI 1997) data schema for software 

interoperability due to its universal means of exchanging BIM data among commercial software.   

Existing BIM file formats for BIM to BPS data exchange include HyperText Markup Language 

(HTML), gbXML, IFC, and ifcXML (Volk, Stengel, and Schultmann, 2014). Two main methods 

for extracting data for BPS from BIM are IFC and green building XML (gbXML; Miller et al., 

2014). Such formats are still not fully connected to BPS tools; for example, EnergyPlus uses the 

intermediate data format (IDF) and an E+ specific structure based on XML schema. Several 

studies on data conversion have been conducted to overcome the pervasive lack of connectivity. 

They include gbXML to IDF (Dimitriou et al., 2016), IFC to IDF (Kim et al., 2012), semi-

automated BIM to BEM data exchange (O’Donnell, 2014), VFEA (GIS and BIM-based virtual 

systems; Wu et al., 2104), and BIM2BEM (IFC to Modelica; Jeong et al., 2016) using the IFC data 

schema.  

Recent investigations related to data transfer and BPS consulting has addressed the rapid 

adoption of web applications that are inherently cross-platform, mobile, easy to access, and offer 
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better user interactions. JavaScript Object Notation (JSON) is a widely used data format on the 

web for asynchronous browser-server communication employed as a replacement for XML in 

some systems. JSON is a language-independent data format derived from JavaScript that offers 

several advantages, overcoming the drawbacks of IDF, ICF, and gbXML. FloorspaceJS 

(Macumber et al., 2018) was developed as a web-based open-source framework for BPS using the 

JSON schema. New et al. (2018) released a JSON-based IDF converter for advanced BPS 

modeling and analysis.  

Another reason for using the web interface for the simulation is to ensure a seamless workflow for 

model deployment and data management on the web. The currently available cloud-based GPU 

and database enable us to manage large sets of data and efficiently perform model training. This 

trend reflects the contemporary movement in BPS research in the recent times as well as for the 

future. Figure 2.1 illustrates the history of interoperability in the chronological order.  

Process-driven interoperability, intelligence-based optimization techniques for new tools, and 

novel means of interaction between users and BPS are desirable capabilities and necessary 

requirements for future BPS software (Malkawi, 2004). As discussed above, the universal use of 

available data and models for building simulations and intelligence-driven performance analysis 

can be expected. The BPS community will likely leverage the contributions of this research in new 

and creative ways.  
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Figure 2.1: The history of Interoperability and future direction 
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2.1.5 Interoperable data format 

To date, the existing BIM file formats for data exchange includes HTML, gbXML, IFC, and ifcXML 

(Volk, Stengel, and Schultmann, 2014). In the architecture, engineering, and construction (AEC) 

industries, two main methods for extracting data for BIM-based building performance 

simulations are IFC and green building XML (gbXML) (Miller et al., 2014; Dong et al., 2007). IFC 

is a vendor-neutral open data exchange specification with an object-oriented file format, mainly 

used in BIM. The International Alliance for Interoperability (IAI) developed IFC, and Building 

SMART International (ASHRAE, 2005) has maintained it since 2005. IFC uses EXPRESS-G to 

identify classes. It is a graphical modeling notation developed on the ISO-STEP schema to 

represent models. The gbXML is an energy simulation-specific Extensible Markup Language 

(XML) developed by Autodesk (2007). The IFC file type is more comprehensible and generic; it 

aims to represent extensive building project areas with all related information, whereas gbXML 

focuses on the properties of the building project closely related to energy simulation (Lam et al., 

2012). Table 2.1 shows the pros and cons of each data schema described in this section. 

Table 2.1: Comparison of two data schemas: IFC and gbXML 

 IFC gbXML 

Domain Building construction to operation Building energy simulation 

Geometry Any generic shape  Rectangular shape 

BPS connectivity  Possible to get input for EP or EQuest 

Complexity  

Hierarchy 

Top-down and relational approaches 

Complex data representation with large 

data file 

Bottom-up approach  

Flexible and straightforward 

 

To increase the accuracy of BPS, BIM, BPS metrics, and further predictions are crucial when using 

an integrated exchange method between the measured data obtained from sensors and weather 

stations (Donnell et al., 2013); similarly, the amount of time consumed can be reduced and the 
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accuracy of the results delivered can be improved by automating the data exchange process 

between BIM and BEM. According to (Vladimir Bazjanac and Crawley, 1999) the building 

geometry, climate information, mechanical system, and operational schedule are essential factors 

in building performance simulations. Recognizing this exchange among the software packages for 

BPS has been the focus of the academia as well as the industry to support better decision making.  

However, the BIM format, which is a copious building information source, cannot still be 

connected to BPS tools; for example, EnergyPlus uses the Intermediate Data Format (IDF), which 

has an E+ specific structure based on XML schema. There have been studies on overcoming the 

lack of connectivity related to data conversion methods for energy simulations, such as gbXML to 

IDF (Dimitriou et al., 2016), IFC to IDF (Kim et al., 2012), the SimModel by O’Donnell (2013), 

and a semiautomated BIM to BEM data exchange by O’Donnell (2014) that uses the IFC file 

format. These attempts have enriched the building simulation process and allowed for more 

accurate building calibration and prediction.  

However, such discretized processes should be integrated for a more comprehensive data flow. 

With the development of data analysis techniques, metadata collection, and transfer methods, the 

amount of big data available from building environments and boundary conditions, as well as 

from the direct inputs from Internet Of Things (IoT), has increased. Many industries are now 

rapidly adopting web applications and platforms that are inherently cross-platform, mobile, and 

easy to transfer and distribute. The BPS community is beginning to notice this trend, with a small 

but growing number of BEM applications that have begun incorporating or moving to the web 

environment. 

JavaScript Object Notation (JSON) is the widely used data schema on the web for asynchronous 

browser-server communication, including serving as a replacement for XML in some systems. 

JSON is a language-independent data format derived from JavaScript that has several advantages 
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and overcomes many of the drawbacks of IDF, ICF, and gbMXL. The essential value-based data 

structure (ECMA-404, JSON standard) is not positional (i.e., index-based) and can incorporate 

extraneous fields; hence, allowing coding for multiple attributes on the unlimited length of the 

extensible fields (Mark et al., 2017). Reusability and minimal dependencies were essential design 

considerations in the software’s development; JavaScript was developed to have maximum 

portability and reusability in web applications. The emphasis on the format is not limited to web 

interoperability and can be extended to 3D modeling, with connectivity to the C++/C# language-

based modeling method. There are several advantages of using JSON data schema.  

 

Figure 2.2: From BIM to BEM and Web 

JSON data structure has been used and developed for building performance simulation schema 

and workflow (New, Ph., and Adams, 2018; Macumber et al., 2018). The discussions on how users 

can employ several languages and tools to efficiently create, manipulate, and validate input files 

using the JSON schema (New et al., 2018) happened. The integration of the JSON input into 

EnergyPlus 8.9, FloorspaceJS (Macumber et al., 2018) increases the potential capacity of 

integrating the web environment into 3D BPMs using the JSON structure. The coding of 

FloorspaceJS was in Javascript with a consistent JSON data schema that can translate data into 
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gbXML, IDF, IFC, and so on. Furthermore, in the future, automation of the conversion process 

can be done using any programming language (Figure 2.2).  

With the increasing attention to digital twins, building modeling industries now rely on semantic 

web technologies to support data exchange through the web. This had led to improved 

information exchanges with sources outside the traditional BIM environments and the existing 

techniques. The primary methodology to connect the semantic web to the IFC schema is Web 

Ontology Language (OWL) ontology for IFC (Pauwels et al., 2017). Unlike EXPRESS data schema, 

ifcOWL exploits semantic web technologies' enablers regarding data distribution, diverse use of 

the data model, and querying and reasoning by keeping the IFC standard for representing 

building information. The ongoing efforts on developing and implementing ifcOWL ontology have 

been ongoing since 2016, and now the adoption of the ifcOWL schema is the main schema from 

BuildingSmart initiatives (Pauwels and Terkaj, 2016).  

2.2 Building performance simulation and data-driven 

modeling  

For dynamic data-driven simulations, the data must be incorporated into existing models and the 

application must also have the capacity to steer the measurement processes. In recent years, there 

has been a significant maturation of the measurement infrastructures ranging from simple 

instruments to sensor systems, data storage technologies, and remote data access and prediction 

mechanisms (Darema, 2011). Data-driven and self-learning simulation methods have led to 

improvements in modeling processes, thereby augmenting the analysis and prediction 

capabilities of building simulations and advancing the efficiency of simulations and effectiveness 

of measurement systems (Dimitriou et al., 2016). 
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2.2.1 Surrogates as the alternatives of physics-based models 

An increasing number of architects and engineers face the need for BPS software and its engine 

to achieve performance-driven building design. Models are a useful tool for understanding the 

processes and physical properties of buildings and making inferences about the future, and giving 

feedback on design changes and optimization processes (Clarke, 2015). Physics-based model’s 

traditional use is to estimate the energy flow, air movement, and heat balance of buildings. The 

algorithms behind physics-based models; involve solving complex differential equations and 

require many assumptions, high-performing hardware, and a considerable amount of 

computation time (Malkawi, 2004). 

Utilizing artificial neural networks (ANNs) as a surrogate model has become indispensable due to 

the computational cost of high-fidelity simulations (Gorissen and Dhaene, 2010). In other words, 

the usage of statistical models can be surrogates for detailed simulation models to support 

performance-driven design (Westermann and Evins, 2019). Such surrogate models (SMs) are 

compact and have proven useful for tasks, such as early design space exploration, sensitivity 

analysis, uncertainty quantification, and design optimization (Nguyen et al., 2014). For early 

design decision-making, utilizing building simulation tools has become increasingly popular in 

academia and industry (Attia and Herde, 2011). However, currently available BPS software 

requires a certain level of domain knowledge and high computational power. Because it is tough 

to incorporate all of the necessary domain expertise in the early design and analysis workflow, 

SMs are an alternative that provides performance feedback based on physical knowledge 

(Forrester, Sobester, and Keane, 2008).  

Commonly in early design, setting up one simulation case for one specific concept involves the 

manual definition of complex parameters (Nguyen et al., 2014). Furthermore, the runtime is 
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relatively long and may interrupt the architect’s train of thinking for the conceptual design; 

ideally, the software feedback time is less than 10 seconds (Miller, 1968). As the evaluation of 

surrogates is instant (< 0.1 sec; Liesje et al., 2014), they are able to provide rapid feedback and an 

expeditious optimization. Moreover, the computational layout of SMs tends to be lightweight, and 

embedding it into any BPS software can be easy. 

Other uses of SMs are sensitivity analysis and uncertainty quantification. Sensitivity analysis 

serves as a preliminary step in BPS processes in reducing problem complexity (Samuelson et al., 

2016). There are two different approaches: local and global. Global methods investigate the 

influence of parameters design space; thus, they require many processed samples with all possible 

design pairs. SMs speed up the time of sample generation (Wei, 2013). The purpose of a sensitivity 

analysis is to quantify the effect of the design changes with different inputs and outputs. 

Uncertainty quantification analysis determines the likelihood of changes in output induced by 

input (Heo et al., 2012). The use of SMs in uncertainty modeling is similar. SMs are strong enough 

to produce the performance distribution, which requires a significant number of simulation 

samples. For sample generation, SMs cannot only be fit initially and then used for the control and 

optimization process (Wang and Shan, 2007).  

However, SMs have drawbacks, including the limited number of input and output parameters and 

design options for detailed modeling and simulation (Geyer and Schlüter, 2014) and the lack of 

interpretability of their mathematical structure (Singaravel et al., 2018). SMs often predict 

aggregated design metrics (e.g., annual energy use and radiation intensities) rather than detailed 

time series results (e.g., hourly energy use and monthly radiation intensities worldwide). 

Recurrent neural networks are a type of ANN, and their use has been to solve issues related to 

predicting time series-based values (Han, 2021; Babovic, Can, and Rene, 2001).  
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There are many ways to generate a relatively accurate approximation model while minimizing the 

BPS simulation time. Linear regression is the most widely used method for calculating building 

energy use (Gratia, 2002; Jaffal et al., 2009; Hygh, Decarolis, Hill, and Ranjithan, 2012; Catalina, 

Iordache, and Caracaleanu, 2013; Geyer and Schlüter, 2014; Ritter, 2015). ANNs and support 

vector machines are being increasingly used in early design performance assessment (Rackes, 

Paula, and Lamberts, 2016; New, Ridge, and Parker, 2017; Ascione et al., 2017; Singaravel, 

Suykens, and Geyer, 2018). Other than function approximators, Bayesian networks are actively 

used in building energy simulation and calibration to cover areas of uncertainty in modeling (Heo, 

Choudhary, and Augenbroe, 2012; Chong and Menberg, 2018). In addition, evolutionary 

algorithms expand the ways of exploring design space with proper models; thus, regression-based 

SMs have been widely adapted in BPS (Machairas, Tsangrassoulis, and Axarli, 2014).  

The suggestion based on the recent trend of combining the strengths of data-driven and physics-

based models in a single hybrid model is a valuable step forward in the software development 

industry because of increases in accuracy (Babovic et al., 2001) and speed (Krasnopolsky and Fox-

Rabinovitz, 2006). Few studies have already used this approach in the field of environmental 

science and BPS, embedding ANNs components directly into rainfall models (Jain and 

Srinivasulu, 2004) and flow simulations (Corzo et al., 2009) and the localized weather predictions 

(Han, 2021).  

2.2.2 Artificial Neural Networks (ANNs) for BPS modeling  

Over the last several decades, in industry and academia, there has been extensive use of physics-

based models to evaluate the performance of buildings. Physical models are now being replaced 

by ANNs. Because ANNs allow fewer inputs, require shorter computation times (Miller, 1968), 

exhibit superior performance (Kalogirou and Bojic, 2000) and offer the potential for data 
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augmentation (Wang and Perez, 2017), their use in the prediction of solar radiation and airflow 

patterns on and around structures and building energy use has drawn significant attention. ANNs 

can rapidly provide innovative design solutions, enabling designers to receive instant feedback on 

the effects of a proposed change to a building’s design (Nguyen et al., 2014). The benefits of an 

ANN in building design include reproducibility, time efficiency, and scalability (Goldstein and 

Coco, 2015). ANN can also be used to reduce the time complexity of calculating optimized design 

solutions during the iterative simulation processes and thus are relevant in the early design 

process. Furthermore, because of the lightweight structure of ANN models, the computational 

barriers to BPS modeling can be minimized with increments in tool interoperability between CAD 

software and ANN models. 

ANN models are a class of models that can learn a hierarchy of features by constructing high-level 

features from the low-level ones (Goodfellow, 2016) through the combination of information from 

all the channels, adequate analysis of all the phenomena related to building indoor areas. In 

particular, the recent use of convolutional neural networks (CNNs) has been in the 3D 

representation of building geometry. Due to the availability of both large 3D datasets and increase 

in the computational power, it is now possible to apply DL to understand specific tasks related to 

3D data, such as segmentation, recognition, and correspondence (Ahmed et al., 2019). Parallel-

trained 3DCNNs have demonstrated superior performance in 3D object classification (Sedaghat 

et al., 2017). 3DCNNs can also be used to distinguish defect features from geometric data such as 

voxels with a high level of accuracy (Dizaji et al., 2019). They are usually directly trained on the 

task of interest with a large amount of data, and the weights are updated at every iteration. The 

trained weights of the 3DCNNs are used to predict the outcomes and superior performance can 

be achieved within a short time. Researchers have recently attempted to improve 3DCNN models 

by combining the weights of multiple different 3DCNN architectures (Dolz et al., 2019; Wang et 

al., 2020).  
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2.2.3 ANNs model architecture  

2.2.3.1 Feedforward neural networks 

DL models are a class of models that can learn a hierarchy of features by constructing high-level 

features from the low-level ones (Goodfellow, 2016). Deep neural networks can identify the best 

weights set to produce the desired output by iterating over the data. Deep neural networks 

perform well when predicting nonlinear functions with multiple hidden layers, because capturing 

physical phenomena and environments of buildings requires the training of well-structured 

neural networks. Appendix B lists the key terminologies for this section. 

