ĐẠI HỌC HUẾ

TRƯỜNG ĐẠI HỌC KHOA HỌC

NGUYỄN MINH QUANG

THIẾT KẾ, SÀNG LỌC VÀ TỔNG HỢP MỘT SỐ DẪN XUẤT THIOSEMICARBAZONE VÀ PHỨC CHẤT DỰA TRÊN CÁC TÍNH TOÁN HÓA LƯỢNG TỬ KẾT HỢP PHƯƠNG PHÁP MÔ HÌNH HÓA QSPR

Ngành: Hóa lý thuyết và hóa lý Mã số: 944.01.19

LUẬN ÁN TIẾN SĨ HÓA HỌC

Người hướng dẫn khoa học:

- 1. PGS.TS. Phạm Văn Tất
- 2. TS. Trần Xuân Mậu

HUÉ – NĂM 2020

LỜI CAM ĐOAN

Tôi tên Nguyễn Minh Quang, nghiên cứu sinh chuyên ngành Hóa lý thuyết và hóa lý tại Trường Đại học Khoa học – Đại học Huế.

Tôi xin cam đoan rằng:

- Những kết quả nghiên cứu được trình bày trong luận án này là công trình của riêng tôi dưới sự hướng dẫn của PGS.TS. Phạm Văn Tất và TS. Trần Xuân Mậu.
- Những kết quả nghiên cứu của các tác giả khác và các số liệu được sử dụng trong luận văn đều có trích dẫn đầy đủ.

Tôi xin chịu hoàn toàn trách nhiệm về nghiên cứu của mình.

NCS. Nguyễn Minh Quang

LỜI CÁM ƠN

Để hoàn thành luận án, trước tiên, tôi xin chân thành cám ơn sự hỗ trợ tài chính, sự giúp đỡ trong công việc và tạo điều kiện thuận lợi trong nghiên cứu thực nghiệm từ lãnh đạo Trường Đại học Công nghiệp Thành phố Hồ Chí Minh và Ban chủ nhiệm Khoa Công nghệ hóa học – Trường Đại học Công nghiệp Thành phố Hồ Chí Minh cùng các bạn bè đồng nghiệp đã giúp đỡ trong suốt thời gian thực hiện luận án. Tôi cũng xin gửi lời cám ơn đến lãnh đạo các cấp Trường Đại học Khoa học, Đại học Huế đã tạo điều kiện thuận lợi trong thời gian tôi theo học tại trường.

Tôi xin chân thành bày tỏ lòng biết ơn sâu sắc đến PGS.TS. Phạm Văn Tất và TS. Trần Xuân Mậu đã truyền đạt những kiến thức, những kinh nghiệm quý báu và tạo điều kiện thuận lợi để tôi hoàn thành luận án này.

Bên cạnh đó, Tôi cũng xin gửi lời cám ơn chân thành nhất đến GS.TS. Trần Thái Hòa, GS.TS. Đinh Quang Khiếu và tập thể giảng viên Trường Đại học Khoa học – Đại học Huế đã giúp đỡ trong thời gian qua.

Tôi cũng xin gửi lời cám ơn đến GS. James Stewart đã hỗ trợ cung cấp miễn phí phần mềm MOPAC2016 với license đến nguyenminhquang@iuh.edu.vn phiên bản Version 17.240W 64BITS.

Tôi cũng xin gửi lời cám ơn đến TS. Trần Nguyễn Minh Ân và các bạn học viên cao học, các bạn sinh viên tại Trường Đại học Công nghiệp Thành phố Hồ Chí Minh đã giúp đỡ trong suốt quá trình thực nghiệm tổng hợp trong luận án.

Cuối cùng, Tôi xin cảm ơn gia đình, bạn bè đã luôn bên cạnh ủng hộ, tạo mọi điều kiện thuận lợi và là chỗ dựa vững chắc về tinh thần để tôi vượt qua khó khăn, vững tin hoàn thành luận án này.

Tuy luận án đã hoàn thành nhưng chắc chắn vẫn còn những hạn chế và thiếu sót, do đó, Tôi rất mong nhận được sự đóng góp, chỉnh sửa để luận án được hoàn thiện và đầy đủ hơn.

Một lần nữa xin chân thành cảm ơn các đơn vị và cá nhân đã giúp đỡ.

NCS. Nguyễn Minh Quang

MỤC LỤC

LỜI CAM ĐOAN	ii
LỜI CÁM ƠN	iii
BẢNG VIẾT TẮT	xi
DANH MỤC CÁC BIỂU, BẢNG	xvi
DANH MỤC HÌNH VĨ, BIỂU ĐỒ, SƠ ĐÔ	xxi
ĐẶT VẤN ĐỂ	xxxi
CHƯƠNG 1. TỔNG QUAN TÀI LIỆU	1
1.1. THIOSEMICARBAZONE VÀ PHỨC CHẤT	1
1.1.1. Dẫn xuất thiosemicarbazone	1
1.1.2. Phức chất của thiosemicarbazone với các ion kim loại	1
1.1.3. Hằng số bền của phức	3
1.1.3.1. Khái quát hằng số bền	3
1.1.3.2. Yếu tố ảnh hưởng lên hằng số bền	3
1.1.3.3. Phương pháp xác định hằng số bền	4
1.2. LÝ THUYẾT QSPR	6
1.2.1. Giới thiệu	6
1.2.1.1. Khái quát phương pháp mô hình hóa QSPR	6
1.2.1.2. Nguyên lý phát triển mô hình QSPR	7
1.2.1.3. Kỹ thuật phát triển mô hình QSPR	7
1.2.1.4. Những ưu điểm chính từ sự mô hình hóa QSPR	
1.2.1.5. Ứng dụng kỹ thuật mô hình hóa QSPR	
1.2.2. Xây dựng dữ liệu	9
1.2.2.1. Bộ mô tả phân tử	9
1.2.2.2. Phân chia dữ liệu	11
1.2.3. Mô hình toán học và giải thuật	13
1.2.3.1. Hồi quy tuyến tính bội	13
1.2.3.2. Hồi quy bình phương tối thiểu riêng phần	13
1.2.3.3. Hồi quy thành phần chính	14

1.2.3.4. Mạng thần kinh nhân tạo	15
1.2.3.5. Máy học véctơ hỗ trợ	18
1.2.3.6. Giải thuật di truyền	21
1.2.4. Đánh giá mô hình QSPR	
1.2.4.1. Chỉ số thống kê đánh giá mô hình	
1.2.4.2. Miền ứng dụng và quan sát ngoại biên	
1.2.4.3. Chỉ số đánh giá phần đóng góp các biến số	25
1.2.4.4. Sai số giữa các mô hình dự đoán	
1.2.4.5. Phân tích ANOVA	
1.3. TÍNH TOÁN LƯỢNG TỬ	
1.3.1. Cơ học phân tử	
1.3.2. Cơ học lượng tử	
1.3.2.1. Phương trình sóng Schrödinger	
1.3.2.2. Phương pháp bán thực nghiệm	
1.4. NGHIÊN CỨU THỰC NGHIỆM TỔNG HỢP	
1.4.1. Phương pháp tách chất	
1.4.1.1. Sắc ký bản mỏng	
1.4.1.2. Sắc ký cột	
1.4.1.3. Phương pháp cô quay	
1.4.2. Phương pháp xác định cấu trúc	
1.4.2.1. Phổ hấp thụ hồng ngoại	
1.4.2.2. Phổ tán xạ năng lượng tia X	
1.4.2.3. Phổ khối lượng	
1.4.2.4. Phổ cộng hưởng từ hạt nhân	
1.4.3. Phương pháp xác định công thức phức	
1.4.3.1. Phương pháp trắc quang	
1.4.3.2. Phương pháp Job	
1.4.3.3. Phương pháp tỷ lệ mol	40
CHƯƠNG 2. NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU	
2.1. NỘI DUNG NGHIÊN CỨU	
2.1.1. Đối tượng nghiên cứu	

2.1.2. Nội dung nghiên cứu	42
2.1.3. Sơ đồ nghiên cứu tổng quát	43
2.2. CÔNG CỤ, HÓA CHẤT VÀ THIẾT BỊ NGHIÊN CỨU	43
2.2.1. Dữ liệu và phần mềm	43
2.2.2. Hóa chất, dụng cụ và thiết bị	45
2.3. XÂY DỰNG MÔ HÌNH QSPR	47
2.3.1. Tính toán sàng lọc dữ liệu	47
2.3.1.1. Thu thập dữ liệu thực nghiệm ban đầu	47
2.3.1.2. Tối ưu hóa cấu trúc	47
2.3.1.3. Sàng lọc dữ liệu	48
2.3.2. Phương pháp xây dựng mô hình QSPR	48
2.3.2.1. Mô hình hồi quy tuyến tính	49
2.3.2.2. Mô hình phi tuyến	50
2.3.3. Đánh giá mô hình	51
2.3.3.1. Đánh giá chéo	52
2.3.3.2. Đánh giá ngoại	52
2.3.3.3. Đánh giá miền ứng dụng và quan sát ngoại biên	53
2.3.3.4. Đánh giá so sánh các mô hình	53
2.4. THIẾT KẾ HỢP CHẤT MỚI	53
2.4.1. Lựa chọn đối tượng thiết kế mới	53
2.4.2. Thiết kế các dẫn xuất thiosemicarbazone và phức chất	54
2.5. DỰ BÁO HẰNG SỐ BỀN VÀ ĐÁNH GIÁ KHẢ NĂNG HÌNH T	HÀNH
CỦA LIGAND VÀ PHỨC CHẤT MỚI	54
2.5.1. Dự báo hằng số bền của phức chất mới	54
2.5.2. Phân tích cấu dạng của ligand và phức chất	55
2.5.2.1. Lựa chọn ligand và ion kim loại nghiên cứu	55
2.5.2.2. Phân tích tìm kiếm cấu dạng bền của ligand và phức chất	56
2.6. TỔNG HỢP LIGAND VÀ PHỨC CHẤT	57
2.6.1. Tổng hợp BEPT và BECT	57
2.6.2. Tổng hợp phức chất	58
2.7. XÁC ĐỊNH HẰNG SỐ BỀN CỦA PHỨC CHẤT	59

2.7.1. Khảo sát công thức phức	
2.7.2. Xác định hằng số bền	
CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN	
3.1. XÂY DỰNG MÔ HÌNH QSPR	
3.1.1. Tính toán sàng lọc dữ liệu	61
3.1.1.1. Dữ liệu thực nghiệm ban đầu	61
3.1.1.2. Tối ưu hóa cấu trúc	61
3.1.1.3. Sàng lọc dữ liệu	
3.1.2. Mô hình QSPR và đánh giá mô hình	
3.1.2.1. Mô hình QSPR của phức chất ML	
3.1.2.2. Mô hình QSPR của phức chất ML ₂	
3.2. THIẾT KẾ HỢP CHẤT MỚI	
3.2.1. Thiết kế dẫn xuất thiosemicarbazone	
3.2.2. Thiết kế phức chất	
3.3. DỰ ĐOÁN HẰNG SỐ BỀN VÀ ĐÁNH GIÁ KHẢ NĂNG HÌ	ÌNH THÀNH
CỦA CÁC LIGAND VÀ PHỨC CHẤT THIẾT KẾ MỚI	
3.3.1. Phức chất ML	
3.3.1.1. Kết quả dự báo trên mô hình nhóm dữ liệu 1	
3.3.1.2. Kết quả dự báo trên mô hình nhóm dữ liệu 4 và 9	
3.3.2. Phức chất ML ₂	
3.3.2.1. Kết quả dự báo trên mô hình nhóm dữ liệu 1	
3.3.2.2. Kết quả dự báo trên mô hình nhóm dữ liệu 2	
3.3.3. Phân tích cấu dạng bền	
3.3.3.1. Cấu dạng bền của BEPT và BECT	
3.3.3.2. Đánh giá khả năng tạo phức bằng tính toán lượng tử	
3.4. TỔNG HỢP LIGAND VÀ PHỨC CHẤT	
3.4.1. Tổng hợp BEPT và phức Ni(II)-BEPT, Cd(II)-BEPT	
3.4.1.1. Giai đoạn ethyl hóa phenothiazine	
3.4.1.2. Giai đoạn carbonyl hóa ethyl phenothiazine	
3.4.1.3. Giai đoạn brom hóa carbonyl phenothiazine	
3.4.1.4. Giai đoạn tổng hợp BEPT	

Phụ lục 2. Mô tả các tham số 3D trong mô	hình14
Phụ lục 1. Mô tả các tham số 2D trong mô	hình 1
РНЏ LỤC	
TÀI LIỆU THAM KHẢO	
DANH MỤC CÔNG TRÌNH KHOA HỌC	CÔNG Bố138
KẾT LUẬN VÀ KIẾN NGHỊ	
3.5.2.4. Hằng số bền của phức Cu(II)/Z	Zn(II)-BECT và đánh giá mô hình 133
3.5.2.3. Phức chất Zn(II)-BECT	
3.5.2.2. Phức chất Cu(II)-BECT	
3.5.2.1. Khảo sát thăm dò	126
3.5.2. Phức chất Cu(II)-BECT và Zn(II)-	BECT 126
3.5.1.4. Hằng số bền của phức Cd(II)/N	Ni(II)-BEPT và đánh giá mô hình 125
3.5.1.3. Phức chất Ni(II)-BEPT	
3 5 1 2 Phức chất Cd(II)-REPT	
3.5.1.1 Huc chất tri(11)-DEFT và Cu(11)-E	/11 11
3.5.1 Phức chất Ni(II)-REPT và Cd(II)-F	UU VA DANIT GIA MU HINH II 7
3.4.3.0. Cau truc cua phưc Zn(11)-BEC	1 110 μ΄ς νλ θάνη ςιά Μô μίνη - 117
5.4.5.5. Cau true cua phưc Cu(II)-BEC	п
5.4.5.4. Cau true cua BEC1	
3.4.3.3. Câu trúc phức chất Ni(II)-BEP	
3.4.3.2. Câu trúc của phức chất Cd(II)-	ВЕРТ107
3.4.3.1. Câu trúc của BEPT	
3.4.3. Xác định câu trúc của ligand và ph	ức chât 105
3.4.2.5. Giai đoạn tông hợp phức Cu(II	I)-BECT và Zn(II)-BECT 105
3.4.2.4. Giai đoạn tổng hợp BECT	
3.4.2.3. Giai đoạn brom hóa carbonyl c	carbazole105
3.4.2.2. Giai đoạn carbonyl hóa ethyl c	arbazole105
3.4.2.1. Giai đoạn ethyl hóa carbazole.	
3.4.2. Tổng hợp BECT và phức Cu(II)-B	ECT, Zn(II)-BECT 104
3.4.1.5. Giai đoạn tổng hợp phức Ni(II)-BEPT và Cd(II)-BEPT 104

Phụ lục 3. Các thuật ngữ năng lượng trong tính tổng năng lượng MM17
Phụ lục 4. Dữ liệu thực nghiệm ligand và phức trong nghiên cứu
Phụ lục 5. Dữ liệu thực nghiệm phức ML37
Phụ lục 6. Dữ liệu thực nghiệm phức ML266
Phụ lục 7. Thiết kế các dẫn xuất thiosemicarbazone mới
Phụ lục 8. Thiết kế phức chất mới và kết quả dự báo
Phụ lục 9. Quy trình tổng hợp BEPT và phức chất Ni(II)-BEPT, Cd(II)-BEPT
qua các giai đoạn93
Phụ lục 10. Quy trình tổng hợp BECT và phức chất Cu(II)-BECT, Zn(II)-
BECT qua các giai đoạn101
Phụ lục 11. Phổ FT-IR của BEPT và tiền chất trước đó
Phụ lục 12. Phổ ¹ H-NMR và kết quả phân tích của BEPT
Phụ lục 13. Phổ ¹³ C-NMR, DEPT và kết quả phân tích của BEPT 115
Phụ lục 14. Phổ HR-MS của BEPT 121
Phụ lục 15. Phổ FT-IR của Cd(II)-BEPT122
Phụ lục 16. Phổ ¹ H-NMR và kết quả phân tích của Cd(II)-BEPT123
Phụ lục 17. Phổ ¹ C-NMR, DEPT và kết quả phân tích của Cd(II)-BEPT 129
Phụ lục 18. Phổ HSQC và HMBC và kết quả phân tích của Cd(II)-BEPT 136
Phụ lục 19. Phổ HR-MS của Cd(II)-BEPT150
Phụ lục 20. Phổ EDX và SEM của Cd(II)-BEPT151
Phụ lục 21. Phổ FT-IR của Ni(II)-BEPT153
Phụ lục 22. Phổ ¹ H-NMR và kết quả phân tích của Ni(II)-BEPT154
Phụ lục 23. Phổ ¹³ C-NMR phức chất Ni(II)-BEPT160
Phụ lục 24. Phổ HSQC và HMBC và kết quả phân tích của Ni(II)-BEPT 167
Phụ lục 25. Phổ HR-MS của Ni(II)-BEPT181
Phụ lục 26. Phổ EDX và SEM của Ni(II)-BEPT182
Phụ lục 27. Phổ FT-IR của BECT và tiền chất trước đó
Phụ lục 28. Phổ ¹ H-NMR và kết quả phân tích của BECT
Phụ lục 29. Phổ ¹³ C-NMR và kết quả phân tích của BECT
Phụ lục 30. Phổ HR-MS của BECT196
Phụ lục 31. Phổ FT-IR của Cu(II)-BECT197

Phụ lục 32. Phổ ¹ H-NMR và kết quả phân tích của Cu(II)-BECT	. 198
Phụ lục 33. Phổ ¹ C-NMR và kết quả phân tích của Cu(II)-BECT	. 206
Phụ lục 34. Phổ HSQC và HMBC và kết quả phân tích của Cu(II)-BECT	. 212
Phụ lục 35. Phổ HR-MS của Cu(II)-BECT	. 225
Phụ lục 36. Phổ FT-IR của Zn(II)-BECT	. 226
Phụ lục 37. Phổ ¹ H-NMR và kết quả phân tích của Zn(II)-BECT	. 227
Phụ lục 38. Phổ ¹ C-NMR và kết quả phân tích của Zn(II)-BECT	. 235
Phụ lục 39. Phổ HSQC và HMBC và kết quả phân tích của Zn(II)-BECT	. 241
Phụ lục 40. Phổ HR-MS của Zn(II)-BECT	. 261
Phụ lục 41. Kết quả khảo sát công thức phức chất Cd(II)/Ni(II)-BEPT	. 262
Phụ lục 42. Kết quả khảo sát công thức phức chất Cu(II)/Zn(II)-BECT	. 270
Phụ lục 43. Kết quả tính toán hằng số bền	. 278

BẢNG VIẾT TẮT

Viết tắt	Tiếng anh	Tiếng việt
2D	2 dimension	Kích thước hai chiều
3D	3 dimension	Kích thước ba chiều
AAS	Atomic absorption spectroscopy	Quang phổ hấp thụ nguyên tử
AD	Applicability domain	Miền ứng dụng
АНС	Agglomerative hierarchical clustering	Sự phân cụm phân cấp tập hợp
AM1	Austin model 1	Phương pháp bán thực nghiệm AM1
ANN	Artificial neural network	Mạng thần kinh nhân tạo
ANOVA	Analysis of variance	Phân tích phương sai
APC	Average percentage contribution	Trung bình phần trăm đóng góp
APT	Attached proton test	Phổ APT
ARE	Absolute value of relative error	Giá trị tuyệt đối của các sai số tương đối
AUE	Average unsigned error	Sai số không dấu trung bình
BECT	2- ((6-bromo-9-ethyl-9H-carbazol-3-yl) methylene) hydrazine-1- carbothioamide	
BEPT	2-((7-bromo-10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazine- 1-carbothioamide	
CNDO	Complete neglect of differential overlap	Loại bỏ hoàn toàn sự chồng chéo vi phân

CV	Cross validation	Đánh giá chéo
DEPT	Distortionless enhancement by polarization transfer	Phổ DEPT
DFT	Density function theory	Lý thuyết phiếm hàm mật độ
DMF	Dimethylformamide	Dung môi DMF
DMSO	Dimethyl sulfoxide	Dung môi DMSO
EA	Elthyl acetate	Chất hóa học etyl axetat
EDX	Energy dispersive X-ray	Quang phổ phân tán năng lượng tia X
ESI	Electron spray ionization	Phun mù điện tử
FT-IR	Fourier transform infrared spectrometer	Phổ FT-IR
GA	Genetic algorithm	Giải thuật di truyền
HF	Hartree – Fock	Phương pháp Hartree – Fock
HMBC	Heteronuclear multiple-bond correlation	Phổ hai chiều HMBC
НОМО	Highest occupied molecular orbital	Orbital phân tử bị chiếm cao nhất
HR-MS	High resolution mass spectrometry	Phổ HR-MS
HSQC	Heteronuclear single quantum correlation	Phổ hai chiều HSQC
ICP-AES	Inductively coupled plasma – Atomic emission spectrometry	Quang phổ phát xạ nguyên tử kết hợp cảm ứng plasma
ICP-MS	Inductively coupled plasma –	Phổ khối kết hợp cảm ứng

	mass Sspectrometry	plasma
INDO	Intermediate neglect of differential overlap	Phương pháp bán thực nghiệm INDO
IR	Infrared radiation	Bức xạ hồng ngoại
J	J-coupling	Hằng số ghép cặp
LMO	Leave-many-out	Loại bỏ dần nhiều trường hợp
LOO	Leave-one-out	Loại bỏ dần từng trường hợp
LUMO	Lowest unoccupied molecular orbital	Orbital phân tử không lấp đầy mức thấp nhất
MAPE	Mean absolute percentage error	Trung bình tuyệt đối phần trăm sai số
MARE	Mean absolute values of relative error	Trung bình tuyệt đối của các sai số tương đối
MLR	Multivariate linear regression	Hồi quy tuyến tính đa biến
MM	Molecular Mechanics	Cơ học phân tử
MM+	Molecular mechanics plus	Trường lực MM+
MOPAC	Molecular orbital package	Chương trình tính MOPAC
MSD	Mean standard deviation	Trung bình độ lệch chuẩn
MSE	Mean square error	Trung bình bình phương sai số
MSR	Mean square of regression	Trung bình bình phương hồi quy
NBS	n-Bromo Succinimide	Chất hóa học NBS
NDDO	Neglect of diatomic differential overlap	Phương pháp bán thực nghiệm NDDO
N-hex	N-hexane	Dung môi N-hexan

NMR	Nuclear magnetic resonance	Phổ cộng hưởng từ hạt nhân NMR
OECD	The organisation for economic cooperation and development	Tổ chức hợp tác kinh tế và phát triển
PCA	Principal component analysis	Phân tích thành phần chính
PCR	Principal component regression	Hồi quy thành phần chính
PES	Potential energy surfaces	Thế năng bề mặt
PLSR	Partial least square regression	Hồi quy bình phương tối thiểu riêng phần
PM3	Parameterized model 3	Phương pháp bán thực nghiệm PM3
PM6	Parameterized model 6	Phương pháp bán thực nghiệm PM6
PM7	Parameterized model 7	Phương pháp bán thực nghiệm PM7
PRESS	Predictive residual sum of squares	Tổng bình phương dư dự đoán
QM	Quantum mechanics	Cơ học lượng tử
QSAR	Quantitative structure activity relationship	Quan hệ định lượng cấu trúc hoạt tính
QSPR	Quantitative structure property relationship	Quan hệ định lượng cấu trúc tính chất
RMS	Residual mean square	Bình phương trung bình độ lệch
RMSE	Root mean squared error	Căn bậc hai bình phương sai số
RSS	Residual sum of squares	Tổng bình phương độ lệch

SD	Standard deviation	Độ lệch chuẩn
SDR	Standard deviation residual	Độ lệch chuẩn dư
SE	Standard error	Sai số chuẩn
SRB	Sulfohrodamine B	Phương pháp SRB
SSE	Sum of squares error	Tổng bình phương sai số
SVM	Support vector machine	Máy học véctơ hỗ trợ
SVR	Support vector Regression	Hồi quy máy học véctơ hỗ trợ
TBAHS	Tetrabutylammonium hydrogensulfate	Chất hóa học C ₁₆ H ₃₇ NO4S
TLC	Thin layer chromatography	Sắc ký bản mỏng
UHF	Unrestricted Hartree–Fock	Phương pháp không hạn chế Haetree-Fock
UV	Ultraviolet	Tia UV
UV – Vis	Ultraviolet-Visible	Tử ngoại-khả kiến
VIP	Variable importance for the projection	Mức độ quan trọng của các biến số

DANH MỤC CÁC BIỂU, BẢNG

Bång 1.1. So sánh phương pháp QM và MM 27
Bảng 1.2. Tần số dao động của một vài nhóm chức trong phổ FT-IR 35
Bảng 2.1. Công cụ/phần mềm sử dụng xây dựng mô hình QSPR 44
Bảng 2.2. Danh mục hóa chất sử dụng trong nghiên cứu 45
Bảng 2.3. Dụng cụ và thiết bị thí nghiệm sử dụng trong nghiên cứu
Bảng 2.4. Dữ liệu đầu vào của hệ phổ UV-Vis 59
Bảng 3.1. Kết quả tính toán tìm kiếm giải thuật cho phức ML 62
Bảng 3.2. Kết quả tính toán tìm kiếm giải thuật cho phức ML ₂ 62
Bảng 3.3. Kết quả phân chia dữ liệu nghiên cứu63
Bảng 3.4. Các tham số thống kê và mô tả của mô hình QSPRGA-MLR 65
Bảng 3.5. Các giá trị thống kê của các mô hình QSPR 69
Bång 3.6. Mô hình QSPR _{OLR} (k từ 2 đến 10) và các giá trị thống kê
Bång 3.7. Kết quả luyện mạng QSPR _{ANN} I (6)-HL(6)-O(1)71
Bảng 3.8. Các mô hình QSPR _{MLR} (k = 4 \div 11) và các giá trị thống kê
Bảng 3.9. Kết quả xây dựng các mô hình QSPR _{MLR} với các giá trị thống kê 75
Bảng 3.10. Kết quả khảo sát các mô hình QSPRANN với giá trị thống kê 77
Bảng 3.11. Các mô hình QSPR _{MLR} thu được dựa trên kỹ thuật hồi quy đa biến và
giải thuật di truyền. Mô hình tốt nhất là in đậm78
Bảng 3.12. Mô hình QSPR _{MLR} xây dựng (k = 4 \div 13) và các giá trị thống kê 80
Bảng 3.13. Kết quả các mô hình QSPR _{MLR} (k = $1\div12$) với các giá trị thống kê 82
Bảng 3.14. Kết quả khảo sát kiến trúc mạng mô hình QSPRANN I(11)-HL(n)-O(1) 84
Bảng 3.15. Kết quả mô hình QSPR _{OLS} qua các biến với các giá trị thống kê 85
Bảng 3.16. Giá trị thống kê các biến trong mô hình QSPR _{OLS} ở độ tin cậy 95% 86
Bảng 3.17. Kết quả xây dựng mô hình QSPR _{MLR} với các tham số thống kê 88
Bảng 3.18. Kết quả khảo sát mô hình QSPR _{ANN} I(5)-HL(m)-O(1)89
Bảng 3.19. Các mô hình QSPR _{MLR} được xây dựng với các giá trị thống kê 90
Bảng 3.20. Kết quả khảo sát mô hình QSPR _{ANN} I(3)-HL(m)-O(1)91
Bảng 3.21. Các mô hình QSPR _{MLR} được xây dựng với các giá trị thống kê 92

Bång 3.22. Kết quả khảo sát mô hình QSPR _{ANN} I(3)-HL(m)-O(1)93
Bảng 3.23. Các hàng rào năng lượng quay tương ứng với mỗi góc nhị diện98
Bảng 3.24. Các hàng rào năng lượng quay tương ứng với mỗi góc nhị diện
Bảng 3.25. Kết quả tìm kiếm các phức ở nhiệt độ từ 298 K đến 473 K 101
Bảng 3.26. Độ dài liên kết giữa Me ²⁺ và phối tử trong bảy phức mới 102
Bảng 3.27. Kết quả tìm kiếm cấu dạng phức chất ở nhiệt độ từ 298 K đến 473 K 102
Bảng 3.28. Kết quả phân tích phổ FT-IR của BEPT106
Bảng 3.29. Kết quả phân tích phổ FT-IR của phức Cd(II)-BEPT108
Bảng 3.30. Kết quả phân tích phổ FT-IR của phức chất Ni(II)-BEPT110
Bảng 3.31. Kết quả phân tích phổ FT-IR của BECT112
Bảng 3.32. Kết quả phân tích phổ FT-IR của phức Cu(II)-BECT114
Bảng 3.33. Kết quả phân tích phổ FT-IR của phức Zn(II)-BECT116
Bảng 3.34. Theo dõi màu sắc của sự tạo thành phức118
Bảng 3.35. So sánh giá trị log β_{12} thực nghiệm và dự đoán các phức
Bảng 3.36. Theo dõi màu sắc của sự tạo thành phức126
Bảng 3.37. So sánh log β_{12} thực nghiệm và dự đoán các phức từ kết quả luận án 133
Bảng p1.1. Mô tả các tham số 2D1
Bảng p2.1. Mô tả các tham số 3D14
Bång p3.1. Giải thích các thuật ngữ năng lượng trong MM17
Bảng p4.1. Cấu trúc 54 ligand sử dụng nghiên cứu19
Bảng p4.2. Dữ liệu phức ML trong nghiên cứu QSPR22
Bảng p4.3. Dữ liệu phức ML2 trong nghiên cứu QSPR32
Bảng p5.1. Dữ liệu và kết quả dự đoán nhóm 1 - phức ML 37
Bảng p5.2a. Dữ liệu tập luyện nhóm 2 - phức ML41
Bảng p5.2b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của
nhóm 2 – phức ML
Bảng p5.3a. Dữ liệu tập luyện nhóm 3 - phức ML44
Bảng p5.3b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của
nhóm 3 – phức ML
Bảng p5.4. Dữ liệu đầy đủ nhóm 4 - phức ML47
Bảng 5.5a. Dữ liệu tập luyện nhóm 5 - phức ML50