Several studies have estimated the surface solar radiation on building façades using DL 

(Mohandes et al., 1998; Yadav and Chandel, 2014; Voyant et al., 2017). The estimated values can 

be used to predict a building’s energy consumption. In industry and academia, the physical sky 

model (i.e., Hulstrom, 1981 and Perez, Seals, and Michalsky, 1993) can be used to evaluate 

daylighting performance and energy consumption (EnergyPlus). The replacement of a physical 

model with a DL model is a new approach for BPS, the benefits of which include reproducibility, 

time-efficiency, and scalability. DL models can reduce the time complexity of calculating 

optimized design solutions during the iterative simulation process and thus are relevant in the 

early design stages. 

2.2.3.2 Convolutional neural networks 

The utilization of Convolutional neural networks (CNNs); has enabled the three-dimensional (3D) 

representation of building geometries. The difference between a CNN and a regular neural 

network is that the former has one or more convolution and pooling layers. A convolution layer 

uses a filter matrix, typically of the 2×2 or 3×3 form, to perform the convolution operation and 
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obtain a convolved feature map after applying a filter. The filter in a convolution layer allows a 

neuron to receive its input from multiple units in the preceding layer. The convolution operation 

in the neural network has two main benefits. First, the units’ number in the network reduces 

because its mapping is many to one; thus, the chances of overfitting decrease as the model is 

simpler than a regular neural network. Second, the characteristics of small neighborhoods can be 

captured, which is crucial in BPS because the CNN can capture the characteristics of different 

areas within a building. A pooling layer reduces the dimensionality of the feature map. For 

example, it can combine the output of four adjacent neurons into a single neuron, decreasing the 

dimensions of the feature map. A pooling layer uses different filters to identify an image’s different 

parts, such as edges and corners. 

The availability of large 3D datasets and substantial computational power has enabled the 

application of DL in learning specific tasks related to 3D data, such as segmentation, recognition, 

and correspondence (Ahmed et al., 2018). A parallel-trained 3DCNN demonstrated superior 

performance in 3D object classification (Sedaghat at al., 2017). 3DCNNs can also be utilized to 

distinguish the defect features in the geometric data (i.e., columns in buildings), such as voxels 

with high dimensionality (Shafiei Dizaji and Harris, 2019). Training of 3DCNNs is generally 

performed directly on the task of interest with a large volume of data, with weights updated at 

every iteration. The use of the trained weights is to predict the outcome, typically demonstrating 

better performance in a shorter period. Recently, researchers have attempted to improve 3DCNN 

models by combining the weights of multiple 3DCNN architectures. There is the use of an 

ensemble of different 3DCNN architectures in the medical and healthcare industries. An 

ensemble of densely connected 3DCNNs (3D-DenseNets), for example, is used to improve the 

diagnosis of Alzheimer’s disease and mild cognitive impairment (Wang et al., 2019).  
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2.3 Survey of computer vision tasks for 3D data 

representation 

DL has recently gained popularity owing to its state-of-the-art performance in different tasks 

related to texts, images, and sounds. Due to its wide applicability in research (e.g., 3D data 

processing and modeling), efforts to solve such scenarios are becoming increasingly necessary. It 

must be noted that it is currently possible to apply DL to 3D data-related tasks such as image 

segmentation, recognition, and motion translation. The current review surveys methods of 

applying DL to 3D data and provides rich information about the entire geometry of sensed objects 

and views.  

The purpose of this review is to guide researchers in geometric modeling fields such as 

architectural design, building performance modeling, and object recreation with a better 

understanding of 3D computer vision tasks.  

2.3.1 History of computer vision tasks 

When computer vision first emerged in the early 1970s, the early pioneers of artificial intelligence 

believed that solving visual problem would be a meaningful path leading to higher-level reasoning 

and planning (Szeliski, 2010). Computer vision began with the desire to recover the 3D structure 

of the world from 2D images and use this technology as a stepping-stone toward gaining a 

complete understanding of the world (Azeriel Rosenfeld, 1976; Azriel Rogenfeld, 1966; Azeriel 

Rosenfeld, 1976). Efforts to design successful vision algorithms have led to investigations in the 

1970s on topics of edge detection (Davis, 1975), object recognition (Baumgart, 1974; Baker, 1977), 

qualitative understanding of image formation, intrinsic images (Barrow and Tenenbaum, 1981), 
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and quantitative approaches such as optical flow (Enkelmann and Nagel, 1986) and motion 

structure (Longuet-Higgins, 1987).  

The development of sophisticated mathematical formulae for image analysis began in the 1980s. 

Image pyramids (Adelson et al., 1984) started to be widely adopted for performing image blending 

and coarse-to-fine searches, further improving the concept of scale-space processing (Witkin, 

1984; Andrew Witkin, 1987) and wavelets (Mallat, 1989; Bijaoui and Giudicelli, 1990; Epstein, 

Hingorani, and Czigler, 1992). Researchers developed a mathematical framework and more 

robust models using regularization (Terzopoulos, 1983 and 1988; Poggio, Torre, and Koch, 1985). 

Around that period, (Geman and Geman, 1984) introduced discrete Markov random field (MRF) 

models that enabled the use of higher performance search and optimization algorithms. MRF 

algorithms resulted in the use of Kalman filters in computer vision and other related topics, 

including regularization, flow, stereo, and high-level vision. More importantly, the investigation 

of 3D range data processing for acquisition, merging, modeling, and recognition continued. 

With the development of projective reconstruction, factorization, and global optimization 

techniques, fully automated 3D modeling systems became available (Beardsley, Torr, and 

Zisserman, 1996; Brown and Lowe, 2003; Snavely, Seitz, and Szeliski, 2006). The exploration of 

the topics mentioned above took place and continued in the 1990s, and investigations on some 

topics such as optical flow were actively pursued and completed. A popular research topic 

involving 3D data was the multi-view stereo algorithms used for producing complete 3D surface 

model with 3D volumetric data from binary silhouettes (Srinivasan, Liang, and Hackwood, 1990; 

Seitz and Dyer, 1999). The first statistical learning techniques appeared in the 1990s, including 

the application of principal component analysis in facial recognition (Turk and Pentland, 1991) 

and linear dynamic systems for curve tracking (Isard and Blake, 1998). 
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In the 2000s, the interplay between vision and graphic fields was illustrated by the rubric of 

image-based rendering and high dynamic range image capture (Mann and Picard, 1996; Paul 

Debevec, 1998). these topics was computational photography. A second noticeable trend in this 

decade was the emergence of object recognition combined with learning (Ponce et al., 2006) and 

the development of more radical algorithms for comprehensive global optimization problems 

(Szeliski et al., 2008). During this decade, they recognized machine-learning techniques applied 

to computer vision as a synergistic field of research (Freeman et al., 2008). Most of the related 

research focused on different tasks with 2D applications for classification (Krizhevsky et al., 

2012), segmentation (Shelhamer et al., 2017), detection and localization (Sermanet et al., 2014), 

recognition (He et al., 2016), and scene understanding (Farabet et al., 2013) using ML and DL. 

Due to the tremendous amount of 3D data and advanced sensing technologies available, the active 

use of DL for 3D data is now a crucial topic in computer vision. Recent investigations in the field 

of 3D computer vision involved the use of DL architecture for processing 3D data. The following 

chapter describes the ongoing advancements in the DL architecture for 3D data, along with 

applicable models and methods.  

2.3.2 Data representation in computer vision 

Figure 2.3 shows the different ways of representing the physical properties of geometric data for 

ANNs in both Euclidean and non-Euclidean realms. The application of DL to 3D data is not yet 

well established. Fortunately, with recent advances in sensing technology and data acquisition 

devices and techniques, the amount of training 3D data for DL has increased tremendously. 
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Figure 2.3: 3D data representation of training data-driven models 

The availability of 3D data for addressing computer vision problems related to understanding 3D 

scenes and real-world phenomena continues to improve. Points’ reduction, data structuring, and 

hardware exploitation are predominant issues in the conversion and generation of data for DL 

training (Ioannidou et al., 2017). Methods of 3D data representation are valuable research areas, 

especially with the rapid evolution of powerful GPUs and their recent successes. 3D data can have 

a unique structure, and their geometric properties vary with the application of different DL 

methods and experiments (Ahmed et al., 2018). 3D data classification can be into two distinct 

domains: Euclidean and non-Euclidean.  

Simplified 3D Euclidean data have a grid structure, whereas 3D non-Euclidean data do not. The 

3D Euclidean properties are an extension of the 2D structure of the traditional DL architecture; 

thus, they are more suitable for processing regularly populated data such as voxel data of generic 

objects. When the geometries become complicated, and the data are collected in an irregular 

manner, spatially distributed sensors such as LIDAR data clouds, 3D non-Euclidean properties 

such as point clouds or graphs are adequate for representation with minimal deformations 

(Bronstein et al., 2017).  
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2.3.2.1 3D Euclidean 

The primary 3D data representations that fall into the Euclidean category are descriptors, 

projections, RGB-D, voxel, octree, and multi-view data.  

1) Descriptors 

A shape descriptor is a simplified representation of 3D geometry as an array containing a set of 

numerical values or a graph-like structure describing the shape geometrically or topologically 

(Mingqiang et al., 2008). With descriptors from a shape’s geometry, topology, surface, texture, or 

any other descriptive features or combination of features can be explained (Ahmed et al., 2018). 

Since the 1990s, 3D shape descriptors have been widely used in 3D search engines and sketch-

based modeling (Kazmi et al., 2013). Classifications of 3D shape descriptors include those based 

on views, histograms, transformations, or graphs, and hybrid 3D descriptors (Zhang, João, and 

Ferreira, 2004). View-based descriptors use silhouette, grayscale, or extracted images from 

multiple 3D objects views. Histogram-based descriptors collect feature-based domains of 3D 

shapes in different bins as numerical values. The basis of the development of transform-based is 

on classical image processing methods such as Fourier transform. Graph-based descriptors 

delineate the topology of a 3D shape and object in the form of a graph or tree structure. This is 

beneficial due to its capacity to represent multiple levels of detail in local geometry. Lastly, hybrid 

3D shape descriptors combine several algorithms to produce better quality 3D shape retrieval and 

analysis.  

2) Projections 

Projecting 3D information onto a 3D plane is a unique representation of 3D data where the 

projection converts the object’s information into a 2D grid with descriptive features. Image-based 
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techniques are convenient when analyzing large-scale data for pre-training (i.e., ImageNet). The 

proposal for spherical and cylindrical projections have been frequent in the literature (Shi et al., 

2015). This method efficiently produces a well-structured grid array in the Euclidean world; 

however, with a limited capacity to store complicated 3D vision tasks and related information due 

to the information lost in projection (Leibe et al., 2016). 

3) RGB-D 

With the advent of commodity depth cameras such as the Asus Xtion Pro Live and Microsoft 

Kinect, combining 2D visual and 3D depth information is now being explored (Afzal et al., 2014). 

RGB-D data provide 2.5D information by illustrating a depth map along with the RGB color 

information. The use of this method is to reconstruct scenes and poses (Fanelli et al., 2011), 

recognize feature identities (Erdogmus and Marcel, 2013), and provide correspondence (Zollh et 

al., 2013). The use of many multi-camera techniques has been to capture incoherent geometry 

and human details at high resolution due to the technology’s capacity to store much larger 

amounts of data; compared to other 3D datasets such as point clouds (Firman, 2016). 

4) Multi-view  

Multi-view data are commonly used in real-world applications due to their efficient structure. 

Data points’ collection is via different methods and may require presentation as a combination of 

multiple 2D views. Multi-view learning can increase datasets by employing manually generated 

topologies and 2D views (Zhao et al., 2017). A simple way to generate such representations is by 

creating multiple 2D image descriptors per view, and then using that collection for learning (Su 

et al., 2015). However, the view numbers adequate to model a 3D shape are still questionable. 

Despite this uncertainty in multi-view modeling, Su et al. (2015) showed that well-represented 

multi-view data performed better than 3D volumetric data when recognizing shapes. Due to the 



 
37 

 

minimum storage required for 2D data: the use of the multi-view technique is to recognize and 

segment objects in the current DL practice.  

5) Voxels 

A regular grid in a 3D matrix can be used to represent and reconstruct 3D. Voxels are useful to 

represent 3D data by mapping and describing how is the distribution of 3D objects through an 

entire 3D scene. Detailed information about 3D shapes can reside in voxel structures as a form of 

an array or set of lists. Detailed information about objects and contextual details can be estimated 

without losing the original properties using 3D voxelated object representation (Xiang et al., 

2015). Therefore, it has been used in mapping point clouds, human features, video sequences, and 

MRI scenes (Qi et al., 2017; Maturana and Scherer, 2017; Kamnitsas et al., 2017). Voxel-based 

methods rasterize 3D shapes as an indicator or sampled distance function over dense voxels and 

apply a 3DCNN over the entire 3D volume. Because the memory and computation costs grow 

cubically as the voxel resolution increases, these methods can become computationally expensive. 

That is why voxel grids are not suitable for representing high-resolution data or densely packed 

areas on a sparse matrix (Abdul-Rahman and Pilouk, 2008; Tatarchenko, Dosovitskiy, and Brox, 

2017).  

6) Octrees 

Octree-based 3D volumetric representation is more efficient than voxels. Octree 3DCNN 

significantly reduces the computation time with a sparsely sampled matrix (Wang, et al., 2017). 

In Wang’s model, octrees provide a generic and efficient 3DCNN solution for 3D shape analysis. 

Because octrees grow quadratically as the octree depth increases, they are suitable for analyzing 

high-resolution 3D models. Voxels and octrees have the same structure, but octrees are more 
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robust in representing the fine details of 3D objects (compared to voxels) and have the ability to 

share the same values for large regions of space (Ahmed et al., 2018).  

2.3.2.2 3D non-Euclidean 

Many scientific studies use data with underlying non-Euclidean spaces, such as sensor networks 

in buildings, functional networks in brain imaging, and meshed surfaces in computer graphics. 

Three main types of non-Euclidean data are point clouds, 3D meshes, and graphs.  

1) Point Clouds 

The increasing use of 3D data acquisition devices such as structured light scanners, Kinect, and 

time of flight, has made point clouds increasingly available. Point clouds classification can be non-

Euclidean geometric data due to their sparsity and relatively large scale. Applying DL to point 

clouds comes with many challenges, including irregularity, a lack of structure, and point 

misalignments. Despite such limitations, point clouds’ uses are in multiple computer vision tasks 

such as 3D reconstruction, object recognition, and vehicle detection, with efforts to filter 3D point 

clouds from noise while preserving original geometric data (Han et al., 2018). 

2) Meshes 

Meshes are one of the most popular topics in computer graphics when discussing 3D shapes. 

Meshes consist of a set of polygons called faces with a set of vertices that describe their associated 

connectivity. Meshes classification can be as Euclidean space on a local scale; however, on a global 

scale, meshes are non-Euclidean due to certain characteristics such as shift-invariance, operations 

in vector space, and global parametrization systems. Learning global meshes can be challenging 

because DL methods cannot easily adapt irregular representation as input. 
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3) Graphs 

The representation of 3D mesh can also be a graph structure, where directing of the graph nodes 

and corresponding vertices of the mesh and edges represent the connectivity between these 

vertices. Because graphs contain complicated structures containing rich underlying information, 

traditional DL architectures have been used for analyzing graph data (Zhang, Cui, and Zhu, 2020). 

The combined use of mesh and graph structure is promising to tackle the multi zone BPS tasks. 

2.3.3 DL architecture for 3D vision tasks 

Over the last decade, 3D DL has enabled considerable advancements the field of computer vision. 

Unlike 2D vision tasks (Farabet et al., 2013; He et al., 2016; Krizhevsky et al., 2012; Shelhamer et 

al., 2017; Noh, Hong, and Han, 2015), 3D vision tasks are not straightforward due to the geometric 

complexity of 3D objects and data loss and distortion resulting from different representation 

types. The previous section discussed various representation types for 3D vision tasks, including 

2D and 3D representations. However, 2D representations of 3D objects sometimes omit 

comprehensive information about the object and associated parameters.  

Further discussions of the intrinsic nature of 3D building data and related building attributes will 

be below, including applications of 3D DL to geometric data in volumetric, mesh, and graph 

formats. Table 2.2 summarizes the advantages and limitations of each data representation for DL.  