Bảng p5.5b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của
nhóm 5 – phức ML 52
Bảng p5.6a. Dữ liệu tập luyện nhóm 6 - phức ML 53
Bảng p5.6b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của
nhóm 6 – phức ML 55
Bảng p5.7. Dữ liệu đầy đủ nhóm 7 - phức ML 56
Bång p5.8a. Dữ liệu tập luyện nhóm 8 - phức ML 59
Bảng p5.8b. Dữ liệu tập đánh giá ngoại của mô hình nhóm 8 – phức ML 60
Bảng p5.8c. Kết quả dự đoán từ các mô hình của nhóm 8 – phức ML 61
Bảng p5.9a. Dữ liệu tập luyện nhóm 9 - phức ML 62
Bảng p5.9b. Dữ liệu tập đánh giá ngoại và kết quả dự báo từ các mô hình của nhóm
9 – phức ML
Bång p6.1a. Dữ liệu tập luyện nhóm 1 - phức ML ₂ 66
Bảng p6.1b. Dữ liệu tập đánh giá ngoại và giá trị dự đoán từ các mô hình của nhóm
1 – phức ML ₂
Bảng p6.2a. Dữ liệu tập luyện nhóm 2 - phức ML ₂ 69
Bảng p6.2b. Dữ liệu tập đánh giá ngoại và các giá trị dự đoán từ các mô hình của
nhóm 2 – phức ML ₂
Bång p7. 44 dẫn xuất thiosemicarbazone thiết kế mới
Bảng p8.1. Thiết kế các phức chất mới và kết quả dự báo phức ML
Bảng p8.2. Thiết kế các phức chất mới và kết quả dự báo phức ML ₂
Bảng p8.3. Kết quả dự đoán hằng số bền $\log \beta_{11}$ sử dụng phương trình tương quan91
Bảng p12. Tổng hợp kết quả phân tích phổ ¹ H-NMR của BEPT 114
Bảng p13. Tổng hợp kết quả phân tích phổ ¹³ C-NMR kết hợp với phổ DEPT của
BEPT
Bảng p17. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹³ C-NMR kết
hợp với phổ DEPT 90, DEPT 135 và CPD của phức Cd(II)-BEPT 135
Bảng p18. Tổng hợp kết quả phổ HSQC và HMBC của phức Cd(II)-BEPT 149
Bảng p22. Tổng hợp kết quả phân tích phổ ¹ H-NMR của phức Ni(II)-BEPT 159
Bảng p23. Tổng hợp phân tích kết quả phổ lý thuyết và phổ nghiệm ¹³ C kết hợp với
phổ DEPT 90, DEPT 135 và CPD của Ni(II)-BEPT166

Bảng p24. Tổng hợp kết quả phổ HSQC và HMBC của phức Ni(II)-BEPT 180 Bảng p29. Tổng hợp kết quả phân tích phổ ¹³C-NMR của BECT 195 Bảng p32. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹H-NMR của Bảng p33. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹³C-NMR kết Bảng p34. Tổng hợp kết quả phổ HSQC và HMBC của phức Cu(II)-BECT 224 Bảng p38. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹³C-NMR kết Bảng p39. Tổng hợp kết quả phổ HSQC và HMBC của phức Zn(II)-BECT 260 Bảng p41.1. Số liệu thực nghiệm khảo sát bước sóng BEPT và phức tương ứng.. 262 Bảng p41.6. Kết quả khảo sát lực ion của phức Cd(II)-BEPT và Ni(II)-BEPT 264 Bảng p41.8. Kết quả khảo sát nồng độ BEPT qua phức Cd(II)/Ni(II)-BEPT 265 Bảng p41.9. Số liệu thực nghiệm khảo sát thời gian bền màu của phức Cd(II)-BEPT Bảng p41.11. Kết quả khảo sát công thức phức Cd(II)-BEPT và Ni(II)-BEPT theo Bảng p41.12. Kết quả khảo sát công thức phức Cd(II)-BEPT và Ni(II)-BEPT theo Bảng p42.1. Số liêu thực nghiêm khảo sát bước sóng BECT và phức tượng ứng . 270

Bảng p42.5. Số liệu thực nghiệm khảo sát lực ion của BECT 272
Bảng p42.6. Kết quả khảo sát lực ion của phức Cu(II)-BECT 272
Bảng p42.7. Số liệu thực nghiệm khảo sát nồng độ BECT 273
Bảng p42.8. Kết quả khảo sát nồng độ BECT qua phức Cd(II)/Ni(II)-BECT 273
Bảng p42.9. Số liệu thực nghiệm khảo sát thời gian bền màu của phức Cu(II)-
BECT và Zn(II)-BECT
Bảng p42.10. Kết quả khảo sát thời gian bền màu Cu(II)-BECT và Zn(II)-BECT 274
Bảng p42.11. Kết quả khảo sát công thức phức Cu(II)-BEPT và Zn(II)-BECT theo
phương pháp Job
Bảng p42.12. Kết quả khảo sát công thức phức Cu(II)-BECT và Zn(II)-BECT theo
phương pháp tỷ lệ mol 277
Bảng p43. So sánh giá trị $log\beta_{12}$ thực nghiệm của một số phức với kết quả các phức
từ nghiên cứu trong luận án

DANH MỤC HÌNH VẼ, BIỂU ĐỒ, SƠ ĐỒ

Hình 1.1. Cấu trúc chung của thiosemicarbazone	1
Hình 1.2. Sơ đồ phản ứng tạo thiosemicarbazone	1
Hình 1.3. Cân bằng giữa thione và thiol trong nước của thiosemicarbazone	2
Hình 1.4. Khung cấu trúc phức hai càng ML và ML ₂ của thiosemicarbazone	2
Hình 1.5. Các dạng cấu trúc khác của phức thiosemicarbazone; X = N, O	3
Hình 1.6. Thống kê các bài báo công bố về nghiên cứu QSAR/QSPR	6
Hình 1.7. Những cột mốc khám phá quan trọng trong nghiên cứu QSAR/QSPR	7
Hình 1.8. Các lĩnh vực ứng dụng của QSPR trong khoa học vật liệu	8
Hình 1.9. Cấu tạo và sự truyền tính hiệu của nơron sinh học	15
Hình 1.10. Quá trình xử lý thông tin của một nơron	16
Hình 1.11. Mô phỏng lề trong hồi quy SVR	20
Hình 2.1. Khung cấu trúc phức chất ML và ML_2 trong nghiên cứu	42
Hình 2.2. Sơ đồ nghiên cứu tổng quát	44
Hình 2.3. Sơ đồ tính toán sàng lọc dữ liệu	47
Hình 2.4. Sơ đồ nghiên cứu cấu trúc theo phương pháp MM và QM	48
Hình 2.5. Trình tự xây dựng các mô hình QSPR kèm công cụ nghiên cứu	49
Hình 2.6. Sơ đồ xây dựng mô hình SVR	51
Hình 2.7. Các giai đoạn khác nhau đánh giá mô hình	52
Hình 2.8. Cấu trúc của 10H-phenothiazine (a) và 9H-carbazole (b)	54
Hình 2.9. Khung cấu trúc của 10H-phenothiazine (a) và 9H-carbazole (b)	54
Hình 2.10. Khung cấu trúc của ligand thiết kế mới	54
Hình 2.11. Sơ đồ dự báo hằng số bền phức chất thiết kế mới	55
Hình 2.12. Hai dẫn xuất thiosemicarbazone lựa chọn phân tích cấu dạng bền	56
Hình 2.13. Bộ khung phân tử; a) BEPT và BECT; b) Phức chất. Sự xoay liên kết	và
góc hai mặt phẳng trong quá trình tìm kiếm cấu dạng	56
Hình 2.14. Sơ đồ tổng hợp BEPT	58

Hình 3.38. Ảnh hưởng nồng độ BECT đến độ hấp thụ quang của Zn(II)-BECT 132
Hình 3.39. Thời gian bền màu của phức Ni(II)-BEPT qua độ hấp thụ quang 132
Hình 3.40. Kết quả đo độ hấp thụ quang của phức Zn(II)-BECT 133
Hình 3.41. So sánh hằng số bền của phức CuL2 và ZnL2 trong nghiên cứu với các
giá trị từ thực nghiệm khác và giá trị dự đoán134
Hình p9.1. Quy trình tổng hợp giai đoạn 1 của BEPT93
Hình p9.2. Hình ảnh trong tổng hợp giai đoạn 1 của BEPT94
Hình p9.3. Quy trình tổng hợp giai đoạn 2 của BEPT95
Hình p9.4. Hình ảnh trong tổng hợp giai đoạn 2 của BEPT96
Hình p9.5. Quy trình tổng hợp giai đoạn 2 của BEPT97
Hình p9.6. Hình ảnh trong tổng hợp giai đoạn 3 của BEPT98
Hình p9.7. Quy trình tổng hợp giai đoạn 2 của BEPT99
Hình p9.8. Hình ảnh trong tổng hợp giai đoạn BEPT 99
Hình p9.9. Quy trình tổng hợp phức Cd(II)-BEPT và Ni(II)-BEPT 100
Hình p9.10. Hình ảnh tổng hợp phức Cd(II)-BEPT và Ni(II)-BEPT 100
Hình p10.1. Quy trình tổng hợp giai đoạn 1 của BECT 101
Hình p10.2. Hình ảnh trong tổng hợp giai đoạn 1 của BECT 102
Hình p10.3. Quy trình tổng hợp giai đoạn 2 của BECT 103
Hình p10.4. Hình ảnh trong tổng hợp giai đoạn 2 của BECT 104
Hình p10.5. Quy trình tổng hợp giai đoạn 3 của BECT 104
Hình p10.6. Hình ảnh trong tổng hợp giai đoạn 3 của BECT 105
Hình p10.7. Quy trình tổng hợp BECT 106
Hình p10.8. Hình ảnh trong tổng hợp BECT 107
Hình p10.9. Quy trình tổng hợp phức Cd(II)-BECT 107
Hình p10.10. Quy trình tổng hợp phức Zn(II)-BECT 108
Hình p10.11. Hình ảnh phức Cu(II)-BECT và Zn(II)-BECT 108
Hình p11.1. Phổ FT-IR của hợp chất (4) trong giai đoạn tổng hợp BEPT 109
Hinh p11.2. Phổ FT-IR của BEPT110
Hình p12.1. Phổ ¹ H-NMR đầy đủ của BEPT 111

Hình p12.2. Phổ ¹ H-NMR mở rộng (6,8-8,3ppm) của BEPT	.112
Hình p12.3. Phổ ¹ H-NMR mở rộng (1,0-4,5ppm) của BEPT	. 113
Hình p13.1. Phổ ¹ C-NMR đầy đủ của BEPT	. 115
Hình p13.2. Phổ ¹ C-NMR mở rộng (10-180ppm) của BEPT	.116
Hình p13.3. Phổ ¹ C-NMR mở rộng (110-150ppm) của BEPT	.117
Hình p13.4. Phổ ¹ C-NMR: DEPT và CPD đầy đủ của BEPT	.118
Hình p13.5. Phổ ¹ C-NMR: DEPT và CPD mở rộng (110-150ppm) của BEPT	. 119
Hình p14. Phổ HR-MS của BEPT	. 121
Hình p15. Phổ FT-IR của Cd(II)-BEPT	. 122
Hình p16.1. Phổ ¹ H-NMR đầy đủ của Cd(II)-BEPT	. 123
Hình p16.2. Phổ ¹ H-NMR mở rộng (6,85-8,25ppm) của Cd(II)-BEPT	. 124
Hình p16.3. Phổ ¹ H-NMR lắc D ₂ O đầy đủ của Cd(II)-BEPT	. 125
Hình p16.4. Phổ ¹ H-NMR lắc D ₂ O mở rộng (6,8-8,0ppm) của Cd(II)-BEPT	. 126
Hình p16.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹ H-NMR của Cơ	l(II)-
BEPT	. 127
Hình p17.1. Phổ ¹ C-NMR đầy đủ của Cd(II)-BEPT	. 129
Hình p17.2. Phổ ¹ C-NMR mở rộng (113-147ppm) của Cd(II)-BEPT	. 130
Hình p17.3. Phổ ¹ C-NMR: DEPT đầy đủ của Cd(II)-BEPT	. 131
Hình p17.4. Phổ ¹ C-NMR: DEPT mở rộng (117-146ppm) của Cd(II)-BEPT	. 132
Hình p17.5. Phổ ¹ C-NMR: DEPT mở rộng (120-132ppm) của Cd(II)-BEPT	. 133
Hình p17.6. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³ C-NMR của Cơ	1(II)-
BEPT	. 134
Hình p18.1. Phổ HSQC đầy đủ của Cd(II)-BEPT	. 136
Hình p18.2. Phổ HSQC mở rộng 1,0-4,5/5-45 (ppm)của Cd(II)-BEPT	. 137
Hình p18.3. Phổ HSQC mở rộng 7,0-8,2/110-145 (ppm)của Cd(II)-BEPT	. 138
Hình p18.4. Phổ HSQC mở rộng 6,85-7,10/112-119 (ppm)của Cd(II)-BEPT	. 139
Hình p18.5. Phổ HSQC mở rộng 7,2-7,8/123-131 (ppm)của Cd(II)-BEPT	. 140
Hình p18.6. Phổ HMBC đầy đủ của Cd(II)-BEPT	. 141
Hình p18.7. Phổ HMBC mở rộng 0,5-4,5/5-50 (ppm) của Cd(II)-BEPT	. 142

Hình p18.8. Phổ HMBC mở rộng 3,75-4,1/138-149 (ppm) của Cd(II)-BEPT 143
Hình p18.9. Phổ HMBC mở rộng 7,6-8,6/173-181 (ppm) của Cd(II)-BEPT 144
Hình p18.10. Phổ HMBC mở rộng 6,8-8,4/110-150 (ppm) của Cd(II)-BEPT 145
Hình p18.11. Phổ HMBC mở rộng 6,85-7,05/110-133 (ppm) của Cd(II)-BEPT 146
Hình p18.12. Phổ HMBC mở rộng 7,3-8,2/121-134 (ppm) của Cd(II)-BEPT 147
Hình p18.13. Phổ HMBC mở rộng 7,0-8,0/138-148 (ppm) của Cd(II)-BEPT 148
Hình 19. Phổ HS-MR của Cd(II)-BEPT150
Hình p20.1. Phổ EDX của Cd(II)-BEPT 151
Hình 20.2. Phổ SEM của Cd(II)-BEPT 152
Hình 21. Phổ FT-IR của Ni(II)-BEPT
Hình p22.1. Phổ ¹ H-NMR đầy đủ của Ni(II)-BEPT154
Hình p22.2. Phổ ¹ H-NMR mở rộng (6,75-8,25ppm) của Ni(II)-BEPT 155
Hình p22.3. Phổ ¹ H-NMR lắc D ₂ O đầy đủ của phức Ni(II)-BEPT 156
Hình p22.4. Phổ ¹ H-NMR lắc D ₂ O mở rộng (6,5-8,2) của phức Ni(II)-BEPT 157
Hình p22.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹ H-NMR của Ni(II)-
BEPT158
Hình p23.1. Phổ ¹ C-NMR đầy đủ của Ni(II)-BEPT160
Hình p23.2. Phổ ¹ C-NMR mở rộng (118-146ppm) của Ni(II)-BEPT 161
Hình p23.3. Phổ ¹ C-NMR: DEPT đầy đủ của Ni(II)-BEPT162
Hình p23.4. Phổ ¹ C-NMR: DEPT mở rộng (110-150ppm) của Ni(II)-BEPT 163
Hình p23.5. Phổ ¹ C-NMR: DEPT mở rộng (120-132ppm) của Ni(II)-BEPT 164
Hình p23.6. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³ C-NMR của Ni(II)-
BEPT165
Hình 24.1. Phổ HSQC đầy đủ của Ni(II)-BEPT167
Hình 24.2. Phổ HSQC mở rộng 1,0-4,0/10-55 (ppm) của Ni(II)-BEPT 168
Hình 24.3. Phổ HSQC mở rộng 6,8-4,0/114-142 (ppm) của Ni(II)-BEPT 169
Hình 24.4. Phổ HSQC mở rộng 6,85-7,05/112-118 (ppm) của Ni(II)-BEPT 170
Hình 24.5. Phổ HSQC mở rộng 7,2-7,7/123-131 (ppm) của Ni(II)-BEPT 171
Hình 24.6. Phổ HMBC đầy đủ của Ni(II)-BEPT 172

Hình 24.7. Phổ HMBC mở rộng 0,0-4,5/5-60 (ppm) của Ni(II)-BEPT 173
Hình 24.8. Phổ HMBC mở rộng 10,5-4,5/135-185 (ppm) của Ni(II)-BEPT 174
Hình 24.9. Phổ HMBC mở rộng 3,6-4,1/138-148 (ppm) của Ni(II)-BEPT 175
Hình 24.10. Phổ HMBC mở rộng 6,6-8,4/110-150 (ppm) của Ni(II)-BEPT 176
Hình 24.11. Phổ HMBC mở rộng 6,80-7,05/119-133 (ppm) của Ni(II)-BEPT 177
Hình 24.12. Phổ HMBC mở rộng 7,2-8,0/121-133 (ppm) của Ni(II)-BEPT 178
Hình 24.13. Phổ HMBC mở rộng 7,2-7,7/137-147 (ppm) của Ni(II)-BEPT 179
Hình 25. Phổ HS-MR của Ni(II)-BEPT181
Hình p26.1. Phổ EDX của Ni(II)-BEPT 182
Hình p26.2. Phổ SEM của Ni(II)-BEPT 183
Hình p27.1. Phổ FT-IR của hợp chất (4) trong giai đoạn tổng hợp BECT 184
Hình p27.2. Phổ FT-IR của BECT 185
Hình p28.1. Phổ ¹ H-NMR đầy đủ của BECT186
Hình p28.2. Phổ ¹ H-NMR mở rộng (7,35-8,85ppm) của BECT 187
Hình p28.3. Phổ ¹ H-NMR mở rộng (1,00-5,0ppm) của BECT 188
Hình p29.1. Phổ ¹³ C-NMR đầy đủ của BECT190
Hình p29.2. Phổ ¹³ C-NMR mở rộng (10-180,5ppm) của BECT 191
Hình p29.3. Phổ ¹³ C-NMR mở rộng (107,5-146ppm) của BECT 192
Hình p29.4. Phổ ¹³ C-NMR: DEPT, CPD đầy đủ của BECT193
Hình p29.5. Phổ ¹³ C-NMR: DEPT, CPD mở rộng (108-145ppm) của BECT 194
Hình 30. Phổ HR-MS của BECT196
Hình 31. Phổ FT-IR của Cu(II)-BECT 197
Hình p32.1. Phổ ¹ H-NMR đầy đủ của Cu(II)-BECT198
Hình p32.2. Phổ ¹ H-NMR mở rộng (7,25-8,95ppm) của Cu(II)-BECT199
Hình p32.3. Phổ ¹ H-NMR mở rộng (0,7 – 5,1ppm) của Cu(II)-BECT 200
Hình p32.4. Phổ ¹ H-NMR lắc D ₂ O đầy đủ của Cu(II)-BECT201
Hình p32.5. Phổ ¹ H-NMR lắc D ₂ O mở rộng (0,8 – 5,0ppm) của Cu(II)-BECT 202
Hình p32.6. Phổ ¹ H-NMR lắc D ₂ O mở rộng (7,1-9,1ppm) của Cu(II)-BECT 203

Hình p32.7. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹ H-NMR của Cu(I	I)-
BECT	.04
Hình p33.1. Phổ ¹ C-NMR đầy đủ của Cu(II)-BECT 2	.06
Hình p33.2. Phổ ¹ C-NMR mở rộng (108-148ppm) của Cu(II)-BECT 2	07
Hình p33.3. Phổ ¹ C-NMR: DEPT đầy đủ của Cu(II)-BECT 2	.08
Hình p33.4. Phổ ¹ C-NMR: DEPT mở rộng (105-150ppm) của Cu(II)-BECT 2	.09
Hình p33.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³ C-NMR của Cu(I	I)-
BECT	10
Hình p34.1. Phổ HSQC đầy đủ của Cu(II)-BECT 2	12
Hình p34.2. Phổ HSQC mở rộng 1,0-5,5/1,0-50 (ppm) của Cu(II)-BECT 2	13
Hình p34.3. Phổ HSQC mở rộng 7,3-8,8/100-150 (ppm) của Cu(II)-BECT 2	14
Hình p34.4. Phổ HSQC mở rộng 7,50-7,90/107-132 (ppm) của Cu(II)-BECT 2	15
Hình p34.5. Phổ HSQC mở rộng 8,0-8,8/119-130 (ppm) của Cu(II)-BECT 2	16
Hình p34.6. Phổ HMBC đầy đủ của Cu(II)-BECT 2	17
Hình p34.7. Phổ HMBC mở rộng 1,0-3,0/10-55 (ppm) của Cu(II)-BECT 2	18
Hình p34.8. Phổ HMBC mở rộng 7,5-8,8/105-150 (ppm) của Cu(II)-BECT 2	19
Hình p34.9. Phổ HMBC mở rộng 7,4-7,7/100-150 (ppm) của Cu(II)-BECT 2	20
Hình p34.10. Phổ HMBC mở rộng 7,9-8,2/100-150 (ppm) của Cu(II)-BECT 2	21
Hình p34.11. Phổ HMBC mở rộng 8,3-8,9/100-150 (ppm) của Cu(II)-BECT 2	22
Hình p34.12. Phổ HMBC mở rộng 8,4-8,85/117-131 (ppm) của Cu(II)-BECT 2	23
Hình 35. Phổ HS-MR của Cu(II)-BECT 2	25
Hình 36. Phổ FT-IR của Zn(II)-BECT 2	26
Hình p37.1. Phổ ¹ H-NMR đầy đủ của Zn(II)-BECT 2	27
Hình p37.2. Phổ ¹ H-NMR mở rộng (7,5-8,9ppm) của Zn(II)-BECT 2	28
Hình p37.3. Phổ ¹ H-NMR mở rộng (0,9-4,6ppm) của Zn(II)-BECT 2	29
Hình p37.4. Phổ ¹ H-NMR lắc D ₂ O đầy đủ của Zn(II)-BECT 2	30
Hình p37.5. Phổ ¹ H-NMR lắc D ₂ O mở rộng (7,3-9,1ppm) của Zn(II)-BECT 2	31
Hình p37.6. Phổ ¹ H-NMR lắc D ₂ O mở rộng (0,5-4,8ppm) của Zn(II)-BECT 2	32

Hình p37.7. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹ H-NMR của Zn(II)-
BECT
Hình p38.1. Phổ ¹ C-NMR đầy đủ của Zn(II)-BECT
Hình p38.2. Phổ ¹ C-NMR mở rộng (107-148ppm) của Zn(II)-BECT 236
Hình p38.3. Phổ ¹ C-NMR: DEPT đầy đủ của Zn(II)-BECT
Hình p38.4. Phổ ¹ C-NMR: DEPT mở rộng (105-150ppm) của Zn(II)-BECT 238
Hình p38.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³ C-NMR của Zn(II)-
BECT
Hình p39.1 Phổ HSQC đầy đủ của Zn(II)-BECT241
Hình p39.2. Phổ HSQC mở rộng 7,5-9,5/105-150 (ppm) của Zn(II)-BECT 242
Hình p39.3. Phổ HSQC mở rộng 7,5-7,75/107-130 (ppm) của Zn(II)-BECT 243
Hình p39.4. Phổ HSQC mở rộng 7,55-7,70/107-115 (ppm) của Zn(II)-BECT 244
Hình p39.5. Phổ HSQC mở rộng 7,5-7,66/125-130 (ppm) của Zn(II)-BECT 245
Hình p39.6. Phổ HSQC mở rộng 7,54-7,70/145-147 (ppm) của Zn(II)-BECT 246
Hình p39.7. Phổ HSQC mở rộng 9,60-9,85/123-130 (ppm) của Zn(II)-BECT 247
Hình p39.8. Phổ HSQC mở rộng 7,90-8,80/119-132 (ppm) của Zn(II)-BECT 248
Hình p39.9. Phổ HSQC mở rộng 1,0-5,0/10-50 (ppm) của Zn(II)-BECT 249
Hình p39.10. Phổ HMBC đầy đủ của Zn(II)-BECT250
Hình p39.11. Phổ HMBC mở rộng 5,0-10,0/100-155 (ppm) của Zn(II)-BECT 251
Hình p39.12. Phổ HMBC mở rộng 4,0-4,7/135-144 (ppm) của Zn(II)-BECT 252
Hình p39.13. Phổ HMBC mở rộng 7,2-9,0/107-114 (ppm) của Zn(II)-BECT 253
Hình p39.14. Phổ HMBC mở rộng 7,4-7,9/109-113 (ppm) của Zn(II)-BECT 254
Hình p39.15. Phổ HMBC mở rộng 7,5-10/118-133 (ppm) của Zn(II)-BECT 255
Hình p39.16. Phổ HMBC mở rộng 7,5-8,8/119-129 (ppm) của Zn(II)-BECT 256
Hình p39.17. Phổ HMBC mở rộng 7,50-7,80/119-127 (ppm) của Zn(II)-BECT 257
Hình p39.18. Phổ HMBC mở rộng 7,5-8,80/136-147 (ppm) của Zn(II)-BECT 258
Hình p39.19. Phổ HMBC mở rộng 1,0-4,5/5,0-60 (ppm) của Zn(II)-BECT 259
Hình 40. Phổ HR-MS của Zn(II)-BECT261
Hình p41.1. Màu của phức vẫn giữ sau 120 phút262

Hình p41.2. Khảo sát bước sóng; a) Phức Ni(II)-BEPT; b) Phức Cd(II)-BEPT 263
Hình p41.3. Khảo sát thăm dò pH của phức Ni(II)-BEPT 263
Hình p41.4. Khảo sát pH của phức Cd(II)-BEPT (a) và Ni(II)-BEPT (b) 263
Hình p41.5. Khảo sát lực ion của Ni(II)-BEPT 264
Hình p41.6. Khảo sát nồng độ thuốc thử cho phức Ni(II)-BEPT 265
Hình p41.7. Khảo sát thời gian bền màu; a) BEPT; b) Ni(II)-BEPT; c) Cd(II)-BEPT. 267
Hình p41.8. Khảo sát phương pháp Job phức Ni(II)-BEPT 268
Hình p41.9. Khảo sát phương pháp tỷ lệ mol phức Ni(II)-BEPT 269
Hình p42.1. Màu của phức vẫn giữ sau 120 phút 270
Hình p42.2. Khảo sát bước sóng; a) Phức Cu(II)-BECT; b) Phức Zn(II)-BECT 271
Hình p42.3. Khảo sát pH của phức Cu(II)-BECT (a) và Zn(II)-BECT (b) 271
Hình p42.4. Khảo sát phương pháp Job phức Cu(II)-BECT
Hình p42.5. Khảo sát phương pháp Job phức Zn(II)-BECT 275
Hình p42.6. Khảo sát phương pháp tỷ lệ mol phức Cu(II)-BECT 276
Hình p42.7. Khảo sát phương pháp tỷ lệ mol phức Zn(II)-BECT 276
Hình p43.1. Hiển thị các kết quả tính phức của Cd(II)-BEPT 278
Hình p43.2. Hiển thị các kết quả tính phức của Ni(II)-BEPT 278
Hình p43.3. Hiển thị các kết quả tính phức của Cu(II)-BECT 278
Hình p43.4. Hiển thị các kết quả tính phức của Zn(II)-BECT

ĐẶT VẤN ĐỀ

Hoá học phức chất có quan hệ mật thiết với các lĩnh vực hoá học hữu cơ, hóa vô cơ, hóa phân tích và hóa lý. Các công trình nghiên cứu cho thấy rằng, các phức chất được tổng hợp có nhiều ứng dụng trong thực tế. Hoá học phức chất đang phát huy ảnh hưởng sâu rộng sang lĩnh vực hoá sinh cả về lý thuyết và ứng dụng, rất nhiều thành tựu trong lĩnh vực hoá sinh vô cơ và trong y được gắn liền với việc nghiên cứu phức chất. Do đó, tổng hợp và nghiên cứu các phức chất là một trong những hướng phát triển của hoá học hiện đại. Có thể nói rằng hiện nay hoá học phức chất đang phát triển mạnh và là nơi hội tụ những thành tựu của hoá lý, hoá phân tích, hoá học hữu cơ, hoá sinh, hoá môi trường và hoá được.

Trong đó, dẫn xuất thiosemicarbazone là những hợp chất quan trọng có nhiều hoạt tính sinh học đa dạng như khả năng kháng khuẩn, kháng nấm, kháng virut, chống ung thư và có hoạt tính xúc tác [137]. Về phương diện hóa học, do sự đặc trưng cấu trúc đa dạng, dẫn xuất thiosemicarbazone là dạng phối tử có khả năng tạo phức tốt với nhiều kim loại nên chúng cũng được sử dụng làm thuốc thử hữu cơ để xác định hàm lượng kim loại có trong các mẫu thực phẩm [116], dược phẩm [114], môi trường [114]. Như vậy, sự đa dạng trong cấu trúc và khả năng tạo phức dễ dàng với nhiều ion kim loại của các dẫn xuất thiosemicarbazone dẫn đến sự ứng dụng rộng rãi trong nhiều lĩnh vực khoa học, do đó, chúng ngày càng được quan tâm nghiên cứu trong các lĩnh vực phân tích và dược học. Các dẫn xuất mói của thiosemicarbazone được tổng hợp bằng cách thay đổi các nhóm chức của aldehyde hoặc xeton để tạo thành các thuốc thử hữu cơ mới. Bên cạnh đó, các nguyên tố kim loại chuyển tiếp là các nguyên tố có phân lớp d hay f chưa đủ electron nên chúng có xu hướng nhận thêm electron dẫn đến dễ dàng tạo phức với nhiều phối tử.

Mặt khác, trong quá trình sinh sống, phát triển và sản xuất, con người đã thải vào môi trường những ion kim loại với hàm lượng lớn gây ô nhiễm đến nguồn nước. Những kim loại này có ảnh hưởng từ có ích đến gây khó chịu, độc hại đối với con người. Một vài kim loại với hàm lượng cho phép là cần thiết, nhưng một số kim loại khác có thể ảnh hưởng khác nhau đến con người. Vì vậy, việc đánh giá chính

xác dư lượng kim loại có trong nước là rất cần thiết. Các kim loại nặng như Hg, Cd, Pb, As, Sb, Cr, Cu, Zn, Mn... thường không tham gia hoặc ít tham gia vào quá trình sinh hóa của cá thể sinh vật, thường tích lũy trong cơ thể sinh vật và có thể là nguyên nhân gây ra các bệnh như ung thư, quái thai, vô sinh... [158]. Vì vậy, việc phân tích, đánh giá hàm lượng chúng trong môi trường là cần thiết. Có nhiều phương pháp phân tích, xác định hàm lượng các ion kim loại như AAS, ICP-AES, ICP-MS, phương pháp trắc quang... [151], [83], [93]. Trong đó, phương pháp trắc quang là phương pháp đơn giản, rẻ tiền, thuận tiện dựa trên sự tạo phức màu bền giữa thuốc thử hữu cơ với các ion kim loại cần phân tích. Những năm gần đây, các dẫn xuất thiosemicarbazone được ứng dụng trong phân tích trắc quang xác định đồng thời nhiều ion kim loại chuyển tiếp trong nước thải, giúp đánh giá mức độ ô nhiễm nước [77], [78], [129]. Vì vậy, dẫn xuất thiosemicarbazone ngày càng được quan tâm nghiên cứu trong các lĩnh vực phân tích.

Nhìn chung, dẫn xuất thiosemicarbazone và phức chất của chúng với các ion kim loai đã được nghiên cứu nhiều trong và ngoài nước. Có thể liệt kê một số công trình nghiên cứu tiêu biểu của một số tác giả trong nước: Tổng hợp và nghiên cứu cấu trúc của phức chất Pt(II), Zn(II) với thiosemicacbazon caphor [12]; Nghiên cứu tổng hợp, cấu tạo của một số phức chất của Zn(II), Cu(II), Pd(II), Mo(II) với một số dẫn xuất thiosemicarbazone benzadehide và thiosemicarbazone isatin [1], [2]; Tổng hợp và nghiên cứu cấu trúc của phức giữa Pt(II) vào vị trí N(4) của thiosemicarbazone [41]; Tổng hợp, nghiên cứu cấu tạo và thăm dò hoạt tính sinh học của phức chất Pd(II), Ni(II) với một số dẫn xuất thiosemicarbazone [5]; Tổng hợp nghiên cứu cấu trúc và thăm dò hoạt tính sinh học của phức Platin với một số thiosemicacbazon [7]; Phổ hấp thụ electron của một số phức chất thiosemicacbazonat của platin (II) [8]; Tổng hợp nghiên cứu cấu trúc và thăm dò hoạt tính sinh học của một số phức chất kim loại với thiosemicarbazone [11]. Đánh giá tổng quan các nghiên cứu này, chúng tôi nhân thấy rằng các nhóm tác giả xoay quanh viêc nghiên cứu tổng hợp các thiosemicarbazone và các phức mới với các ion kim loai. Các nhóm tác giả đã sử dung các phương pháp phân tích hóa lý hiên đai nhằm xác đinh cấu trúc của các dẫn xuất tìm được. Bên canh đó, các tác giả còn nghiên cứu thăm dò hoạt tính sinh học và ứng dụng làm thuốc thử trong phân tích.