Table 2.2: Summary of 3D data representation for DL modeling and training 

3D Euclidean 3D non-Euclidean 

Voxel Octree Point Cloud Mesh Graph 

Features 

Volumetric data 

in grid format 

Varying size of 

voxels data  

3D points Patched filters Nodes and edges 
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Advantages 

Full volumetric 

description and 

information 

delivery of the 

3D object 

Efficient 3D 

volumetric 

representation  

Applicable to 

any type of 

sensor data 

Mostly used for 

preserving 

graphical 

properties of 3D 

object 

Models for 

graphs can be 

used for mesh 

representation 

Limitations 

Large memory 

requirements 

and high 

computation 

time 

Geometry data 

does not preserve 

intrinsic part of 3D 

object 

Irregular 

sampling and 

potential noise 

and missing 

parts 

Difficult to train 

because of 

irregularity and 

complexity  

DL models for 

meshes cannot be 

used for graphs 

 

2.3.3.1 DL architectures for 3D volumetric data 

Unlike real-world data (i.e., point clouds), most simulated data tend to be populated in a grid-like 

structure. Regularly populated points can be represented in the form of an array, such as of pixels 

or voxels. Rasterized images consist of pixels. A volumetric pixel (i.e., a voxel) is the 3D equivalent 

of a pixel, a distinguishable element of a 3D object. It is a volume element representing a grid 

structure, and its use in 3D DL is to exploit the full geometry of an object. ShapeNet (Zhirong Wu 

et al., 2015) was the first DL model to use a 3D geometry represented as voxels. The form of input 

is a 30 x 30 x 30 binary tensor indicating whether the voxel is a part of the target object or not. 

VoxNet (Maturana and Scherer, 2017) adopted a 3DCNN to recognize 3D objects in different 3D 

data representations, including RBG-D, LIDAR point clouds, and 3D CAD models. The 

convolution in VoxNet uses and follows 3D filters, and the network architecture is composed of 

two 3D convolutional and two fully connected layers. The input construction is as a volumetric 

occupancy grid of 32 x 32 x 32 voxels. Because of the training, VoxNet outperformed ShapeNet 

when tested on ModelNet10. (Sedaghat et al., 2017); enhanced the architecture of VoxNet to add 

orientation estimation as an auxiliary parallel task. For this experiment, they used a slightly 
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deeper network that equipped four 3D convolutional layers. This fortified the classification results 

for the ModelNet10 datasets.  

An important contribution was the use of an auto-encoder structure in unsupervised learning to 

learn the embedding of 3D objects. (Sharma, Grau, and Fritz, 2016) developed a convolutional 

volumetric auto-encoder (VConv-DAE). The proposed networks learn 3D volumetric 

representations efficiently by estimating the occupancy grid of 3D data. VConv-DAE is promising 

for shape completion and high-performance shape interpolation. (Brock al., 2016) proposed 

Voxception-ResNet (VRN), a deep 3DCNN. VRN is composed of 45 layers of deep CNN that 

require data augmentation to avoid overfitting. VRN shows a 51.1 percent performance 

improvement over VoxNet in ModelNet classification. However, deep neural networks are 

susceptible to overfitting and computational inefficiency in training.  

A 3DCNN converts 3D shapes to sample representations and regularly applies a CNN to them. 

Voxel-based methods rasterize 3D shapes as an indicator or sampled distance function over dense 

voxels and apply the 3DCNN over the entire 3D volume. Because the memory and computation 

costs grow cubically as the voxel resolution increases, these methods can become tremendously 

expensive.  

To solve this problem, LightNet (Zhi et al., 2017) was developed as a real-time volumetric CNN 

designed for ModelNet recognition. LightNet can achieve a faster convergence with fewer 

parameters and includes two main learning tasks: class labels and orientations. LightNet 

outperformed VoxNet by about 24.25 percent on ModelNet10 and ModelNet40 with 67 percent 

fewer parameters than VoxNet. According to Wang et al. (2017), Octree 3DCNN significantly 

reduced the computation time with a sparsely sampled matrix. In Wang’s model, octrees provide 

a generic and efficient 3DCNN solution for 3D shape analysis. Because octrees grow quadratically 

as the octree depth increases, they are suitable for analyzing high-resolution 3D models.  
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2.3.3.2 DL architectures for 3D mesh data 

A convolution operation is performed by passing a filter on a spatial domain and recording the 

correlation between the template and filters. This is because of the shift-invariant and global 

parameterization properties of Euclidean spaces. Various non-Euclidean CNN frameworks have 

recently been proposed to overcome the lack of shift-invariance and global parameterization in 

meshes.  

Masci et al. (2018) demonstrated the first CNNs on triangular meshed surfaces. Geodesic 

convolutional neural networks (GCNNs) are a generalization of the convolutional networks for 

application to non-Euclidean manifolds. They extract patches as local systems of polar 

coordinates and pass through a cascade of filters and operators (Masci et al., 2018). This approach 

is innovative but has some drawbacks. It is applicable only to triangular meshes, the radius of the 

constructed geodesic patch is small for the actual shape, and rotations of the convolution filters 

are expensive. Anisotropic CNN (ACNN) extends the applicable geometry to deformable shapes 

and graphs (Boscaini et al., 2016). ACNN frameworks construct simple local patches independent 

of the size of the mesh. The MoNet framework proposes a general construction of patches by 

defining a local system of pseudo-coordinates around each vertex with weight functions (Monti et 

al., 2016). 

The most recent achievement in geometric DL is spline-based convolutional neural networks 

(SplineCNNs). Proposals for SplineCNNs have been for irregularly structured geometric data 

because they eliminate the need to define patches on meshes or graphs. This framework 

outperforms other models on correspondence tasks due to the local support of the B-Spline basis. 

This framework allows for the use of any dimensionality and geometry on training input.  
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2.3.3.3 DL architectures for 3D graph data  

3D data are not always available in a grid-like format (i.e., modeling meshes in CFD simulations, 

LIDAR point clouds). Non-Euclidean approaches convert irregularly populated 3D data for main 

DL operations such as convolution. Graph-based 3D data leverage the spectral properties of 

graphs to define intrinsic descriptors for DL training. With the success of CNNs in computer 

vision tasks, efforts have been directed towards generalizing CNNs to irregular structures. For 

instance, meshes in 3D geometries such as surface tension or temperature measured from nodes 

on discretized meshes can be converted to graphs and then used for training CNNs, instead of 4D 

tensors or more layers with spatial coordinates. Graphs can generalize natural frameworks for 

low-dimensional grid-like structures, allowing efficient forward propagation with large numbers 

of datasets.  

Geometric DL is an effort to generalize DL models to non-Euclidean structures such as graphs 

and manifolds (Bronstein et al., 2017b). GCNN consists of two main methodological approaches: 

spectral and spatial filtering methods. Both are categorized based on how filtering is applied and 

how locally processed data are combined. Bruna et al. (2014) proposed spectral filtering methods 

operating on graph structures using CNNs. These define a convolution-like operator using the 

spectral eigen decomposition of Laplacian graphs (Bruna et al., 2014). This filtering operation 

implies that convolution is a linear operator that communicates with the Laplacian operator. 

However, Bruna’s basis-based learning methods are limited to specific bases and can be 

computationally expensive. To overcome the limitations of Laplacian eigen bases and limited 

incompatibility of different shapes, quasi-harmonic bases have been introduced by constructing 

a compatible orthogonal basis across various domains through a joint diagonalization (Kovnatsky 

et al., 2013). However, this method requires prior knowledge about the correspondence between 

two distinct domains.  
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Local spectral filtering of graphs using a polynomial expansion was proposed by Defferrard, 

Bresson, and Vandergheynst, (2016) and Kipf and Welling, (2017). With the success of local 

spectral filtering methods, Wang, Samari, and Siddiqi (2018) proposed a local graph convolution 

with a novel graph pooling strategy to process unordered point clouds. They applied the spectral 

filtering method to pointNet++ and then replaced traditional max pooling with recursive cluster 

pooling. This method does not require pre-computation and can be trained in an end-to-end 

manner to achieve better performance than existing techniques.  

Traditional ML applications cope with graph structures by mapping 3D information to a simpler 

representation such as vectors of reals (Singaravel et al., 2018a). Graph neural networks (GNNs) 

utilize spatial filtering to preserve graph-structured data via the weights of the graph (Scarselli et 

al., 2009). Learning graphs with the spatial filtering method are dependent upon each vertex’s 

neighborhood. The graph topology (i.e., the spatial structure of the input graph) is maintained 

when the feature vectors from the neighborhood nodes are aggregated. Scarselli et al. (2009) used 

a simple diffusion function on the recurrent neural network (RNN) structure to repeatedly 

propagate node representation until it was stable and convenient. Next, gated graph neural 

networks were proposed to alleviate the computational cost of GNNs by performing updated 

states to learn the optimal graph representation using gated recurrent units (Li, Zemel, 

Brockschmidt, and Tarlow, 2016). To overcome the limitations of graph-based RNNs, graph 

convolutional neural networks were proopsed, where the nodes of the graph are mapped to points 

in Euclidean space, for the compact representation of graphs (Bruna et al., 2014; Zonghan Wu et 

al., 2019). Following the work of Bruna et al. (2014), hyperbolic graph convolutional neural 

networks have been delineated, showing improved performance with less distortion when applied 

to real-world graphs (Chami et al., 2019). 
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2.3.4 3D data representation for BPS tasks 

3D data representation methods are categorized and compared in this section (Table 2.3). 

Understanding the proper categorization of 3D data and relevant DL methods is essential for 

applying DL in performance simulation and architectural modeling.  

Table 2.3: 3D data representation for building performance simulation 

 BPS 3D representation 

BPS task Energy 

 

Daylighting 

 

Airflow 

 

Data type Point Grid Mesh/Graph 

Representation Point coordinates 3D voxels Nodes and edges 

In practice, three main types of data exist in fields related to building performance simulation: 

building sensor data, building stock data, and building simulation data (Westermann and Evins, 

2019). Building sensor and stock data usage is to optimize buildings’ operations, and the 

simulation data usage is in the building’s design and documentation. Sensor networks can be 

represented as a form of Point Clouds, and the building’s stock data can be coded in 2D arrays. 

Both data require complicated input layers such as system configurations, occupancy 

information, and other engaging factors. Therefore, the development of a proper input 

representation method for DL on those kinds of data is essential.  

Especially, during the early design stage, the use of building simulation tools has become popular. 

These devices have been widely adapted and evaluated. Daylighting, energy, and airflow are the 

commonly used performance simulation metrics to assess the built environment. Each simulation 

tool deals with the different 3D data formats (Table 2.3). Since building geometry is mainly 
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computed as 3D coordinates in CAD interface, DL is required to delineate the 3D representation 

of building geometry.  

This survey revealed that the 3D representation methods played a crucial role in evaluating the 

performance of neural networks. For example, voxel (Maturana and Scherer, 2017; Sedaghat et 

al., 2017; Shafiei and Harris, 2019; Wu et al., 2015) is a common way to represent the 3D object; 

thus, its use can be as an input structure to train 3DCNNs. This type of representation has 

validated its efficiency in predicting grid-based simulations such as radiation intensities on 

building facades. However, the high computation time of a voxelated matrix causes the quadratic 

growth computation time during model training. Therefore, octree (Tatarchenko et al., 2017; 

Wang et al., 2017) structure can be mapped into 3DCNNs to increase training efficiency. Another 

method is applying graph neural networks (Chami et al., 2019; Li et al., 2016; Scarselli et al., 

2009) to mesh-like geometry. This method is suitable to simulate the airflow around buildings 

since it effectively incorporates mesh representation of a 3D input.  

The 3D representation methods discussed in this survey are especially beneficial for modeling a 

3D-built environment and the physical phenomena around buildings. Although key features and 

advantages of using those networks over the other were highlighted, there is no absolute winner 

among the techniques introduced. Unlike 2D, 3D DL is still developing and maturing. Therefore, 

a series of experiments on the same BPS tasks is recommended for future researchers. There have 

been many methods proposed across different disciplines. VoxNet, Octree, and GCNNs 

outperformed others for shape analysis tasks but have an immense potential to expand to other 

3D-related tasks. Therefore, proposed methods can be applied to the geometric DL for BPS tasks.  
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Chapter 3 
 

Methodology 

 

This chapter discusses the main strategies for integrating data-driven BPS tools in building 

modeling and simulation workflow and the complementary strategy for the deployment. 

3.1   Development of new BPS workflow with ANN model 

Traditionally, many stakeholders are involved in the BPS consulting process including architects, 

BPS modelers, and BIM modelers. During the design consulting process, architects manage 

building design options in CAD software based on the concept and programs of the buildings. 

With the increased use of BIM documents in the design process, the BIM modeler mainly focuses 

on conveying the appropriate information for future documentation. The BPS modeler takes the 

model information and creates a BPS workflow for the analysis results for the different 

performance metrics. Figure 3.1 shows the traditional workflow and data transfer between 

different experts in performance-driven design and consulting. Due to the expertise-dependent 

nature of physics-based BPS tools, the discrete workflow is inevitable in practice. 
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Figure 3.1: Traditional framework for BPS design-consulting process  

Replacing physics-based BPS models with data-driven ANN models can potentially reduce the 

number of steps between each expertise in the early design decision-making process. Recent ANN 

models can easily integrate into the CAD platform with less dependency. Therefore, they can be 

directly integrated into the modeling workflow for architects.  

Figure 3.2 represents the new workflow with ANNs models used as an alternative to existing 

physics-based models. To integrate ANNs models into the modeling workflow, it is necessary to 

develop data exchange protocol and methods for CAD and BIM software using their API. The 

different type of data processor to complete this workflow in this new framework will be discussed 

in this and following chapters. To realize this, it is necessary to look at the required data format 

for CAD and BIM with the existing BPS models. BIM-based geometry includes the detailed 

definition of buildings and related information not fully used by other BPS tools, such as 

EnergyPlus, and CFD. 
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Figure 3.2: Proposed framework for BPS design-consulting process with ANN models 

 

IFC-based building energy modeling tools define building geometry as a system of surfaces, also 

referred to as “space boundaries.” Examples of such surfaces include walls, slabs, roofs, columns, 

and beams (Bazjanac, 2010). Research by Autodesk (2015) has illustrated a mesh conversion 

process from Revit to CFD. Its use can verify the newly added CAD geometry and help convert a 

building’s geometry into meshes. The current practice of modeling for BPS simulation usually 

involves the manual recreation of a building’s geometry to represent various physical properties 

of buildings (such as thermal, acoustic, structural, and airflow), producing the ontology for BPS 

inputs of the building’s attributes for that simulation.  

Conventional BPS tools require space boundary definitions or gridded arrays or mesh boundary 

conditions as input (Figure 3.3). Airflow and radiation mainly require the simulation parameters 

with point and mesh type representation as input; however, ANNs require new rules and 

topologies to explain a building’s attributes and related information. The proposed methods 
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generalized the specific representation of 3D building geometries for each BPS; with this effort, 

the general rule to create ANNs for taking buildings’ geometry with performance metric can be 

illustrated.  

 

Figure 3.3: Inputs for modeling different performance assessment tools 

 

The Euclidean data category mainly includes the following 3D representations: descriptors, 

projections, RGB-D, volumetric information, and multi-view data. The representations that fall 

into the non-Euclidean category are point clouds, graphs, and meshes. Three main types of data 

exist in fields related to BPS, building sensors, building stock, and building simulation 

information (Westermann and Evins, 2019). Building sensor and stock data usage is optimizing 

building operations, and their representation is as forms of non-Euclidean data such as point 

clouds. The utilization of simulation data in a building’s design is in the form of Euclidean data 

such as volumetric grids (voxels).  
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3.2 Development of data exchange methods for 

proposed BPS workflow 

The design of high-performance buildings using the CAD interface and interacting tools and 

surrogate models are complex and nonlinear. The sustainable nature of the process requires 

comprehensive guidelines to derive the necessary information efficiently throughout the design 

decision-making process. Figure 3.4 explains the ANN-driven BPS data processing flow for 

sustainable building design and compares it to the conventional method. Since data-driven 

building simulation software require different types of data representations as input, it is essential 

to find the adequate data conversion methods.  

 
Figure 3.4: Comparison of BIM and BPS frameworks 
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Data conversion consists of two parts: pre-processing and post-processing. Pre-processing 

includes refined BPS requirements and geometry definitions for different data types (i.e., 

simulated and sensor data), and post-processing incorporates BIM requirements and 

performance metrics for entering the data into the BIM software. The ANN-based BPS 

interoperability framework covers data processing methods from the CAD software to ANN 

models (data pre-processing) and from ANN models to BIM documents (data post-processing). 

The application of ANN-based BPS tools with the data processing components during early design 

stages has become a promising approach. For these applications, such data modeling tools need 

to fulfil the basic functional requirement for BPS tasks for data transfer. Daylighting, energy, and 

airflow are the commonly used performance simulation metrics to assess the built environment. 

Each simulation tool deals with the different 3D data formats (Table 3.1). 

Since building geometry estimation is mainly as 3D coordinates in the CAD interface, the rules 

for 3D representation of a building geometry for ANNs needs to be delineated. Table 3.1 lists 

representative data forms for buildings’ geometry for the simulation tasks. For example, energy 

simulation requires a point-based descriptor for single-zone simulation or point-cloud type data 

for multi-zone simulation. For the radiation and airflow simulation, voxelated metrics that can 

interpret information from the mesh and grid-type geometry are required to further model ANNs 

to train networks.  

In addition to converting the original CAD geometry for ANNs modeling, it is essential to preserve 

the original modeling properties for BIM documentation. Converting and preserving the 

buildings’ information in a flexible workflow can demonstrate a sustainable design and consulting 

environment. As seen from the different geometry representations in IFC in 3.1, there are specific 

requirements for converting CAD geometry for BIM information. Therefore, in the new proposed 
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workflow, the integrated platform should have the capability to convert the buildings’ model for 

ANNs analysis and preserve its modeling schema and rules simultaneously.  

Table 3.1: 3D data representation for building performance simulation 

BPS 3D representation 

 

IFC geometry representation 

 

 

In general, the 3D representation methods played a crucial role in evaluating the performance of 

neural networks. For example, voxels (Maturana and Scherer 2017; Sedaghat et al., 2017; Shafiei 

Dizaji and Harris 2019; Wu et al., 2015) are commonly used to represent 3D objects; thus, they 

can be used as input structures to train 3DCNNs. This type of representation has validated its 

efficiency in predicting grid-based simulations such as radiation intensities on building façades. 

However, the high computation time of a voxelated matrix causes the quadratic growth in 

computation time during model training. Therefore, mapping the octree (Tatarchenko, 

Dosovitskiy, and Brox 2017; Wang et al. 2017) structure into 3DCNNs can increase training 

efficiency. Another method is applying graph neural networks (Chami et al., 2019; Li et al., 2016a; 

Scarselli et al., 2009) to a mesh-like geometry. This method is suitable to simulate the airflow 

around buildings as it effectively incorporates the mesh representation of a 3D input.  
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The 3D representation methods discussed are useful for modeling a 3D-built environment and 

the physical phenomena around buildings. Despite their individual advantages, there is no one 

best method among the techniques introduced. Unlike 2D DL, 3D DL is still maturing. Therefore, 

a series of ANN modeling on the same BPS tasks are recommended for future researchers. Many 

methods have been proposed across different disciplines. VoxNet, Octree, and GCNNs 

outperformed other tools for shape analysis tasks but have an immense potential to expand to 

other 3D-related tasks. Therefore, the proposed methods can be applied to the geometric DL for 

BPS tasks. Another possible direction is to continue to work on the mixed 3D representations with 

the described methods above. 

To expand the scope of the ANNs architecture and improve the applicability of ANN models for 

3D buildings, it is necessary to understand the structural properties of the different 

representations of 3D data; this is the focus of the present research. A comprehensive overview of 

ANN-based research on solar radiation and airflow patterns is provided in the next chapter to 

illustrated recent advances in ANN modeling of 3D data representations with an emphasis on the 

challenges emerging from the differences between various methods. In this stud, experiments 

were conducted to develop an ANN-based BPS model and different 3D representation methods 

tested for solar radiation and airflow simulation. This stage led to the development of the data 

exchangers and ANNs models for the simulated data to calculate the annual radiation intensities 

on buildings façades and indoor airflow patterns with different input air conditions.    
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Chapter 4 
 

Experiments 

 

This chapter discusses two main experiments for learning models used for BPS. The first is solar 

radiation simulation, a method for developing ANN models for solar to simulate radiation 

mapped on the buildings’ façade and indoor spatial daylight autonomy. The second is a version of 

airflow simulation to predict indoor airflow patterns using different ANN models. Followed by 

experiments, the algorithms implemented to converting the buildings’ geometry data for ANN 

models are explained. These experiments and findings are used in Chapter 5 and 6. 

4.1 Development of ANNs for different BPS tasks  

4.1.1 ANN-driven solar radiation simulation 

For over a decade, Radiance-based daylighting simulation, a state-of-the-art backward ray tracer, 

has been used to physically validate a range of building geometries and shading devices. Radiance 

is the most widely used daylighting simulation tool due to its accuracy, the data-validation 

capabilities, and the requirements for the industry standard. Using a physics-based Radiance 
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engine (i.e., DIVA), ANN models were trained to predict radiation intensities on building façades 

with thousands of reference geometries represented in CAD software (i.e., Rhinoceros). CAD-

based tools enable quick creation of a building’s geometry. Radiance-based tools require defining 

the geometry of a building in a 3D coordinate system. Interoperability between CAD and 

Radiance-based daylighting simulation tools is necessary to train the ANNs to serve as BPS 

engines. ANN architectures using 2D data illustrate the requirement for a considerable amount 

of training data. Thus, applying ANNs in a 3D domain is not as effective as in 2D. However, 3D 

data provide rich information about the full geometry of 3D objects and their environment. 

Therefore, 3D computer vision tasks require a way to incorporate 3D information when training 

neural networks. In the experiments outlined below, a new method of transferring the 3D 

coordinate system for CAD software into inputs for ANNs was investigated.  

Objectives of ANNs-solar experiments are to analyze the use of ANN applications and BPS tasks 

achieved by 3D data representation (i.e., using voxels) and provide different data conversion 

techniques for predicting solar radiations on buildings façades; and to test the applicability of 

methods involving physics-based radiation simulation trained using 3DCNNs and different 

encoding methods of inputs for training 3DCNNs. 

The solar radiation studies mainly consisted of DL methods as a means of representing the annual 

radiation intensity and the level of exposure of buildings without using physics-based engines 

with different input parametrizations. Such representations are obtained by combining 

information from all channels and are thus adequate for analyzing certain phenomena relating to 

indoor spaces. Many studies have used DL to estimate surface solar radiation on building façades 

(Mohandes et al., 1998; Yadav and Chandel, 2014; Voyant et al., 2017). In particular, CNN have 

recently been used in the 3D representations of building geometries. Due to the availability of 

both large 3D datasets and computational power, it is possible to apply DL to specific tasks related 
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to 3D data, such as segmentation, recognition, and correspondence (Ahmed et al., 2018). DL 

models are usually directly trained for the task of interest using a large amount of data with the 

weights updated for every iteration. The trained weights for 3DCNNs are used to predict the 

outcome, usually demonstrating superior performance in a short period.  

In this solar radiation study, 3DCNNs were used to predict solar radiation on building façades. 

Because 3DCNNs require a voxelated matrix as input, different methods of mapping the relevant 

geometric information into the voxel format were investigated.   

This section consists of three parts: data generation, data preprocessing, and 3DCNN modeling 

and validation. Conventional modeling and simulation software tools were used in all steps: 

Rhinoceros and Grasshopper for parametric modeling; DIVA in Rhinoceros for radiation 

simulation; Python3 packages, such as NumPy, SciPy, and Matplotlib, for data processing and 

visualization; and TensorFlow and Keras for modeling and validation. Figure 4.1 describes the 

general workflow along with the data structures and ANNs modeling methods used. 

 

 

Figure 4.1: Generic workflow and related software 
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4.1.1.1 ANNs-solar experimental model: ARINet  

The objectives of the development of ARINet (Han, 2020) were to design an ANN architecture 

using 3D building geometry and simulated data; determine a feasible method of encoding 

building geometry as input for ANNs, representing the physical properties of buildings such as 

radiation intensities; and define the voxelated properties of building geometry as input for ANNs. 

The initial challenge when converting extracted data into a 3D voxel representation was to match 

the different coordinates to their boundary conditions. Because the output from DIVA (a physics-

based radiation simulation engine) for Rhino’s grid system cannot evenly distribute the local 

coordinates of building façades, pre-processing was necessary to control the points and values 

representing all radiation values equivalent to each sub-cube. Therefore, the edge values and voxel 

map created to represent the 3D information for radiation received were neglected. Figure 4.2 

shows the process of input modeling for ARINet. 

 

Figure 4.2: Binary padded voxel matrix (ARINet) 

After processing the edge data, the model input, denoted with an X, was padded with binary 

information (i.e., 1s and 0s). In this voxel representation of the 3D space, one represented a 
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building, and zero indicated air. The predicted values that comprised the model output, denoted 

with a Y, could then be the surface radiation values for every coordinate. The structures of X and 

Y are as follows:  

•X.shape = (number of example, xdim, ydim, zdim)  

•Y.shape = (number of example, xdim, ydim, zdim) / (MINMAX normalized)  

After processing each voxel shape, the boundary and target buildings were combined to serve as 

the input for the 3DCNN (Han, 2020). ARINet assumes the world to be a 51 x 51 x 51 grid in which 

both the target and boundary buildings exist. Based on this assumption, superimposed binary 

output matrices for every building in the world were produced as part of the data processing stage. 

As a result, the performance of ARINet is generally good, yielding errors at 0.046; however, most 

errors are near the edges and in high intensity areas.  

1)  3DCNN model architecture 

This section describes the ARINet structure used to predict radiation intensity on a building’s 

façade. The network output was the radiation intensity (i.e., a numerical value), thus, preferring 

the mean squared error (MSE) as the loss function. However, the simulation to generate the 

dataset can determine only the radiation intensity received by the building’s surface. The loss 

function was then modified to account only for the MSE on the building’s surface. Simulation 

datasets and physics-based loss functions were used to increase the accuracy of the ANN model 

and open to the possibility to gain more data in later stages of the model training for a more 

sustainable workflow. 

When building ARINet, VoxNet, a 3DCNN for real-time object recognition (Maturana and 

Scherer, 2015), was referenced for the baseline architecture. Voxnet is a 3DCNN that can be 
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applied to create fast and accurate object class detectors for 3D point cloud data. Due to the 

simplicity of VoxNet’s architecture, a model for radiation simulation from the literature were 

created with the generated the dataset with voxel points (0s and 1s in space). As shown in Figure 

4.3, ARINet takes a convolution and deconvolution-based architecture to preserve the original 

dimensionality of the 3D building objects for regression analysis outcome mapped on the 

voxelated matrix as inputs.  

Using ARINet, the latent variables containing the hidden information from the input were 

obtained. By having latent variables as a part of the training models, it was possible to use the 

auto-encoder architecture to map the latent variables back to the 3D space in which the radiation 

results resided. To increase the range of captured information (i.e., handle the shadow issue), 

more layers were used in ARINet than in VoxNet. 

 

Figure 4.3: 3DCNN architecture of ARINet 

ARINet assumed the world to be a 51 x 51 x 51 grid in which both the target and boundary buildings 

existed. Based on this assumption, superimposed binary output matrices for all of the buildings 
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in the world were produced as part of the data processing stage. Figure 4.3 illustrates the model 

architecture of the 3DCNN, beginning with the 51 x 51 x 51 voxel grid. The proposed ARINet 

consisted of two 3D convolutional layers before the max_pooling layer. The architecture retrieved 

the network by passing two additional 3D deconvolution layers. Basically, 3D image models were 

mapped onto latent spaces and later reshaped by calculating the difference values for radiation 

after passing into loss functions in the proposed 3DCNN architecture.  

2)  Results and Discussion 

This section describes the results of the radiation received by the building façades in the new test 

sets. The selection of the three alternative buildings was to demonstrate the results and serve as 

the subject of a detailed analysis. Figure 4.4 illustrates three types of building geometry: 

rectangular with a horizontal overhang, round, and cube-shaped with an internal empty core. 

   

Figure 4.4: Reference geometries for the completely new buildings with boundaries 

After providing these three options for the test sets, additional options with no boundary buildings 

were added. Total of six options to predict the radiation received were set. As ARINet training 

used building geometries of a specific type (i.e., box-shaped) with boundary buildings, the test 

sets were not expected to be predicted precisely. Figure 4.5 shows that the results for both the 

shading device and building offered relevant visualization output: leading to a low error rate (i.e., 

0.0309) for the boundary buildings. Using the mapped radiation on the horizontal overhang, 
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ARINet could detect the shading device as an obstacle blocking the sunlight exposure underneath 

areas.  

 

Figure 4.5: Analysis and comparison results (shading) 

However, the absence of the boundary buildings resulted in a higher error rate (i.e., 0.061) and 

invalid estimation of the radiation intensities received by the buildings. This is mainly because 

the original training sets contained the information of the context buildings and never trained 

without the context buildings. This will be discussed in the next experiment by demonstrating the 

increasing accuracy of current issues by introducing more training datasets with different context 

building conditions.  

In addition, ARINet predicted the values for the round-shaped building (Figure 4.6). However, a 

higher error rate was observed for the vertical façades on the round shapes. This is because there 

were no options for rotated façades in the training sets. Given that the model’s initial training was 

with boundary buildings, the result with no boundary also produced a greater error (i.e., 0.0702) 

than did the other option (i.e., 0.0338). Additionally, by replacing L1 norm to L2 norm, the 

prediction accuracy could be increased. 
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Figure 4.6: Analysis and comparison results (round) 

The results did not realistically represent the radiation received by the building façades due to the 

information missing for the hidden properties of the surrounding buildings. However, this could 

be enhanced by training with different boundary buildings, which is a fixed property in the current 

training dataset. Increasing the rotation options for façades in the training dataset may improve 

the accuracy of predictions regarding vertical façades.  

 

Figure 4.7: Analysis and comparison results (inner core) 
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The last test option was cube-shaped with an internal empty core (Figure 4.7). This option offered 

the lowest prediction accuracy, even with boundary buildings (i.e., 0.0538). In this case, the 

predictions for the horizontal rooftop and internal core surfaces differed from the expected 

results. This is because our model did not count the radiation bouncing off the opposite surface: 

thus, the model miscalculated the rays bouncing from the sun. As observed, the function of the 

ambient bounce in DIVA was very low, Level one or two for our model, due to the traits of the 

training sets. To overcome this limitation: radiation prediction for internal spaces such as floors 

with large windows can be used in training. In addition, the accuracy for this building without 

boundary buildings was better than for the round building (i.e., 0.0637). From the visualization, 

it can be observed that the vertical facade had a high level of accuracy since the buildings for the 

training set included these properties. 

4.1.1.2 ANNs-solar experimental model: CoolVox  

The problems of generating training datasets were discussed in the previous section. In the second 

solar radiation study, ensemble and fine-tuning methods were introduced to effectively predict 

solar radiation on building façades. Since the 3DCNNs performance was outperform than other 

architectures; however, there were some mispredictions on the edges, and for data without 

boundary conditions. To overcome the drawbacks of binary padding: CoolVox (Han, 2021) added 

one more categorical variable to the input matrix. The proposed method was to train another 

3DCNNs model with ternary padding and preserved edge information. After pre-processing the 

initial data into the voxel grid (51 x 51 x 51), the model input, denoted with an X, was padded with 

ternary information (i.e., 0s, 1s, and 2s). In this voxel representation of 3D space, two represented 

the surface of a building, one the inside of a building, and zero air (Figure 4.8). The predicted 

values that comprised the model output, denoted with a Y, were surface radiation values in the 

voxel grid.  
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Figure 4.8: Ternary padded voxel matrix (CoolVox) 

The objectives of the development of CoolVox (Han, 2021) were to develop advanced 3DCNNs 

that accurately predict radiation intensities on façades; and explore a better way of encoding 

building geometry as ANN inputs representing the physical properties of buildings such as 

radiation intensities. 

1) 3DCNN Model Architecture 

This section describes the structures of the CoolVox1, CoolVox2, and CoolVox ensemble models 

used to predict the radiation intensities of the building façades. CoolVox1 consists of two 3D 

convolutional layers before the batch normalization and max_pooling layers (Figure 4.9). A 3D 

convolution layer convolves the scalable properties of different building geometries for a sparse 

matrix. A 3D convolution filter with learning parameters extracts low-dimensional features from 

the given matrix. After passing through another set of two 3D convolutional layers, the batch 

normalization, and max_pooling layers, the model retrieves the network by passing two 

additional 3D up-sampling layers. Stochastic gradient descent (SGD) was used as an optimizer (lr 



 
66 

 

= 0.01, momentum = 0.0), and CoolVox1 was trained for 100 epochs, with 32 batches in each 

epoch. CoolVox2 is proposed, which adds the dropout layer after the second convolution layer 

from CoolVox1 and applying a learning rate of 0.05 for the SGD optimizer. 