Đối với các công trình nghiên cứu nước ngoài, dẫn xuất thiosemicarbazone và phức chất của chúng với các ion kim loại đã được nghiên cứu từ những năm 1970 [137]. Các phức chất đã được tổng hợp cho thấy tính ứng dụng đa dạng trong nhiều lĩnh vực. Có thể liệt kê một số công trình nghiên cứu trong các lĩnh vực trên đối tượng thiosemicarbazone và phức của chúng trong những năm gần đây, một số nghiên cứu tiêu biểu như xác đinh hàm lương Cu bằng phương pháp quang phổ sử dung dẫn xuất 5-bromosalicylaldehyde thiosemicarbazone [113]; Nghiên cứu benzaldehyde thiosemicarbazone làm chất ức chế phenoloxidase bằng 3D-OSAR [156]; phương pháp mới xác đinh hàm lượng cadimi bằng cách dùng quang phổ UV-Vis [105]; Sử dung dẫn xuất thiosemicarbazone 2-Hydroxy-4-n-butoxy-5bromo propiophenone làm thuốc thử để phân tích sắt bằng quang phố [106]; Nghiên cứu sự tạo phức của phức 2-hydroxyacetophenone thiosemicarbazone trong dung môi triphenylphospine với Ni bằng phổ IR, X-ray, NMR và bằng phương pháp DFT/B3LYP, MEP [56]; Úng dung phương pháp đo quang phổ xác đinh đồng trong mẫu sinh hóa bằng cách dùng 2-acetylpyridine 4-methyl-3-thiosemicarbazone (APMT) [118]; Xác đinh trực tiếp thủy ngân bằng quang phổ UV-Vis sử dung thuốc thứ 2-acetylpyridine thiosemicarbazone trong mẫu môi trường [24]; Tổng hợp, xác định cấu trúc phân tử và phân tích phổ của ethyl 4-formyl-3,5-dimethyl-1H-pyrrole-2-carboxylate thiosemicarbazone: Một nghiên cứu lý thuyết DFT kết hợp và AIM [138]; 2013: Úng dụng tác nhân phân tích 3-acetylpyridine thiosemicarbazone (3-APT) xác định hàm lượng niken trong mẫu đất và hợp kim bằng quang phổ UV-Vis [120]; Nghiên cứu động học của sự tạo thành phức giữa salicylaldehyde thiosemicarbazone với ion Cu²⁺ trong dung dịch methanol-dioxan [29]; Khảo sát cân bằng và xác định hằng số bền của phức giữa Mn(II) và Ni(II) với 3formylpyridine thiosemicarbazone trong SDS-nước [77]; Sử dụng 2,4-Dihydroxy-5-Bromo [2'Methyl] Propiophenone thiosemicarbazone [DHBMPT] như là thuốc thử phân tích để nghiên cứu phức của Co(II) [108]; Nghiên cứu khả năng kháng khuẩn của phức đồng với hydroxyquinoline thiosemicarbazone [121]. Các nghiên cứu này cũng xoay quanh việc tổng hợp các ligand và phức chất, trên cơ sở đó, các kết quả nghiên cứu này ứng dung trong nhiều lĩnh vực như sử dung trong phân tích, khảo sát hoat tính kháng khuẩn, kháng nấm, kháng các tế bào ung thư... Bên canh đó, có thể thấy rằng các công trình nghiên cứu trên đối tượng thiosemicarbazone và phức chất với một số kim loại tương ứng đã sử dụng các phương pháp phân tích hóa lý để xác định cấu trúc, sử dụng phương pháp đo quang để xác định công thức phức chất cùng với các phương pháp cổ điển như phương pháp Job, phương pháp tỷ lệ mol và phương pháp độ dốc. Các tác giả cũng nghiên cứu sử dụng các thiosemicarbazone này làm thuốc thử trong phân tích trắc quang trong các nghiên cứu này. Hơn nữa, một số tác giả cũng kết hợp nghiên cứu từ lý thuyết với phương pháp lượng tử DFT đến thực nghiệm và kết hợp khảo sát thăm dò hoạt tính sinh học của các chất tổng hợp được.

Như vậy, mặc dầu có rất nhiều công trình nghiên cứu trong và ngoài nước đến đối tượng dẫn xuất thiosemicarbazone và phức chất của chúng, kể cả từ lý thuyết đến thực nghiệm, nhưng chưa có một công trình nghiên cứu tìm kiếm, sàng lọc dẫn xuất thiosemicarbazone nhằm xây dựng các mô hình dự đoán khả năng tạo phức của dẫn xuất thiosemicarbazone với các ion kim loại khác nhau dựa trên các tính toán lượng tử kết hợp với các phương pháp hồi quy tuyến tính đa biến và các phương pháp mô hình hóa thông minh bằng máy tính.

Mặt khác, với sự nỗ lực không ngừng của các nhà khoa học và sự phát triển mạnh mẽ của khoa học máy tính, các phương pháp toán học mới ra đời, hàng loạt các công cụ hóa tin được xây dựng nhằm ứng dụng ngày càng rộng rãi trong hóa học tính toán. Trong những năm qua, ngành khoa học máy tính đã cho ra đời các công cụ tính toán lượng tử như Hyperchem, Mopac, Gaussian [33]. Các phần mềm mô phỏng trong hóa học được sử dụng rộng rãi trong nghiên cứu lý thuyết như QSARIS, Spartan, MOE, Materials Studio, Dragon [33]. Đồng thời, các công cụ toán tin cũng được cập nhật thường xuyên nhằm hỗ trợ cho các nghiên cứu liên quan đến thống kê, mạng thần kinh nhân tạo, kỹ thuật mô hình hóa thông minh bằng máy tính...

Bên cạnh đó, mối quan hệ định lượng giữa cấu trúc và tính chất (QSPR) xuất phát từ mối quan hệ định lượng giữa cấu trúc và hoạt tính (QSAR) trong đó tính chất của mô hình được thay thế bằng hoạt tính. Đây là ý tưởng của Crum Brown và Fraser [14] đưa ra đầu tiên vào năm 1868. Đến năm 1893, Richet [86] cho rằng sự thay đổi cấu trúc hóa học sẽ dẫn đến sự thay đổi về hoạt tính sinh học. Đây là hai quan điểm đặt nền tảng cho việc thiết lập các mô hình liên quan cấu trúc và hoạt tính hay tính chất sau này. Trong những năm tiếp theo, trong lĩnh vực hóa lý-hữu cơ, các công trình nghiên cứu của Hammett và Taft [86] đã giới thiệu các tham số hằng số Hammett, các hiệu ứng phân cực, hiệu ứng không gian, hiệu ứng cộng hưởng và giới thiêu tham số steric đầu tiên, E_s [86]. Trong những năm 60 của thế kỷ 20, Hansch và đồng sự đã liên tục công bố các công trình nghiên cứu về mối quan hệ cấu trúc – hoạt tính [86] với sự xuất hiện đại lượng mới – tính kỵ nước. Vào cuối những năm 1940, các nghiên cứu về lý thuyết đồ thi hóa học liên quan đến các khái niêm về toán học và hóa học đã dẫn đến sự phát triển của các mô tả đinh lượng trên cơ sở lý thuyết thuần túy. Wiener và Platt là người đầu tiên phát triển các biến đinh lượng hình học dựa trên lý thuyết đồ thi vào năm 1947 được gọi là chỉ số Wiener và chỉ số Platt tương ứng và đã công bố các mô hình OSPR dư đoán về các điểm sôi của dãy hydrocacbon [86]. Hiên nay, khoa học về QSPR được thành lập dựa trên việc sử dung có hệ thống các mô hình toán học và trên quan điểm đa biến, là một trong những công cu ứng dung để thiết kế các dẫn xuất hữu cơ, vô cơ mới, thuốc dược học hiện đại... và có vai trò ngày càng tặng trong nhiều lĩnh vực khoa học như hóa dược, hóa học, môi trường...

Hiện nay, việc xây dựng mối quan hệ định lượng giữa cấu trúc và tính chất là một phương pháp mô hình hóa đã được áp dụng thành công trong lĩnh vực hóa học [160] trên nhiều nhóm đối tượng khác nhau. Phương pháp này bắt đầu với bộ dữ liệu dựa trên công cụ mô hình hóa để tạo ra một phần dữ liệu bổ sung hoặc thậm chí thay thế cho việc tạo dữ liệu thực nghiệm, giúp sau này giảm cả thời gian và tiền bạc. Hơn nữa, mô hình hóa QSPR cung cấp một phương pháp hiệu quả để thiết lập và khám phá mối quan hệ giữa các mô tả cấu trúc hóa học của các phân tử và các đặc tính của chúng hướng đến việc thiết kế hợp chất mới [54]. Những công trình công bố liên tục cho thấy rằng sự phát triển các mô hình dự đoán QSPR sử dụng các phương pháp tuyến tính hoặc phi tuyến dường như là một sự lựa chọn tốt [160]. Các nghiên cứu này xây dựng các mô hình dự đoán tính chất của các hợp chất hóa học dựa trên mối quan hệ định lượng cấu trúc và tính chất (QSPR) [33], [160]. Trong các công trình này, các tác giả đã phát triển các mô hình QSPR trên các đối tượng khác nhau với các tính chất khác nhau [33] như nhiệt độ sôi, độ hòa tan, tính kỵ

nước (logP), hệ số phân tán nước – hợp chất hữu cơ, tính axít của các hợp chất chứa nhóm xeton, chỉ số thời gian lưu của pha đảo trong phân tích sắc ký lỏng các hợp chất hydrocacbon thơm đa vòng. Mặc dù, việc nghiên cứu phát triển mô hình QSPR áp dụng trên các hợp chất khác nhau với các tính chất khác nhau nhưng điểm chung của các nghiên cứu này là sử dụng các phương pháp hồi quy đa biến và mạng thần kinh nhân tạo để phát triển mô hình [160].

Trong khi đó, nghiên cứu trên đối tượng là dẫn xuất thiosemicarbazone, chúng có khả năng tạo phức tốt với nhiều ion kim loại và phối tử này cùng với phức của chúng có nhiều ứng dụng trong thực tiễn. Đối với phức chất, hằng số bền là một thông số quan trọng, đánh giá về khả năng tương tác giữa phối tử và các ion kim loại để tạo ra các phức chất. Từ hằng số bền có thể tính nồng độ cân bằng của các thành phần trong dung dịch và đại lượng này cũng giúp dự đoán sự thay đổi electron phức tạp trong dung dịch của ion trung tâm và phối tử. Trong những năm gần đây, hằng số bền của phức được nghiên cứu nhiều trong phân tích trắc quang. Trong các công trình đã được công bố, chúng tôi nhận thấy rằng chưa có công bố nào phát triển mô hình QSPR trên đối tượng phức chất giữa thiosemicarbazone và các ion kim loại với đại lượng đặc trưng là hằng số bền của phức. Mặc dù, có nhiều công trình nghiên cứu thực nghiệm tổng hợp các ligand này và phức chất của chúng, nhưng các công trình nghiên cứu lý thuyết còn hạn chế. Đặt biệt là các công trình nghiên cứu có sự kết hợp từ lý thuyết đến thực nghiệm.

Trên cơ sở đó, Luận án này định hướng nghiên cứu từ lý thuyết đến thực nghiệm trên đối tượng dẫn xuất thiosemicarbazone và phức chất của chúng dựa trên việc mô hình hóa QSPR kết hợp với các tính toán hóa lượng tử. Từ các mô hình xây dựng được và sự phân tích cấu dạng bền từ tính toán lượng tử, Luận án sẽ định hướng thực nghiệm tổng hợp một số ligand và phức chất, tính toán hằng số bền và đánh giá lại các mô hình đã xây dựng.

Như vậy, mục tiêu của đề tài cần đạt được những vấn đề sau đây:

 Xây dựng các mô hình QSPR trên đối tượng phức chất giữa thiosemicarbazone và các ion kim loại dựa trên kỹ thuật sàng lọc, thiết kế các phức chất từ dữ liệu thực nghiệm đã nghiên cứu;
- Thiết kế và dự báo hằng số bền các phức chất mới dựa trên các mô hình đã xây dựng;
- Phân tích, đánh giá các ligand và phức chất mới có khả năng hình thành và tổng hợp dựa trên các tính toán hóa lượng tử;
- Thực nghiệm tổng hợp ligand và phức chất mới trên cùng đối tượng mô hình hóa;
- Xác định hằng số bền của phức tổng hợp và sử dụng kết quả đánh giá các mô hình QSPR dự báo.

Tóm lại, Luận án này sử dụng phương pháp QSPR kết hợp với các tính toán hóa lượng tử để xây dựng các mô hình dự báo hằng số bền của phức dựa trên các kết quả thiết kế, sàng lọc các phức chất giữa thiosemicarbazone và các ion kim loại. Từ kết quả nhận được và các điều kiện nghiên cứu thực tế, Luận án tiến hành thiết kế các phức chất mới, đồng thời cũng dự đoán hằng số bền của các phức chất mới này từ các mô hình xây dựng được. Bên cạnh đó, Luận án cũng sẽ tổng hợp một số ligand và phức chất mới. Các ligand và phức chất này sẽ được chứng minh cấu trúc qua các phương pháp phân tích hóa lý hiện đại và đánh giá khả năng tạo phức, xác định hằng số bền bằng phương pháp phân tích trắc quang. Đồng thời, kết quả từ thực nghiệm sẽ được dùng để đánh giá tính đúng đắn các mô hình lý thuyết. Việc mô hình hóa QSPR trong luận án này là những nghiên cứu đầu tiên về hằng số bền của phức chất giữa các ion kim loại và thiosemicarbazone trên thế giới.

Luận án sẽ trình bày đầy đủ các nội dung từ lý thuyết đến thực nghiệm của những phần được đề cập ở trên. Luận án có tựa đề "*Thiết kế, sàng lọc và tổng hợp một số dẫn xuất thiosemicarbazone và phức chất dựa trên các tính toán hóa lượng tử kết hợp phương pháp mô hình hóa QSPR*" do NCS. Nguyễn Minh Quang thực hiện dưới sự hướng dẫn của PGS. TS. Phạm Văn Tất và TS. Trần Xuân Mậu. Luận án được thực hiện tại Trường Đại học Khoa học – Đại học Huế và Trường Đại học Công nghiệp Thành phố Hồ Chí Minh.

CHƯƠNG 1. TỔNG QUAN TÀI LIỆU

1.1. THIOSEMICARBAZONE VÀ PHỨC CHẤT

1.1.1. Dẫn xuất thiosemicarbazone

Dẫn xuất thiosemicarbazone là hợp chất chứa các nguyên tố nitơ và lưu huỳnh, với cấu trúc chung như sau:

Hình 1.1. Cấu trúc chung của thiosemicarbazone

Thiosemicarbazone được tổng hợp bằng phản ứng ngưng tụ giữa aldehyde hoặc keton với dẫn xuất thiosemicarbazide trong môi trường chứa dung môi và pH thích hợp. Đồng thời, thiosemicarbazone cũng có thể thực hiện phản ứng khử hóa ngược trở lại để tạo thành thiosemicarbazide trong môi trường có NaBH₄:

Hình 1.2. Sơ đồ phản ứng tạo thiosemicarbazone

1.1.2. Phức chất của thiosemicarbazone với các ion kim loại

Hoá học phức chất của các kim loại chuyển tiếp với các thiosemicarbazone bắt đầu phát triển mạnh sau khi Domagk và cộng sự đã công bố đầu tiên hoạt tính kháng khuẩn của một số thiosemicarbazone [39]. Để làm sáng tỏ cơ chế tác dụng ấy của thiosemicarbazone, người ta đã tổng hợp các phức chất của chúng với các kim loại và tiến hành thử hoạt tính kháng khuẩn của các hợp chất tổng hợp được.

Do bản chất cấu trúc, thiosemicarbazone dễ dàng tạo phức với các ion kim loại chuyển tiếp bằng cách liên kết với lưu huỳnh và nitơ ở vị trí 4. Phức chất của thiosemicarbazone sở dĩ cũng được quan tâm nghiên cứu nhiều do tính đa dạng của các hợp chất cacbonyl vì cho phép thay đổi bản chất các nhóm chức cũng như cấu tạo hình học thiosemicarbazone trong một giới hạn rất rộng. Tuy nhiên, tùy thuộc vào số lượng và vị trí các nhóm có khả năng cho electron có trong phân tử mà thiosemicarbazone có thể là phối tử hai càng, ba càng. Trong dung dịch thiosemicarbazone có thể tồn tại ở dạng thione hoặc thiol theo cân bằng sau [71]:

Hình 1.3. Cân bằng giữa thione và thiol trong nước của thiosemicarbazone

Dạng thione hoạt động như một phối tử hai càng (hai phối trí) trung hòa, trong khi sự mất đi proton ở vị trí thio (lưu huỳnh) từ thiol tạo ra phối tử hai càng mang điện tích. Do đó, hai dạng phối tử trên có thể tạo phức hai càng với các ion kim loại như sau [71], [137]:

Hình 1.4. Khung cấu trúc phức hai càng ML và ML₂ của thiosemicarbazone

Do đó, tùy thuộc vào điều kiện phản ứng, đặc biệt là pH, phức chất tạo thành có thể là cation, trung hòa hoặc anion. Tuy nhiên, trong hầu hết các nghiên cứu về phức chất của thiosemicarbazone với ion kim loại đều ở dạng trung hòa điện, trong khi dữ liệu xác định trên phức chứa thiosemicarbazone ở dạng thiol thường không đầy đủ.

Mặt khác, tùy vào bản chất của các nhóm R_3 và R_4 mà ligand này trở thành phối tử hai càng, ba càng ở các dạng khác nhau khi tạo thành phức chất [71]:

Hình 1.5. Các dạng cấu trúc khác của phức thiosemicarbazone; X = N, O

Đến thời điểm này, có rất nhiều công trình nghiên cứu các dẫn xuất thiosemicarbazone và phức chất tương ứng. Các nghiên cứu này xoay quanh những vấn đề như tổng hợp ligand và phức chất, xác định công thức phức, tính toán hằng số bền, nghiên cứu nhiệt động học và các hoạt tính sinh học. Tuy nhiên, các nghiên cứu nhằm chứng minh cấu trúc của các phức chất này còn rất hạn chế. Do đó, các kiểu mô tả cấu trúc trên là sự định hướng cần thiết trong công trình nghiên cứu để kiểm tra cấu trúc.

1.1.3. Hằng số bền của phức

1.1.3.1. Khái quát hằng số bền

Độ bền của các hợp chất theo nghĩa chung nhất là các hợp chất tồn tại trong các điều kiện thích hợp trong một thời gian dài. Do đó, khi khảo sát sự tạo thành phức chất trong dung dịch người ta sử dụng đại lượng hằng số bền, đây là hằng số cân bằng của sự hình thành phức trong dung dịch. Giá trị này càng lớn thì phức càng bền [3], [85]. Trong trường hợp tổng quát, phản ứng tạo phức dạng ML_n xảy ra trong dung dịch như sau [38], [57]:

$$M + n L \rightleftharpoons ML_n \tag{1.1}$$

Trong đó, M là ion trung tâm, L là phối tử (ligand) và n là số phối tử (L) trong phức ML_n. Như vậy, công thức tính hằng số bền (β_{1n}) trong trường hợp này là [99]:

$$\beta_{1n} = \frac{\left[ML_{n}\right]}{\left[M\right]\left[L\right]^{n}}$$
(1.2)

1.1.3.2. Yếu tố ảnh hưởng lên hằng số bền

Các yếu tố ảnh hưởng lên hằng số bền của phức [3], [85] bao gồm:

Bản chất ion trung tâm gồm hai yếu tố, đó là kích thước và điện tích của ion. Các phức chất bền nhất là những phức chất có ion kim loại trung tâm có kích thước nhỏ và điện tích lớn. Bản chất phối tử bao gồm các yếu tố như kích thước và điện tích của phối tử, tính bazơ của phối tử, nồng độ phối tử [3], [85].

Hiệu ứng vòng (hiệu ứng chelat) bao gồm các yếu tố như kích thước vòng, số lượng vòng, ảnh hưởng nhóm phụ (hiệu ứng không gian) [3], [85]; hiệu ứng vòng lớn (macrocyclic) [59].

Lực ion: ảnh hưởng của lực ion qua các hệ số hoạt độ [123]. Tùy theo điều kiện cụ thể mà các hệ số này có thể tính toán thông qua định luật Debye-Huckel [38].

Nhiệt độ: tất cả các hằng số cân bằng của phản ứng phụ thuộc vào nhiệt độ theo phương trình đẳng áp Van't Hoff [22], do đó hằng số bền β của phức cũng chịu ảnh hưởng như vậy.

pH và dung môi [3]: pH có ảnh hưởng lớn đến khả năng tạo phức. Điều này được thể hiện một phần do khả năng phản ứng tạo phức. Bên cạnh đó, dung môi ảnh hưởng trực tiếp lên khả năng hòa tan của phối tử, từ đó ảnh hưởng lên phản ứng tạo phức. Một số ít nghiên cứu mô tả hằng số bền trên những hệ dung môi khác nhau. Điều này là không đặc trưng đối với sự hình thành phức chất. Đây chỉ là những kết quả mang giá trị tham khảo trong thực nghiệm.

1.1.3.3. Phương pháp xác định hằng số bền

Việc xác định hằng số bền của phức trước hết xuất phát từ việc xác định nồng độ cân bằng cùa một trong những cấu tử tham gia phản ứng tạo thành phức chất đó. Mà nồng độ của các chất hóa học có liên quan đến các thông số hóa lý như hệ số phân bố, độ dẫn, chiết suất, nhiệt độ, biến thiên thể tích, cộng hưởng từ hạt nhân, biến thiên mômen từ, tính chất quang học... Do đó, việc xác định được chúng rất hữu ích trong việc xác định hằng số bền. Các kỹ thuật hiện đại khác nhau [158], [97] đã được sử dụng để xác định hằng số bền của các phức chất.

Trong nghiên cứu này, chúng tôi sử dụng kỹ thuật đo quang phố (Spectrophotometric) với phương pháp *Benesi-Hildebrand* [26], [135]. Phương pháp này yêu cầu cần thực hiện các nguyên tắc: sự tuân theo định luật Lambert-Beer, lựa chọn bước sóng rõ ràng và đánh giá các yếu tố pH và lực ion.

Trước khi xác định hằng số bền của phức theo phương pháp quang phổ, cần phải xác định số lượng các nhóm phối tử gắn với ion kim loại, tức là xác thành phần

của phức. Các phương pháp này bao gồm phương pháp Job, phương pháp tỷ lệ mol hoặc phương pháp độ dốc.

Phương pháp Benesi-Hildebrand là một phương pháp toán học được sử dụng trong hóa lý để xác định hằng số cân bằng và công thức phức của các tương tác không liên kết. Phương pháp này thường được áp dụng cho cân bằng phản ứng hình thành các phức chất. Cơ sở lý thuyết của phương pháp này dựa trên phân tích trắc quang, giá trị quang phổ hấp thụ của các cấu tử phản ứng khác sẽ được xác định cụ thể. Như vậy, từ phép đo quang phổ hấp thụ của các cấu tử trong dung dịch trước và sau phản ứng, hằng số bền được xác định theo phương trình Benesi-Hildebrand.

Khảo sát sự tạo thành phức: $M + nL \rightleftharpoons ML_n$

Hằng số cân bằng của phản ứng được xác định theo phương trình:

$$\beta_{1n} = \frac{[ML_n]}{([M]_0 - [ML_n])([L]_0 - n[ML_n])^n}$$
(1.3)

Nếu $[ML_n]$ vô cùng bé so với $[L]_0$ thì

$$\beta_{1n} = \frac{\left[ML_{n}\right]}{\left(\left[M\right]_{0} - \left[ML_{n}\right]\right)\left(\left[L\right]_{0}\right)^{n}}$$

$$\left[M\right]_{0} - \left[ML_{n}\right] = \frac{\left[ML_{n}\right]}{\beta_{1n} \cdot \left[L\right]_{0}^{n}}$$

$$\left[ML_{n}\right] = \left[M\right]_{0} \cdot \left(\frac{\beta_{1n}\left[L\right]_{0}^{n}}{1 + \beta_{1n}\left[L\right]_{0}^{n}}\right)$$

$$(1.4)$$

Theo định luật Lambert-Beer, hệ số hấp thụ phân tử ε của phức chất ở bước sóng hấp thụ cực đại được tính theo phương trình:

$$A = \log_{10} \frac{I_0}{I} = \varepsilon . l. C = \varepsilon . l. [ML_n]$$
(1.6)

Sắp xếp lại phương trình (1.5) và (1.6) ta có:

$$\frac{[\mathbf{M}]_0}{A} = \frac{1}{\beta_{1n} \cdot \varepsilon l \cdot [\mathbf{L}]_0^n} + \frac{1}{\varepsilon l}$$
(1.7)

Phương trình (1.7) là phương trình Benesi-Hildebrand có dạng y = ax + b, với:

$$x = \frac{1}{\left[L\right]_0^n} \text{ và } y = \frac{\left[M\right]_0}{A}$$

Từ phương trình (1.7) có thể xác định được các giá trị:

$$a = \frac{1}{\beta_{1n} \cdot \varepsilon \cdot l}; b = \frac{1}{\varepsilon \cdot l} \Longrightarrow \beta_{1n} = \frac{b}{a}$$
(1.8)

1.2. LÝ THUYẾT QSPR

1.2.1. Giới thiệu

1.2.1.1. Khái quát phương pháp mô hình hóa QSPR

Sự mô hình hóa được thực hiện trên một tập số liệu của các chất có cấu trúc tương tự nhau nhằm phát triển một mối quan hệ toán học giữa một đáp ứng hóa học (X) và các thuộc tính định lượng hóa học (S) được xác định cụ thể qua sự phân tích phân tử được gọi là mô hình QSXR [86], phổ biến nhất là mô hình QSAR và mô hình QSPR. Trong nghiên cứu này, chúng tôi sử dụng thuật ngữ QSPR để mô tả mối quan hệ định lượng giữa cấu trúc và tính chất được thông qua logarit của hằng số bền (log β_{pq}) của phức giữa thiosemicarbazone và ion kim loại. Do đó, có thể biểu diễn hình thức cơ bản của kỹ thuật QSPR bằng toán học theo phương trình (1.9) [86]:

$$\log \beta_{pq} = f(c \hat{a} u \ tr u c \ h o a \ h o c, \ t u h \ c h \hat{a} \ h o a \ l y)$$
(1.9)

trong đó cấu trúc hóa học là tập hợp các tham số đặc trưng cho cấu trúc của phân tử, thường được hiểu là bộ mô tả phân tử; chất hóa lý là các tham số có thể tính được từ lý thuyết và các giá trị thu thập từ thực nghiệm. Tồn tại nhiều phương pháp toán học để xây dựng các mô hình QSPR mà chúng tôi sẽ đề cập chi tiết ở phần sau.

Hình 1.6. Thống kê các bài báo công bố về nghiên cứu QSAR/QSPR

Hiện nay, lĩnh vực nghiên cứu về QSAR/QSPR phổ biến trên thế giới và có khoảng 11.000 công trình được xuất bản từ năm 1966 đến năm 2015 (Hình 1.6) [31].

Phương pháp QSXR xuất hiện những năm cuối thế kỷ 19 và phát triển cho đến nay (Hình 1.7) [86]. Hiện nay, khoa học về QSPR được thành lập dựa trên việc sử

dụng có hệ thống các mô hình toán học. Trên quan điểm đa biến, đây là một trong những công cụ ứng dụng để thiết kế thuốc dược học, thuốc trừ sâu hiện đại và có vai trò ngày càng tăng trong nhiều lĩnh vực như hóa học, môi trường.

Hình 1.7. Những cột mốc khám phá quan trọng trong nghiên cứu QSAR/QSPR

1.2.1.2. Nguyên lý phát triển mô hình QSPR

Mô hình QSPR phải đáp ứng yêu cầu của các nguyên lý OECD [100] như sau:

- Điểm cuối xác định;
- Giải thuật rõ ràng;
- Miền ứng dụng được xác định;
- Các chỉ số thống kê phù hợp và khả năng dự báo tốt;
- Giải thích cơ chế nếu có thể.

1.2.1.3. Kỹ thuật phát triển mô hình QSPR

Quá trình phát triển mô hình QSPR bao gồm các bước chính sau [86]:

- Lựa chọn các phân tử cần xây dựng mô hình với tính chất mong muốn;
- Lựa chọn bộ mô tả phân tử;

- Chuẩn hóa nhóm mô tả ban đầu;
- Xây dựng mô hình;
- Kiểm tra đánh giá mô hình;
- Úng dụng mô hình.

1.2.1.4. Những ưu điểm chính từ sự mô hình hóa QSPR

Phương pháp mô hình hóa QSPR giúp thực hiện các quy trình liên quan đến lĩnh vực hóa học một cách hiệu quả, an toàn, thân thiện môi trường và tạo điều kiện phát triển quy trình hóa học bền vững. Ngoài ra, QSPR còn có những điểm mạnh sau [86]:

- Đi đầu trong lĩnh vực khám phá và tối ưu hóa;
- Uu tiên sử dụng hóa chất cần thiết;
- Giảm số thí nghiệm;
- Tiết kiệm thời gian và tiền bạc;
- Khám phá cơ chế liên quan kết quả nghiên cứu;
- Đánh giá rủi ro khi sử dụng hóa chất;
- Hoạt động hóa học bền vững.

1.2.1.5. Ứng dụng kỹ thuật mô hình hóa QSPR

Trong các mô hình QSPR tồn tại sự giao thoa của các lĩnh vực hóa học, thống kê, sinh học trong các nghiên cứu hoạt tính và tính chất. Trong khoa học vật liệu, QSPR có nhiều ứng dụng như mô tả trong Hình 1.8 [86].

Hình 1.8. Các lĩnh vực ứng dụng của QSPR trong khoa học vật liệu

Một số ứng dụng lớn của mô hình hóa QSPR như sau [86]:

Dự đoán các tính chất hóa lý, hoạt tính sinh học và hiểu rõ hơn các đặc tính lý hóa trong các phản ứng sinh học trong thiết kế thuốc;

- Thiết kế nhiều sản phẩm khác nhau như chất hoạt động bề mặt, nước hoa, thuốc nhuộm và hóa chất mong muốn một cách hợp lý;
- Dự đoán về các tính chất hóa học của các phân tử;
- Dự đoán về sự tồn tại của các phân tử được giải phóng vào môi trường;
- Xác định các hợp chất độc hại ở giai đoạn đầu của quá trình phát triển sản phẩm, dự đoán độc tính đối với con người và môi trường.

1.2.2. Xây dựng dữ liệu

1.2.2.1. Bộ mô tả phân tử

Mô hình QSPR biểu diễn một phương trình toán học trong đó có sự tương quan tính chất của phân tử với các tham số định lượng tính toán hoặc thực nghiệm khác nhau được gọi là bộ mô tả phân tử [86]. Các mô tả này tương quan với các tính chất thông qua các giá trị thực nghiệm bằng cách sử dụng các công cụ hóa trắc học (chemometric) để xây dựng mô hình QSPR có ý nghĩa thống kê. Bộ mô tả phân tử là thuật ngữ mô tả thông tin cấu trúc đặc trưng cụ thể của phân tử nghiên cứu và là tập hợp các giá trị định lượng liên quan đến cấu trúc hóa học với các tính chất hóa lý khác nhau. Mô hình được phát triển sẽ cung cấp một cái nhìn sâu sắc đáng kể vào các điều kiện cần thiết về cấu trúc của phân tử đến đáp ứng hóa học như tính chất hay hoạt tính của phân tử nghiên cứu [55]. i cách khác, đáp ứng hóa học có thể được trình bày bằng hàm toán học của bộ mô tả như phương trình (1.9).

Để xây dựng mô hình QSPR đáng tin cậy, một bộ mô tả lý tưởng cần có các tính chất sau đây [86]:

- Mô tả phù hợp với một nhóm hợp chất;
- Mô tả phải tương quan với các đáp ứng hóa học được nghiên cứu, đồng thời không có sự tương quan hay tương quan không đáng kể với các mô tả khác;
- Mô tả phải được tính toán nhanh và độc lập với đại lượng thực nghiệm cần nghiên cứu;
- Mô tả phải có các giá trị khác nhau cho các phân tử cấu trúc không giống nhau, ngay cả khi sự khác biệt về cấu trúc là rất nhỏ;
- Mô tả có thể được giải thích dễ dàng nhằm tham chiếu các tính chất cho các hợp chất nghiên cứu.

Mô tả có thể được phân loại khác nhau tùy thuộc vào phương pháp tính toán hoặc cách xác định chúng như theo tính chất hóa lý, theo cấu trúc, hình học, electron dựa vào tính toán orbital phân tử, hình học dựa trên tính toán diện tích bề mặt phân tử hoặc các tham số từ kết quả thực nghiệm [84], [89], [148]. Mặt khác, bộ mô tả cũng có thể được phân loại dựa trên quan điểm chiều [86]. Trong phần này, chúng tôi sẽ giới thiệu bộ mô tả phân tử bao gồm các mô tả được tính toán từ các nguồn khác nhau sử dụng trong phạm vi nghiên cứu của đề tài. Các mô tả bao gồm:

✤ Mô tả từ cấu trúc phân tử

Mô tả này bao gồm 230 mô tả chứa các nhóm khác nhau như nhóm chỉ số hình học, nhóm tham số hóa lý và nhiệt động, tham số electron, tham số không gian. Các mô tả này được tính toán dựa trên biểu diễn đồ thị của các phân tử và do đó chúng không yêu cầu dự đoán bất kỳ tính chất hóa lý nào hoặc cũng không cần các tính toán nghiêm ngặt liên quan đến nguồn gốc của các mô tả hóa học lượng tử. Việc xây dựng các mô tả này dựa trên đặc tính cấu trúc hóa học theo lý thuyết đồ thị [84]. Có thể giới thiệu một vài mô tả được sử dụng trong nghiên cứu như ABSQ, ABSQon, MaxHp, MaxNeg, MaxQp, Ovality, Polarizability... Các mô tả được sử dụng rộng rãi trong phát triển mô hình này được trình bày trong Phụ lục 1 và 2.

* Mô tả từ tính toán lượng tử

Các mô tả này được sử dụng phổ biến [86], [148] trong các mô hình QSPR bao gồm các mô tả được tính toán từ kết quả lượng tử như khối lượng phân tử (MW), nhiệt tạo thành ΔH_f (kcal/mol), tổng năng lượng (eV), năng lượng electron (eV), năng lượng tương tác nhân – nhân (eV), mô men lưỡng cực (debye), năng lượng ion hóa (eV), HOMO, LUMO, diện tích Cosmo, thể tích Cosmo, điện tích riêng phần của các nguyên tử trên khung cấu trúc của phức chất.

✤ Mô tả từ thực nghiệm

Các mô tả này [86] là các giá trị định lượng bao gồm các điều kiện thực nghiệm của các phản ứng tổng hợp các hợp chất nghiên cứu. Trên cơ sở đó, hằng số bền của phức được nghiên cứu trên các ligand và ion kim loại khác nhau ở các điều kiện khác nhau. Các điều kiện này được xem như là các biến số trong quá trình xây dựng mô hình QSPR nên cũng được xem như là các tham số mô tả. Các tham số này được gọi là tham số mô tả thực nghiệm như pH, lực ion (I), nhiệt độ (T,°C).

1.2.2.2. Phân chia dữ liệu

Thực tế có nhiều phương pháp phân chia dữ liệu [86], trong phần này, chúng tôi trình bày hai giải thuật dựa trên sự phân loại theo cụm được sử dụng trong nghiên cứu đề tài, đó là sự phân cụm k-means và sự phân cụm phân cấp tập hợp (AHC).

Sự phân cụm k-means

Sự phân cụm k-means là một phương pháp định lượng vécto, ban đầu từ xử lý tín hiệu, phương pháp này sử dụng phổ biến trong phân tích cụm khai thác dữ liệu. Sự phân cụm k-means nhằm mục đích phân chia *n* quan sát thành *k* cụm trong đó mỗi quan sát thuộc về cụm có giá trị trung bình gần nhất, phục vụ như một nguyên mẫu của cụm. Điều này dẫn đến việc phân vùng không gian dữ liệu thành các ô Voronoi. Giải thuật phân loại sự phân cụm k-means được McQueen giới thiệu vào năm 1967 [91]. Các giải thuật tương tự khác (như giải thuật trung tâm di chuyển) đã được Forgey phát triển năm 1965 [44] và Friedman phát triển năm 1967 [45].

Nguyên tắc của phương pháp k-means là một phương thức lặp đi lặp lại, bất cứ nơi nào khi bắt đầu, hội tụ vào một giải pháp. Các giải pháp thu được không nhất thiết phải giống nhau cho tất cả các điểm khởi đầu. Vì lý do này, các phép tính thường được lặp lại nhiều lần để chọn giải pháp tối ưu cho tiêu chí đã chọn [86]. Đối với lần lặp đầu tiên, một điểm bắt đầu được chọn bao gồm việc kết hợp trọng tâm của các lớp k với các k đối tượng (hoặc được lấy ngẫu nhiên hay không). Sau đó khoảng cách giữa các đối tượng và các trọng tâm k được tính toán và các đối tượng được gán cho các trọng tâm gần nhất. Sau đó, các trọng tâm được định nghĩa lại từ các đối tượng được gán cho các lớp khác nhau. Các đối tượng sau đó được gán lại tùy thuộc vào khoảng cách từ các trung tâm mới. Và như vậy cho đến khi đạt được hội tụ [86].

Cho bộ dữ liệu quan sát ($x_1, x_2, ..., x_n$), trong đó mỗi quan sát là một véctơ thực d chiều, sự phân cụm k-means nhằm phân chia n quan sát thành k tập ($k \le n$) là $S = {S_1, S_2, ..., S_k}$ để tối thiểu tổng bình phương trong nhóm, tức là phương sai. Do đó mục tiêu là để tìm [17], [43], [70]:

$$\arg \min_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2} = \arg \min_{S} \sum_{i=1}^{k} |S_{i}| Var S_{i}$$
(1.10)

trong đó μ_i là điểm trung bình trong S_i . Điều này tương đương với việc tối thiểu tổng bình phương độ lệch của các điểm trong cùng một cụm [17], [43], [70]:

$$\arg \min_{S} \sum_{i=1}^{k} \frac{1}{2 |S_i|} \sum_{x, y \in S_i} ||x - y||^2$$
(1.11)

Sự tương đương có thể được suy ra từ biểu thức [17], [43], [70]:

$$\sum_{x \in S_i} ||x - \mu_i||^2 = \sum_{x \neq y \in S_i} (x - \mu_i)(\mu_i - y)$$
(1.12)

Do tổng phương sai là hằng số, điều này cũng tương đương với việc cực đại tổng bình phương độ lệch giữa các điểm trong các cụm khác nhau (tổng bình phương giữa các nhóm) [80] sau đó dễ dàng theo định luật tổng phương sai.

Sự phân cụm phân cấp tập hợp

Sự phân cụm phân cấp tập hợp (AHC) [17], [43], [70] đi tìm các trường hợp cụm tương đối đồng nhất dựa trên khoảng cách giữa các đối tượng. Cách đơn giản nhất và được chấp nhận chung về khoảng cách tính toán giữa các đối tượng trong một không gian đa chiều là tính toán khoảng cách Euclide hoặc khoảng cách bình phương Euclide. Phương pháp này bắt đầu với mỗi trường hợp như là một cụm riêng biệt và sau đó kết hợp các cụm liên tiếp, giảm số lượng cụm tại mỗi bước cho đến khi chỉ còn một cụm. Một sơ đồ cây biểu diễn mối quan hệ phân loại dữ liệu có thể được tạo ra để hiển thị các điểm liên kết, tức là các cụm được liên kết với các mức độ khác nhau tăng lên.

Nguyên tắc của phương pháp rất đơn giản, quá trình bắt đầu bằng cách tính toán sự khác biệt giữa N đối tượng. Sau đó, khi hai đối tượng đáp ứng điều kiện tối thiểu tiêu chí kết hợp đã cho thì được nhóm lại với nhau, do đó tạo ra một lớp bao gồm hai đối tượng này. Sau đó, sự khác biệt giữa lớp này với (N - 2) đối tượng còn lại được tính toán bằng cách sử dụng tiêu chuẩn kết hợp. Hai đối tượng hoặc các lớp đối tượng có phân cụm cùng nhau sẽ thu nhỏ tiêu chuẩn kết hợp sau đó được nhóm lại với nhau. Quá trình này tiếp tục cho đến khi tất cả các đối tượng đã được nhóm lại. Các hoạt động phân cụm liên tiếp này tạo ra một cây phân cụm nhị phân (dendrogram), mà gốc là lớp chứa tất cả các quan sát.

Xét tập $X = \{x_1, x_2, ..., x_n\}$, quá trình thực hiện theo các bước sau [88], [153]:

- Bắt đầu phân tách cụm có mức L(0) = 0 và số thứ tự m = 0;
- Tìm cặp có khoảng cách nhỏ nhất trong cụm hiện tại, gọi là cặp (r), (s) với d[(r),(s)] = min{d[(i),(j)]} là mức thấp nhất trên tất cả các cặp cụm trong cụm hiện tại.

- Tăng liên tục: m = m + 1. Hợp nhất các cụm (r) và (s) thành một cụm đơn lẻ để tạo thành nhóm tiếp theo m. Đặt mức độ phân cụm này thành L(m) = d[(r),(s)].
- Cập nhật ma trận khoảng cách D bằng cách xóa các hàng và cột tương ứng với các cụm (r) và (s) và thêm một hàng và cột tương ứng với cụm mới được hình thành. Khoảng cách giữa cụm mới, ký hiệu (r,s) và cụm cũ (k) được xác định bằng cách: d[(k), (r,s)] = min{d[(k),(r)]; d[(k),(s)]}.
- Nếu tất cả các điểm dữ liệu nằm trong một cụm thì dừng, lặp lại từ bước 2.

1.2.3. Mô hình toán học và giải thuật

1.2.3.1. Hồi quy tuyến tính bội

Mục đích của hồi quy tuyến tính đa biến (MLR) là xây dựng mô hình tương quan giữa hai hay nhiều biến độc lập và một biến phụ thuộc bằng cách xây dựng một phương trình tuyến tính cho các số liệu quan sát [30]. Mỗi giá trị biến độc lập x liên hệ với một giá trị biến phụ thuộc Y. Mô hình hồi quy MLR được biểu diễn: [86], [140]

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_m x_m + \varepsilon$$
(1.13)

Trong đó, *m* là số biến độc lập; b_1 , b_2 ,..., b_m các hệ số hồi quy và y biến phụ thuộc; ε là sai số. Các hệ số hồi quy đặc trưng cho sự đóng góp độc lập của mỗi tham số mô tả phân tử. Mô hình MLR được xác định bằng phương trình ma trận [86], [140]

$$Y = Xb + E \tag{1.14}$$

Khi X là dãy đầy đủ thì lời giải cực tiểu hóa là [86], [140]

$$\hat{b} = \left(X^T X\right)^{-1} X^T Y \tag{1.15}$$

Trong đó \hat{b} là giá trị ước lượng cho hệ số hồi quy. Mô hình MLR được xây dựng từ một tập luyện, tập đánh giá và dự đoán ngoại.

1.2.3.2. Hồi quy bình phương tối thiểu riêng phần

Phương pháp này nhanh chóng, hiệu quả và tối ưu cho một tiêu chí dựa trên cùng phương sai. Bình phương tối thiểu riêng phần được khuyến cáo sử dụng trong trường hợp số lượng biến cao và có khả năng các biến giải thích có tương quan. Bình phương tối thiểu riêng phần (PLS) được sử dụng để xây dựng các mô hình hồi quy dựa vào sự phân tích biến ẩn liên quan đến hai khối ma trận X và Y, bao gồm

các biến độc lập x và biến phụ thuộc y. Các ma trận được phân chia thành tổng của các biến ẩn f như [86], [145]

$$X = TP^{T} + E = \sum t_{f} p_{f} + E$$

$$(1.16)$$

$$Y = UQ^{T} + F = \sum u_{f}q_{f} + F$$
(1.17)

Trong đó T và U là các ma trận đặc trưng cho X và Y tương ứng; P và Q là ma trận hệ số tương ứng; E và F là các ma trận sai số; hai ma trận X và Y tương quan theo T và U đặc trưng đối với mỗi biến ẩn [86], [145]

$$u_f = b_f t_f \tag{1.18}$$

Trong đó b_f là hệ số hồi quy cho biến ẩn *f*. Ma trận *Y* có thể được tính từ u_f , hằng số bền của các phức chất mới có thể được tính toán từ các *T* mới thế vào phương trình (1.17) dẫn đến phương trình (1.19) [86], [145]

$$Y = TBQ^T + F \tag{1.19}$$

$$Y_{\rm moi} = UBQ^T \tag{1.20}$$

Trong phần tính toán này, cần tìm số biến ẩn tốt nhất được thực hiện chuẩn hóa bằng kỹ thuật đánh giá chéo dựa vào sai số dự đoán cực tiểu. Mô hình PLS được thảo luận ở nhiều công trình.

1.2.3.3. Hồi quy thành phần chính

Từ một tập dữ liệu {X, Y}, trong đó X là một ma trận với n quan sát và p biến số; Y là vector biến phụ thuộc tương ứng, các số liệu được tập trung và không được xử lý trước, hồi quy tuyến tính bội chuẩn MLR được dựa vào ma trận (1.14).

Đặc trưng chính của hồi quy thành phần chính (PCR) là giá trị đáp ứng Y không tương quan trực tiếp với X nhưng có tương quan với thành phần chính. Các thành phần chính nhận được bằng cách phân tách X bằng phương pháp phân tích thành phần chính (PCA) [79], [86]

$$X = \sum t_i p_{i'} = TP' \tag{1.21}$$

Trong đó $T = [t_1, t_2, ..., t_q], P = [p_1, p_2, ..., p_q], t_i$ là thành phần chính thứ $i; p_i$ là vector riêng thứ i của X'X; q là hàng của X và T = XP.

Trong hồi quy thành phần chính, nếu k thành phần đầu (k < q) được sử dụng cho hồi quy, thì phương trình hồi quy được viết như sau [79], [86]

$$Y = T_1 P_1 b + e = T_1 \alpha_1 + e$$
 (1.22)

trong đó $T_1 = [t_1, t_2, ..., t_k], P_1 = [p_1, p_2, ..., p_k], \alpha_1 = P_1 b$ và *e* là vector sai số.

Thực hiện bình phương tối thiểu (1.22), nhận được phương trình [79]

$$\hat{\alpha}_{1} = (T_{1}T_{1})^{-1}T_{1}y$$
(1.23)

Đánh giá phương trình hồi quy thành phần chính PCR của $b(\hat{b}_p)$, loại bỏ (q-k) thành phần sau đó, có thể nhận được phương trình (1.24) [79]

$$\hat{b}_{p} = P_{1}(T_{1}T_{1})^{-1}T_{1}y$$
(1.24)

Các giá trị đáp ứng dự đoán dựa vào X bằng \hat{b}_p được cho bằng ma trận [79]:

$$\hat{y} = X\hat{b}_{p} \tag{1.25}$$

1.2.3.4. Mạng thần kinh nhân tạo

Mạng thần kinh nhân tạo (ANN) là hệ thống tính toán lấy cảm hứng từ các mạng thần kinh sinh học tạo thành bộ não con người. ANN giống như bộ não con người, được học bởi kinh nghiệm thông qua huấn luyện, có khả năng lưu giữ những kinh nghiệm hiểu biết thành tri thức và sử dụng những tri thức đó trong việc dự đoán các dữ liệu chưa biết [122]. Một mạng ANN được cấu thành từ các noron đơn lẻ (perceptron). Trong đó, các noron nhân tạo được mô phỏng từ noron sinh học như hình mô tả dưới đây [122]:

Hình 1.9. Cấu tạo và sự truyền tính hiệu của noron sinh học

Hàm tổng là hàm tính tổng trọng số của tất cả các đầu được đưa vào mỗi noron và được định nghĩa bằng một luật lan truyền cụ thể, nếu cộng thêm giá trị ngưỡng θ_j tạo ra một giá trị đầu vào mạng (*net*_j). Hàm tổng z_j của một noron với *n* đầu vào và giá trị đầu vào mạng *net*_j được tính theo công thức sau [33], [34]:

$$z_{j} = \sum_{i=1}^{n} x_{i} w_{ij} ; net_{j} = \sum_{i=1}^{n} x_{i} w_{ij} + \theta_{j}$$
(1.26)

Như mô tả từ Hình 1.9, quá trình xử lý thông tin của một nơron có thể mô tả trong hình dưới đây [122]:

Hình 1.10. Quá trình xử lý thông tin của một noron

trong đó x_i : các giá trị của lớp đầu vào; w_{ji} : các trọng số tương ứng với các đầu vào; θ_j : giá trị ngưỡng; *net*_j: đầu vào mạng; o_j : đầu ra của nơron; $g(net_j)$: hàm truyền.

Mối quan hệ giữa hàm tổng và đầu ra được thể hiện bằng hàm truyền. Hàm truyền là hàm chuyển đầu ra mạng (*net*_j) từ kết quả hàm tổng kết hợp với ngưỡng thành đầu ra mạng ANN. Trong ANN thường sử dụng các hàm truyền sau [51], [122]:

Hàm sigmoid:
$$g(x) = \log sig(x) = \frac{1}{1 + e^{-x}}$$
 (1.27)

Hàm hyperbolic sigmoid tangent: $g(x) = \tan sig(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ (1.28)

Dựa vào cấu tạo, nguyên lý hoạt động và chức năng của nơron sinh học, kiến trúc mạng ANN được mô tả qua số đầu vào, số lớp, số nút trên mỗi lớp và số đầu ra. Thông thường trong quá trình tính toán xây dựng mạng ANN thường sử dụng ba lớp, đó là một lớp đầu vào với m đầu vào, một lớp ẩn với n nút và một lớp đầu ra với k đầu ra, do đó người ta hay ký hiệu kiến trúc mạng này là I(m)-HL(n)-O(k) [51], [122]. Do đó, trong một ANN có thể có nhiều lớp ẩn và mỗi đầu vào ở lớp đầu vào tương ứng với một thuộc tính của dữ liệu cần nghiên cứu. ANN được luyện hay được học theo hai kỹ thuật cơ bản đó là học có giám sát và học không giám sát [122].

Đánh giá là quá trình sử dụng một phần của tập dữ liệu để ước lượng các tham số mô hình và sử dụng một phần khác để dự đoán mạng. Tập luyện được sử dụng để ước lượng các tham số mô hình. Tập đánh giá được sử dụng để đánh giá khả năng dự đoán của mô hình. Tập kiểm tra là một đánh giá cuối cùng, đánh giá độc lập về khả năng dự báo mô hình. Để huấn luyện một mạng và xét xem thực hiện tốt đến đâu cần xây dựng một hàm mục tiêu để cung cấp cách thức đánh giá khả năng hệ thống một cách rõ ràng. Việc chọn hàm mục tiêu là rất quan trọng vì hàm này thể hiện các mục tiêu thiết kế và quyết định thuật toán luyện nào được áp dụng [122]. Hàm cơ bản được sử dụng rất rộng rãi, một trong số chúng là hàm tổng bình phương sai số (SSE).

Mạng truyền thẳng nhiều lớp (MLP) và Giải thuật lan truyền ngược

Mạng truyền thẳng nhiều lớp (MLP) [125] là một trong những mạng truyền thẳng điển hình thường được sử dụng trong các hệ thống ANN. Một mạng MLP cũng có cấu trúc bao gồm một lớp vào, một lớp ra và một hoặc nhiều lớp ẩn. Các noron đầu vào tiếp nhận các dữ liệu vào và chuyển cho các lớp kế tiếp. Các noron ở lớp ẩn và lớp ra mới thực sự thực hiện các tính toán, kết quả được xác định bởi hàm truyền. Mỗi liên kết gắn với một trọng số, trọng số này được thêm vào trong quá trình tín hiệu đi qua liên kết đó. Mỗi noron tính toán mức kích hoạt của chúng bằng cách cộng tổng các đầu vào và đưa ra hàm truyền. Một khi đầu ra của tất cả các noron trong một lớp mạng cụ thể đã thực hiện xong tính toán thì lớp kế tiếp có thể bắt đầu thực hiện tính toán của mình bởi vì đầu ra của lớp hiện tại tạo ra đầu vào của lớp kế tiếp. Khi tất cả các noron đã thực hiện tính toán thì kết quả được trả lại bởi các noron đầu ra. Tuy nhiên, có thể là chưa đúng yêu cầu, khi đó một thuật toán huấn luyện cần được áp dụng để điều chỉnh các tham số của mạng. i cách khác việc suy luận trong mạng MLP là suy luận tiến (*feedforward*):

$$net_i^{(m+1)} = \sum_{j=1}^{n^{(m)}} w_{ij}^{(m+1)} . o_j^{(m)} + \theta_i^{(m+1)}$$
(1.29)

$$o_i^{(m+1)} = f\left(net_i^{(m+1)}\right)$$
(1.30)

trong đó $n^{(m)}$ số lượng nút ở lớp *m* tương ứng; $o_j^{(m)}$ là nút mạng thứ *j* của lớp *m*; $w_{ij}^{(m+1)}$ là trọng số của đầu vào $o_j^{(m)}$ đối với nút mạng thứ *j* của lớp (*m*+1); $\theta_i^{(m+1)}$ là độ lệch (*bias*) của nút mạng thứ *i* của lớp (*m*+1). Đầu ra của nút mạng này được biểu diễn bằng $o_i^{(m+1)}$ ứng với hàm truyền $f\left(net_i^{(m+1)}\right)$ tương ứng. Riêng với lớp đầu vào $a^{(1)}$ chính là các đầu vào *x* tương ứng của mạng.

Để tiện tính toán, ta coi $o_0^{(m)}$ là một đầu vào và $w_{i0}^{(m+1)} = \theta_i^{(m+1)}$ là trọng số của đầu vào này. Lúc đó ta có thể viết lại công thức trên dưới dạng vécto:

$$\operatorname{net}_{i}^{(m+1)} = \mathbf{w}_{i}^{(m+1)} \cdot \mathbf{0}^{(m)}$$
(1.31)

$$o_i^{(m+1)} = f\left(net_i^{(m+1)}\right)$$
(1.32)

Nếu nhóm các trọng số của mỗi lớp thành một ma trận có các cột tương ứng với trọng số mỗi nút mạng thì có thể tính toán cho toàn bộ các nút trong một lớp bằng vécto:

$$net^{(m+1)} = w^{(m+1)} . o^{(m)}$$
(1.33)

$$\mathbf{o}^{(m+1)} = f\left(\mathbf{net}^{(m+1)}\right) \tag{1.34}$$

Mạng MLP được luyện bằng phương pháp học có giám sát. Phương pháp này về cơ bản dựa trên việc yêu cầu mạng thực hiện chức năng của và sau đó trả lại kết quả, kết hợp kết quả này với các đầu ra mong muốn để điều chỉnh các tham số của mạng, nghĩa là mạng sẽ học thông qua những sai sót của .

Một trong những giải thuật được ứng dụng phổ biến nhất là giải thuật lan truyền ngược. Giải thuật này được Rumelhart và cộng sự đề xuất năm 1986 [125], nhờ đó mà mạng ANN dự báo một cách hiệu quả và ứng dụng rộng rãi.

Giải thuật lan truyền ngược là dạng tổng quát của giải thuật trung bình bình phương tối thiểu (LMS). Giải thuật này thuộc dạng giải thuật xấp xỉ để tìm các điểm mà tại đó hiệu năng của mạng là tối ưu. Chỉ số tối ưu thường được xác định bằng một hàm số của ma trận trọng số và các đầu vào nào đó mà trong quá trình tìm hiểu bài toán đặt ra. Về mặt toán học, phương pháp này dựa theo quy tắc chuỗi đạo hàm của hàm hợp và phép tính ngược đạo hàm để thu được đạo hàm theo tất cả các tham số cùng lúc chỉ với hai lần duyệt mạng. Giải thuật này được thực hiện các bước sau:

- Bước 1: Lan truyền thẳng các tính toán trong mạng ;
- Bước 2: Lan truyền ngược;
- Bước 3: Cập nhật lại các trọng số và độ lệch tương ứng.

Giải thuật dừng lại khi giá trị của hàm mục tiêu trở nên đủ nhỏ.

1.2.3.5. Máy học véctơ hỗ trợ

Máy học véctơ hỗ trợ (SVM) là một khái niệm trong lĩnh vực thống kê và khoa học máy tính để xây dựng các mô hình học có giám sát với các giải thuật học liên quan đến phân tích dữ liệu được sử dụng để phân loại và phân tích hồi quy [14]. Giải thuật véctơ hỗ trợ (SV) là một giải thuật phi tuyến được phát triển đầu tiên ở Nga do Vapnik và Lerner vào năm 1963 [14]. là nền tảng vững chắc trong khuôn

khổ lý thuyết học tập thống kê (lý thuyết VC) đã được phát triển trong ba thập kỷ qua bởi Vapnik và Chervonenkis (1974) và Vapnik (1995) [14]. Tóm lại, lý thuyết VC mô tả đặc tính máy học, cho phép chúng khái quát hóa dữ liệu không nhìn thấy được [14].

SVM xây dựng một siêu phẳng hoặc một tập hợp các siêu phẳng trong một không gian nhiều chiều hoặc vô hạn chiều, có thể sử dụng cho phân loại, hồi quy hoặc các bài toán khác. Một cách trực giác, để phân loại tốt nhất thì các siêu phẳng nằm ở càng xa các điểm dữ liệu của tất cả các lớp (gọi là hàm lề) càng tốt vì i chung lề càng lớn thì sai số tổng quát hóa của giải thuật phân loại càng bé [14].

Giả sử khảo sát tập dữ liệu luyện có *n* điểm:

$$D = \{ (\vec{x}_i, y_i) \mid \vec{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\} \}, \ i = 1 \div n$$

trong đó y_i nhận giá trị 1 hoặc -1, xác định lớp của điểm \vec{x}_i . Mỗi điểm \vec{x}_i là một vécto thực *d* chiều. Bài toán đặt ra là cần tìm siêu phẳng có lề lớn nhất chia các điểm \vec{x}_i có $y_i = 1$ và các điểm \vec{x}_i có $y_i = -1$, được xác định sao cho khoảng cách giữa siêu phẳng và các điểm gần nhất \vec{x}_i từ hai nhóm là cực đại.

Mỗi siêu phẳng đều có thể được viết dưới dạng tập hợp các điểm \vec{x} thỏa mãn: $\vec{\omega}.\vec{x}-b=0$ (1.35)

Ở đây, $\vec{\omega}$ là vécto pháp tuyến của siêu phẳng. Tham số $\frac{b}{\|\vec{\omega}\|}$ xác định khoảng cách giữa gốc tọa độ và siêu phẳng theo hướng vécto pháp tuyến $\vec{\omega}$.

Trong hồi quy ε -SV của Vapnik năm 1995, mục tiêu là tìm một hàm hồi quy y = f(x) để dự đoán đầu ra { y_i } tương ứng với một tập hợp các mẫu đầu vào mới { x_i } có độ lệch ε lớn nhất so với mục tiêu thực tế thu được cho tất cả dữ liệu luyện và đồng thời càng phẳng càng tốt tức là cực đại hóa lề [14], [35]. i cách khác, nếu không quan tâm đến các sai số miễn là chúng nhỏ hơn ε và không chấp nhận bất kỳ độ lệch nào lớn hơn thì hàm tuyến tính $f(\omega, x)$ được mô tả như sau [14]:

$$f(\omega, x) = \vec{\omega}.\vec{x} + b \tag{1.36}$$

trong đó $\vec{\omega}$ là vécto trọng số, *b* là hằng số, với $\vec{\omega} \in \mathbb{R}^d$, $b \in R$. Dấu "." là tích vô hướng của hai vécto. Chúng ta có thể viết vấn đề tối ưu lồi [14]:

Cực tiểu hóa: $\|\vec{\omega}\|$

Hình 1.11. Mô phỏng lề trong hồi quy SVR

Tuy nhiên, dữ liệu đầu vào của các vấn đề phi tuyến tính không thể liên quan trực tiếp để cung cấp cho đầu ra mong muốn tuyến tính. Mô hình tuyến tính sau có thể được xây dựng bằng cách sử dụng hàm ánh xạ phi tuyến $\phi(x)$ chuyển không gian đầu vào (x) vào không gian trung gian nhiều chiều, hàm được viết lại như sau [14]:

$$f(\omega, x) = \vec{\omega} \cdot \phi(\vec{x}) + b \tag{1.37}$$

trong đó $\phi(x)$ là hàm trung gian và $\vec{\omega}.\phi(\vec{x})$ là tích vô hướng trong không gian trung gian.