 

Figure 4.9: 3DCNN architecture for CoolVox1 

Finally, the CoolVox ensemble model, which combines CoolVox1 and CoolVox2, was built by 

averaging the weights and output. An ensemble method was used because it usually results in 

better performance of models and has immense potential for associating different models. Both 

the training and validation errors of the ensemble model were reduced by 20 percent in 

comparison to the CoolVox2 model. 

To calculate the error, the mean squared error (MSE) was selected as the loss function. In 

addition, the models are only concerned with the radiation intensity (kWh/m2) on the building 

surface; thus, the loss function was modified to only account for the MSE on the surface and 

excludes those on the inside and outside of the building. The errors at the building’s surface and 

boundary conditions were only computed and all the air space in the voxelated structure were 

ignored. Furthermore, all negative values were rejected and set the maximum value for radiation 

exposure. The customized loss function for training the models is in Table 4.1. 
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Table 4.1: Customized radiation loss computation 

 

2) Results and Discussion 

Table 4.2 can be explained with the significance analysis. First, CoolVox1, CoolVox2, and CoolVox 

Ensemble models significantly outperformed the existing ARINet model, yielding validation 

errors of 0.0189, 0.0195, and 0.0157, respectively. Second, combining CoolVox1 and CoolVox2 by 

averaging the weights reduced the training and validation errors. Consequently, given that the 

CoolVox1 and CoolVox2 models had considerably smaller errors than ARINet (4.2), CoolVox2 

further reduced the errors by combining the two; thus, the CoolVox ensemble model 

outperformed the others on the validation datasets. 

Table 4.2: Performances of four 3DCNN models 

 ARINet CoolVox1 CoolVox2 CoolVox 

Ensemble 

Training Error 0.0463 0.0180 0.0185 0.0146 

Validation Error 0.0449 0.0189 0.0195 0.0157 

Python Code def RadiationLoss(y_true, y_pred): 

Inputs: 

- y_true: radiation of the target building. 3D Tensor with radiation value at taget 

surface and others 0. 

- y_pred: the prediction of the radiation. 

Returns: 

- scalar MSE loss, only calculated where radiation value not equal to 0. 

y_loc = K.cast(K.not_equal(y_true,K.constant(0)),'float') 

return K.sum(K.pow(y_true-y_pred*y_loc,2))/K.sum(y_loc) 

Error Metric 1

𝑛
 ∑(𝑌𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

where 𝑌𝑖  is the estimated value and �̂�𝑖 is the simulated value, and n is the total 

number of data. 
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Figure 4.10 depicts the prediction results by CoolVox1 and delineates the error plots on the same 

scale (from 0 to 1,600 kWh/m2) for all models. According to the error plot, although the CoolVox 

and ensemble models predicted the overall radiation accurately, they performed particularly well 

in predicting the rooftop conditions compared to ARINet. Furthermore, the error increased when 

the radiation on the north- and east-facing walls was predicted over the south- and east-facing 

ones. The models under-predicted the values near the edges of the north-facing façade owing to 

the limited sunlight on the north-facing façade. However, the CoolVox models still outperformed 

ARINet in predicting the annual radiation map on the north-facing façades. 

South-East view of the validation building 

 

North-East view of the validation building 

 

Figure 4.10: Sample results of actual values (top left), predictions (top right), and error 

plots of all models (middle left: CoolVox1; middle right: CoolVox2; bottom left: ensemble; 

bottom right: ARINet) respectively for the South-East and North-East views 
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The same building configurations by using the weights from the CoolVox ensemble model were 

illustrated in Figure 4.10. The simulated areas of the rooftop had the highest radiation intensity 

values for the three buildings, with values close to 1,600 kWh/m2. Thus, the CoolVox model 

successfully captured the areas with the highest radiation intensities. 

As four boundary buildings surrounded the target building (Figure 4.11, top left), the CoolVox 

model considered their effects when predicting the radiation intensities on the target building. 

The rightmost boundary from the southeast direction is a small building blocking radiation to the 

lower part but not on the elevated part of the target building. Therefore, the target building had 

relatively low radiation values at the bottom but high values on the upper-right side of the 

building. The top-right plot demonstrates this characteristic by the radiation predicted at the 

southeast façades. 

 

Figure 4.11: Simulated vs. predicted radiation intensities with boundaries (CoolVox) 

The CoolVox model accurately predicted the areas with relatively low radiation intensities. The 

bottom-left image of the simulated radiation in Figure 4.11 demonstrates the low radiation 

intensities in the areas facing the north direction (x-axis) on the target building. In particular, the 
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region facing east (y-axis) at the bottom of the building had low radiation intensities. A few errors 

in predicted radiation intensities appear in the area facing the north (x-axis) as it is not entirely 

yellow. However, except in the areas near the edges, the model accurately predicted the relatively 

low solar radiation exposure. The target buildings were initially subject to boundary conditions 

and then exposed to the no-boundary condition to train the model on the different boundary 

conditions. The MSE for different boundary buildings were larger than in the buildings with no 

boundaries (Table 4.3). 

Table 4.3: MSE by 3DCNN model and boundary condition 

 ARINet CoolVox1 CoolVox2 CoolVox 

Ensemble 

With boundaries 0.054 0.0178 0.0183 0.0145 

No boundaries 0.017 0.0079 0.0085 0.0066 

 

Figure 4.12 and Figure 4.13 compare the results of the simulated and predicted radiation values 

from the training data, with and without boundaries. The simulated radiation is the radiation 

intensity values obtained from the original data, and the predicted radiation is the radiation 

intensity predicted by the CoolVox ensemble model. Figure 4.12 suggests that the CoolVox model 

trained well on the given dataset. The model successfully predicted the radiation intensities of the 

target building and captured the impact on the target building from all directions (north, south, 

east, and west). Because the data augmentation related to matrix rotation and translation was not 

implemented, the original directions of all datasets were maintained as global constraints. 

The roof area of the target building in the simulation had the highest amount of radiation because 

no surrounding building obstructed it when absorbing solar radiation. The target building in the 

prediction (top- and bottom-right images in Figure 4.12) exhibited this trend; it also revealed the 

roof areas as experiencing the highest amount of radiation. In the top-left image, the right side of 
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the building facing the y-axis receives a relatively high radiation intensity on the top but a low 

radiation intensity at the bottom. The CoolVox model accurately predicted high radiations on the 

top and low radiation on the bottom, as seen in the region facing the y-axis in the top-right image. 

 

Figure 4.12: Simulated vs. predicted radiation intensities with boundaries (CoolVox) 

The bottom-left image in Figure 4.12 shows that the two roof areas on the target building have 

high radiation intensity values but low values on the adjacent section facing the north (x-axis). 

The roof areas absorb heat from the Sun regardless of the presence of the boundary building. In 

contrast, the roof absorbs the least amount of heat at the north-facing façades. The target building 

(bottom-right image) received the highest radiation intensity in the roof area but yielded a few 

errors toward the x-axis where it was expected to absorb the least amount of heat, as its color was 

not entirely yellow. 

When there are no boundary buildings (Figure 4.13), the target building has high radiation 

intensity values on different surfaces, except where the façade faces away from the sunrays. In the 

top-left image, the simulated radiation intensity is the highest on the roof, second-highest on the 
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area facing the south (x-axis), and relatively high on the area facing the east (y-axis). The area 

facing the x-axis also absorbed heat throughout the day as it faced the Sun. The area facing the y-

axis did not adequately absorb heat when the Sun was in the west but absorbed a fair amount of 

it when the Sun was in the east. In the bottom-left image, the north-facing façade of the building 

did not absorb heat from the Sun and the other sections, as seen from the yellow area facing the 

x- and y-axes. 

 

Figure 4.13: Simulated vs. predicted radiation intensities without boundaries (CoolVox) 

For the no-boundary building scenario, the CoolVox model satisfactorily predicted the radiation 

intensities for the building, except in a few areas. For example, in the bottom-right image, the 

model makes errors when predicting the area not facing the Sun. However, in general, it 

performed better for buildings without boundaries than those with boundaries: as it was more 

challenging to train the model when there were different types of boundary buildings around the 

target building.  
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Finally, the circular geometry with boundary conditions was tested. Because the distance between 

the target and the boundary building was relatively long, the simulated values for building façades 

did not vary substantially. However, the trend of low radiation mapped on the north façade 

remained the same, as seen in the bottom two images in Figure 4.14. 

 

Figure 4.14: Simulated vs. predicted radiation maps for validation sets with boundaries  

Unlike in the cubic geometry, the model prediction was better in the curved part of the building’s 

edges. Overall, the general trends in radiation intensities on the building façades were accurately 

captured in the case of the circular building. 

3) Testing with new datasets 

This section describes the amount of radiation received by the building façades in the new 

geometric configurations. Three new datasets were selected to demonstrate the results and serve 

as the subject of subsequent discussions. Figure 4.15 illustrates three types of building geometry: 

multiple small buildings, one canopy-style building, and one tall building with self-shading. 
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• Scenario 1: Increase in the number of adjacent buildings 

• Scenario 2: Introduction of underexposed areas 

• Scenario 3: Extension of building height 

To avoid overfitting and overestimating the feasibility of the trained model, the new datasets for 

testing were created and tested. The testing process used different geometries and boundary 

conditions that did not exist in the training and validation datasets. 

   

   

Figure 4.15: Error plots of multiple buildings (left), canopy-style buildings (middle), and 

tall buildings with self-shading (right) 

For the three different datasets, CoolVox had an average error of 0.018, similar to the validation 

error in Table 4.3. In the case of multiple buildings with 16 different heights (left image in Figure 

4.15), the prediction was accurate except for a few roof areas. The model performed well except in 

the underexposed area for the canopy-style building (middle image in Figure 4.15). The prediction 
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was also accurate for the self-shading building (right image in Figure 4.15), except for a few roof 

areas. 

  

Figure 4.16: Error plots on the test set: CoolVox (left) and ARINet (right) 

In the error plot of CoolVox in Figure 4.16, the error is relatively low for different surfaces 

compared to ARINet. CoolVox exhibited a relatively high error in the roof area (indicated by its 

color: which is darker than the other surfaces in the error plot), albeit less than that with ARINet. 

This shows that the potential ternary methods outperformed when training the 3DCNN. The 

findings from the solar radiation studies are as follows: 

• 3DCNNs can learn the orientation and boundary conditions of buildings. 

• Ensemble and fine-tuning methods are promising means of advancing the models. 

• 3D geometric data must contain edge information for 3DCNNs. 

• Ternary padding outperforms binary padding. 

These findings can be directly applied to the comprehensive framework as data pre-processing for 

radiation simulation with ANNs. The efficient data representation techniques for different ANN 

model transfer were developed in the dissertation. Which are the data post-processing techniques 

for connectivity to BIM software. All the presented work illustrates the data conversion technique 

for ANN-based BPS workflow.  
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4.1.2 ANNs-driven Airflow Simulation 

4.1.2.1 ANNs experimental model: AirVox  

Estimated flowrate and patterns have been used as buildings’ performance indicators to predict 

the ventilation rate, air distribution, and mass transfer in buildings (Hopfe, 2012). Different 

computational models have been used to estimate airflow indoors, such as empirical formula, 

airflow network, and computational fluid dynamics (CFD) (Tan and Glicksman 2005; Zhai, El 

Mankibi, and Zoubir 2015). The numerical values calculated from the empirical or semi-empirical 

formulae are often too simplified compared with other simulation methods such as CFD (Blocken 

et al., 2011). The benefits of using CFD in early design consist of three parts: outdoor environment 

application, indoor environment application, and the volumetric air distributions and their 

visualization.  

In the past few decades, CFD has been extensively used to represent the outdoor condition around 

buildings and the airflow distribution indoors (Gough et al., 2020; Li, Delsante, and Symons 

2000; R. Widiastuti, M. I. Hasan, C. N. Bramiana 2020; Tong, Chen, Malkawi, Liu, and Freeman 

2016). The early design practice has increasingly involved CFD for building designs, recently to 

optimize buildings’ geometry and analyze local wind environments (Lee and Song 2014; Wang 

and Malkawi 2019). However, the computational time and efficiency have not been resolved quite 

well for applying CFD in instant design changes (Hensen, Djunaedy, Radošević, and Yahiaoui 

2004).  

DL has recently gained popularity for achieving state-of-the-art performance in different tasks, 

including text, image, and sound (Ioannidou, Chatzilari, Nikolopoulos, and Kompatsiaris 2017). 

Due to its wide applicability, such as 3D data processing and modeling, the efforts for solving 

different vision tasks are necessary (Gezawa, Zhang, Wang, and Yunqi 2020; Ioannidou et al., 
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2017). DL can learn specific tasks on 3D data, such as image segmentation, recognition, and 

motion translation. Applying 3D vision tasks in fluid dynamic simulation has gained popularity 

with the advanced 3D vision techniques (Bouchiba et al., 2018; Fang, Sondak, Protopapas, and 

Succi 2018; Mohan and Gaitonde 2018). However, the direct application of ANNs-based CFD 

models in building design has not been explored yet. This study demonstrates an efficient way to 

model ANNs architecture for the airflow predictions and the potential application of such 

techniques in the architectural design practice. 

This experiment uses the simulated data generated from the conventional CFD (i.e., OpenFOAM),  

trained with the model architectures discussed in the previous section. Figure 4.17 illustrates the 

overall workflow consisting of three parts: pre-processing of the simulated data and building 

geometry, ANNs modeling and prediction, and post-processing of the outputs in CAD software.   

 

Figure 4.17: The workflow of modeling ANNs-based CFD 

1)  Data processing with simulated airflow results 

The OpenFOAM-based CFD plug-ins for Grasshopper and Rhinoceros were adapted to generate 

training datasets. A total of 3,750 simulated data were collected with a fixed geometry and position 

variations of inlet and outlet on facades. The wind speed was set to 1, 3, and 5 m/s, and the wind 

direction varied from 30 to 90 degrees by 15 degrees.  
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The voxelated matrix represented each of the 2,750 datasets in the 3D grid of (21, 21, 11), as shown 

in Figure 4.18. The two images on the left-hand side of Figure 4.18 are a populated grid on the 

façade with inlet/outlet information, padded with ternary information (i.e., 0s, 1s, and 2s). Similar 

to categorical embedding for the radiation, the model input information for different design 

attributes can be translated into the categorical values for the simulation purpose. In this case, 

the interior space, inlet, and outlet are separately encoded into three values for training networks. 

The image on the right side of Figure 4.18 is a voxel representation of the output grids with the 

numerical information of the 3D wind vector and relevant wind pressure on simulated datasets. 

The input matrix of the 3DCNNs is defined by combining input and output points.  

 

Figure 4.18: Input and output grids as inputs for 3DCNNs 

To train the network, the output grid was used to calculate the relative position between inlet and 

output points and outlet and output points. Therefore, the relative positions of the inlet and outlet 

as cartesian coordinates of x, y, and z were embedded in the input matrix. Additionally, the coding 

of wind speed and direction were in the categorical values between zero and one, e.g., the coding 

for a wind direction of 90 degrees was one, and that of 45 degrees was 0.5. 
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2) 3DCNN model architecture  

This section describes the architecture of the AirVox models used to predict the wind speed and 

pressure inside the given geometry. Because the validation of the high performance of Conv-

Deconv architecture in BPS for radiation was in the CoolVox study, different ANN architectures 

currently used in the computer vision were added with the traditional 3DCNNs. Figure 4.19 

illustrates four different 3DCNNs used for training voxelated datasets.  

 

Figure 4.19: Different 3DCNNs architectures for training airflow network 

After developing the standard CNNs, convolutional residual networks, and convolutional-

deconvolution networks, the same input representation of a volumetric shape was adopted: a 

voxel matrix of resolution 323. Therefore, each point in section 1 is first converted to a voxel 

representation with a regularly populated 3D matrix.  
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Standard convolutional neural network (S-Conv) 

Standard convolutional neural network (S-Conv) is a well-validated approach for efficient training 

of multiple layers for various applications. The S-Conv architecture shown in Figure 4.19 on the 

left comprises 3D convolutional layers, batch normalization, activation function (i.e., ReLU) 

layers, and fully connected dense layers. The CNNs use filters to convolve the entire voxel 

preserving the 3D properties of inputs and generating different feature maps. Owing to the 

presence of local connectivity, CNNs preserve the correlation between neighboring pixels with the 

fixed object’s location. The 3 x 3 x 3 filters were used and the same number of filters for the same 

output-feature map size. Next, the batch normalization layers accelerate the training process by 

standardizing the inputs to a layer. Lastly, the fully connected layers provide meaningful outputs 

while maintaining the non-linear combinations of features from the input space.  