Cực tiểu hóa hàm chuẩn hóa của bài toán hồi quy như sau [14]:

Cực tiểu hóa: $\|\vec{\omega}\|$

Điều kiện: $y_i(\vec{\omega}.\phi(\vec{x}_i) - b) \ge \varepsilon$ với $i = 1 \div n$

Sau khi giới thiệu các biến lỏng (slack) ξ và ξ^* thì hồi quy vécto hỗ trợ (SVR) được xây dựng như là sự cực tiểu hóa với vấn đề tối ưu hóa sau [14]:

Cực tiểu hóa:
$$\frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^n \xi_i + \xi_i^*$$

Điều kiện:
$$\begin{cases} y_i - (\vec{\omega}.\phi(\vec{x}_i) + b) \le \varepsilon + \xi_i^* \\ (\vec{\omega}.\phi(\vec{x}_i) + b) - y_i \le \varepsilon + \xi_i^* \end{cases}$$
 với $i = 1 \div n; \ \xi_i, \xi_i^* > 0$

Tương tự, áp dụng phương pháp cực trị nhân tử Lagrange để giải bài toán trên, bài toán cần giải trở thành [14]:

Cực tiểu hóa:
$$\frac{1}{2} ||\omega||^2 + C \frac{1}{n} L_{\varepsilon} (y, f(\omega, x))$$
(a)
Ở đây:
$$L_{\varepsilon} (y, f(\omega, x)) = \begin{cases} 0 \text{ nếu } |y - f(\omega, x)| \le \varepsilon \\ |y - f(\omega, x)| - \varepsilon \text{ ngược lại} \end{cases}$$
(b)

Trong phương trình (a), số hạng thứ nhất đo độ phẳng của mô hình, số hạng thứ hai đặc trưng cho sai số thực nghiệm được đo bằng một hàm tổn thất L_{ε} không nhạy cảm được xác định trong phương trình (b). C gọi là tham số lề mềm, tạo ra sự cân bằng giữa sai số luyện hoặc sai số thực nghiệm và độ phẳng của mô hình.

Năm 1992, Vapnik và cộng sự [35] tiếp tục đề xuất cách xây dựng mô hình hồi quy bằng cách áp dụng mẹo hạt nhân (kernel trick). Giải thuật cho phép các tích vô hướng vécto được thay thế bằng một hàm hạt nhân phi tuyến $K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i).\phi(\vec{x}_j)$ cho phép giải thuật toán phù hợp với cực đại hoá lề mặt siêu phẳng trong không gian chuyển đổi và kết quả cho thấy rằng giải thuật hoạt động tốt. Một số hàm hạt nhân phổ biến bao gồm [35], [36]:

Đa thức (đồng nhất): $K(\vec{x}_i, \vec{x}_j) = (\vec{x}_i \cdot \vec{x}_j)^d$; Đa thức (không đồng nhất): $K(\vec{x}_i, \vec{x}_j) = (\gamma \vec{x}_i \cdot \vec{x}_j + r)^d$, $\gamma > 0$; Hàm cơ sở radian Gaussian: $K(\vec{x}_i, \vec{x}_j) = \exp\{-\gamma || \vec{x}_i \cdot \vec{x}_j + r ||^2\}$, $\gamma > 0$; Tiếp tuyến hyperbol: $K(\vec{x}_i, \vec{x}_j) = \tanh\{\kappa \vec{x}_i \cdot \vec{x}_j + c\}$, $\kappa > 0$, c < 0; Trong đó γ , r, d, κ và c là các tham số hạt nhân.

Hiệu quả của SVR phụ thuộc vào sự lựa chọn hàm hạt nhân, các tham số hạt nhân và tham số lề mềm C. Thông thường, mỗi sự kết hợp lựa chọn tham số được kiểm tra bằng cách đánh giá chéo và các tham số có độ chính xác chéo xác thực tốt nhất được chọn [14]. Ngoài ra, công việc gần đây trong tối ưu hóa Bayes có thể được sử dụng để chọn C và γ , thường yêu cầu đánh giá kết hợp tham số ít hơn so với tìm kiếm lưới. Mô hình cuối cùng được sử dụng để kiểm tra và phân loại dữ liệu mới, sau đó được luyện trên toàn bộ tập luyện bằng cách sử dụng các tham số đã chọn.

1.2.3.6. Giải thuật di truyền

Có hai bước thực hiện tập dữ liệu của *n* tham số mô tả được chọn từ *m* biến số (m > n). Phương pháp trực tiếp là tìm kiếm một tập các biến bằng kỹ thuật hồi quy từng bước. Các giai đoạn của giải thuật dựa vào không gian tham số mô tả và trước hết giải thuật sẽ chọn tham số đầu tiên tốt nhất, tiếp theo hai tham số tốt nhất đã bao gồm tham số thứ nhất và quá trình tìm kiếm cứ xảy ra như vậy. Cách giải quyết này không có sự đảm bảo nào cho thấy mô hình khớp tốt nhất với số liệu hoặc tập các tham số mô tả tốt nhất. Nguyên nhân là tập các tham số mô tả phụ thuộc lẫn nhau vì có tương quan nội. Có thể có các tập khác của n biến mà tính thống kê bằng hoặc tốt

hơn. Kỹ thuật áp dụng giải thuật di truyền (GA) làm giảm bớt đi mức độ phụ thuộc lẫn nhau của các ham số mô tả phân tử [10], [60].

Kỹ thuật GA về nguyên tắc tìm kiếm nhóm các tham số mô tả tốt nhất hoặc thích hợp nhất bằng cách tối ưu hóa hệ số tương quan (r) và sử dụng hàm tối ưu hóa Friedman Fitness [10], [60].

Giải thuật di truyền là một kỹ thuật của khoa học máy tính nhằm tìm kiếm giải pháp thích hợp cho các bài toán tối ưu tổ hợp. Giải thuật di truyền xuất phát từ giải thuật tiến hóa vận dụng các nguyên lý của tiến hóa như di truyền, đột biến, chọn lọc tự nhiên, và trao đổi chéo trong sinh học. Trong quá trình xây dựng mô hình, GA sử dụng sự đột biến ngẫu nhiên và tái lập di truyền hay còn gọi là tiến trình lai chéo.

GA hoạt động theo một vòng đơn bao gồm các bước sau [10], [60]:

- Tiến trình giải mã;
- Xác định hàm thích nghi;
- Xây dựng quần thể "nhiễm sắc thể";
- Di truyền điều khiển với "nhiễm sắc thể".

1.2.4. Đánh giá mô hình QSPR

1.2.4.1. Chỉ số thống kê đánh giá mô hình

Các chỉ số thống kê là các tiêu chí đánh giá hiệu suất của mô hình. Các hướng dẫn có sẵn từ OECD có thể đo lường mức độ phù hợp và dự đoán của mô hình [100]. Các chỉ số phổ biến nhất bao gồm hệ số xác định (R^2), phương sai (*RMSE*, *SD*), Sự tương đương dữ liệu (*p-value*, *t-value* hay *t-test*), dự đoán (Q^2), *AD* (h_i) và phát hiện quan sát ngoại biên, mỗi loại có thể được xác định bởi một loạt các tham số [10], [33] được mô tả cụ thể như sau:

Các chỉ số sai lệch giữa dữ liệu dự đoán và thực nghiệm

Trung bình bình phương sai số (*MSE*) hay trung bình bình phương độ lệch (*RMS*, *MSD*):

$$MSE = RMS = MSD = \frac{1}{N - k - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
(1.38)

Sai số chuẩn (SE) hay căn trung bình bình phương sai số (RMSE):

$$SE = RMSE = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N - k - 1}}$$
(1.39)

22

Tổng bình phương độ lệch (*RSS*, *SS_E*):
$$RSS = SS_E = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 (1.40)

Tổng bình phương dư dự đoán (*PRESS*): *PRESS* =
$$\sum_{i=1}^{N} (y_i - \hat{y}_{i/i})^2$$
 (1.41)

Các chỉ số tương quan giữa dữ liệu dự đoán và thực nghiệm

Hệ số tương quan (Pearson r):
$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{N} (x_i - \overline{x})^2 \sum_{i=1}^{N} (y_i - \overline{y})^2}$$
(1.42)

Hệ số xác định:

$$R^{2} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}}$$
(1.43)

$$R^2$$
 hiệu chỉnh: $R^2_{adj} = 1 - \frac{N-1}{N-k-1} (1-R^2)$ (1.44)

Đánh giá ngoại:
$$Q_{LOO-CV}^2 = 1 - \frac{\sum_{i=1}^{m} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{m} (y_i - \overline{y})^2}$$
 (1.45)

Các chỉ số đo tầm quan trọng của mô tả trong mô hình phát triển

Kiểm định Fisher (F, P): kiểm tra ý nghĩa của các biến độc lập trên biến phụ thuộc. Nếu F cao hơn, phương trình có ý nghĩa thống kê.

$$F = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y}_{i})^{2} / k}{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2} / (N - k - 1)}$$
(1.46)

t-value: kiểm tra ý nghĩa của một biến độc lập riêng lẻ với biến phụ thuộc. Giá trị càng cao thì biến càng quan trọng.

$$t\text{-value} = \frac{b_j}{s_{b_j}} \text{ và } s_{b_j} = \frac{s}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2}} = \frac{\sqrt{RMS}}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2}}$$
(1.47)

Mô hình PLSR, sử dụng các chỉ số như Q^2_{cum} , R^2_{Ycum} , R^2_{Xcum} và VIP [60].

Chỉ số Q^2_{cum} đo lường sự đóng góp toàn cục của các thành phần đầu tiên *h* vào chất lượng dự đoán của mô hình. Việc tìm kiếm giá trị tối đa của chỉ số Q^2_{cum} tương đương với việc tìm kiếm mô hình ổn định nhất. Chỉ số $Q^2_{cum(h)}$ được viết [155]:

$$Q_{cum(h)}^{2} = 1 - \prod_{j=1}^{k} \frac{\sum_{k=1}^{q} PRESS_{kj}}{\sum_{k=1}^{q} SSE_{k,j-1}}$$
(1.48)

Chỉ số R^{2}_{Ycum} là tổng các hệ số xác định giữa các biến phụ thuộc và các thành phần đầu tiên *h*. Do đó, là thước đo khả năng giải thích của các thành phần đầu tiên cho các biến phụ thuộc của mô hình [155].

Chỉ số R^{2}_{Xcum} là tổng các hệ số xác định giữa các biến giải thích và các thành phần đầu tiên *h*. Do đó, là thước đo khả năng giải thích của các thành phần đầu tiên cho các biến giải thích của mô hình [155].

VIP đo tầm quan trọng của một biến giải thích cho việc xây dựng các thành phần *t*. Trên các biểu đồ *VIP*, một đường viền được vẽ để xác định các *VIP* lớn hơn 0,8 trở lên: các ngưỡng này được đề xuất bởi Wold (1995) và Ericksson (2001) cho phép xác định các biến số vừa phải (0,8 < VIP < 1) hoặc có ảnh hưởng lớn (VIP > 1). *VIP* cho biến giải thích thứ *j* và thành phần *h* được xác định bởi công thức [155]:

$$VIP_{kj} = \sqrt{\frac{p}{\sum_{i=1}^{k} Rd(Y, t_i)} \sum_{i=1}^{k} Rd(Y, t_i) w_{ij}^2}$$
(1.49)

Trong đó, $Rd(Y,t_i)$ được định nghĩa là giá trị trung bình của bình phương của các hệ số tương quan giữa các biến và thành phần:

$$Rd(Y,t_i) = \frac{1}{p} \sum_{j=1}^{p} R^2(x_j,c)$$
(1.50)

Ghi chú: N là số quan sát tập luyện; n là số quan sát tập kiểm tra; k là số biến độc lập trong mô hình; y_i , \hat{y}_i , \overline{y}_i là giá trị đo, dự đoán và trung bình của biến phụ thuộc; $\overline{\hat{y}}$ là giá trị trung bình dự đoán của tập kiểm tra; x_i , \overline{x} là các giá trị đo được và trung bình của một biến độc lập; s_{b_i} là là độ lệch chuẩn của hệ số hồi quy ước tính b_j ; h_i là đòn bẩy cảnh báo cố định ở mức 3(p + 1)/N.

Đối với các ngưỡng, R^2 và Q^2 được khuyến cáo lớn hơn 0,6 [34]. Một nghiên cứu khác cho rằng mô hình có thể được coi là chấp nhận được nếu đáp ứng các điều kiện: $R^2 > 0,6$; $Q^2 > 0,5$ [150]. Trong một số trường hợp, R^2 hiệu chỉnh (R^2_{adj}) có thể được sử dụng làm tăng số lượng biến luôn dẫn đến tăng R^2 [100].

1.2.4.2. Miền ứng dụng và quan sát ngoại biên

Miền ứng dụng (AD) của mô hình QSAR/QSPR là không gian bao gồm các thông số mô tả như hóa lý, cấu trúc... chứa các thông tin cần thiết mà tập luyện của mô hình đã được phát triển và áp dụng để đưa ra dự đoán cho các hợp chất mới.

Mục đích của AD là nêu rõ các giả định của mô hình có được đáp ứng hay không và mô hình nào có thể được áp dụng một cách đáng tin cậy, đồng thời tránh những dự đoán không chính xác cho các hợp chất bên ngoài miền [33].

Bốn phương pháp thường được sử dụng để xác định AD, với phương pháp dựa trên phân bố mật độ được coi là phức tạp nhất. Các hợp chất có hoạt tính, tính chất không mong muốn nằm ngoài AD trong mô hình QSPR được xem là các quan sát ngoại biên. Đòn bẩy "*h*" là thước đo khoảng cách của hợp chất từ trọng tâm của tập luyện. Nếu điểm dữ liệu lớn hơn đòn bẩy cảnh báo *h**, thì được xem là quan sát ngoại biên. Khoảng cách Cook và SDR là hai đại lượng thống kê để phát hiện các quan sát ngoại biên và điểm ảnh hưởng. Khoảng cách Cook đo lường tổng dư sẽ thay đổi nếu một hợp chất được loại trừ khỏi tập hiệu chuẩn. Trong một nghiên cứu có liên quan, các ngưỡng hoạt động $D_i > 1$ và $|SDR_i| > 2,5$ đã được sử dụng. Hơn nữa, phương pháp dựa trên khoảng cách sử dụng phát đồ Williams, như được định nghĩa bằng SDR nghịch đảo với đòn bẩy *h*, thường được áp dụng để xác định các quan sát ngoại biên và các điểm ảnh hưởng [33].

SDR và phác đồ William hay độ lệch chuẩn dư, một thống kê để kiểm tra các quan sát ngoại biên tiềm năng. Một quan sát với *SDR*_i ngoài phạm vi \pm 2.5 hoặc \pm 2.0 có thể được coi là ngoại biên.

Tập đánh giá nội:
$$SDR_i = \frac{(\hat{y}_i - y_i)}{RMSE_{CV}}$$
 (1.51)

Tập đánh giá ngoại:
$$SDR_i = \frac{(\hat{y}_i - y_i)}{RMSE_P}$$
 (1.52)

Đòn bẩy (h_i): đo tầm quan trọng của dữ liệu trong việc phát triển một mô hình, 0 (không quan trọng) thành 1 (rất có ảnh hưởng).

$$h_i = z_i^T \left(Z^T Z \right)^{-1} z_i \qquad (i = 1, 2, 3, ..., N)$$
(1.53)

Khoảng cách Cook (D_i) là kiểm định thống kê để kiểm tra các quan sát ngoại biên. Một quan sát với $D_i > 1$ có thể được coi là ngoại biên [33].

$$D_{i} = \frac{\sum_{i=1}^{N} \left(\hat{y}_{i} - \hat{y}_{i(i)} \right)^{2}}{k \times MSE_{C}}$$
(1.54)

1.2.4.3. Chỉ số đánh giá phần đóng góp các biến số

Việc sử dụng các kỹ thuật đa biến có thể tạo ra các mô hình QSPR khác nhau một cách hiệu quả. Tuy nhiên, việc giải thích mô hình QSPR vẫn là kết quả quan

trọng nhất của quá trình xây dựng mô hình QSPR. Bước đầu tiên trong phân tích là xác định sự đóng góp tương đối của từng đại lượng mô tả cấu trúc vào các giá trị thuộc tính được tính toán theo mô hình QSPR [73], [92]. Thứ tự tăng dần của đóng góp trung bình được tính theo công thức như [73]:

$$APC_{m,n,x_{i}}, \% = \frac{\frac{1}{m} \sum_{j=1}^{m} \frac{|b_{i}x_{i}|}{\sum_{i=1}^{k} |b_{i}x_{i}|} 100\%}{n}$$
(1.55)

Một số công trình cũng sử dụng đại lượng tỷ lệ phần trăm đóng góp trung bình, $MPx_{k,i}$, là tỷ lệ phần trăm của từng biến độc lập trong các mô hình QSPR được chọn (với i từ 1 đến k) được xác định theo công thức (1.56) [10]:

$$MPx_{k,i}, \% = \frac{1}{N} \sum_{m=1}^{N} \frac{100.|b_{k,i}.x_{m,i}|}{\sum_{j=1}^{k} |b_{k,j}.x_{m,j}|} = \frac{1}{N} \sum_{m=1}^{N} \frac{100.|b_{k,i}.x_{m,i}|}{C_{total}}$$
(1.56)

Trong đó: *N* là số phức chất; $x_{m,i}$ là mô tả thứ *i*; *m* là số mô hình được chọn để tính giá trị $Px_{k,i}$; $b_{k,i}$ là các tham số của mô hình. Sự đóng góp quan trọng của các mô tả phân tử trong mỗi phức được sắp xếp theo thứ tự dựa trên các giá trị GMP_{xi} , là giá trị trung bình của $MPx_{k,i}$.

1.2.4.4. Sai số giữa các mô hình dự đoán

Kết quả dự đoán của các mô hình QSPR được đánh giá bằng *MARE* (%) hay *MAPE* (%) là giá trị trung bình tuyệt đối của các sai số tương đối *ARE* (%) [10]:

$$MARE, \% = MAPE, \% = \frac{\sum_{i=1}^{n} ARE\%}{n} = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i} 100\%$$
(1.57)

1.2.4.5. Phân tích ANOVA

Phân tích phương sai (ANOVA) là tập hợp các mô hình thống kê và các quy trình ước lượng liên quan của chúng như "biến" và giữa các nhóm, được sử dụng để phân tích sự khác biệt giữa các nhóm trong một mẫu. ANOVA được phát triển bởi nhà sinh học học thống kê và tiến hóa Ronald Fisher. Trong thiết lập ANOVA, phương sai quan sát được trong một biến cụ thể được phân chia thành các thành phần do các nguồn biến thiên khác nhau. Ở dạng đơn giản nhất, ANOVA cung cấp một thử nghiệm thống kê về dữ liệu của một số nhóm có bình đẳng hay không, và do đó tổng quát hóa *t-test* thành hơn hai nhóm. ANOVA rất hữu ích để so sánh ba hoặc nhiều nhóm cho ý nghĩa thống kê [40]. Nghiên cứu này chỉ sử dụng phương

pháp ANOVA một yếu tố. Phương pháp này được dùng trong các trắc nghiệm để so sánh các giá trị trung bình của hai hay nhiều mẫu được lấy từ một tập hợp các số liệu. Đây có thể xem là phần mở rộng của trắc nghiệm t hay z (so sánh hai giá trị trung bình). Mục đích của phân tích phương sai một yếu tố là đánh giá sự ảnh hưởng của một yếu tố (nhân tạo hay tự nhiên) nào đó trên các giá trị quan sát [40].

Kiểm định

Giả thuyết: $H_0: \mu_1 = \mu_2 = ... = \mu_k \rightarrow \text{giá trị trung bình } (\mu)$ bằng nhau; $H_j: \mu_i \neq \mu_j \rightarrow \text{it nhất hai giá trị trung bình khác nhau;}$

- Giá trị thống kê:
$$F = \frac{MSF}{MSE}$$
 (1.58)

MSF và MSE là trung bình bình phương của các yếu tố thí nghiệm và sai số.

Biện luận: Nếu $F < F_{\alpha \ (k-1, N-k)} \rightarrow$ chấp nhận giả thuyết H₀. Với *k*-1, *N-k* là bậc tự do của yếu tố và sai số.

1.3. TÍNH TOÁN LƯỢNG TỬ

Trong phương pháp mô hình hóa phân tử, để tối ưu hóa cấu trúc người ta sử dụng hai phương pháp đó là cơ học phân tử (MM) và cơ học lượng tử (QM) [140]. Trong đó, cơ học lượng tử thường sử dụng phương pháp *ab-initio* và phương pháp bán thực nghiệm (semi-empirical). Do đó, việc sử dụng phương pháp nghiên cứu phụ thuộc vào các yếu tố như đối tượng nghiên cứu, chi phí, thời gian và độ chính xác cần thiết. Có thể đánh giá các phương pháp tối ưu hóa cấu trúc qua Bảng 1.2 [140].

Chỉ tiêu	Phương pháp QM		Phương nhán
	Phương pháp ab-initio	Phương pháp bán thực nghiệm	MM
Kích cỡ phân tử	Nhỏ	Trung bình	Lón
Nguyên lý tính toán	Năng lượng electron	Năng lượng electron	Năng lượng hạt nhân
Thời gian tính toán	Nhiều ngày	Nhiều giờ	Nhiều phút
Độ chính xác	Cao	Trung bình	Thấp
Yêu cầu dữ liệu	Không cần dữ liệu thực nghiệm	Cần dữ liệu thực nghiệm	Không cần dữ liệu thực nghiệm
Chi phí	Cao	Trung bình	Thấp

Bảng 1.1. So sánh phương pháp QM và MM

Như vậy, trong nghiên cứu này do cấu trúc phân tử có kích thước trung bình, số lượng phân tử nghiên cứu lớn và yêu cầu độ chính xác trong nghiên cứu QSPR mức trung bình nên chúng tôi lựa chọn phương pháp MM sau đó đến phương pháp QM.

1.3.1. Cơ học phân tử

Cơ học phân tử là phương pháp mô phỏng sử dụng các phương trình vật lý cổ điển cho phép tính toán các năng lượng liên kết khác nhau do sự co giản liên kết, sự khép mở góc liên kết và sự xoắn cùng với các năng lượng không liên kết khác [86]. MM xem xét các lực hấp dẫn và lực đẩy để kiểm soát các vị trí tương đối của hạt nhân của các nguyên tử cấu thành nên cấu trúc [16], [58]. Thế năng của phân tử có thể được biểu diễn bằng phương trình (1.59) đơn giản sau đây [86]:

$$E_{\text{total}} = \sum E_{\text{s}} + \sum E_{\text{B}} + \sum E_{\text{v}} + \sum E_{\text{c}} + \sum E_{\text{T}}$$
(1.59)

Các đại lượng trong phương trình (59) được mô tả cụ thể trong Phụ lục 3.

1.3.2. Cơ học lượng tử

1.3.2.1. Phương trình sóng Schrödinger

Erwin Schrödinger là người tiên phong nghiên cứu về cơ học lượng tử nhằm đi tìm biểu thức toán học biểu thị mối liên quan giữa chuyển động và năng lượng của electron [134]. Đề xuất cơ bản về tính chất sóng Schrödinger của electron có thể được biểu diễn bằng phương trình sau [86], [134]:

$$\frac{\partial^2 \psi}{\partial^2 x} + \frac{\partial^2 \psi}{\partial^2 y} + \frac{\partial^2 \psi}{\partial^2 z} + \frac{8\pi^2 m}{h^2} (E - V) \psi = 0$$
(1.60)

với ψ: hàm sóng; *m*: khối lượng; *h*: hằng số Planck; *E*: tổng năng lượng; *V*: thế năng.

Những nguyên tắc của cơ học lượng tử xem xét các giả định để giải quyết phương trình này như phép gần đúng Born-Oppenheimer, phép gần đúng Hartree– Fock, lý thuyết phiếm hàm mật độ...[86]. Trong nghiên cứu này, chúng tôi sử dụng phương pháp bán thực nghiệm (semi-empirical).

1.3.2.2. Phương pháp bán thực nghiệm

Giả thiết rằng phương pháp bán thực nghiệm trong hóa học lượng tử sử dụng các xấp xỉ tích phân và tham số hóa nhằm giảm độ phức tạp trong việc giải phương trình sóng Schrödinger. Giả thiết này áp dụng với một số lượng lớn phân tử nhưng sẽ cho kết quả tính toán ít chính xác hơn. Tính toán bán thực nghiệm bắt đầu bằng phương pháp *ab-initio* và sau đó tăng tốc độ tính toán bằng cách bỏ qua các phần có

đặc tính ít quan trọng trong phương trình. Tuy nhiên, để bù đắp các sai số giả định, phương pháp này sử dụng các tham số thực nghiệm để hiệu chuẩn dữ liệu lý thuyết hoặc thực nghiệm phù hợp, do đó được gọi là kỹ thuật bán thực nghiệm [147].

Các phương pháp tiếp cận hiện đại bao gồm ba nhóm phương pháp CNDO, INDO và NDDO [147]. Trong đó, hai phương pháp trong nhóm phương pháp NDDO được sử dụng trong đề tài là PM3, PM7;

Phương pháp PM3

Phương pháp PM3 [86], [141] là phương pháp dựa trên xấp xỉ tích phân NDDO. Phương pháp PM3 sử dụng cùng phương thức và phương trình như phương pháp AM1. Sự khác biệt duy nhất ở đây là:

- PM3 sử dụng hai hàm Gauss cho hàm tương tác nhân-nhân (core-core), thay vì số biến được sử dụng bởi AM1;
- Giá trị các tham số khác nhau, sự khác biệt khác nằm trong quá trình tham số hóa: trong khi AM1 lấy giá trị tham số từ phép đo quang phổ, PM3 sử dụng chúng tính toán và kiểm tra thành các giá trị tối ưu.

Phương pháp được Stewart phát triển vào năm 1989. Phiên bản PM3 gốc bao gồm các tham số cho các nguyên tố như H, C, N, O, F, Al, Si, P, S, Cl, Br và I. Tuy nhiên, việc thực hiện PM3 bao gồm phần mở rộng bổ sung cho các kim loại chuyển tiếp hỗ trợ tính toán cho Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt và Gd. Với nhiều nguyên tố khác, chủ yếu là kim loại, được tham số hóa trong những phương pháp tiếp theo. Mô hình tính toán PM3 của các phức họ lanthan được gọi là PM3/sparkle cũng được giới thiệu. Như vậy, phương pháp PM3 thực chất là AM1 với tất cả các tham số được Stewart tối ưu đầy đủ.

Phương pháp PM7

Trong nỗ lực mở rộng phạm vi ứng dụng từ PM6, phương pháp PM7 được Stewart phát triển vào năm 2012 [86], [142]. PM7 tham số hóa bằng cách sử dụng dữ liệu thực nghiệm tham chiếu và dữ liệu từ phương pháp ab-initio cấp cao. Các dữ liệu tham chiếu mới được tăng cường nhằm xác định tốt hơn tham số cấu trúc không gian. Kết quả phương pháp PM7 được kiểm định bằng cách mô hình hóa các cấu trúc tinh thể rồi tính toán và so sánh nhiệt tạo thành của chất rắn với các giá trị thực nghiệm.

Mục tiêu của phương pháp PM7 là điều tra nguyên nhân và khắc phục của một số lỗi trong PM6 và nâng cao khả năng ứng dụng phương pháp NDDO vào các

phân tử sinh hóa lớn và cải thiện cho chất rắn tinh thể. Do tầm quan trọng cấu trúc chất rắn cũng như nhu cầu sử dụng ngày càng tăng của các phương pháp này khi mô hình hóa hệ sinh hóa, PM7 quan tâm nhiều hơn đến nhiệt tạo thành và hình học phân tử mà ít chú trọng đến hiện tượng electron như moment lưỡng cực và năng lượng ion hóa.

Trong PM7, tính toán năng lượng hoạt hóa được phát triển và có hai thay đổi thực hiện cho các tập xấp xỉ, đó là:

- Sửa đổi được thực hiện để cải tiến mô tả tương tác không cộng hóa trị;
- Hai lỗi nhỏ NDDO được sửa chữa, nguồn gốc các lỗi trong phương pháp NDDO được kiểm tra và tìm thấy là do các dữ liệu tham chiếu không đầy đủ và không chính xác. Kết luận này cung cấp cái nhìn sâu sắc về cách thức các phương pháp này có thể được cải thiện.

Lỗi phát hiện trong PM6

Lỗi thứ nhất là sự giảm hoặc mất tương tác đẩy giữa các cặp nguyên tử, quan trọng nhất là Na-Na, Br – chúng đã được phát hiện trong quá trình phát triển phương pháp. N, Br – O, Br – Br, S – N, S – S, S – O, S – Cl, I– N, I – O và I – I.

Một loại lỗi khác trong PM6 được phát hiện chỉ sau khi sử dụng PM6 để mô hình hóa cấu trúc tinh thể. Loại lỗi này ảnh hưởng không đáng kể lên các đối tượng rời rạc như nguyên tử, phân tử và ion, polyme và thậm chí trên hệ lớp nhưng gây ra lỗi rất lớn khi áp dụng cho chất rắn. Việc kiểm tra lại các phép tính xấp xỉ cho phép xác định nguồn gốc của lỗi và sửa chữa cho PM6. Sự hiệu chỉnh này chỉ được thực hiện khi PM6 sử dụng trong mô hình hóa các chất rắn tinh thể.

Một lỗi kỹ thuật phát triển lập trình được xác định trong quá trình phát triển PM6. Lỗi này cũng đã xuất hiện trong các phương pháp trước đó nhưng ảnh hưởng rõ ràng trong PM6.

Các sửa đổi bổ sung đối với NDDO

Sự tham số hóa trong các phương pháp NDDO trước đó nhằm tạo ra các tính chất của phân tử và các ràng buộc khác nhau áp dụng để đảm bảo tính chất phù hợp thực tế. Chẳng hạn như sự hội tụ năng lượng tương tác hạt nhân-hạt nhân tiệm cận đến giá trị chính xác khi khoảng cách các nguyên tử tăng lên. Các ràng buộc này phù hợp cho các phân tử rời rạc (nguyên tử, phân tử, ion...) nhưng khi áp dụng cho các hệ tinh thể, các xấp xỉ NDDO này là không đủ, do đó cần bổ sung các ràng

buôc. Trong các phương pháp NDDO thông thường, tốc đô hôi tu đến giá tri chính xác của các tương tác hat nhân-hat nhân khác nhau khi khoảng cách giữa các nguyên tử tăng phu thuộc vào bản chất các nguyên tử có liên quan. Sư khác biệt này rõ ràng sẽ rất nhỏ (sư khác biệt ở mức 10 Å sẽ không đáng kể về mặt hóa học), nhưng trong các chất rắn sư khác biệt nhỏ như vậy trở nên rất lớn. Trong trường hợp chất rắn, lỗi do các tượng tác hạt nhân-hạt nhân khác nhau sẽ rất lớn. Do đó, có môt sư thay đổi nhỏ thực hiện đối với NDDO cho chất rắn để tránh sai sót này và cho phép các phần tương tác electron-electron, electron-hạt nhân và hạt nhân-hạt nhân hôi tu đến giá tri chính xác khi khoảng cách lớn hơn 5 Å. Đối với tương tác tĩnh điện, không có sự khác biệt giữa các phần tử rời rạc và chất rắn, do đó trong PM7, dạng tương tác tĩnh điện được sử dụng chung cho cả hai đối tượng này. Để giảm thiểu ảnh hưởng của sự thay đổi này đối với các phân tử rời rạc, khoảng cách để tính toán hội tu tăng lên 7,0 Å - vượt khoảng cách liên kết công hóa tri. Nhưng đối với chất rắn, bất kỳ sự thay đổi nào cho dù giá trị nhỏ cũng sẽ ảnh hưởng đáng kể đối với các tính chất trang thái rắn, như vây để giảm thiểu ảnh hưởng cần tăng tốc đô chuyển đổi tới điểm giá tri chính xác.

- Ràng buộc về giá trị của tương tác nhân-nhân;
- Ràng buộc về giá trị của tích phân lực electron-electron;
- Khắc phục năng lượng của các electron vỏ p trong kim loại chuyển tiếp;
- Bổ sung sự phân tán và liên kết hydro;
- Giảm số tham số hóa;
- Sửa đổi để cho phép mở một phần vỏ UHF.

Kết quả PM7

Việc sử dụng các phương pháp bán thực nghiệm như một công cụ thiết thực để mô hình hóa các hệ hóa học đã được mở rộng phạm vi rộng cho nhiều đối tượng cần nghiên cứu. Sự tăng đáng kể độ chính xác trong PM7 đạt được sau khi thay đổi tương đối nhỏ các xấp xỉ và các hàm dữ liệu tham chiếu đặc trưng cho các tương tác không cộng hóa trị. Kết quả AUE của nhiệt tạo thành các chất rắn hữu cơ được tính toán bằng PM7 giảm hơn 50% so với tính toán PM6. Đồng thời, các lỗi trong cấu trúc hình học PM7 đã giảm hơn một phần ba so với PM6. Năng lượng hoạt hóa đối với các phản ứng đơn giản xúc tác enzym nhỏ hơn một phần ba so với PM6.

Việc kiểm tra nguyên nhân các sai sót làm tăng độ chính xác chủ yếu bằng cách cải thiện các tập dữ liệu tham khảo và tập luyện. Hiện nay, do dữ liệu tham

chiếu còn thiếu nghiêm trọng, dẫn đến phần lớn các tham số không gian không xác định khiến cho phương pháp bị hạn chế phạm vi ứng dụng. Bên cạnh đó, có bằng chứng cho rằng nhiều dữ liệu tham chiếu hiện tại cũng có độ chính xác đáng ngờ, do đó một phần đáng kể lỗi trong phương pháp cũng xuất phát từ lý do này. Mặt khác, tối ưu hóa tham số không đầy đủ là một trong hai nguồn lỗi trong các phương pháp bán thực nghiệm. PM7 loại bỏ nguồn lỗi này đáng kể, do đó trở nên tin cậy và không biến đổi khi tối ưu hóa cấu trúc phân tử trong mô hình hoá của hóa học tính toán thông thường.

Nguồn lỗi duy nhất còn lại nằm trong lý thuyết hoặc tập xấp xỉ sử dụng, hiện nay tập xấp xỉ của PM7 chứng minh khả năng ứng dụng mạnh mẽ cho nhiều loại hệ được mô hình hoá với ít ngoại lệ. Các thay đổi trong tương lai để nâng cấp PM7 tập trung vào sửa lỗi các xấp xỉ hiện tại, chứ không tập trung vào các tính năng mới hoàn toàn. Vì vậy, trong những năm gần đây, một số phương pháp tiếp cận khác để mô hình hóa các tương tác giữa các phân tử đã được đề xuất. Sự gần đúng cụ thể cho các tương tác giữa các phân tử sử dụng trong PM7 là một trong số một số mô hình cạnh tranh, và trong tương lai chắc chắn cũng sẽ được thay thế bằng một mô hình tốt hơn.

1.4. NGHIÊN CỨU THỰC NGHIỆM TỔNG HỢP

1.4.1. Phương pháp tách chất

1.4.1.1. Sắc ký bản mỏng

Sắc ký bản mỏng (TLC) là kỹ thuật phân bố rắn-lỏng, trong đó pha động là chất lỏng được cho đi ngang qua một chất hấp phụ trơ như silicagen hoặc oxít nhôm. Chất hấp phụ này được tráng thành một lớp mỏng, đều, phủ lên một nền phẳng như tấm kính, tấm nhôm hoặc tấm nhựa. Do chất hấp phụ được tráng thành lớp mỏng nên phương pháp này được gọi là sắc ký bản mỏng [6].

Khi thực hiện sắc ký, người ta cho mẫu phân tích hòa tan vào trong một dung môi dễ bay hơi, dùng vi quản để chấm một ít dung dịch mẫu, chấm 1 vết nhỏ gọn lên lớp mỏng. Sấy nhẹ để đuổi phần dung môi hòa tan mẫu, như vậy mẫu chỉ còn là dạng bột khô bám trên lớp mỏng. Đặt lớp mỏng theo chiều thẳng đứng vào trong một bình có dung môi thích hợp, dung môi sẽ bị lực mao quản hút lên phía trên, mẫu chất sẽ được phân chia thành những vết riêng biệt. Các vết sẽ được phát hiện bằng phương pháp vật lý như nhìn bằng mắt, soi dưới đèn tử ngoại... hoặc bằng phương pháp hóa học như phun lên bản mỏng các loại dung môi hay thuốc thử... Một chất tinh khiết chỉ cho một vết tròn, có giá trị R_f không đổi trong một hệ dung môi xác định. Trị số R_f được tính như sau:

$$R_{\rm f} = \frac{x}{y} \tag{1.61}$$

trong đó x là khoảng cách từ vị trí điểm chấm đến trung tâm vết; y là chiều dài triển khai của bản mỏng.

1.4.1.2. Sắc ký cột

Trong sắc ký cột [6], chất hấp phụ hay chất làm nền cho pha cố định được nhồi trong một ống hình trụ được gọi là cột. Tùy theo tính chất của chất được sử dụng làm cột mà quá trình tách trong cột sẽ xảy ra chủ yếu theo cơ chế hấp phụ (cột hấp phụ), cơ chế phân bố (cột phân bố) hay cơ chế trao đổi ion (cột trao đổi ion). Trong phần này chỉ trình bày sắc ký cột hấp phụ.

Sắc ký hấp phụ được thực hiện trên cột với chất hấp phụ đóng vai trò pha tĩnh, dung môi rửa cột đóng vai trò pha động chảy qua chất hấp phụ. Đối với các chất riêng biệt trong hỗn hợp, tùy theo khả năng hấp phụ và khả năng hòa tan của đối với dung môi rửa cột để được lấy ra lần lượt trước hoặc sau. Chất hấp phụ trong sắc ký cột thường dùng là oxít nhôm hoặc silicagen. Kỹ thuật nhồi cột và triển khai sắc ký bao gồm các bước cơ bản như: chuẩn bị cột, nhồi cột, đưa chất phân tích vào cột, theo dõi quá trình giải ly cột và rửa cột.

1.4.1.3. Phương pháp cô quay

Phương pháp cô quay [6] thường kết hợp với kỹ thuật hút chân không là phương pháp được sử dụng phổ biến nhất trong lĩnh vực tổng hợp hữu cơ do sự hiệu quả, nhanh và nhẹ nhàng trong tách chất lỏng. Quá trình cô quay tạo ra sự trao đổi nhiệt hiệu quả để bốc hơi nhanh và ngăn ngừa sự ng lên cục bộ trước khi hỗn hợp được trộn đều với mục đích loại bỏ dung môi bằng phương pháp bay hơi.

Kỹ thuật bay hơi chân không có ý nghĩa trong thực tiễn bởi vì trong một hệ kín, áp suất giảm làm giảm nhiệt độ sôi của các thành phần trong đó. Các thành phần trong mẫu dung dịch được cô quay bay hơi để loại bỏ dung môi mong muốn từ mẫu dịch chiết, được ứng dụng trong quá trình tách chiết một hợp chất tự nhiên hay đơn giản chỉ trong một bước của tổng hợp hợp chất hữu cơ. Dung môi hòa tan có

thể được loại bỏ một cách dễ dàng ở nhiệt độ thấp do sự giảm áp suất của hệ thống kết hợp sự rút khí. Phương pháp này được ứng dụng để tách dung môi có nhiệt độ sôi thấp như n-hexan, ethyl acetat... Tuy nhiên, khi ứng dụng phương pháp này cần chú ý các hợp chất trong mẫu có cùng nhiệt độ bay hơi cũng sẽ bị loại bỏ, vì vậy cần chú ý chọn dung môi có nhiệt độ sôi phù hợp và giảm áp suất vừa phải. Đối với các dung môi có nhiệt độ sôi cao như nước (100 °C,1 atm), DMF (153 °C,1 atm), DMSO (189 °C, 1 atm) cũng có thể bay hơi nếu hệ thống chân không có thể giảm áp suất đủ thấp. DMF và DMSO có thể sôi dưới 50°C nếu áp suất giảm xuống từ 1 atm xuống 6,6 matm. Phương pháp cô quay chân không có thể loại bỏ hầu hết các dung môi có nhiệt độ sôi thấp ngoại trừ các dung môi có nhiệt độ sôi cao như nước thường được xem là dung môi cuối cùng còn lại trong dịch chiết.

1.4.2. Phương pháp xác định cấu trúc

1.4.2.1. Phổ hấp thụ hồng ngoại

Nhiều hợp chất hữu cơ hấp thụ bức xạ trong vùng khả kiến, vùng tử ngoại (UV) và vùng hồng ngoại (IR). Tuy nhiên, bức xạ hồng ngoại không đủ năng lượng hiệu quả để gây nên kích thích electron, nhưng là nguyên nhân làm cho những nguyên tử, nhóm nguyên tử trong những hợp chất hữu cơ với liên kết cộng hóa trị dao động nhanh hơn, những dao động này xuất hiện và định tính được [157]. Đồng thời, những hợp chất hấp thụ năng lượng IR trong những vùng riêng biệt của phổ. Việc đo phổ IR tương tự như phổ UV-Vis. Một chùm tia bức xạ IR chiếu ngang qua mẫu và so sánh hằng số với một chùm tia tham chiếu không có mẫu. Biểu đồ phổ mô tả quan hệ giữa sự hấp thụ và tần số hoặc chiều dài sóng [157]. Vị trí của một dải hấp thụ IR (mũi) tương ứng với số sóng của [157]:

$$\overline{\gamma} = \frac{1}{\lambda} \left(cm^{-1} \right) = \frac{10.000}{\lambda} \left(\mu m^{-1} \right)$$
(1.64)

Đặc trưng dao động của liên kết cộng hóa trị là những dao động đàn hồi nhẹ và chúng chỉ xảy ra ở các tần số xác định, do đó những nguyên tử liên kết cộng hóa trị có mức năng lượng dao động riêng biệt. Khi hợp chất hấp thụ bức xạ IR với mức năng lượng riêng biệt sẽ kích thích các liên kết trong phân tử dao động, có nghĩa là độ dài sóng riêng biệt hoặc tần số ($\Delta E = h\nu$) [157].
Tần số của một dao động giãn và vị trí của trong phổ IR liên quan đến hai yếu tố là khối lượng và bậc liên kết. Các nguyên tử nhẹ sẽ dao động ở tần số cao hơn so với một nguyên tử nặng hơn và liên kết ba thì cứng hơn nên dao động ở tần số cao hơn những liên kết đôi và liên liên kết đôi thì cứng hơn liên kết đơn. Lưu ý rằng tần số dao động của nhóm liên quan đến hydro (nguyên tử nhẹ) như C-H, N-H, O-H luôn luôn xuất hiện ở tần số cao [157]. Cường độ mà một liên kết hấp thụ bức xạ phụ thuộc vào mômen lưỡng cực của liên kết. Do đó, trình tự về cường độ hấp thụ của liên kết C-X là: C-O > C-Cl > C-N > C-C-OH > C-C-H. Tương tự: OH > NH > CH [54].

 $\label{eq:constraint} Trình tự của cường độ mũi hấp thụ là [157]: C=C-C=O > C=C-C=C > C=C-C-C-C=C > C=C >$

Nhóm liên kết	Phạm vi tần số, cm ⁻¹	Nhóm liên kết	Phạm vi tần số, cm ⁻¹
C-H	2853-2962	–C≡N	2220-2260
O-H	3590-3650	-C≡C-	2100-2260
N-H	3300-3500	C=C	1620-1680
C=O	1630-1780		

Bảng 1.2. Tần số dao động của một vài nhóm chức trong phổ FT-IR

Do phổ IR có quá nhiều mũi, khả năng mà hai hợp chất sẽ có phổ giống nhau là không đáng kể. Do đó, với những hợp chất hữu cơ, nếu hai mẫu chứa hai chất tinh khiết khác nhau sẽ đưa ra phổ IR khác nhau.

1.4.2.2. Phổ tán xạ năng lượng tia X

Phổ tán xạ năng lượng tia X (EDX) còn được gọi là phân tích tán xạ năng lượng tia X (EDXA) là một kỹ thuật phân tích được sử dụng để phân tích nguyên tố hoặc tính chất hóa học của mẫu. dựa trên việc ghi lại phổ do sự tương tác của một số nguồn kích thích tia X với một mẫu. Khả năng đặc trưng của phần lớn là nguyên tắc cơ bản mà mỗi phần tử có cấu trúc nguyên tử duy nhất cho phép một tập hợp các đỉnh trên phổ phát xạ điện từ [72]. Để kích thích sự phát xạ tia X đặc trưng từ một mẫu vật, một chùm năng lượng cao của các hạt tích điện như electron hoặc proton hoặc chùm tia X được chiếu tập trung vào mẫu. Phần còn lại, một nguyên tử trong mẫu chứa các electron ở trạng thái cơ bản ở mức năng lượng rời rạc. Tia sáng tới có thể kích thích một electron trong một lớp vỏ bên trong, đẩy ra khỏi vỏ trong khi tạo ra một lỗ trống nơi electron đã rời đi. Một electron từ vỏ ngoài có năng lượng cao hơn

và mức năng lượng thấp hơn có thể được giải phóng dưới dạng tia X. Số lượng và năng lượng của các tia X phát ra từ mẫu vật có thể được đo bằng máy phổ tán xạ năng lượng. EDX cho phép xác định thành phần nguyên tố của mẫu thử [72].

Kỹ thuật EDX chủ yếu được thực hiện trong các kính hiển vi điện tử, ở đó ảnh vi cấu trúc vật rắn được ghi lại thông qua việc sử dụng chùm electron có năng lượng cao tương tác với vật rắn. Khi chùm electron có năng lượng lớn được chiếu vào vật rắn, sẽ đâm xuyên sâu vào nguyên tử vật rắn và tương tác với các lớp electron bên trong của nguyên tử. Tương tác này dẫn đến việc tạo ra các tia X có bước sóng đặc trưng tỉ lệ với nguyên tử số (\mathbf{Z}) của nguyên tử theo định luật Mosley [72]:

$$f = v = \frac{m_e q_e^4}{8h^3 \epsilon_0^2} \left(\frac{3}{4}\right) (Z - 1)^2 = (2, 48 \times 10^{15} Hz) (Z - 1)^2$$
(1.65)

Có nghĩa là tần số tia X phát ra là đặc trưng với nguyên tử của mỗi chất có mặt trong chất rắn. Việc ghi nhận phổ tia X phát ra từ vật rắn sẽ cho thông tin về các nguyên tố hóa học có mặt trong mẫu đồng thời cho các thông tin về tỉ phần các nguyên tố này [72]. Độ chính xác của EDX ở cấp độ một vài phần trăm. Thông thường ghi nhận được sự có mặt của các nguyên tố có tỉ phần cỡ 3-5% trở lên [72].

1.4.2.3. Phổ khối lượng

Phổ khối lượng (HR-MS) là một kỹ thuật dùng để đo tỷ lệ khối lượng trên điện tích (m/z) của ion. Tthiết bị dùng để đo được gọi là khối phổ kế, là một thiết bị cho ra phổ khối lượng của một mẫu để tìm ra thành phần của . Có thể ion hóa mẫu và tách các ion của với các khối lượng khác nhau và lưu lại thông tin dựa vào việc đo đạc cường độ dòng ion. Khối phổ kế hoạt động dựa trên biểu thức Lorentz Force [75]:

$$F = q.E + q.v.B \tag{1.66}$$

trong đó, *F* là lực (N); *q* là điện tích của hạt (C), q = ze; *E* là điện trường (V/m); *B* là từ trường (Wb/m² hay T (tesla)); *v* là vận tốc tức thời của hạt (m/s).

Trong phổ khối lượng, phân tử hữu cơ được bắn phá bằng một dòng electron có năng lượng cao làm cho các phân tử bị ion hóa và phân mảnh. tách ra một nhóm ion dựa trên tỷ số m/z của các ion và ghi nhận số lượng liên quan của mỗi phân mảnh ion. Phổ khối lượng thường được in ra dưới dạng biểu đồ khối hoặc dạng bảng, ở đó hầu hết các mũi được quan tâm gọi là mũi cơ bản có cường độ 100%. Cường độ của tất cả các mũi khác đưa ra các giá trị tỷ lệ, như là phần trăm của mũi cơ bản [75].

Phương pháp phổ khối thường sử dụng các phương pháp ion hoá khác nhau như ion hoá hoá học (CI), ion hoá phun bụi electron (ESI), bắn phá nguyên tử nhanh (FAB), trường giải hấp (FD), trường ion hóa (FI).... [75] Trong số các phương pháp trên, phương pháp ESI được sử dụng để nghiên cứu các phức chất của kim loại. Ưu điểm của phương pháp này là năng lượng ion hoá thấp do đó không phá vỡ hết các liên kết phối trí giữa kim loại và phối tử. Dựa vào phổ khối lượng có thể thu được các thông tin khác nhau như khối lượng phân tử chất nghiên cứu, các mảnh ion phân tử, tỉ lệ các mũi đồng vị. Từ các thông tin này có thể xác định được công thức phân tử của phức chất và cấu tạo của phức chất dựa vào việc giả thiết sơ đồ phân mảnh [75].

1.4.2.4. Phổ cộng hưởng từ hạt nhân

Phổ cộng hưởng từ hạt nhân (NMR) là một phương pháp phổ hiện đại và hữu hiệu nhất hiện nay để xác định cấu trúc hoá học của các hợp chất hữu cơ. Năng lượng cần thiết cho NMR trong phạm vi tần số radio của phổ điện từ và thấp hơn nhiều so với năng lượng cần thiết trong các phương pháp phổ học khác [146].

Kỹ thuật phổ NMR một chiều và hai chiều, có thể xác định chính xác cấu trúc của hợp chất, kể cả cấu trúc lập thể của phân tử. Nguyên lý chung của các phương pháp phổ NMR (¹H, ¹³C) là sự cộng hưởng khác nhau của các hạt nhân ¹H và ¹³C dưới tác dụng của từ trường ngoài. Sự cộng hưởng khác nhau này được biểu diễn bằng độ dời hoá học. Ngoài ra, đặc trưng của phân tử còn được xác định dựa vào tương tác spin-spin giữa các hạt nhân với nhau [146].

Sự quan trọng nhất là những vị trí của các tín hiệu dọc theo trục ngang của thang đo trong NMR gọi là độ dời hóa học. Độ dời hóa học được sử dụng để xác định cấu trúc của những hợp chất. Sử dụng độ dời hóa học là hữu hiệu nhất của tất cả thông tin hiện hữu trong một phổ NMR [146]. Đơn vị độ dời hóa học thường chuyển đổi tần số thành giá trị δ (ppm) được xác định theo công thức sau [146]:

$$\delta (\text{ppm}) = \frac{\text{Tần số của tín hiệu (Hz, từ TMS)}}{\text{Tần số của máy phổ (MHz)}}$$
(1.67)

Do tần số của máy phổ được đưa ra trong giá trị ppm, giá trị δ có đơn vị ppm. Trên các thang đo độ dời hóa học của một máy phổ NMR, vị trí hấp thụ của TMS thì ở bên phải và có giá trị 0. Các giá trị δ gia tăng lên bên trái mũi TMS. Phổ ¹H-NMR: trong phổ ¹H-NMR, độ dời hoá học (δ) của các proton được xác định trong thang từ 0 ppm đến 14 ppm tuỳ thuộc vào mức độ lai hoá của nguyên tử cũng như đặc trưng riêng của từng phân tử. Mỗi loại proton cộng hưởng ở một trường khác nhau và vì vậy chúng được biểu diễn bằng một độ dịch chuyển hoá học khác nhau. Dựa vào những đặc trưng của độ dời hoá học cũng như tương tác ghép đôi mà người ta có thể xác định được cấu trúc hoá học của hợp chất [146].

Phổ ¹³C-NMR: phổ này cho tín hiệu vạch phổ của cacbon. Mỗi nguyên tử cacbon sẽ cộng hưởng ở một trường khác nhau và cho một tín hiệu phổ khác nhau. Thang đo cho phổ ¹³C-NMR cũng được tính bằng ppm và với dải thang đo rộng hơn so với phổ proton (từ 0 ppm đến 240 ppm) [146].

Một số kỹ thuật đã được phát triển để cung cấp thông tin quan trọng trong phố NMR-FT hiện đại là kiểm tra các ptoton liên kết, DEPT, HMQC và HMBC.

Phổ một chiều CPD và DEPT

Trong một phổ NMR ¹³C hoặc 1H tiêu biểu, vị trí của các tín hiệu dọc theo một trục x của phổ tương ứng với các tần số của các tín hiệu được đo bằng độ dời hóa học. Tỷ trọng của các tín hiệu được đo dọc theo trục y. Phổ tiêu biểu này được gọi là phổ một chiều bởi một trục là trục tần số. Trong một phổ CPD, ¹³C khử ghép cặp dải rộng, mỗi một nguyên tử carbon khác nhau trong mẫu sẽ xuất hiện như một mũi dương đơn giản. Trong khi đó, phổ DEPT hạt nhân carbon -CH₃ và -CH cho ra tín hiệu đương, trong khi đó hạt nhân carbon -CH₂ và carbon bậc bốn đưa ra tín hiệu âm.

Trong phổ DEPT, các tín hiệu NMR ¹³C có thể bị nén lại hoặc đảo chiều phụ thuộc vào số proton liên kết với nguyên tử C và cài đặt chương trình xung. DEPT(45) cung cấp một phổ NMR ¹³C mà ở đó chỉ các nguyên tử C gắn với proton xuất hiện. Các tín hiệu do các nguyên tử C bậc bốn không xuất hiện. Phổ cho bởi chương trình xung DEPT(90) trình bày các tín hiệu chỉ từ các nguyên tử C mà có 1 proton liên kết. Các tín hiệu từ các nguyên tử C có các nguyên tử H liên kết được quan sát trong phổ NMR ¹³C từ phổ nghiệm DEPT(135). Và các tín hiệu từ các nguyên tử C có 2 proton liên kết (CH₂) đã bị đảo chiều (mũi âm). Sự so sánh các phổ từ một bộ của các thực nghiệm DEPT cho phép chúng ta xác định số proton liên kết với mỗi nguyên tử C trong một phân tử.

✤ Phổ hai chiều HSQC và HMQC

Phổ NMR hai chiều (2D-NMR) là phổ mà ở đó cả hai trục x và y đều là trục tần số. Tỷ trọng các tín hiệu trong một phổ hai chiều thường trình bày trên một biểu

đồ như một loạt các đường có khoảng cách gần tương tự như một bản đồ. Hầu hết các thực nghiệm phổ tương quan hai chiều quan trọng nhất là phổ HSQC và HMBC.

Phổ HSQC: các tương tác trực tiếp H-C được xác định nhờ vào các tương tác trên phổ này. Trên phổ, một trục là phổ 1H-NMR còn trục kia là ¹³C-NMR. Các tương tác HMQC nằm trên đỉnh các ô vuông trên phổ. Phổ HMBC là phổ biểu diễn các tương tác xa của H và C trong phân tử. Nhờ vào các tương tác trên phổ này mà từng phần của phân tử cũng như toàn bộ phân tử được xác định về cấu trúc.

1.4.3. Phương pháp xác định công thức phức

1.4.3.1. Phương pháp trắc quang

Những hợp chất màu là những hợp chất có khả năng hấp thụ một hoặc một vài màu phổ của ánh sáng tự nhiên và có thể hấp thụ hoàn toàn hoặc một phần cường độ của màu phổ. Nếu dung dịch hấp thụ bức xạ vùng tử ngoại, ánh sáng trắng truyền suốt hoàn toàn đến mắt, dung dịch không màu. Nếu chỉ hấp thụ duy nhất một màu phổ thì màu của dung dịch chính là màu bổ sung, nghĩa là tổ hợp màu phổ và màu bổ sung trở thành không màu [4].

Phương pháp trắc quang dựa vào định luật Bouguer-Lambert-Beer [59], khi đi qua hệ dung dịch màu một chùm tia photon đơn sắc thì mức độ hấp thụ của dung dịch màu tỷ lệ thuận với công suất chùm photon và nồng độ các phần tử hấp thụ:

$$A = \lg \frac{I_0}{I} = \varepsilon.l.C \tag{1.68}$$

trong đó, ε là độ hấp thụ phân tử - biểu thị độ hấp thụ của dung dịch có nồng độ chất tan là 1 M được đựng trong bình dày 1 cm, có đơn vị là L.mol⁻¹cm⁻¹; *l* là bề dày của dung dịch, cm và *C* là nồng độ dung dịch màu, mol/L.

Nếu đo độ hấp thụ quang của một loạt dung dịch bằng một dòng sáng đơn sắc (tại một giá trị λ) thì A = f(l,C) là hàm bậc nhất, đường biểu diễn là một đường thẳng, còn đường T = f(C) là một đường cong. Vì vậy trong phân tích trắc quang chỉ dùng đường A = f(C) mà không dùng T = f(C) [9].

Trong phương pháp trắc quang, có thể sử dụng định luật cộng tính [9] để nghiên cứu khi trong dung dịch có nhiều chất hấp thụ quang, Nếu một dung dịch gồm chất nghiên cứu và tạp chất (hay chất nền) thì độ hấp thụ:

Khi đó để loại bỏ ảnh hưởng của tạp chất (hay nền) dùng dung dịch so sánh (mẫu trắng, blank) có thành phần như dung dịch mẫu đo nhưng không chứa chất màu phân tích. Khi đó giá trị mật độ quang đo được chỉ là của chất nghiên cứu.

Phương pháp trắc quang có nhiều ưu điểm [4], [9] như nhanh, có độ chính xác cao (sai số < 1%), có thể chuẩn độ với dung dịch có nồng độ nhỏ, đo kể cả trong trường hợp mà mắt ta không nhìn thấy rõ sự thay đổi màu của dung dịch, dễ tự động hoá.

Một yếu tố cần chú ý đến phương pháp này là độ chọn lọc [4], trong đó yếu tố quan trọng nhất quyết định tính chọn lọc của phương pháp là độ rộng của vân hấp thụ quang của phân tử trong dung dịch (thường là hàng chục nm) vì liên quan đến khả năng xen phủ vân hấp thụ quang của các thành phần khác (các chất lạ và sản phẩm của) gây ra hiện tượng cộng tính. Ngoài ra, một vấn đề cần quan tâm nữa là sai số trong phương pháp trắc quang [58]. Sai số tuyệt đối được tính như sau [4]:

$$dA = -0.434.10^{A} \frac{dI}{I} \tag{1.70}$$

1.4.3.2. Phương pháp Job

Phương pháp Job hay còn gọi là phương pháp dãy đồng phân tử gam (trong luận án này chúng tôi sử dụng tên chung là phương pháp Job), được Vosburgh và Cooper sử dụng đầu tiên để tìm ra công thức và tính hằng số bền của phức [3]. Giả sử sự tạo thành phức với các ion kim loại được biểu diễn bằng phương trình (1.71):

$$pM + qL = M_p L_q \tag{1.71}$$

ở đây M là ion kim loại, L là ligand. Khi p = 1, q = 1 ta có công thức phức ML; p = 1, q = 2 có công thức phức ML₂.

Theo phương pháp này, tổng nồng độ mol của hai chất phản ứng được giữ không đổi nhưng tỷ lệ của chúng thay đổi. Độ hấp thụ quang của dãy được vẽ với các tỷ lệ mol của phép đo. Độ cao của đỉnh được ngoại suy tương ứng với tỷ lệ phức [3].

1.4.3.3. Phương pháp tỷ lệ mol

Phương pháp tỷ lệ mol (hay còn gọi là phương pháp đường cong bão hòa) được Yoe and Jones giới thiệu và áp dụng để đo cường độ hấp thụ màu của phức Fe(III) với disodium-1,2-dihydroxy benzene-3,5-disulfonate. Trong phương pháp này, nồng độ ion kim loại được giữ cố định và nồng độ ligand được tăng dần từng nấc. Trên biểu đồ độ hấp thụ quang theo số mol của ligand thêm vào, giao điểm của các phân đoạn tuyến tính ngoại suy xác định tỷ lệ: mol của ligand/mol của kim loại [3].

Bên cạnh đó, Harvey và Manning đã đề xuất một phương pháp có tên gọi là phương pháp độ dốc (slope) [3]. Phương pháp này giả thiết rằng nồng độ cân bằng của phức màu về cơ bản là tỷ lệ thuận với nồng độ phân tích của thành phần biến thiên. Khi áp dụng phương pháp này cho phức có khả năng phân ly cao như Fe(SCN)⁺⁺, cần được kiểm tra giả định này một cách thận trọng.

Trong phương pháp này, cần chuẩn bị hai dãy dung dịch. Dãy thứ nhất có nồng độ ion kim loại thay đổi trong dung dịch chứa một lượng dư ligand. Dãy thứ hai có nồng độ ligand thay đổi trong dung dịch chứa ion kim loại dư không đổi. Độ hấp thụ quang của dung dịch trong mỗi lần thay đổi của cả hai dãy được đo và vẽ theo nồng độ của thành phần biến. Tỷ lệ kết hợp của các thành phần trong phức bằng tỷ lệ của độ dốc của hai đường thẳng [3].

CHƯƠNG 2. NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU

2.1. NỘI DUNG NGHIÊN CỨU

2.1.1. Đối tượng nghiên cứu

Dẫn xuất thiosemicarbazone và phức chất của thiosemicarbazone với các ion kim loại chuyển tiếp ở hai dạng ML và ML₂ (Hình 2.1)

Hình 2.1. Khung cấu trúc phức chất ML và ML₂ trong nghiên cứu

2.1.2. Nội dung nghiên cứu

Để đạt những mục tiêu đưa ra ở phần đặt vấn đề, Luận án cần thực hiện các nội dung cụ thể như sau:

- Xây dựng các mô hình QSPR trên hai nhóm đối tượng phức ML và ML₂. Các mô hình QSPR này được xây dựng dựa trên kỹ thuật hồi quy tuyến tính đa biến (MLR, OLR, OLS), hồi quy bình phương cực tiểu riêng phần (PLSR), hồi quy thành phần chính (PCR) và các phương pháp máy học thông minh như mạng thần kinh nhân tạo (ANN) và máy vécto hỗ trợ (SVM). Để thực hiện được nội dung này, cần thực hiện các bước cụ thể như sau:
 - + Tính toán sàng lọc dữ liệu: thu thập các dữ liệu thực nghiệm của phức (ML, ML₂); tối ưu hóa cấu trúc của các phức chất đã thiết kế, sàng lọc từ thực nghiệm; tính toán các mô tả phân tử bằng cách sử dụng các công cụ

liên quan và các tham số lượng tử từ cấu trúc đã tối ưu; Sàng lọc bộ cơ sở dữ liệu hoàn chỉnh để xây dựng mô hình QSPR;

- + Xây dựng mô hình QSPR từ các bộ dữ liệu;
- + Đánh giá các mô hình QSPR;
- Thiết kế, sàng lọc các dẫn xuất thiosemicarbazone và các phức chất mới của thiosemicarbazone với các ion kim loại phổ biến. Đồng thời, sử dụng các mô hình QSPR đã xây dựng để dự báo hằng số bền của các phức chất này.
- Đánh giá khả năng hình thành của phối tử (BEPT và BECT) và các phức của chúng từ hợp chất thiết kế mới với một số ion kim loại (Ni²⁺, Cd²⁺, Cu²⁺, Zn²⁺, Hg²⁺, Mn²⁺) để chuẩn bị cho bước thực nghiệm tổng hợp bằng cách sử dụng các phương pháp tính toán hóa lượng tử kết hợp với các giải thuật cần thiết nhằm.
- Thực nghiệm tổng hợp hai phối tử BEPT, BECT và các phức tương ứng Ni(II)-BEPT, Cd(II)-BEPT, Cu(II)-BECT và Zn(II)-BECT. Đánh giá cấu trúc của ligand và phức chất qua các phương pháp phân tích hóa lý như phương pháp phổ hấp thụ hồng ngoại FT-IR, phổ cộng hưởng từ hạt nhân ¹H-NMR, ¹³C-NMR kết hợp phổ DEPT 90, 135, CPD, HSQC và HMBC; phổ khối lượng phân giải cao HR-MS và phổ EDX;
- Khảo sát khả năng tạo phức xác định các yếu tố tối ưu; xác định công thức phức chất (phương pháp Job, phương pháp tỷ lệ mol) và xác định hằng số bền các phức chất này bằng phương pháp đo quang phổ UV-Vis và đánh giá kết quả từ các mô hình dự đoán và kết quả thực nghiệm.