Convolutional residual neural network (Res-Conv) 

Convolutional residual neural network (Res-Conv) is formulated based on the hypothesis of 

residual mapping, which easily optimizes the network by mapping identities by a stack of 

nonlinear layers. Based on the S-Conv architecture, shortcut connections were inserted in this 

architecture, enabling the networks to have residual properties. In Res-Conv architecture for 

AirVox, the training outputs are added to the outputs of the stacked layers, and the networks are 

trained ReLU with backpropagation.  

Convolutional-deconvolutional network (Conv-Deconv) 

The voxel-to-voxel mapping on the 3D matrix by encoding numerical combinations of position 

and vectorized values was created to formulate learning architecture from a whole input voxel 

grid to the output a voxel grid. Convolutional-deconvolutional network (Conv-Deconv) takes the 
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convolution and deconvolution layers as the main architecture to maintain values in the voxel 

while training the networks. The top half of our network is an encoder structure that results in the 

condensed representation of the voxel grid that connects to a fully connected layer. The bottom 

half of the architecture reconstructs the network, which is the same size as the matrix of inputs 

layers. This stage uses deconvolution layers to expand the condensed representation of the inputs 

to output predictions.  

Convolutional-deconvolutional network (Conv-Deconv-Skip) 

The accuracy of predicting performance metrics using Conv-Deconv networks has been proven in 

previous experiments on the radiation intensities on the buildings’ facades. However, the airflow 

required a finer resolution of the output distribution compared to radiation. While maintaining 

the Conv-Deconv structure, the skip-connection layers were added to feed more information. This 

network has similar architecture to the U-nets (Ronneberger et al., 2015). In addition, it is 

carefully optimized for training voxels for AirVox. To complete Conv-Deconv-Skip networks, the 

pooling operators and upsampling layers were used as baseline operators like Conv-Deconv 

networks but added fully connected layers to combine the localized data to the up-sampled output.  

3) Results and Prediction 

In this section, the airflow patterns with magnitude on the voxel grids using S-Conv, Res-Conv, 

and Conv-Deconv were illustrated. Figure 4.20 compares the mean-squared error (MSE) of the 

training and validating sets using S-Conv networks. The errors are calculated based on the 

exclusive areas such as buildings’ indoors because of the customized loss function. The results of 

predicting angled flow show limitation of using S-Conv architecture. 
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Simulated values (wind direction = 0) S-Conv prediction (wind direction = 0) 

  
Simulated values (wind direction = 45) S-Conv prediction (wind direction = 45) 

Figure 4.20: Visualized results comparison: Simulated vs CNNs predictions 

As demonstrated from the plotted airflow pattern at 2.0 m height from the ground level, the 

predictions of different wind directions (i.e., 0 degrees and 45 degrees) and same wind speed, 3 

m/s, are plotted in Figure 4.20. S-Conv model predicts the flow’s magnitude well with the airflow 

perpendicular to the inlet (images in the first row in Figure 4.20); however, it fails to predict the 

directional airflow at 45 degrees from the inlet (images in the second row in Figure 4.20). This 

shows that the S-Conv is insufficient for predicting indoor airflow patterns with angled flow from 

the inlets. Therefore, the other three networks were trained to prove the feasibility of 3DCNNs for 

airflow simulation. 

Firstly, Res-Conv was trained since it has more light architecture than Conv-Deconv and directly 

expanded from the original S-Conv model. Res-Conv captured the airflow patterns more 



 
83 

 

accurately than the S-Cov (images in the first row in Figure 4.21). However, the predicted values 

near the boundary areas show a higher level of errors than the Conv-Deconv model (images in the 

second row in Figure 4.21). Comparing Res-Conv and Conv-Deconv revealed that Conv-Deconv 

has a stronger ability to capture the general wind speed across interior space.  

  

Simulated values (wind direction = 30) Res-Conv (wind direction = 30) 

  

Conv-Deconv (wind direction = 30) Conv-Deconv-skip (wind direction = 30) 

Figure 4.21: Visualized results comparison: Simulated vs. other models predictions 

The Conv-Deconv model predicts the airflow magnitude most accurately, yielding the MSE errors 

at 0.036 for validation sets. Additionally, Conv-Deconv-Skip model was proposed to increase the 

accuracy of the Conv-Deconv networks. The Conv-Deconv-Skip model takes the base architecture 

of Conv-Deconv networks and adds additional skip connection layers to preserve more 

information during the training periods. This architecture was carefully designed to capture 
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detailed phenomena around the edges areas and opening areas when predicting airflow. 

Consequently, the Conv-Deconv network with skip connections outperformed the other networks 

for all three wind vector components in both magnitudes and directions. 

Figure 4.22 shows the predicted and simulated values in the same plot with different vector 

components of x, y, and z for different architectures with height increments from the ground to 

the ceiling. The dotted line shows the original simulated data, and the solid line shows the 

predicted value as output from the ANNs. This figure shows more distinctive performance 

differences in vertical levels between different models. Conv-Deconv architecture demonstrates 

outstanding performance compared to the Res-Conv Networks in all wind vector components. In 

addition, the difference between Conv-Deconv and Conv-Deconv with skip connection is not very 

distinctive. Errors are generally low near the opening height, which is between 0.5 m to 2.5 m, 

and increase when it is close to the ceiling and with no opening areas.  

        Res_Conv      Conv_Deconv            Conv_Deconv-Skip 

   
Figure 4.22: wind speed analysis for different height of the rooms among different models  

Table 4.4 compares the mean absolute error (MAE) and the mean squared error (MSE) of the 

training and validation sets. Because of the customized loss function, the basis for calculating the 

errors was the exclusive areas such as the buildings’ indoors. In addition, the training time 

increases proportionally due to more complex architecture with hidden layers. Consequently, it 

was found that the least MAE errors with Conv-Deconv architecture at 0.36 and the least MSE 
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errors with Conv-Deconv-Skip architecture at 0.0059. Conv-Deconv takes 1/3 less time for the 

training model than skip connection but yields similar errors.  

Table 4.4: Loss comparisons of proposed CNNs. 

 
S-Conv Res-Conv Conv-Deconv Conv-Deconv-

Skip 

Training time, s 65 s 74 s 195 s 256 s 

MAE 0.357 0.139 0.036 0.048 

MSE 0.064 0.05 0.008 0.0059 

Buildings are 3D objects, thus their performance information can be formulated as a 3D matrix. 

Therefore, it is important to check the prediction accuracy across different levels in buildings. To 

discuss the prediction results further, the prediction results are plotted in Figure 4.23 from 1.5 m 

to 4.5 m at intervals of 1 m. 

The Conv-Deconv-Skip model was used to output the results, and the MSE errors were plotted 

with the comparison results of the simulated and predicted values. The result plots in each plane 

show visually similar airflow patterns and magnitude for both simulated and predicted data across 

all heights. The error plot on the right shows the absolute difference of all three wind vectors from 

the simulated data. Among all the error plots, the lowest observed average MSE was for the 1.5-m 

outputs because of the relatively low wind speed across the lower plane. However, it is also well-

captured at the height of the openings. Both planes with an inlet (3.5 m) and outlet (2.5 m) yielded 

an MSE of 0.003, which is a lower error rate than the average errors of the proposed models.  
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Figure 4.23: Result plots with different height levels (Conv-Deconv-Skip) 
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4) Discussions 

Owing to the densely populated voxelated grids for the input boundaries, potential geometries, 

and inlet and outlet locations, the test sets to prove the generalizability in predictions. The way of 

computing the input matrix is identical to generating the training and validation sets. The only 

thing that should be of concern in modeling inputs is to make sure their boundary definition 

matches the ANN’s boundary definition. To test the accuracy and adaptability of the networks on 

different geometry configurations with positions of inlet and outlet, a narrow rectangular-shaped 

room was introduced as a test case instead of the squared plan (Figure 4.24).  

  

     
Figure 4.24: The comparison of results with simulated values in different section levels.  

The bottom plots of Figure 4.24 show that the model predicts the airflow indoors with increasing 

height with an average MSE error of 0.07. The plots from different heights show the general 

indoor air velocity in reasonable amounts but fail to capture the air turbulence with errors lower 

than 1.3 degrees.  
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Figure 4.25: The comparison of results with simulated values and error plots. 

Because the test sets include different geometry boundaries from the training sets, the location of 

the inlets is crucial. The experiments with different locations of inlets in voxels show different 

results, shown in Figure 4.26. In Figure 4.26, AirVox predicts the indoor velocity field better when 

the inlet location is on the boundary layers. The inlet positioned in the voxel boundary shows the 

MSE errors at 0.65, yet the inlet in the middle of the voxel shows errors of 3.2. When the test 

geometry’s location was in the middle of voxels, the error increased significantly and failed to 

predict the airflow pattern accurately.  

 

 

 

 

Figure 4.26: The result comparison of the different positions of building in the voxel.  
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Another finding from the test set experiments is that the inlet’s location is not aligned façade of 

training sets. Since the training sets comprise the square-shaped buildings with various window 

locations, the AirVox fails to capture the airflow indoors when the inlet position is on the diagonal-

shaped wall (Figure 4.27 on the left). However, when the inlet is on the boundary of buildings in 

a voxel with the same building shape, the AirVox predicts indoor airflow well, yielding errors of 

0.06. For future works, to overcome the problem during this experiment, the data augmentation 

with the rotations of buildings geometry in given voxels is highly recommended.  

 

Figure 4.27: The result comparison of the different building’s inlets location  

The findings from the airflow simulation studies are as follows: 

• 3DCNNs with convolution and deconvolution architecture predict airflow indoors well. 

• Conv-Deconv model can be further improved by adding skip connection layers. 

• 3D geometric data must contain the inlet and outlet information related to the voxels. 

• The data augmentation with rotation works well by covering more diverse wind options 

with rotated geometries. 
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4.2 Algorithms for 3D data exchangers 

The ANNs model for radiation and airflow were decided from the two main experiments in this 

chapter. However, implementing the ANNs model into CAD software requires the pre- and post-

processing of the buildings’ data and results mapped into the voxelated matric. This section 

describes the algorithms implemented as a part of the workflow. Algorithms to convert geometry 

to voxel and map voxelated information back into the surfaces need to be developed. In computer 

graphic practice, there are several algorithms to convert a surface to a voxel grid, such as winding 

number and ray-casting. Marching cube is one of the widely validated techniques for retrieving 

the surface from voxels in practice. These are used for the core algorithms that convert CAD 

geometry to the inputs for ANNs and vice versa.  

 

Figure 4.28: Diagram of converting both surface to voxel and voxel to surface 

Figure 4.28 describes the relationship between implemented algorithms: (1) convert surface to 

voxel and (2) retrieve the 3D model from the voxelated matrix. The first step is designed for 

converting building geometry information to the input for the neural networks. The second step 

is to preserve the simulation properties of the original building geometry.  
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4.2.1 Robust voxelization 

4.2.1.1 Ray-casting 

Voxel-ray-cast algorithm is one representative algorithm to traverse voxel form (Figure 4.29). The 

projected ray detects whether the properties that penetrate are either the voxel boundary or not. 

Due to its simplicity and speed, many software use this method to create voxel matrix from the 

geometries. 

 
Figure 4.29: Ray-casting solution and algorithm application 

4.2.1.2 Winding numbers 

This algorithm was designed to compute its winding number by traversing over all triangles in 

meshes.  

• To solve the problem of the open-boundaries, winding number methods were used to 

compute a sum of signed solid angles of each triangle (1).  

𝑤(𝑝) =  
1

2𝜋
∮ 𝑑𝜃

𝑐
  -> Naïve discretization ->  𝑤(𝑝) =  
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• Winding numbers: For 3D solid angle generalization (2) 
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4.2.2 Surface and mesh generation 

4.2.2.1 Marching cubes (3D) 

Marching cube has 256 different situations as reference geometries, and those properties are 

generalized to 15 cases by rotations and symmetry. The stepwise example below shows the 

application of this algorithm.  

• Step 1: Consider a cell defined by eight data values (Figure 4.30). 

                     
   Figure 4.30: Marching cube points reference 

 

• Step 2: Classify each voxel according to whether it lies outside the surface (value > 

isosurface value) and inside the surface (value ≤ isosurface value, Figure 4.31). 

• Step 3: Use the binary labeling of each voxel vertex to create an index (256 possible 

different classification and finite cases, Figure 4.32). 

 
       Figure 4.31: Voxel classification process 

 
            Figure 4.32: Voxel labeling process 
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• Step 4: For a given index, access an array storing a list of edges. All 256 cases can be 

derived from 1+14 = 15 base cases due to symmetries (Figure 4.33). Edge lest in the look 

up table helps finding a optimal case (Figure 4.34).  

 
 

Figure 4.33: Symmetries from 256 cases 

 
 

   Figure 4.34: Get edge list from lookup table 

 

• Step 5: For each triangle edge, find the vertex location along the edge using linear 

interpolation of the voxel values (Figure 4.35).  

 
Figure 4.35: Find the location of the vertex along the edge 

 

• Step 6: Calculate the normal at each cube vertex (central differences, Figure 4.36) 

 
Figure 4.36: Calculate the normal at each cube vertex 

 

• Step 7: Consider ambiguous cases (e.g., adjacent vertices – different states, diagonal 

vertices) 
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The algorithms explained above show the potential application of the middleware for surface-

based simulation. This type of middleware software can be applied to grid-based simulations to 

help users convert buildings’ geometry to a voxelated data structure for ANN inputs. Furthermore, 

the performance of the marching cube reveals the potential applicability to process ANNs outputs 

as the inputs of the BIM modeling interface.  

4.2.3 Discussions and Findings 

Often in early design, setting up one simulation case for one specific concept involves manually 

defining complex parameters (Nguyen et al., 2014). Furthermore, the runtime is relatively long 

and may interrupt the architect’s train of thinking for the conceptual design; ideally, the software 

feedback time is less than 10 s (Miller 1968). As surrogates are evaluated instantly (< 0.1 s; Liesje 

et al., 2014), they can provide rapid feedback and an expeditious optimization. The ANNs-Solar 

ANNs-Airflow is the proper surrogate model, which is lightweight and can be embedded easily 

into any BPS software. 

With the development of two middleware to process data, the use of ANNs-Solar and ANNs-

Airflow algorithms in the CAD modeling interface could be completed (Figure 4.37). It was found 

that the 3DCNNs are the suitable ANNs architecture for estimating radiation intensities and 

airflow indoors on the buildings’ facades yielding a high level of accuracy. 

Therefore, the customized data exchangers for the 3DCNNs are essential for completing the 

modeling and consulting workflow. 3DCNNs are the best representation methods for voxelated 

data structures of the buildings’ geometry and environments tested in the previous section. Using 

voxel-based CNNs as input, the proposed 3DCNNs (i.e., ARINet, CoolVox, and AirVox) can 

internally learn the underlying physics and geographical relationships. 
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Figure 4.37: ANNs-solar workflow with 3DCNNs representation 

Previous solar radiation studies used a voxelated matrix as input for the 3DCNNs, thus, including 

a large quantity of unnecessary information inside the matrix. This set of methods converts 3D 

shapes to sample representations and regularly applies a CNN to them. The voxel-based methods 

rasterize 3D shapes as an indicator or distance function sampled over dense voxels and then apply 

a 3DCNN over the entire 3D volume.  

Defining a proper resolution for the voxel and maintaining the geometric properties of buildings 

are important. It can be shown that the voxelated surfaces for the inputs of the ANNs-Solar, 163 

and 323voxelated surfaces show distortions of the original geometries, mainly for the curvature of 

the facades and the shading elements and balconies on the facades (Appendix C). Starting from 

the 643 voxelated surface, the distortion percentage is reduced by maintaining the sophisticated 

surfaces of the buildings’ geometries. However, increasing the size of voxels, increases the 

computation time significantly. Therefore, the accuracy and training time with different sizes of 

voxels on the CoolVox was tested. Table 4.5 lists the results of computation time for each iteration 

in seconds with validation errors. It was found that the model accuracy increases when training 

voxels with a 643 voxelated input matrix. Because the memory and computation costs grow 
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cubically as the voxel resolution increases, these methods can become tremendously expensive. 

According to Wang et al. (2017), Octree 3DCNN significantly reduced the computation time with 

a sparsely sampled matrix. In Wang’s model, Octree provides an efficient 3DCNN solution for 3D 

shape analysis. Because Octree grows quadratically as the Octree depth increases, it is suitable for 

analyzing high-resolution 3D models. 