2.1.3. Sơ đồ nghiên cứu tổng quát

Quá trình nghiên cứu trong luận án được thực hiện qua nhiều giai đoạn gồm nghiên cứu lý thuyết xây dựng mô hình, thiết kế dự đoán hợp chất mới và lựa chọn hợp chất mới để thực nghiệm tổng hợp (Hình 2.2).

2.2. CÔNG CỤ, HÓA CHẤT VÀ THIẾT BỊ NGHIÊN CỨU

2.2.1. Dữ liệu và phần mềm

Phương pháp mô hình hóa QSPR dựa trên nền tảng hóa học tính toán và các phương pháp toán học, do đó việc xây dựng các mô hình này sử dụng hàng loạt công cụ và phần mềm tính toán (Bảng 2.1).

Hình 2.2. Sơ đồ nghiên cứu tổng quát

STT	Công cụ/phần mềm	Ứng dụng
1	BIOVIA Draw 2017 R2 [28]	Vẽ cấu trúc phân tử 2D
2	ChemBioOffice 2013 [32]	Vẽ cấu trúc phân tử 2D
3	Avogradro V1.2.0 [23]	Thiết lập tính toán lượng tử;
4	Hyperchem 8.0.8 [66]	 Tối ưu hóa cơ học phân tử MM; Tính toán PM3; Chuyển cấu trúc sau khi tính toán.
5	MOPAC2016 [142], [143]	Tính toán cơ học lượng tử.
6	QSARIS V1.1 [10], [112]	 Tính toán tham số mô tả phân tử; Xây dựng mô hình QSPR_{GA-MLR}, QSPR_{GA-PLS}, QSPR_{GA-PCR}.
7	MS-EXCEL 2013 [96]	 Xây dựng dữ liệu tính toán; Phân tích ANOVA; Nền tảng của các phần mềm khác;
8	Origin 9.0 [102]	Thiết lập các biểu đồ, đồ thị;
9	XLSTAT2016 [155]	 Sàng lọc biến trước khi xây dựng mô hình QSPR_{MLR}; Phân chia dữ liệu (k-means, AHC); Xây dựng mô hình hồi quy QSPR_{PLS}, QSPR_{PCR};
10	Regression 2008 [140]	Xây dựng mô hình hồi quy QSPR _{MLR} ;

11	VisualGeneDeveloper 1.7 [74]	Xây dựng mô hình QSPRANN
12	Matlab 2016 [94]	Xây dựng mô hình QSPR _{ANN}
13	Weka 3.9 [154]	Xây dựng mô hình QSPR _{SVR}
14	Datan 3.1 [37]	Xác định hằng số bền của phức

2.2.2. Hóa chất, dụng cụ và thiết bị

Hóa chất sử dụng trong nghiên cứu có độ tinh khiết cao, có nguồn gốc rõ ràng của các hãng nổi tiếng được nhập khẩu từ Hàn Quốc. Một số hóa chất, dung môi sử dụng có nguồn gốc từ Việt Nam, Trung Quốc (Bảng 2.2).

STT	Hóa chất	СТРТ	Nguồn gốc
1	Nickel(II) Chloride	NiCl ₂ .6H ₂ O	Sigma-Aldrich, Hàn Quốc
2	Cadmium(II) Chloride	CdCl ₂ .2 ¹ / ₂ H ₂ O	Sigma-Aldrich, Hàn Quốc
3	Copper(II) Chloride	CuCl ₂ .2H ₂ O	Sigma-Aldrich, Hàn Quốc
4	Zinc(II) Acetate	Zn(OOCH ₃) ₂ .2H ₂ O	Sigma-Aldrich, Hàn Quốc
5	Acetic acid, 100%	CH ₃ COOH	Sigma-Aldrich, Hàn Quốc
6	Chloroform	CHCl ₃	Fisher Chemical, Hàn Quốc
7	Dichloromethane	CH ₂ Cl ₂	A. Reagent, Trung Quốc
8	DMF (N,N- dimethylformamide)	HCON(CH ₃) ₂	Sigma-Aldrich, Hàn Quốc
9	DMSO (dimethyl sulfoxide)	(CH ₃) ₂ SO	Sigma-Aldrich, Hàn Quốc
10	Ethyl Acetate (anhydrous)	CH ₃ COOC ₂ H ₅	A. Reagent, Trung Quốc
11	Ethanol	C ₂ H ₅ OH	Sigma-Aldrich, Hàn Quốc
12	Methanol	CH ₃ OH	Sigma-Aldrich, Hàn Quốc
13	NBS (N- Bromosuccinimide)	C ₄ H ₄ BrNO ₂	Sigma-Aldrich, Hàn Quốc
14	N-hexane	C ₆ H ₁₄	A. Reagent, Trung Quốc
15	Phenothiazine	C ₁₂ H ₉ NS	Sigma-Aldrich, Hàn Quốc
16	Bromoethane	C ₂ H ₅ Br	Sigma-Aldrich, Hàn Quốc
17	Phosphoril chloride	POCl ₃	Sigma-Aldrich, Hàn Quốc
18	Potassium hydroxide	КОН	A. Reagent, Trung Quốc
19	Sodium hydroxide	NaOH	A. Reagent, Trung Quốc

Bảng 2.2. Danh mục hóa chất sử dụng trong nghiên cứu

20	Sodium sulfate (anhydrous)	Na ₂ SO ₄	A. Reagent, Trung Quốc
21	Sodium acetate (anhydrous)	CH ₃ COONa	A. Reagent, Trung Quốc
22	TBAHS (Tetrabutylammonium hydrogen sulfate)	N(C4H9)4HSO4	Sigma-Aldrich, Hàn Quốc
23	Thiosemicarbazide	NH ₂ CSNHNH ₂	Sigma-Aldrich, Hàn Quốc
24	Dầu gia nhiệt	Dầu thủy lực	Việt Nam
25	Nước cất	Cất 2 lần	Viện hóa học Miền Nam.

Dụng cụ thí nghiệm và thiết bị sử dụng nghiên cứu là những dụng cụ cơ bản trong phòng thí nghiệm có nguồn gốc từ Việt Nam, Trung Quốc và Đức.

Bảng 2.3. Dụng	cụ và thiết bị tỉ	hí nghiệm sử dụng	trong nghiên cứu
----------------	-------------------	-------------------	------------------

STT	Dụng cụ/Thiết bị	Đặc điểm	Nguồn gốc
1	Bình cầu 2, 3 cổ	250, 500 mL	Schott, Đức
2	Bình cầu	500 mL	Schott, Đức
3	Bình định mức	25, 50, 100, 500 mL	Schott, Đức
4	Nhiệt kế	100°C	Việt Nam
5	Becher, Erlen	50, 100, 250, 500 mL	Schott, Đức
6	Pipet vạch	1, 2, 3, 4, 5, 10, 20 mL	AHN, Đức
7	Pipet bầu	1, 2, 3, 4, 5, 10, 20 mL	AHN, Đức
8	Buret	25, 50 mL	Duran, Đức
9	Ông sinh hàn	Nguyên bộ	Witeg, Đức
10	Đũa thủy tinh, bóp cao su, phễu chiết, ống thủy tinh các loại		Việt Nam, Trung Quốc
11	Cân phân tích	Max 250g	Satorius, Japan
12	Bếp khuấy từ	khuấy từ, gia nhiệt	Thermo scientific, China
13	Bình khí nitơ	5kg	Việt Nam
14	Bút đo pH	Điện tử, 200°C	Thermo scientific, China
15	Thiết bị cô quay	Laborota-4010	Heidolph, Đức
16	Máy đo UV-VIS	ZA300	Hitachi, Japan
17	Máy đo phổ FT-IR	FT/IR 4700	Jasco, Mỹ

2.3. XÂY DỰNG MÔ HÌNH QSPR

2.3.1. Tính toán sàng lọc dữ liệu

Quá trình tính toán sàng lọc dữ liệu theo các bước mô tả trên Hình 2.3:

Hình 2.3. Sơ đồ tính toán sàng lọc dữ liệu

2.3.1.1. Thu thập dữ liệu thực nghiệm ban đầu

Lựa chọn dữ liệu nghiên cứu là bước đầu tiên trong nghiên cứu QSPR. Trong đề tài này, chúng tôi đã thu thập dữ liệu từ thực nghiệm của hai phức ML và ML₂ trên cùng một khung cấu trúc của dẫn xuất thiosemicarbazone với các ion kim loại khác nhau từ các công trình nghiên cứu qua các bài báo công bố trên các tạp chí uy tín.

2.3.1.2. Tối ưu hóa cấu trúc

Quá trình tối ưu hóa được thực hiện qua hai bước. Thứ nhất, phức được tối ưu hóa bằng phương pháp MM với trường lực MM⁺ dùng cho các hợp chất có nguồn gốc hữu cơ bằng công cụ HyperChem 8.0.6 [66].

Hình 2.4. Sơ đồ nghiên cứu cấu trúc theo phương pháp MM và QM

Bốn giải thuật được khảo sát để tìm giải thuật tối ưu gồm Steepest Descent, Fleetcher-Reesves, Polak-Ribiere và Block-diagonal Newton-Raphson. Sau đó, phức chất được tiếp tục tối ưu hóa cấu trúc bằng cơ học lượng tử (QM) theo phương pháp bán thực nghiệm với phiên bản mới PM7 và PM7/sparkle trên công cụ MOPAC2016 [143] thông qua việc thiết lập tính toán lượng tử bằng phần mềm Avogradro V1.2.0 [23] (Hình 2.4).

2.3.1.3. Sàng lọc dữ liệu

Kiểm tra cấu trúc phức chất sau khi tối ưu hóa bằng cơ học lượng tử. Những cấu trúc bị lỗi so với các khung cấu trúc ML/ML₂ như thiết kế ban đầu sẽ bị loại khỏi dữ liệu nghiên cứu. Tính toán lượng tử sẽ đưa ra kết quả chứa trong các tập tin dữ liệu định dạng notepad (*.arc; *.out; *.aux). Truy xuất các tập tin dữ liệu này sẽ thu nhận tham số điện tích của các nguyên tử ở các vị trí của khung cấu trúc trong phân tử và tham số hóa lý như HOMO, LUMO, năng lượng tổng, nhiệt tạo thành, mô men lưỡng cực...

Tiếp đến, sử dụng cấu trúc đã tối ưu của các phức chất này để tiến hành tính toán bộ mô tả cấu trúc phân tử trên hệ thống QSARIS V1.1 [66]. Kết quả của phép tính này trả về hàng loạt các tham số mô tả tương ứng với các phức chất ML/ML₂ ban đầu đưa vào với giá trị hằng số bền log β_{pq} tương ứng nhận từ thực nghiệm. Tiến hành sàng lọc, loại bỏ các biến mô tả không phù hợp, kết hợp các tham số lượng tử và tham số từ điều kiện thực nghiệm tạo phức thu thập được đã tạo ra một bộ dữ liệu.

Không thể sử dụng bộ dữ liệu vừa thu được để xây dựng mô hình, nên cần sử dụng hai phương pháp đã trình bày là k-means và AHC để chia bộ dữ liệu đó thành những bộ dữ liệu phù hợp. Các bộ dữ liệu này được sử dụng để mô hình hóa QSPR.

2.3.2. Phương pháp xây dựng mô hình QSPR

Quá trình xây dựng mô hình QSPR được bắt đầu bằng phương pháp MLR. Phương pháp này cho một mô hình với các biến mô tả. Sử dụng các biến này làm biến đầu vào để xây dựng các mô hình hồi quy khác như PLSR, PCR cũng như các mô hình phi tuyến nếu có như ANN và SVR. Một số công trình đã công bố chỉ sử dụng hai phương pháp. Trình tự xây dựng mô hình được trình bày trên Hình 2.5.

Hình 2.5. Trình tự xây dựng các mô hình QSPR kèm công cụ nghiên cứu

2.3.2.1. Mô hình hồi quy tuyến tính

Phương pháp hồi quy tuyến tính bao gồm MLR, PLSR và PCR, trong đó MLR luôn được xây dựng đầu tiên trong tất cả các nghiên cứu. Tập dữ liệu được chia thành nhóm luyện (80%) và nhóm đánh giá (20%). Khó khăn lớn nhất trong quá trình xây dựng là sự lựa chọn biến. Trong nghiên cứu này, việc lựa chọn biến dựa vào công cụ XLSTAT2016 [155] hoặc giải thuật di truyền (GA). Sau đó, quá trình xây dựng mô hình sử dụng các kỹ thuật hồi quy chuyển tiếp (forward) và loại bỏ dần (back-elimination) trong công cụ Regression [140]. Bên cạnh đó, giải thuật di duyền (GA) cũng sử dụng để lựa chọn biến khi xây dựng mô hình. Các biến đưa vào mô hình đều được đánh giá thông qua hệ số tương quan Pearson *R*, giá trị *P* và *t-test*. Số biến đưa vào mô hình được kiểm soát thông qua sự thay đổi có ý nghĩa các chỉ số đánh giá mô hình sao cho phù hợp như R^2_{train} , R^2_{adj} , MSE (hay SE, RMSE), Q^2_{LOO} , F_{stat} , PRESS.

Phương pháp PLSR còn sử dụng các đại lượng thống kê tích lũy để đánh giá sự lựa chọn biến phụ thuộc và biến độc lập như Q^2_{cum} , Q^2_{Ycum} và Q^2_{Xcum} . Ngoài ra, còn sử dụng VIP để đánh giá tầm ảnh hưởng của các biến trong mô hình. Đối với phương pháp PCR ngoài các đại lượng cơ bản còn sử dụng kỹ thuật phân tích thành phần chính PCA để sàng lọc biến và sử dụng đại lượng thống kê phương sai giải thích ở nghĩa của các biến trong mô hình. Hai phương pháp PLSR và PCR được xây dựng bằng công cụ XLSTAT2016 [155].

Các tham số được sử dụng trong giải thuật bao gồm kích thước quần thể ban đầu, xác suất cho biến đưa vào giải pháp, lựa chọn xếp hạng tuyến tính với kích thước Toumant, xác suất giao phối, giao điểm một điểm với số con cái có cùng bố mẹ và xác suất đột biến đồng nhất. Trong quá trình chọn bộ mô tả, cần thiết cập nhật dân số với số lượng tất cả con cái được tạo ra và thay thế xấu nhất bằng một giải pháp con cái tốt nhất. Hàm tối ưu Friedman với dung sai và số lượng thế hệ tối đa cần thiết lập khi tính toán. Thuật toán di truyền tập trung vào các điểm sau:

- Xóa các mô tả có cùng giá trị và các mô tả có độ lệch chuẩn nhỏ hơn 0,05.
- Xóa các mô tả với hệ số Pearson trên 0,75.
- Cuối cùng, kỹ thuật hồi quy tuyến tính đa biến được sử dụng để loại bỏ các mô tả tiếp theo có ảnh hưởng không đáng kể đến khả năng dự đoán của mô hình QSPR.

2.3.2.2. Mô hình phi tuyến

a. Mô hình ANN

Tập dữ liệu xây dựng mô hình ANN với các biến đầu vào nhận kết quả từ mô hình MLR và việc chia bộ dữ liệu phụ thuộc vào công cụ sử dụng. Hai công cụ phát triển mô hình mạng, đó là VisualGeneDeveloper 1.7 [74] và Matlab 2016 [94].

Đối với công cụ VisualGeneDeveloper 1.7, việc chia tập dữ liệu hoàn toàn giống như trong quá trình xây dựng mô hình MLR. Tuy nhiên, đối với phần mềm Matlab 2016, sử dụng công cụ 'nntools' để luyện mạng và tập dữ liệu trong trường hợp này được chia thành ba tập dữ liệu nhỏ bao gồm tập luyện (60÷70%), tập đánh giá chéo (20%) và tập kiểm tra (20÷10%) [94]. Đồng thời, cũng sử dụng tập dữ liệu ngoại độc lập để đánh giá ngoại mô hình.

Trong nghiên cứu này, mạng ANN được luyện theo hình thái mạng truyền thẳng nhiều lớp (MLR) với giải thuật lan truyền ngược. Kiến trúc mạng sử dụng bao gồm ba lớp I(m)-HL(n)-O(k), hàm truyền sử dụng bao gồm hai hàm phổ biến là hàm sigmoid và hyperbolic tangent sigmoid. Kỹ thuật luyện mạng theo các bước sau:

- Chuẩn bị tập dữ liệu: chuẩn hóa tập dữ liệu và chia tập dữ liệu;
- Khảo sát kiến trúc mạng: lựa chọn kiến trúc mạng để luyện;
- Lựa chọn các thông số luyện mạng: hàm truyền, quán tính, tốc độ học, hàm mục tiêu hội tụ.
- Luyện mạng kết hợp tập dữ liệu đánh giá ngoại và tập dữ liệu cho hợp chất thiết kế mới (nếu có);
- Đánh giá hiệu năng mạng qua các các tham số hồi quy R^2_{train} , Q^2_{CV} , Q^2_{test} .

b. Mô hình SVR

Quy trình mô hình hóa SVR được trình bày trên Hình 2.6 [98], mô tả chuỗi các bước cho mô hình hóa SVR. Các biến đầu vào lấy kết quả của mô hình xây dựng theo phương pháp MLR.

Đầu tiên, tập dữ liệu bao gồm các tham số phụ thuộc (đầu ra/mục tiêu) và các tham số đầu vào độc lập được chuẩn hóa. Bộ dữ liệu chuẩn hóa được chia ngẫu nhiên thành tập luyện (80%) và tập kiểm tra (20%). Lựa chọn hàm hạt nhân thích hợp khác nhau như hàm tuyến tính, hàm đa thức, hàm xuyên tâm... Sau đó, tối ưu hóa các tham số siêu mô hình (C, ε) và tham số hạt nhân (γ) kèm theo đánh giá chéo. Cuối cùng, mô hình SVR được phát triển bằng cách sử dụng các tham số tối ưu, kết quả thu được giá trị dự đoán và dữ liệu thực nghiệm. Hiệu suất của mô hình SVR được trình bày cụ thể ở phần trên. Mô hình SVR xây dựng bằng công cụ Weka 3.9 [154].

Hình 2.6. Sơ đồ xây dựng mô hình SVR

2.3.3. Đánh giá mô hình

Đánh giá là một phần không thể thiếu trong quá trình phát triển mô hình QSPR với mục đích là xác minh khả năng dự đoán của một mô hình. Đánh giá mô hình

được thực hiện theo hai bước gồm chia bộ dữ liệu và phân tích thống kê. Ngoài sự phù hợp, cũng cần thiết để xác định miền ứng dụng AD và các quan sát ngoại biên.

Để đánh giá mô hình, một tập dữ liệu ban đầu dùng xây dựng mô hình được chia thành một tập luyện và một tập đánh giá ngoại hay tập kiểm tra. Tập luyện được chia thành một tập hiệu chỉnh hay tập luyện con và một tập đánh giá nội. Tập hiệu chuẩn nhằm hiệu chỉnh các hệ số mô hình với các đại lượng thống kê tốt nhất. Tập đánh giá nội được sử dụng để đánh giá nội với kỹ thuật đánh giá chéo (CV) trong khi đó mô hình phát triển bởi tập hiệu chuẩn. Giai đoạn đánh giá mô tả trên Hình 2.7.

Hình 2.7. Các giai đoạn khác nhau đánh giá mô hình

2.3.3.1. Đánh giá chéo

Đánh giá chéo (CV) hay còn gọi là đánh giá nội được thực hiện trên tập luyện trong quá trình xây dựng mô hình. Trong nghiên cứu này, các mô hình chủ yếu sử dụng phương pháp chia dữ liệu ngẫu nhiên và đánh giá chéo bằng kỹ thuật loại bỏ dần từng trường hợp (LOO). Bên cạnh đó, còn có kỹ thuật đánh giá chéo loại bỏ dần nhiều trường hợp LMO (hay k-fold) và khởi động lặp. Kỹ thuật LOO và LMO đề cập đến quá trình xóa một hoặc nhiều điểm dữ liệu khỏi tập dữ liệu. Việc sử dụng LOO không ưu tiên cho một nhóm dữ liệu lớn bởi vì có thể phóng đại hiệu suất mô hình, mà áp dụng LMO phổ biến hơn vì có nguy cơ thấp đánh giá không phù hợp [150] với điều kiện số lượng mẫu trong LMO phải lớn hơn hoặc bằng 2, và tốt nhất là đủ lớn để có đủ các vòng luyện [92]. Các đại lượng sử dụng trong đánh giá chéo bao gồm R^2_{CV} , Q^2_{CV} , Q^2_{LOO} , Q^2_{CV-LOO} , R^2_{LMO} , Q^2_{CV-LMO} .

2.3.3.2. Đánh giá ngoại

Không giống tập dữ liệu đánh giá chéo (CV) là có thể sử dụng dữ liệu thu được từ cùng một nguồn, tập đánh giá ngoại chỉ sử dụng dữ liệu bên ngoài, độc lập

với tập luyện mà không bao giờ được sử dụng trong quá trình phát triển mô hình. Tầm quan trọng và sự cần thiết của tập ngoại trong quá trình phát triển mô hình QSPR đã được nhấn mạnh trong hướng dẫn của OECD [100]. Các giá trị thống kê sử dụng trong đánh giá ngoại gồm Q^2_{test} và R^2_{test} .

2.3.3.3. Đánh giá miền ứng dụng và quan sát ngoại biên

Kỹ thuật này sử dụng lựa chọn các quan sát nằm trong miền ứng dụng và loại bỏ các quan sát ngoại biên để tạo ra một tập dữ liệu đảm bảo khi xây dựng mô hình. Bên cạnh đó, cũng được sử dụng để dự đoán các phức chất thiết kế mới, tức là chỉ dự đoán các phức chất nằm trong miền ứng dụng. Các chỉ số đánh giá đã trình bày cụ thể trong Chương 1 bao gồm đòn bẩy *h*, khoảng cách Cook, hay độ lệch dư *SDR*.

2.3.3.4. Đánh giá so sánh các mô hình

Để đánh giá khả năng dự đoán từ các mô hình có thể sử dụng các chỉ số đánh giá như đã trình bày như *ARE* (%), *MARE* (%). Ngoài ra, đề tài cũng sử dụng phương pháp phân tích ANOVA một yếu tố để đánh giá sự khác biệt giữa các giá trị dự đoán nhận được từ các mô hình và giá trị thực nghiệm tương ứng.

2.4. THIẾT KẾ HỢP CHẤT MỚI

2.4.1. Lựa chọn đối tượng thiết kế mới

Phenothiazine, tên danh pháp quốc tế là 10H-phenothiazine, là một hợp chất hữu cơ có công thức $S(C_6H_4)_2NH$ và là hợp chất dị vòng. Trong khi đó, carbazole có danh pháp theo IUPAC là 9H-carbazole ($C_{12}H_9N$). Cả hai hợp chất này và dẫn xuất của chúng có nhiều ứng dụng tương đồng nhau trong thực tế như các chất thuốc nhuộm hữu cơ không chứa kim loại, thuốc nhuộm và chất chống oxy hóa. Đặc biệt, chúng có hoạt tính sinh học đa dạng như kháng khuẩn, kháng nấm, hoạt tính chống ung thư... Các dẫn xuất của hai nhóm chất này được ứng dụng nhiều trong lĩnh vực dược học [61], [101]. Bên cạnh đó, do cấu trúc dị vòng nên các dẫn xuất chứa hai nhóm chất này cũng dễ dàng tạo phức với nhiều ion kim loại. Chính vì thế, chúng được nghiên cứu nhiều trong thực tế [52], [67], [124]. Đây là điều kiện thuận lợi để lựa chọn các nhóm này trong việc thiết kế mới các dẫn xuất thiosemicarbazone mới.

Trong luận án này, để định hướng cho nghiên cứu thực nghiệm với ligand và phức chất mới chưa nghiên cứu, chúng tôi lựa chọn hai nhóm đối tượng dựa trên khung cấu trúc 10H-phenothiazine và 9H-carbazole (Hình 2.8) tại vị trí R₄ của khung cấu trúc chung của dẫn xuất thiosemicarbazone để thiết kế hợp chất mới.

Hình 2.8. Cấu trúc của 10H-phenothiazine (a) và 9H-carbazole (b)

2.4.2. Thiết kế các dẫn xuất thiosemicarbazone và phức chất

Dựa trên sự lựa chọn đó, nghiên cứu này đã thiết kế các dẫn xuất thiosemicarbazone mới trên khung 10H-phenothiazine và 9H-carbazole cũng tại nhóm R₄, các vị trí còn lại đều là nguyên tử hydro. Các dẫn xuất được lựa chọn để gắn vào khung cấu trúc thiosemicarbazone đều đã được nghiên cứu tổng hợp trong thực tế [52], [67], [124]. Như vậy, khung cấu trúc của hai nhóm đối tượng này với các nhóm chức tại các vị trí được trình bày trên Hình 2.9.

Hình 2.9. Khung cấu trúc của 10H-phenothiazine (a) và 9H-carbazole (b)

Khung cấu trúc của ligand được thiết kế mới như Hình 2.10.

Hình 2.10. Khung cấu trúc của ligand thiết kế mới

Trên khung cấu trúc thisemicarbazone thiết kế mới, chúng tôi lần lượt kết hợp với năm ion kim loại phổ biến gồm Cu²⁺, Zn²⁺, Ni²⁺, Cd²⁺, Ag⁺ để tạo ra với hai loại phức ML và ML₂.

2.5. DỰ BÁO HẰNG SỐ BỀN VÀ ĐÁNH GIÁ KHẢ NĂNG HÌNH THÀNH CỦA LIGAND VÀ PHỨC CHẤT MỚI

2.5.1. Dự báo hằng số bền của phức chất mới

Đối với các hợp chất mới sau khi thiết kế, tiến hành tính toán sàng lọc dữ liệu hoàn toàn giống như dữ liệu thu thập ban đầu từ thực nghiệm như đã trình bày ở Phần 2.3.1 và sơ đồ sàng lọc dữ liệu Hình 2.3. Việc dự đoán hằng số bền của các

phức chất mới qua các mô hình đã xây dựng được thực hiện bằng cách đưa dữ liệu bộ mô tả phân tử của các phức chất mới vào tập luyện và tiến hành đánh giá miền ứng dụng và các quan sát ngoại biên qua các chỉ số như đã trình bày ở phần 1.2.4.1. Các phức chất mới nằm trong miền ứng dụng sẽ được dự báo hằng số bền và các phức chất nằm trong miền quan sát ngoại biên sẽ bị loại bỏ mà không dự báo ở mô hình sử dụng dự báo. Tuy nhiên, do có nhiều mô hình được xây dựng trong đề tài nên các quan sát ngoại biên của mô hình này có thể nằm trong miền ứng dụng của các mô hình khác. Việc dự báo hằng số bền của các phức chất mới được sử dụng trên tất cả các mô hình trong cùng một tập dữ liệu luyện tùy thuộc vào tập dữ liệu đó được xây dựng các mô hình nào. Quá trình dự báo được thực hiện theo sơ đồ như Hình 2.11. Đồng thời, chúng cũng được đánh giá so sánh khả năng dự báo của các mô hình qua các chỉ số ARE (%), MARE (%) và phân tích phương sai.

Hình 2.11. Sơ đồ dự báo hằng số bền phức chất thiết kế mới

2.5.2. Phân tích cấu dạng của ligand và phức chất

2.5.2.1. Lựa chọn ligand và ion kim loại nghiên cứu

Việc lựa chọn các dẫn xuất thiosemicarbazone và ion kim loại là để tính toán tìm kiếm cấu dạng bền nhằm chuẩn bị cho giai đoạn thực nghiệm tổng hợp. Do đó, sự lựa chọn các hợp chất này chính là sự lựa chọn cho việc tổng hợp ligand và các phức chất, điều này dựa trên các lý do sau đây:

- Dẫn xuất thiosemicarbazone mới chưa được tổng hợp;
- Các ion kim loại phổ biến, thông dụng xuất hiện nhiều trong các công trình nghiên cứu tương đương và được sử dụng rộng rãi trong các lĩnh vực;
- Xây dựng được quy trình tổng hợp rõ ràng các công trình nghiên cứu;

- Có tính khả thi khi nghiên cứu trong điều kiện thực nghiệm cho phép;
- Các tiền chất tổng hợp có sẵn, dễ tìm kiếm và có giá thành không cao;
- Định hướng tính đa ứng dụng của thiosemicarbazone và phức chất.

Dựa trên khung cấu trúc trên Hình 2.9 của hai nhóm 10-phenothiazine và 9Hcarbazole, chúng tôi lựa chọn mỗi nhóm một đối tượng để thực hiện tổng hợp trong luận án này (Hình 2.11).

Hình 2.12. Hai dẫn xuất thiosemicarbazone lựa chọn phân tích cấu dạng bền

2.5.2.2. Phân tích tìm kiếm cấu dạng bền của ligand và phức chất

Hai ligand mới thiết kế sẽ được tổng hợp và tạo phức chất với một số ion kim lọai đó là -2-((7-bromo-10-ethyl-10H-phenothiazin-3-yl)methylene) hydrazine -1carbothioamide (BEPT)và -2- ((6-bromo-9-ethyl-9H-carbazol-3-yl) methylene) hydrazine-1-carbothioamide (BECT). Đồng thời, để định hướng cho nghiên cứu thực nghiệm trong việc tổng hợp các phức chất, hai ligand này được tạo phức với các ion kim loại gồm Cd²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Pb²⁺, Mn²⁺ và Zn²⁺ để tìm ra cấu dạng thích hợp với năng lượng phù hợp nhất của toàn bộ phân tử. Cấu trúc phức mà chúng tôi định hướng ở dạng ML₂.

Hình 2.13. Bộ khung phân tử; a) BEPT và BECT; b) Phức chất. Sự xoay liên kết và góc hai mặt phẳng trong quá trình tìm kiếm cấu dạng.

Việc tìm kiếm cấu dạng bền cho các ligand và phức chất này là để tìm ra cấu dạng thích hợp với năng lượng phù hợp nhất của toàn bộ phân tử. Cùng với việc xác định mức năng lượng tối thiểu toàn cục của các bề mặt thế năng (PES), điều quan trọng là xác định tất cả các cực tiểu sẽ tạo ra nhiệt và do đó sẽ ảnh hưởng đến các đặc điểm quan sát vĩ mô của hệ thống. Cấu trúc phân tử của ligand với sự xoay liên kết và góc hai mặt phẳng trong quá trình tìm kiếm cấu dạng được mô tả Hình 2.12.