Table 4.5: The results comparison between the computation time and model accuracy 

Basemodel 1283 643 323 163 
 

 

 

 

 

 

 

 

 

 

Iteration time, s 172 17 8 4 

Error 0.141 0.158 0.221 0.286 

 

One significant advantage of using 3DCNNs is that they maintain the orientation of the building 

because 3DCNNs preserve the voxel structure throughout the radiation prediction process. 

Consequently, the CoolVox model consistently predicts high radiation intensity on the south 

façade, low radiation intensity on the north façade, and varying radiation intensities on the east 

and west sides of the building. Therefore, Octree and other relevant methods will be tested in 

further studies designed to reduce the size of the different 3DCNNs. In addition, different types 

of ANN-based BPS models, such as airflow and building energy consumption, could be developed 

and tested using the proposed methods. Graph-based CNN models are other areas that need 

further investigation. Since 3DCNNs structures were optimized for both radiation and airflow 

predictions, the ways to reduce computational time are critical issues to be addressed. Along with 

the ideas of Octree CNNs and other efficient CNNs, graph CNNs should also be tested and 

developed to improve the proposed models 
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Chapter 5 

 

Interoperability Framework 

 

This chapter discusses the comprehensive interoperability framework for the data-driven BPS 

with a stepwise explanation. Figure 5.1 shows the proposed framework with essential components 

and models. It includes ANN models and two primary data exchangers, Data Exchanger 1 for the 

ANNs (for data pre-processing) and Data Exchanger 2 for IFC (for data post-processing), along 

with an ANN-based BPS workflow.  

This framework illustrates the workflow and sub-processes for researchers trying to build a 

comprehensive interoperability framework for different CAD and BIM software packages with 

ANN models. When researchers develop their own ANN models for BPS research and practice, 

they can evolve the process and required algorithm for data conversion and implementation from 

CAD to BIM models. 
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Figure 5.1: CAD/BIM to ANN-based BPS comprehensive framework. 

Figure 5.2 illustrates the order of each sub-process and its connectivity. Section 5.1 explains the 

ANN models completed for BPS tasks related to solar radiation and airflow. Section 5.2 delineates 

the data conversion processes and details for developing two main data exchangers: the geometry 

representation tool (GRT) and the BIM specification tool (BST).  

 

Figure 5.2: Detailed components for the chapter 5 and section numbers. 
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5.1 ANN and data modeling for different BPS tasks 

Figure 5.3 illustrates the main contents for the section 5.1. As a result of chapter 4, 3DCNNs can 

be referred as the best method for representing building geometries and environments being 

tested in research on voxelated data structures. By using voxel-based 3DCNNs as inputs, they 

initially learn the underlying physics and geographical relationships. 

 

Figure 5.3: ANN models in the comprehensive framework. 

Figure 5.4 shows the most suitable architectures of 3DCNNs for the solar radiation simulation 

and the airflow simulation respectively.  

 

Figure 5.4: Final ANN models for different BPS tasks (left: solar radiation, right: airflow) 
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The previous section validated that the 3DCNNs outperformed conventional CNNs in predicting 

radiation and airflow. Among the various 3DCNN models, the convolutional and deconvolutional 

network types performed accurately for all the BPS tasks conducted in this study. The radiation 

results for the convolutional and deconvolutional (Conv-Deconv) networks had the lowest errors: 

0.026 for the training and 0.033 for the validation sets (normalized total radiation, kWh). For the 

airflow indoors, it was found that the outlet airflow did not always follow the original pattern of 

Conv-Deconv networks. Thus, the skip connection layers were added atop the existing Conv-

Deconv networks. The results from the Conv-Deconv skip model showed the closest pattern, 

specifically, inlet and outlet areas with the lowest MSE errors at 0.006 (normalized wind speed, 

m/s). 

5.2 Development of data exchangers for different BPS 

tasks 

The development of individually tailored plug-ins included a geometry representation tool (GRT) 

and a BIM specification tool (BST) (Figure 5.5). The GRT is middleware that transforms the 

building geometry and environmental information specified by CAD tools such as Rhinoceros, 

Revit, and AutoCAD into applicable geometric definitions through applications that support ANN 

training and prediction. The BST is a middleware that converts performance metrics and relevant 

data to BIM standard formats such as IFC. There are several rules for data translation and 

representation, including provisions for geometric conversion and numerical information 

transfer (as described in the previous section).  
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Figure 5.5: Main data exchangers: pre- and post-processing. 

The GRT rules for data transformation consist of several steps already described in previous solar 

radiation studies. Some additional rules imbedded in the GRT include translating the cartesian 

coordinates of the CAD geometry into a voxelated 3D matrix, converting the performance metrics 

and environmental information into numerical values as arrays, identifying spaces and boundary 

conditions as different categorical values (i.e., binary or ternary padding), and encoding all 

numerical and categorical information as binary inputs for the 3DCNNs. The GRT can generate 

usable building information for ANN-driven BPS.  

Additional rules imbedded in the BST include translating the coordinates of the geometry from 

the matrix to the IFC geometry definition (i.e., Brep/surface model, tessellated surface, 

Constructive solid geometry (CSG) primitive, and swept solid), transferring the BPS simulation 

results into a mesh-or graph-like IFC format, and preserving input and output for future BIM use. 

In this study, the IFC 2.3 and 4-example files were considered for BST prototype development 

and included lists of lists, binary representations, and tessellated geometry. Furthermore, the 
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IFC-OWL data schema was investigated to increase the reasoning, querying flexibility, and use of 

linked data in semantic web environments.  

GRT- and BST- Solar and GRT- and BST- Airflow were developed and implemented to 

demonstrate the feasibility of using the required data structures. GRT-Solar takes voxelated 3D 

matrices as inputs to predict annual radiation intensities, while BST-Solar generates the boundary 

representation outputs of the given geometries to simulate future radiation for window control 

and operation. GRT-Airflow takes voxelated 3D matrices as inputs to predict indoor airflow, while 

BST-Airflow generates boundary representation outputs of given geometries to allow future 

airflow prediction for the buildings’ opening design. Figure 5.6 explains the input for the GRT and 

output of the BST in the BPS simulation.  

To accomplish the comprehensive framework, two middleware items were proposed to pre-

process inputs and post-process the output data. The development of the specifically tailored 

plug-ins included the GRT and BST. 

 

Figure 5.6: Data exchangers (GRT and BST) for ANNs-solar. 

• GRT is middleware that transforms building geometry and environmental information 

specified by CAD tools such as Rhinoceros, Revit, and AutoCAD into applicable geometry 

definitions for applications that support ANN training and prediction.  
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• BST is middleware that converts performance metrics and relevant data into BIM 

standard formats such as IFC. There are several rules for data translation and 

representation, including rules for geometry conversion and numerical information 

transfer, as described in the previous section.  

5.2.1. Data exchangers for solar radiation simulation 

The study of solar radiation takes grid-based inputs as main reference points and produces 

visualized maps with values (Figure 5.7). The same simulation process was adopted to complete 

the workflow for solar radiation. In this section, the GRT and BST for solar are delineated through 

a stepwise process map and guidance. 

 

Figure 5.7: Data exchangers for solar diagram 

5.2.1.1 GRT-Solar principles 

GRT-Solar takes the Brep geometry as input and outputs voxelated grids mapped with pre-

calculated distances and categorical values. The voxelated grids are populated with fixed 

parameters from the global coordinates in x-, y-, and z-dimensions. The 51 x 51 x 51 grids was used 

as a reference for the 3D voxel dimensions for GRT-Solar. Because most daylighting simulation 

standards require a 0.5 m or less grid-side as a minimum reference distance, the reference grid 

size was fixed to 0.5 m, i.e., the final voxel boundary dimensions in this study were 25 m x 25 m x 

25 m equivalent grids. The 0-padded voxel grids were filled with values containing the different 
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characteristics of surfaces, such as voxel boundaries, voxel output grids, and voxel contexts. 

Figure 5.8 lists all the required inputs parameters for the ANNs-Solar. 

 

Figure 5.8: GRT-Solar input and output information. 

Figure 5.9 shows the stepwise process for extracting building geometry for GRT-Solar. In Step 1, 

once users input Brep-type geometry that contains information regarding the walls, roof, slab, 

and openings, GRT-Solar automatically detects the different properties of the building blocks and 

separately tracks the geometry and property information. Step 2 separates the open and closed 

wall information with different categorical values. Lastly, GRT-Solar takes the internal layers of 

the closed walls to the indoor target plane and uses that surface to create the building voxel grids 

with output grids (Step 3).  

 

Figure 5.9: GRT-solar stepwise process. 

Assuming all the populated points are located in the correct positions and match with the global 

voxel grids, the values were mapped through an input encoding process. Each voxel point in the 
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target building contains reference distance values from the openings and global reference points 

and weather information. Voxel grids outside the target building contain information indicating 

the existence of contextual buildings. Other than contextual buildings, all outside voxel areas are 

padded with 0s, further reducing the model size for training.  

Figure 5.10 shows the process for encoding the input values for ANN modeling. For example, 

input information was designed with three different properties: air (indicating no building or no 

contextual building), façade (indicating a target building), and context (indicating contextual 

buildings). Therefore, air voxels are encoded as [0, 0, 1], facades as [0, 1, 0], and the context as [1, 

0, 0]. Additionally, location information such as longitude and latitude are encoded with 

numerical values with tuple values (i.e., Boston = [42.36, -71.05]). Output grids are utilized later 

for the values predicted by ANN-Solar models. 

Appendix D summarizes detailed information regarding the mapping methods for GRT-Solar. 

GRT-Solar vectorizes input lists into the voxel networks and uses both one-hot encoding and 

numerical methods to inform ANNs of the numerical relationships. 

 

Figure 5.10: GRT-Solar value padding on each voxelated grid. 
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5.2.2.2 BST-Solar principles 

BST-Solar communicates with software such as Revit. the IFC 2.3 and 4 data structures were 

chosen as a base model and processed the data to regenerate our model in both CAD and BIM 

software for further analysis. For a seamless workflow, all geometric information from the CAD 

models was tracked and stored in IFC data structures. Figure 5.11 shows how to accommodate 

each component in the relevant IFC data format. 

 

Figure 5.11: The IFC inputs for the CAD and voxel models. 

 

Information delivery manual (IDM) provides guidance regarding the IFC framework. The IDM 

provides comprehensive references regarding information requirements to the AEC/FM industry; 

therefore, it is ideal to have an IDM for ANN-Solar to develop a consistent project-specific process 

and set of models. An information exchange requirement (ER) is a set of information from the 

information model that is applicable to the specific design stages. An ER should describe the 

information in non-technical terms. A functional part (FP) focuses on the individual actions 

within the delivery process, such as exchanging a building model. It is necessary to model walls, 

roofs, slabs, windows, etc. The action of modeling each of these elements is described within a 
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functional part. Business rules (BR) provide specific details about the business rules as textual 

expressions. BRs should contain informative notes and guidance. Appendix E lists the 

requirements for IDM-Solar with different functional and business parts. BST-Solar provides 

reliable information regarding geometric properties and functional parts to simulation 

practitioners for further analysis and certification. Appendix E lists all required modeling 

properties and simulation details needed to document any further analysis.  

5.2.2 Data exchangers for airflow simulation 

In practice, the study of indoor airflow distribution takes voxel-based inputs from the mesh-like 

geometry as main reference points and produces a visualized map with values (Figure 5.12). The 

same simulation process from the conventional CFD simulation was utilized to complete the 

workflow for airflow. This can be applied to different types of CFD software and various CAD 

software. 

 

Figure 5.12: Data exchangers for airflow diagram. 

The scripts for each data exchanger are coded in Python3 and will be made available to the 

community. In this section, the GRT and BST for airflow are delineated with a stepwise process 

map and guidance. The general workflow is similar to the data exchanger for solar, but the 

detailed information and voxel representation methods are differentiated to optimize training and 

the prediction process. 
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5.2.2.1 GRT-Airflow principles 

GRT- Airflow mainly takes the mesh-like geometry as input and outputs a voxelated volumetric 

grid. Figure 5.13 illustrates the GRT workflows for airflow modeling and simulation. The 

voxelated grids are populated with fixed parameters from the world coordinates in the x-, y-, and 

z-dimensions. The 32 x 32 x 32 grids were crested as references for the 3D voxel dimensions for 

GRT-Airflow. The 0s padded voxel grids are filled with values containing different surface 

characteristics, such as voxel boundaries with inlets and outlets and volumetric output grids. 

 

Figure 5.13: GRT-Airflow input and output information 

Figure 5.14 shows the stepwise process for extracting building geometry for GRT-Airflow. In Step 

1, once users input the mesh-type geometry containing information regarding the walls, roof, slab, 

and openings, GRT-Solar automatically detects the different properties of the building blocks and 

separately tracks the geometry and property information. Unlike GRT-Solar, GRT-Airflow asks 

users to decide the locations of inlets and outlets for flow simulation. Step 2 separates the 

openings and closed-wall information with different categorical values. Lastly, GRT-Airflow takes 

the internal layers of the closed walls to the indoor target plane and uses those surfaces to create 

an array of voxel grids with output grids (Step 3).  
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Figure 5.14: GRT-Airflow stepwise process diagram 

With a given volumetric grid in a virtual box (i.e., 32 x 32 x 32 grids), the locations of target 

buildings are mapped in the voxel grids with a value of [1,0,0], representing building facades 

(Figure 5.15). In the next step, the values mapped on the facades are replaced with the openings 

information. GRT-Airflow requests replacing values for the inlets [0,0,1] and outlets [0,1,0] 

instead of [1,0,0]. This informs the ANNs, allowing them to understand airflow indoors with the 

relevant locations of inlets and outlets. Additionally, GRT-Airflow requires wind information to 

be input, such as the direction and speed from the inlet. Output volumetric grids are mapped with 

the relative cartesian coordinate values for analysis. Appendix F summarizes the required 

information and structure of the inputs for GRT-Airflow. GRT-Airflow vectorizes the input lists 

into the voxel networks and uses both one-hot encoding and numerical methods to inform ANNs, 

allowing them to learn the numerical relationships. 

 

Figure 5.15: GRT-Airflow value padding on each volumetric grid. 
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5.2.2.2 BST-Airflow principles 

BST- Airflow communicates with different software packages such as Revit. Similar to BST-Solar, 

BST-Airflow stores modeling properties and detailed information in the form of IFC data 

structures. Figure 5.16 shows that BST-Airflow preserves the information of the walls, roof, slab, 

and window openings. Additionally, it preserves the location information of the volumetric grids 

on the internal layers of facades. Later, it matches the populated voxel grids to the simulation 

results and sends information to the energy modeler and other engineers for reference regarding 

indoor airflow performance. All architectural geometries taken for the IFC 2.3 are in the form of 

Breps, meshes, and solid extrusions. BST-Airflow stores a mesh-type geometry after processing 

inputs for IFC-equivalent components such as IFC-Wall. 

 

Figure 5.16: The IFC inputs for CAD and ANNs-based BPS models 

In addition to architectural properties, IFC takes coordinates and property value lists as additional 

documentation. Therefore, BST-Airflow extracts all volumetric grids and equivalent values as lists 

of lists and delivers them to practitioners. Appendix G summarizes the type requirements for each 

property as different data structures that enable users to deliver modeling information for use in 

different software packages such as Revit. The structured coordinates and relevant numerical 

values can be stored as arrays and lists with a text description of simulation parameters (i.e., 

OpenFoam parameters) and detailed location information (Appendix G) 
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Chapter 6 
 

Validation 

 

This section discusses the application of the comprehensive interoperability workflow for the 

data-driven models. Two CAD modeling software packages (i.e., Rhinoceros and Revit) and two 

BIM software packages (i.e., Revit and OpenBIM) were used to demonstrate the feasibility of the 

proposed workflow (Figure 6.1).  

 

Figure 6.1: Software used for the workflow demonstration 

The Python 3 package compatible with the DL models was coded and distributed via GitHub for 

use by researchers around the world. The Grasshopper script and Python-enabled interface in 

Rhinoceros were utilized and the building geometry in both Rhinoceros and Revit was 

manipulated interactively. The traditional CAD modeling tools inevitably incorporated the 
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functionality of ML and DL in their workspace. Currently, Rhinoceros and Revit provide their 

extension programs for ML and DL to users. Due to this trend, the Python code package was 

developed for data-driven modeling for BPS. This package can be implemented with various 

modeling software that function with Python script. In addition, the interoperability check 

conducted with different software was completed by utilizing the freely available IFC viewer 

software, OpenBIM, and Revit. Figure 6.2 and Figure 6.3 illustrate the modeling and prediction 

workflow for solar and wind, respectively. An ANN radiation model takes inputs such as Breps as 

geometry and calculates the spatial daylight autonomy (SDA) or annual radiation map as outputs. 

 

Figure 6.2: Workflow for solar radiation ANN model. 

The airflow ANN model takes the geometry with input and output information as input and 

calculates the airflow patterns. The proposed Python package has functionality for both ANNs-

solar and ANNs-wind with connectivity to CAD and BIM software and ANN models. 

 

Figure 6.3: Workflow for airflow ANN model. 
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6.1 Python packages and software integration 

Python packages were developed for the GRT and BST. Both functions were coded using Python3 

and released online as a package. Users can easily download this package and use it as a means of 

preparing to run ANNs for solar or wind. Figure 6.4 delineates the inputs and outputs represented 

in the modeling interface. To demonstrate the workflow, a simple box-shaped geometry with 

different opening sizes and locations was used. The Python package contains two main functions: 

GRT and BST. The GRT is the pre-processing component that allows network input preparation 

for ANNs. It takes the internal surface geometry as input and passes the voxelated networks to 

the ANN models. The predictions are plotted instantaneously in the Rhino view with a relevant 

color legend and given geometries. In this demonstration, the regularly populated voxel grids 

were used, which represent the positions for the SDA results and 3D wind vectors.  

 

Figure 6.4: Analysis properties and representation for CAD software (GRT). 
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The BST is the post-processing component; thus, it converts IFC geometries and property 

information and translates coordinate information with IFC details to complete the IFC data file 

format. The BST mainly takes two types of inputs, extruded models such as Breps and surface 

models for populating the positions of the voxel grids with given geometries. BST includes the 

workflow for converting a CAD geometry into a BIM model, which can be directly shown in the 

Revit interface. In the Grasshopper canvas for Rhino, users specify the details for IFC geometries 

such as walls, roofs, and slabs. RhinoInside is a Revit plugin that directly imports, exports, or 

transfers the workflow from Rhino to Revit. When a user manipulates a geometry from Rhino, the 

user sees the changes in Revit.  

 

Figure 6.5: Analysis properties and representation for BIM software (BST). 

After transferring models from Rhino and Revit, users must define the IFC properties of the 

models in .txt format. This exercise used IFC 4 as an example and transferred the converted 

information of walls, roofs, slabs, and the internal meshes with point coordinates and other 



 
115 

 

weather information to the IFC 4. Coordinates with values mapped on grids were converted into 

an array structure (a list of lists) along with reference points defining the building’s indoors and 

location and use of functional windows. The BST has two different templates for IFC versions 2.3 

and 4. These can be converted to IFC 4, but if the software only supports IFC 2.3, then the user 

can select the option for IFC 2.3 to store the ANN model information. Since the OpenBIM viewer 

supports both IFC 2.3 and 4, this demonstration used the most recent version of IFC. The last step 

of the demonstration involved importing the IFC file from the ANN models and visualizing its 

functional parts in the BIM viewer (Figure 6.5).  

6.2 Discussion  

This demonstration illustrates the comprehensive workflow for ANN models in a sequenced 

manner. This demonstration employed the software for CAD and BIM that is most widely used in 

the academy and industry. In addition, this demonstration utilized advanced ANN models for BPS 

tasks for future adaptations of the proposed tools. In addition, the applicability of the GRT and 

BST in real-world applications was demonstrated by introducing the currently available BIM and 

IFC software. Python3 packages can easily be integrated into Rhino and Revit by using 

Grasshopper and Dynamo (Python-enabled interfaces) for modeling tools. This package enables 

the direct use of models as ANN inputs and the conversion of important model properties into the 

IFC data structure for future use and model adaptation. Storing information is essential for 

communicating with different stakeholders at any stage of the design and consulting process and 

later submission of models for certification processes such as LEED and other relevant standards. 
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Chapter 7 
 

Conclusion 

 

This dissertation evaluated the interoperability between BIM-based and ANNs-based BPS models 

in CAD software. Based on the proposed interoperability framework, the future adaptability of the 

proposed software in the age of ANN-based BPS modeling was discussed.  

The data-driven methods and models proposed in this study reduce the computation time and 

modeling effort, reducing gaps in modeling expertise. The proposed 3DCNN models can lead to 

better design decisions at early stages, resulting in fewer post hoc design modifications across 

different software packages and platforms. The key components that serve to resolve these issues 

are the geometry representation tool (GRT) and the BIM specification tool (BST). The GRT and 

BST are essential elements that help maintain sustainable modeling and consulting workflows. 

The GRT and BST were tested in different types of CAD and BIM software, and the workflow was 

delineated through a relevant case study. This research establishes comprehensive modeling and 

data conversion methods for BPS.  
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Future work will focus on developing advanced ANN models that combine physics-based models 

with a robust geometric representation algorithm for ANN-based BPS simulations. Combining 

classical physics-based models with ANNs is an exciting avenue for future research. Finding 

optimal datasets to train ANNs is difficult. Therefore, the combined use of both models in BPS is 

a promising direction because of the amount of available data, computational time efficiency, and 

increased accuracy. For example, an ANN model trained with locally available data and embedded 

in a physics-based sky model could generate a realistic local environment by substituting 

probabilistic models for deterministic equations. Conversely, the accuracy of ANN models can be 

increased by utilizing physics-based knowledge in their optimization. This new approach will help 

overcome the existing limitations of data-driven models and enhance their potential applicability 

to real-world problems, serving as a novel transition, converting physics-based modeling 

practices into future data-driven adaptations aligned with my current research.  

Because the geometries of architectural buildings encompass more complex properties than BPS 

modeling, more efficient and robust geometric conversion techniques are required to complete 

ANN-based BPS frameworks. Currently, the BPS software deals with the simplified geometry 

needed to calculate performance metrics. Methods for modeling complex CAD-based geometries 

for ANNs have yet to be investigated. Therefore, the algorithms and techniques currently used by 

the computer vision industry should be further explored to reduce the model size and increase the 

potential applications of the complex geometry used in ANN modeling methods. 
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Appendix 
 

Appendix A. Post-IFC Tools and Development 

Integration Tools Overview Domain Intelligence Performance 
Analysis 

Schema 

Pre-Standard Integration 
IDD & GLIDE 
(Eastman and 
Henrion 1977)  

Abstraction 
hierarchies with 
analysis and 
synthesis models  

Standalone Rule-based 
Expression-
oriented 

- - 

DIS & 
CAEADS 
(C. M. Eastman 
1979) 

Design exploration 
using 
GLIDE and 
abstract 
representations 

Standalone Rule-based Structural, 
thermal, cost, 
piping, and 
distribution 
sizing 
analyses 

- 

ARMILLA 
(Gauchel et al., 
1992) 

Modular building 
approach 

Standalone Dynamic 
Constraint-
based 

 - 

AEDOT using 
ICADS 
(Pohl, J., 
LaPorta, J., Pohl, 
K. J., and Snyder 
1992) 

 Standalone Rule-based Energy 
standards, 
building mass, 
daylighting 

- 

Post-STEP Standard Integration 
COMBINE 
COMBINE 2 
(Augenbroe 
1993) 

Integrated 
environment for 
energy and HVAC 
tools in COMBINE; 
used Petri Nets 
concepts in 
COMBINE-2 

Standalone  Energy, HVAC 
tools 

EXPRESS, 
STEP 

KNODES 
(Rutherford 
1993) 

Knowledge-based 
design 
framework 

Standalone Knowledge-
based 
 

Natural 
lighting, 
energy, energy 
design, spatial 
analyzer, 
structural, 
costing 

EXPRESS, 
G 

SEMPER 
(Mahdavi et al., 
1997) 

Active, multi-aspect 
design 
environment with 
dynamic links to 
performance 
valuation tools 

Standalone KBES for 
providing 
thermal 
comfort 
feedback 
Investigative 
project 
technique 

Thermal 
(NODEM), 
airflow (Hybrid 
multi-zone, 
CFD), HVAC, 
thermal 
comfort 
(algorithmic 
routines, 
KBES), lighting 

Shared 
Object 
Model 
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(radiosity), 
acoustics 
(hybrid 
stochastic) 

Building 
Design Advisor 
(BDA) 
(Papamichael et 
al., 1997) 

Process-logic 
control for 
automating 
activation 
processes 

Standalone  Multi-criteria 
analysis based 
on light 
illuminance, 
energy use 

BDA  
data 
meta 
schema 

Post-IFC Standard Integration 
DAI 
(Augenbroe et al., 
2004) 

Four-layered 
process-centric 
workbench (design 
information, 
structure 
simulation models, 
analysis scenarios, 
and software tools) 

Standalone Process 
modeling 
and 
enactment 
(analysis) 

Thermal 
(EnergyPlus, 
PMV), daylight 
autonomy 
(IDEA-L) 

IFC, 
XML 

SEMPER II 
(Lam et al., 
2004) 

Web-based active, 
multi-aspect design 
environment that 
uses XML for data 
transfer 

Standalone Same as 
SEMPER 

Same as 
SEMPER 

IFC, 
XML 

DeST 
(Yi et al., 2007) 

Locates an efficient 
and precise 
algorithm for 
mapping data 
between DeST and 
XML-formatted 
schema 

Module-
based 

 Climate 
analysis, 
lighting, 
ventilation 
systems, 
building loads, 
economic 
models 

IFC 

Dynamic 
Building 
Model 
(Grzybek et al., 
2010) 

Open, dynamic, 
and temporal 
building model for 
intelligent 
adaptable buildings 

 Inclusion of 
temporal 
databases 
in IFC  
 

Thermal (test 
case) 

IFC 

Post-gbXML Standard Integration 
BCVTB 
(Wetter, 2011)  
SimModel  
(J. O. Donnell et 
al., 2011)  
Simergy 
(Alchemy, 2013) 

BCVTB: integrated 
building energy and 
control systems 
software; 
SimModel: data 
interoperability 
services; Simergy: 
offers linkages to 
BCVTB and 
SimModel 

Standalone Matlab 
routines 
(e.g., 
optimization) 
is accessed 
in BCVTB) 

Thermal 
(EnergyPlus, 
Modelica 
library), 
lighting 
(radiance), 
HVAC and 
controls 
(Modelica 
library), 
controls 
(Simulink) 

IFC, 
XML, 
BIM 
gbXML 

CBEMS  
(S. Wang et al., 
2011) 
 

Web- and BEMS-
based four-tier 
architecture (data 
acquisition and 
interface, 

Web-based Policy 
learning 
(self-learning 
and self-
computing), 

Energy, 
lighting, plug-
loads 

XML 
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automatic 
computing and 
execution, 
management and 
monitoring) 

Nash 
equilibrium 

DYNAMIC-
BIM 
(R. Srinivasan et 
al., 2012) 

Open-source 
environment 
Ptolemy / Revit 
interface 
for data transfer / 
Revit plug-in 

 Process 
modeling 
 

In progress, 
including 
integration of 
3D 
heat transfer, 
energy analysis, 
daylighting  

Enhances 
IFC for 
dynamic 
data 
acquisitio
n 

LadyBug 
(Roudsari and 
Pak 2013) 
(LadyBugTools 
2018) 

Plug-ins for Rhino 
and Grasshopper 

Open-source 
Web-based 

 Load 
calculation and 
daylighting 
simulations 

gbXML 

BIM2BEM 
(Jeong et al., 
2014) 

BIM2BEM 
framework and 
prototype 
Revit2Modelica  

Plug-ins BIM and 
object-
oriented 
physical 
modelling 

Modelica-based 
building energy 
models 

BIM 
API (i.e., 
Revit 
API) 

IFC to IDF 
(Kim et al., 2012)  
gbXML to IDF 
(Dimitriou et al., 
2016c) 

IFC-based input 
data file converter  

 Inclusion of 
databases 
in IFC  
 

Automated 
data converter/ 
EnergyPlus 
analysis  

IDF / 
IFC 
/ gbXML 

FloorspaceJS 
(Macumber, 
Horowitz, Schott, 
Noland, et al., 
2018) 

Open-source, web-
based geometry 
editor for BEM 

Web-based  Users define 
building 
geometry story-
by-story with 
custom 2D 
floor plans 

JSON 

IDF to JSON 
(New et al., 2018) 

JSON-based IDF 
converter  

 Inclusion of 
databases 
in IFC  
to JSON 

 JSON 

Design4Energy 
(Arayici et al., 
2018) 
 

Interoperability 
specifications 
for integrated BIM 
practice  
 

Specification 
framework 

 Monitoring of 
carbon dioxide 
emissions 
(CO2) 

IFC 
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Appendix B: Key terminology of neural networks 

Term Explanation 

feed-forward neural networks a basic type of neural network 

convolutional neural networks a neural network with the hidden layers that perform convolutions  

layer a vector-valued variable serving as input, output in neural networks 

loss function a scalar-valued function to be minimized during the training process 

stochastic gradient descent a commonly used optimization algorithm for training neural networks 

learning rate step size of the iterative gradient-based optimization algorithm 

epoch a full pass through all training data in stochastic algorithms 

batch size number of data points used to estimate gradients in one iteration 

model hyper-parameters external configuration of a network and the training process, such as 

the number of hidden layers, number of nodes per layer, activation 

function, learning rate, etc. 

train, validation, test sets the whole dataset is split into train and validation for training and 

tuning and newly create a test dataset for evaluating a model 

early-stopping a regularization technique that controls the training time in order to 

prevent overfitting 
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Appendix C: The different resolutions of voxelated surfaces for the ANNs-Solar 

Basemodel 1283 643 323 163 
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Appendix D. Summary of GRT-Solar 

GRT-Solar 

Vox1 3D positioning of the reference points 3D matrix - X.shape = (number of examples, 

xdim, ydim, zdim) 

Vox2 output mapped on the points 3D matrix - Y.shape = (number of examples, 

xdim, ydim, zdim) MINMAX normalized 

Vox3 relationship of reference point to space [0,1,0]: Indoor | [0,0,1]: air  

Vox4 relationship of surrounding surfaces to 

space 

[1,0,0]: surface of buildings 

Vox5 relationship of opening to space 0s: air and customized loss function  

List6 location information [Lat-coord, Long-coord] 

 

 

 

Appendix E. Requirements for BST-Solar 

Requirement Data 

type 

Description IFC class name 

FP1 Surface Walls, Roofs, Slabs and openings IFC wall, roof, slab and so on 

FP2 3D array Input and output grids IfcCartesianPointList3D.CoordList 

FP3 Array Relationship between opening and 

grids 

IfcPropertyListValue.ListValues 

FP4 Array Distance between opening and 

grids 

IfcPropertyListValue.ListValues 

FP5 Text Geographic location IfcPostalAddress 

BR1 Value list Radiation IfcPropertyListValue.ListValues 

BR2 Text Material information IfcMaterialList.Materials 

BR3 Text Radiance parameters  IfcPropertyListValue.ListValues 
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Appendix F. Summary of GRT-Airflow 

GRT-Airflow 

Vox1 3D position of the reference points 3D matrix - X.shape = (number of examples, xdim, 

ydim, zdim) 

Vox2 output mapped on the reference 

points 

3D matrix - Y.shape = (number of examples, xdim, 

ydim, zdim) MINMAX normalized 

Vox3 relationship of reference point to 

inlet 

[X-coord, Y-coord, Z-coord] 

Vox4 relationship of reference point to 

outlet 

[X-coord, Y-coord, Z-coord] 

Num5 wind speed [0-1] 

Num6 wind direction  [0-1] 

 

 

 

Appendix G. Requirements for BST-Airflow 

Requirement Data 

type 

Description IFC class name 

FP1 Surface Walls, Roofs, Slabs and openings IFC wall, roof, slab and so on 

FP2 3D 

array 

Input and output grids IfcCartesianPointList3D.CoordList 

FP3 Array Relationship between opening and 

grids 

IfcPropertyListValue.ListValues 

FP4 Array Distance between opening and grids IfcPropertyListValue.ListValues 

FP5 Text Geographic location IfcPostalAddress 

BR1 Value 

list 

Radiation IfcPropertyListValue.ListValues 

BR2 Text Material information IfcMaterialList.Materials 

BR3 Text Radiance parameters  IfcPropertyListValue.ListValues 
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