Phương pháp tìm kiếm kết hợp các tính toán MM⁺ và PM3 với kỹ thuật Monte Carlo sử dụng giải thuật Metropolis ở 298 K đến 473 K. Cấu dạng lựa chọn ban đầu được thực hiện ngẫu nhiên sau 15 lần lặp lại và 30 lần loại bỏ. Cấu dạng được chọn bằng cách thay đổi góc xoắn trên hai mặt phẳng tại vị trí của cation kim loại liên kết với các phối tử N và S của thiosemicarbazone. Phương pháp tìm kiếm được thực hiện bằng cách thay đổi ngẫu nhiên các góc nhị diện để tạo cấu trúc mới và sau đó cực tiểu năng lượng cho từng góc này bằng phương pháp tính toán MM+ và PM3. Năng lượng phù hợp thấp nhất được tích lũy trong khi các cấu trúc năng lượng cao hoặc trùng lặp bị loại bỏ. Độ dài liên kết của ion kim loại và các ligand của phức chất đánh giá bởi thế năng bề mặt tương tác (PES).

Đối với các phức chất, vị trí uốn xoắn gồm của BEPT là t₁: C₁₂-N₅-Me₁-N₉, t₂: C₃-S₂-Me₁-S₆, t₃: N₉-N₈-C₇-S₆, t₄: N₅-N₄-N₄-S₂ và BECT là t₁: C₁₇-N₁₈-Me₁₉-N₄₁, t₂: C₂₁-S₂₀-Me₁₉-N₁₈, t₃: C₄₃-S₄₂-Me₁₉-N₄₁, t₄: N₁₈-Me₁₉-N₄₁-N₄₄ (Hình 2.12b) cho các ion kim loại được coi là phép quay xoắn cục bộ về liên kết vòng của các nguyên tử trong vòng. Việc tìm kiếm thông tin thực hiện cho đến khi một tập hợp tuân thủ năng lượng thấp được tạo ra sau một số vòng lặp. Đối với các phức chất này, liên kết vòng giữa ion kim loại và N, và giữa S và ion kim loại được xem xét nên sẽ có hai mảnh được khảo sát trong khung cấu trúc thiosemicarbazone. Tất cả các liên kết khác với N được quay theo một hướng về liên kết N-Me và tất cả các liên kết khác với ion kim loại được quay theo hướng ngược lại về liên kết S-Me. Đối với quá trình tìm kiếm cấu dạng, cả hai phép thử hình học và năng lượng được sử dụng làm tiêu chí trong việc chấp nhận sự phù hợp mới.

2.6. TỔNG HỢP LIGAND VÀ PHỨC CHẤT

2.6.1. Tổng hợp BEPT và BECT

Do định hướng nghiên cứu thực nghiệm ban đầu, quy trình tổng hợp của hai thiosemicarbazone BEPT và BECT là giống nhau (Hình 2.13 và Hình 2.14). Về

nguyên tắc, chúng được tổng hợp qua bốn giai đoạn gồm ethyl hóa, carbonyl hóa, brom hóa và cuối cùng phản ứng tạo thiosemicarbazone.

2-((7-bromo-10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazinecarbothioamide 7-bromo-10-ethyl-10H-phenothiazine-3-carbaldehyde (5) = BEPT

Hình 2.14. Sơ đồ tổng hợp BEPT

Hình 2.15. Sơ đồ tổng hợp BECT

2.6.2. Tổng hợp phức chất

Phản ứng tạo thành phức chất giữa ligand và các ion kim loại phụ thuộc vào nhiều yếu tố như trình bày trong Chương 1 lên quá trình tổng hợp phức chất giữa BEPT/BECT với các ion kim loại được khảo sát. Ảnh hưởng của các yếu tố như pH, lực ion (KNO₃ 1M), dung môi và nhiệt độ. Quá trình tổng hợp phức chất của ligand BEPT được thực hiện với hai ion kim loại là Ni²⁺ và Cd²⁺ như Hình 2.15.

Hình 2.16. Sơ đồ tổng hợp phức chất Ni(II)-BEPT và Cd(II)-BEPT

Quá trình tổng hợp phức giữa ligand BECT với Cu²⁺/Zn²⁺ như Hình 2.16.

Hình 2.17. Sơ đồ tổng hợp phức chất Cu(II)-BECT và Zn(II)-BECT

2.7. XÁC ĐỊNH HẰNG SỐ BỀN CỦA PHỨC CHẤT

2.7.1. Khảo sát công thức phức

Để xác định hằng số bền cần thiết phải khảo sát công thức phức chất. Hai phương pháp được sử dụng để xác định công thức phức trong dung dịch gồm phương pháp Job và tỷ lệ mol. Các phương pháp này dựa trên phép đo quang phổ UV-Vis. Tuy nhiên, để thực hiện được công việc này cần tiến hành đánh giá khả năng tạo phức của các ligand và các ion kim loại. Đồng thời, cần xác định các điều kiện tối ưu khi tạo phức chất. Quá trình thực hiện được tiến hành theo sơ đồ trên Hình 2.19.

2.7.2. Xác định hằng số bền

Để xác định hằng số bền của phức chất, có thể tạo ra một ma trận dữ liệu phổ UV-Vis ba chiều dưới định dạng "mdf". Chỉ số mỗi chiều có thể là pH, nhiệt độ, nồng độ, bước sóng, thời gian... và chiều nào ứng với chỉ số nào là không quan trọng. Trong nghiên cứu này, ma trận dữ liệu đầu vào được trình bày trên Bảng 2.4.

Chiều	Tham số
1	Bước sóng λ
2	Giá trị pH
3	Thay đổi nồng độ ion kim loại và cố định nồng độ ligand hoặc ngược lại.

Bảng 2.4. Dữ liệu đầu vào của hệ phổ UV-Vis

Hằng số bền của phức được xác định từ kết quả đo hệ phổ UV-Vis thực hiện trên phần mềm Datan 3.1 [37].

Hình 2.18. Sơ đồ khảo sát xác định công thức và hằng số bền của phức

CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN

3.1. XÂY DỰNG MÔ HÌNH QSPR

3.1.1. Tính toán sàng lọc dữ liệu

3.1.1.1. Dữ liệu thực nghiệm ban đầu

Lựa chọn dữ liệu thực nghiệm là bước đầu tiên trong nghiên cứu QSPR. Trong luận án này, chúng tôi đã thu thập, xử lý sàng lọc sơ bộ hai loại phức ML và ML₂ sử dụng trong nghiên cứu. Kết quả đạt được như sau:

- Ligand: 54 dẫn xuất thiosemicarbazone (Bảng p4.1; Phụ lục 4);
- Nhóm phức ML: 292 giá trị hằng số bền logβ₁₁ của phức ML ở các điều kiện thực nghiệm khác nhau: nhiệt độ, pH, lực ion (Bảng p4.2; Phụ lục 4).
- Nhóm phức ML₂: 135 giá trị hằng số bền logβ₁₂ của phức ML₂ ở các điều kiện thực nghiệm khác nhau: nhiệt độ, pH, lực ion (Bảng p4.3; Phụ lục 4).

3.1.1.2. Tối ưu hóa cấu trúc

Tối ưu hóa cơ học phân tử sử dụng trường lực MM+ dành cho các hợp chất có nguồn gốc hữu cơ được tính toán trong Hyperchem 8.0.6 [143]. Đầu tiên, chọn phân tử có cấu trúc cồng kềnh nhất để tối ưu hóa bằng cơ học phân tử và lựa chọn giải thuật phù hợp. Hai phức ML và ML₂ được lựa chọn để tính toán như Hình 3.1 sau:

Hình 3.1. Lựa chọn phức với ligand tương ứng để tìm giải thuật

Kết quả tính toán phức ML và ML₂ trong Bảng 3.1 và 3.2 cho thấy sự phụ thuộc năng lượng phân tử theo thuật toán. Tất cả các thuật toán đều cho năng lượng thấp nhất và ổn định ở mức gradient 0,05. Tuy nhiên, giải thuật Polak-Ribiere cho thời gian tính toán nhanh hơn. Điều này phù hợp với một số công trình nghiên cứu [90], [149]. Tuy nhiên, kết quả các công trình này chọn mức gradient 0,01; điều

này không cần thiết vì không có sự khác biệt đáng kể nào giữa hai mức gradient này nhưng thời gian tính toán chênh lệch đáng kể và không tốt cho việc tính toán trên nhiều hợp chất. Lựa chọn giá trị năng lượng để xác định mức gradient đủ cần thiết ở các giải thuật nhằm tìm ra giải thuật phù hợp nhất cho quá trình tối ưu hóa theo phương pháp MM. Như vậy, chúng tôi sử dụng thuật toán Polak-Ribiere với mức gradient 0,05 để tính toán cho toàn bộ các phân tử còn lại kể cả các phân tử thiết kế mới.

Giải thuật	Gradient/Năng lượng (kcal/mol)						
	10	5,0	1,0	0,5	0,1	0,05	0,01
Steepest Descent	219,025	218,161	195,714	191,926	189,655	188,879	188,237
Fleetcher - Reesves	223,606	198,022	190,731	188,256	188,237	188,235	188,234
Polak - Ribiere	223,626	197,995	190,703	188,272	188,240	188,235	188,234
Block-diagonal Newton-Raphson	224,352	208,999	190,865	189,237	188,325	188,262	188,235

Bảng 3.1. Kết quả tính toán tìm kiếm giải thuật cho phức ML

Bảng 3.2. Kết quả tính toán tìm kiếm giải thuật cho phức ML₂

Giải thuật	Gradient/Năng lượng (kcal/mol)						
	10	5,0	1,0	0,5	0,1	0,05	0,01
Steepest Descent	226,823	204,191	141,881	122,917	108,130	86,064	83,813
Fleetcher - Reesves	182,139	154,476	92,419	90,598	83,961	83,793	83,745
Polak - Ribiere	217,767	166,378	93,867	87,910	83,884	83,878	83,833
Block-diagonal Newton-Raphson	178,916	171,291	92,124	87,707	84,434	83,255	83,215

Sau khi tối ưu hóa bằng cơ học phân tử, cấu trúc phức ML và ML₂ tiếp tục được tối ưu hóa bằng cơ học lượng tử theo phương pháp PM7 và PM7/sparkle sử dụng MOPAC2016. Kết quả của phép tính xuất ra ba tập tin dữ liệu (*.arc, *.aux, *.out).

Các tham số lượng tử như điện tích của các nguyên tử trong khung cấu trúc của thiosemicarbazone (^{1}N , ^{2}C , ^{3}N , ^{4}N , ^{5}C , ^{6}S , ^{7}Me , $^{1'}N$, $^{2'}C$, $^{3'}N$, $^{4'}N$, $^{5'}C$, $^{6'}S$), nhiệt tạo thành ΔH_{f} (kcal/mol), năng lượng tổng (eV), năng lượng electron, (eV), năng lượng tương tác core-core (eV), moment lưỡng cực (Debye), năng lượng ion hóa

(eV), khối lượng phân tử, diện tích Cosmo (Å)², thể tích Cosmo (Å)³, HOMO (eV), LUMO (eV) sẽ được lấy từ các tập tin dữ liệu này. Thông tin cấu trúc nằm trong đoạn dữ liệu tập tin *.arc, do đó cần chép đoạn mã này và xem cấu trúc thực của chúng qua các công cụ Hyperchem 8.0.8 và Avogadro V1.2.0. Một số cấu trúc sau khi tối ưu hóa cơ học phân tử sẽ bị loại bỏ vì cấu trúc bị thay đổi so với ban đầu (Hình 3.2) [78], [133].

Hình 3.2. Một vài cấu trúc trước và sau khi tối ưu hóa bị loại bỏ (a) Cấu trúc trước khi tối ưu hóa; (b) Cấu trúc sau khi tối ưu hóa

Sau đó, tạo tập tin cấu trúc để qua bước tiếp theo, đó là tính toán tham số mô tả phân tử trên hệ thống QSARIS V1.1.

3.1.1.3. Sàng lọc dữ liệu

Sau khi tính toán bộ mô tả cấu trúc phân tử, một số mô tả từ kết quả này sẽ bị loại bỏ do kết quả giống nhau. Sau đó, kết hợp với các tham số lượng tử từ tính toán cơ học lượng tử và tham số thực nghiệm thu thập được, kết quả thu được một bộ dữ liệu đầy đủ các bộ mô tả tương ứng với các giá trị hằng số bền của các phức chất.

Sử dụng hai giải thuật k-means và AHC để phân chia các nhóm dữ liệu, kết quả thu được 9 nhóm dữ liệu phức ML và 2 nhóm dữ liệu phức ML₂ (Bảng 3.3).

Nhóm phức	Dữ liệu ban đầu	Số nhóm	Phụ lục
ML	292 giá trị logβ11	9 nhóm	5
ML ₂	135 giá trị logβ ₁₂	2 nhóm	6

Bảng 3.3. Kết quả phân chia dữ liệu nghiên cứu

3.1.2. Mô hình QSPR và đánh giá mô hình

3.1.2.1. Mô hình QSPR của phức chất ML

a. Mô hình QSPR nhóm dữ liệu 1

Trong nghiên cứu này, ba mô hình đã được xây dựng bằng các phương pháp MLR, SVR và ANN có kết hợp giải thuật di truyền (GA) bao gồm QSPR_{GA-MLR}, QSPR_{GA-SVR} và QSPR_{GA-ANN}.

Mô hình này sử dụng tất cả tập dữ liệu của 108 phức ML thu thập được qua các công trình nghiên cứu đã được công bố sau khi đã tính toán sàng lọc dữ liệu như mô tả ở phần 2.3.1 và theo sơ đồ Hình 2.3. Để sàng lọc dữ liệu, chúng tôi sử dụng kiểm định Grubb để loại bỏ các giá trị ngoại biên và đánh giá sự phân bố của các dữ liệu. Kết quả cho thấy rằng giá trị thống kê kiểm định Grubb là 2,5931, giá trị giới hạn là 3,3807 ở mức độ tin cậy 95% và không có giá trị ngoại biên đáng kể. Như vậy, các phức được giữ lại là thỏa đáng cho phép thử Grubb và phân phối chuẩn (Hình 3.3).

Hình 3.3. a) Sự phân bố của tập dữ liệu b) Kiểm định Grubb sử dụng để kiểm tra các điểm ngoại lệ của các phức ở mức tin cậy 95%.

Tập dữ liệu chia thành tập luyện gồm 44 phức, tập đánh giá 26 phức và tập kiểm tra bổ sung gồm 30 phức. Sử dụng phương pháp phân cụm k-means để phân vùng ngẫu nhiên trong không gian mô tả. Ngoài ra, nhóm cuối cùng gồm 8 phức chất được chọn để kiểm tra dự đoán với các phức chất thiết kế mới (Bảng p5.1; Phụ lục 5).

Trong nhiều nghiên cứu hiện tại liên quan đến việc xây dựng các mô hình QSPR, một trong những khó khăn lớn nhất là bộ mô tả được chọn có đóng góp đáng kể cho các hằng số bền. Trong nghiên cứu này, chúng tôi đã kết hợp sử dụng giải thuật di truyền (GA) với các kỹ thuật hồi quy đa biến để lựa chọn biến cho mô hình. Giải thuật GA được ưu tiên chọn các bộ mô tả đóng góp quan trọng nhất để giảm đáng kể số lượng bộ mô tả trong tất cả 230 bộ mô tả đặc trưng cho phân tử được sử dụng nghiên cứu trong luận án và tích hợp trong công cụ QSARIS 1.1. Các mô tả phân tử có ý nghĩa quan trọng nhất được chọn để xây dựng các mô hình QSPR.

Các mô hình QSPR_{GA-MLR} được xây dựng bằng cách thay đổi số lượng mô tả *k*. Với việc xóa các mô tả với hệ số Pearson trên 0,75, chúng tôi giữ lại 10 mô tả quan trọng nhất. Do đó, các mô tả được giảm hơn 95,6% của toàn bộ mô tả trong bước lựa chọn. Tuy nhiên, ở bước cuối cùng, với kỹ thuật hồi quy tuyến tính đa biến được sử dụng để loại bỏ các mô tả tiếp theo có ảnh hưởng không đáng kể đến khả năng dự đoán của mô hình QSPR. Vì vậy, mô hình QSPR_{GA-MLR} với 7 biến là phù hợp nhất (Bảng 3.4) để phát triển các mô hình QSPR khác nhau.

k	Biến mô tả	R ²	R^{2} adj	MSE	Q^2
1	Surface	0,2613	0,2392	9,6691	0,1434
2	LogP/Surface	0,4453	0,4126	5,6754	0,2607
3	LogP/Ovality/Surface	0,4092	0,3534	6,7765	0,2295
4	LogP/SaasC/Ovality/Surface	0,5676	0,5125	6,3662	0,4616
5	LogP/SaasC/Ovality/Surface/nelem	0,7157	0,6677	3,9873	0,5883
6	xp5/SaasC/ABSQ/Ovality/Surface/nrings	0,7188	0,6597	3,690`	0,6293
7	xp3/xp5/SaasC/Ovality/Surface/nelem/nrings	0,9145	0,8932	1,2899	0,8652
8	xp3/xp5/SaasC/ABSQ/Ovality/Surface/nelem/nrings	0,9065	0,878	1,3013	0,8373
9	xp3/xp5/xvch8/SaasC/ABSQ/Ovality/Surface/nelem/nrings	0,9494	0,931	0,8702	0,8994
10	LogP/xp3/xp5/xvch8/SaasC/ABSQ/Ovality/Surface/nelem/nrings	0,9583	0,941	0,6714	0,8922

Bảng 3.4. Các tham số thống kê và mô tả của mô hình QSPR_{GA-MLR}

Dựa trên kết quả trong Bảng 3.4, các mô hình QSPR_{GA-MLR} được giám sát khả năng phù hợp với đánh giá chéo khi số lượng mô tả *k* thay đổi từ 1 đến 10 với các giá trị thống kê R^2 , R^2_{adj} và Q^2 tăng dần và giá trị *MSE* giảm dần.Trên cơ sở đó, mô hình quan trọng nhất là mô hình với 7 mô tả gồm *xp3*, *xp5*, *SaasC*, *Ovality*, *Surface*, *nelem* và *nrings*. Mô hình QSPR_{GA-MLR} có dạng:

$$\begin{split} \log \beta_{11} &= 46,433 + 5,321 \times xp3 - 9,971 \times xp5 + 2,963 \times SaasC - 32,075 \times Ovality + \\ &+ 0,0707 \times Surface - 4,4522 \times nelem + +7,2474 \times nrings \quad (3.1) \\ R^2 &= 0,9145; \ R^2_{\rm adj} = 0,8932; \ Q^2_{\rm LOO} = 0,8650; \ MSE = 1,2899 \end{split}$$

Do các giá trị *P-value* nhỏ hơn mức đáng kể 0,05 (cao nhất trên các mô tả là 0,0000) nên các giá trị này giải thích mối quan hệ có ý nghĩa thống kê của các mô tả và do đó không loại bỏ bất kỳ mô tả nào khỏi mô hình QSPR_{GA-MLR}. Giá trị $R^2 = 0,9145$ chỉ ra rằng mô hình (3.1) với k = 7 giải thích 91,45% biến cho giá trị log β_{11} ; $R^2_{adj} = 0,8932$, phù hợp hơn để so sánh các mô hình với số lượng dự đoán khác

nhau, là 89,32% và MSE = 1,2899. Các giá trị thống kê của bảy mô tả được sàng lọc thể hiện độ tin cậy đáng kể ở mức 95%.

Bên cạnh đó, các giá trị phần trăm trung bình đóng góp ($APC_{m,n,xi}$,%) của 10 mô tả được chọn do tập huấn sử dụng mô hình QSPR_{GA-MLR} với k = 10 được sắp xếp giảm dần (từ 33,51% đến 0,96%) theo tỷ lệ đóng góp như xp5 > Ovality > xp3 > nrings > surface > nelem > SaasC > ABSQ > logP > xvch8 như trong Hình 3.4.

Hình 3.4. Mức đóng góp mô hình $QSPR_{GA-MLR}$ với k = 10 và 44 tổ hợp huấn luyện.

Như vậy phần đóng góp của ABSQ (2,38%), xvch8 (1,55%) và logP (0,25%) thể hiện sự đóng góp không đáng kể $log\beta_{11}$, vì vậy những đại lượng này không được ru tiên cho mô hình QSPR_{GA-MLR} (3.1). Thông tin này rất hữu ích để sử dụng dự đoán thiết kế phức chất mới. Các mô tả xp5, Ovality, xp3 và nrings được sử dụng cho thiết kế thuốc thử mới do chúng thể hiện sự đóng góp đáng kể nhất vào hằng số bền $log\beta_{11}$.

Các bộ mô tả 2D như *xp5, xp3* và *nrings*, và bộ mô tả 3D *Ovality* là các bộ mô tả quan trọng nhất, vì vậy chúng tôi nhận thấy rằng các hằng số bền $\log\beta_{11}$ của các phức phụ thuộc chủ yếu vào chỉ số chi đơn giản thứ 5 và thứ 3 trong phân tử được tính bởi công thức R = 1p - (nvx - 1) và số lượng vòng trong như mô tả 3D được tính bởi công thức *Surface*/4 π R². Chúng tôi có thể dựa vào các mô tả này để thu thập các phối tử thích hợp hoặc thiết kế các phối tử mới để tạo ra các phức ổn định hơn với các ion kim loại. Vì vậy, chúng tôi định hướng sự phát triển của các phối tử mối theo hướng đóng góp lớn nhất của các mô tả *xp5, xp3, nrings* và *ovality*. Mối quan hệ giữa hằng số bền $\log\beta_{11}$ so với các phức ML và *APC*_{m,n,xi},% của các mô tả *xp5, xp3, nrings* và *Ovality*, như được mô tả trong Hình 3.5.

Hình 3.5. Mối quan hệ giữa các hằng số bền $log\beta_{11}$ phức ML và đóng góp $APC_{m,n,xi}$, % của các mô tả: a) xp5; b) xp3; c) nrings và d) ovality

Chúng tôi cũng nhận thấy rằng hầu hết các phức Fe(III)L, Cu(II)L, Ni(II)L, Ag(I)L và Co(II)L có hằng số bền lớn. Do đó, có thể sử dụng các đặc điểm này để phát triển cấu trúc thiosemicarbazone mới để tạo ra các phức ổn định hơn. Trên cơ sở đó, chúng cũng có thể được sử dụng để xác định các ion kim loại Ni²⁺, Cu²⁺, Fe³⁺, Ag⁺ và Co²⁺ trong các mẫu môi trường bằng phương pháp quang phổ UV-Vis.

Hình 3.6. Sơ đồ đường viền để tìm kiếm các tham số 5 cấp Gamma, và capacity, C;
a) Vùng tối ưu của các giá trị RMSE_{CV}; b) Vùng tối ưu của các giá trị R².

Trên kết quả của mô hình QSPR_{GA-MLR} (3.1), phương pháp hồi quy SVR cũng được sử dụng để tạo ra mô hình có khả năng dự đoán cao hơn. Các dự đoán *xp5*, *Ovality, xp3, nrings, Surface, nelem* và *SaasC* được sử dụng làm biến đầu vào trong xây dựng mô hình QSPR_{GA-SVR}. Do dữ liệu phi tuyến nên chúng tôi đã khảo sát mô hình với hàm cơ sở xuyên tâm (RBF). Các giá trị Capacity (*C*), Gamma (γ), epsilon (ε) được tìm kiếm theo phương pháp tìm kiếm lưới. Một bề mặt sai số được tối ưu hóa bằng kỹ thuật nhiều lớp sử dụng các giải thuật di truyền. Vùng cực tiểu của các giá trị căn bậc hai sai số (*RMSE*_{CV}) và vùng cực đại của các giá trị *R*² được kéo dài bởi các tham số ở 5 mức Capacity (*C*) và Gamma (γ) (Hình 3.6).

Hình 3.7. Mối tương quan giữa các hằng số bền logβ₁₁ thực nghiệm và tính toán của các phức trên tập dữ liệu luyện và đánh giá; a) QSPR_{GA-MLR}; b) QSPR_{GA-SVR}; c) QSPR_{GA-ANN}; d) Giá trị MSE cho các phức từ các mô hình QSPR

Các tham số tối ưu đạt được C = 1,0; $\gamma = 1,0$ và $\varepsilon = 0,1$ với số lượng véc tơ hỗ trợ bằng 27 được chọn trong vùng tối ưu. Các giá trị này mang trọng số tương đối quan trọng của sai số hồi quy với $R^2 = 0,9269$ và $RMSE_{CV} = 2,0942$. Vùng tối ưu xác định các tham số quan trọng nhất (Hình 3.6), giá trị $Q^2 = 0,6414$ (> 0,6). Vì

vậy, mô hình QSPR_{GA-SVR} này có thể dự đoán tốt. Giá trị log β_{11} của các phức được đánh giá ngoại và đánh giá bổ sung trên hai tập dữ liệu này có thể được sử dụng ước lượng mô hình QSPR_{GA-SVR} (Bảng p5.1; Phụ lục 5). Mối tương quan của các kết quả tính toán thu được từ mô hình QSPR_{GA-SVR} so với các kết quả từ dữ liệu thực nghiệm thể hiện trong các giá trị R^2 (Hình 3.7). Các hằng số bền tính toán trong phép đo thử nghiệm với độ tin cậy 95%. Sự khác biệt giữa các hằng số bền thực nghiệm và tính toán của các phức là chấp nhận được.

Để tiếp tục phát triển mô hình QSPR có thể dự đoán tốt hằng số bền log β_{11} của các phức chất, mô hình mạng thần kinh QSPR_{GA-ANN} I(*k*)-HL(*m*)-O(1) được sử dụng với các noron của lớp đầu vào là *xp3*, *xp5*, *SaasC*, *Ovality*, *surface*, *nelem và nrings*. Đây là các mô tả từ mô hình QSPR_{GA-MLR} (1). Các noron lớp ẩn được coi là thay đổi từ 3 đến 5 theo quy tắc $0.5 \times (k-1) \le m \le 0.5 \times (k+1)$. Noron đầu ra là hằng số bền log β_{11} . Mỗi noron trên bất kỳ lớp nào được kết nối đầy đủ với các noron của lớp tiếp theo. Dữ liệu đầu vào và đầu ra của mạng ANN được chuẩn hóa từ 0 đến 1. Tốc độ học được đặt từ 1 và giảm trong quá trình luyện. Mô hình QSPR_{GA-ANN} được chọn với kiến trúc mạng I(7)-HL(5)-O(1) là phù hợp.

QSPR	Tập dữ liệu	R	R ²	Q^2	MSE	MARE, %
	Luyện	0,9565	0,9148	0,8650	1,2898	10,7076
	Đánh giá	0,8466		0,7168	2,4906	19,0119
QSPKGA-MLR	Kiểm tra	0,8921		0,7958	4,4894	13,7829
	Dự đoán	0,3556		0,1264	28,2505	63,1614
	Luyện	0,9628	0,9269	0,6414	0,9559	11,4975
OCDD	Đánh giá	0,9572		0,9162	0,7730	11,7517
QSPK _{GA-SVR}	Kiểm tra	0,9853		0,9708	1,0357	8,4924
	Dự đoán	0,9873		0,9747	0,7547	11,0850
	Luyện	0,9907	0,9815	0,9317	0,2209	4,9796
OGDD	Đánh giá	0,9833		0,9669	0,2742	5,9019
USPKGA-ANN	Kiểm tra	0,9884		0,9769	0,5520	4,3756
	Dự đoán			0,9819	0,1468	3,5159

Bảng 3.5. Các giá trị thống kê của các mô hình QSPR

Mối tương quan giữa các hằng số bền thực nghiệm và dự báo do các mô hình thể hiện khả năng dự đoán của các mô hình QSPR với thống kê cao R^2 và Q^2 (Hình 3.7). Kết quả tính toán phù hợp tốt với dữ liệu thực nghiệm, mặc dù, các phức trong

tập đánh giá ngoại không được sử dụng cho quá trình xây dựng mô hình QSPR này. Ba mô hình QSPR được xây dựng thể hiện khả năng dự đoán với các sai số *MSE* và *MARE* (%) không đáng kể. Do đó, các mô hình QSPR này cho thấy khả năng ứng dụng để dự đoán các hằng số bền log β_{11} . Mô hình QSPR_{GA-ANN} có khả năng dự đoán tốt nhất. Ngược lại, mô hình QSPR_{GA-MLR} thể hiện khả năng dự đoán kém nhất với các giá trị sai số lớn nhất. Sự khác biệt này được giải thích qua các giá trị ở Bảng 3.5 bằng cách so sánh giữa các mô hình QSPR.

b. Mô hình QSPR nhóm dữ liệu 2

Trong nghiên cứu này, hai mô hình QSPR đã được xây dựng dựa trên phương pháp OLR (một cách dùng từ khác của phương pháp MLR) và ANN.

Tập luyện gồm 69 phức chất nhận được từ sự phân chia dữ liệu qua hai phương pháp k-means và AHC từ tập dữ liệu lớn ban đầu thu thập được từ thực nghiệm và tập dữ liệu ngoại độc lập gồm 9 phức chất được sử dụng để đánh giá ngoại (Bảng p5.2a và p5.2b; Phụ lục 5). Kết quả mô hình và các giá trị thống kê được trình bày trong Bảng 3.6. Trong các mô hình được khảo sát, mô hình QSPR_{OLR} với k = 6 có giá trị Q^2_{LOO} tốt nhất mặc dù thay đổi khi k tăng. Do đó, mô hình QSPR_{OLR} này là kết hợp tốt nhất trong tất cả các mô hình.

Chất lượng của mô hình QSPR_{OLR} nhận $R^2_{\text{train}} = 0,8982$; SE = 1,1368; $F_{\text{stat}} = 91,3448$ và $Q^2_{\text{LOO}} = 0,8462$ (Bảng 3.6). Phương trình hồi quy tuyến tính QSPR_{OLR}:

$$log\beta_{11} = 66,01 - 5,861 \times x_1 + 0,00137 \times x_2 + 7,246 \times x_3 - - 39,35 \times x_4 - 1,745 \times x_5 + 2,07 \times x_6$$
(3.2)

Sử dụng đại lượng tỷ lệ phần trăm đóng góp trung bình ($MPx_{k,i}$) và giá trị trung bình của $MPx_{k,i}$ ($GMPx_i$) của từng biến độc lập trong các mô hình QSPR được chọn để đánh giá sự đóng góp của các biến. Sự đóng góp quan trọng của các mô tả phân tử trong mỗi phức được sắp xếp theo thứ tự: kO > xp5 > core-core repulsion > xch5 > valence > SHHBd.

Kết quả cho thấy tham số k0 (x_1 , giá trị $GMPx_1 = 55,5680$) ảnh hưởng lớn nhất đến hằng số bền. Tham số k0 được gọi là chỉ số Kappa zero, tức là chỉ số thông tin Shannon dựa trên các lớp nguyên tử. Tiếp theo, tham số xp5 được gọi là chỉ số Chi thứ 5 đơn giản (x_3 , với giá trị $GMPx_3 = 14,6137$). Tham số cuối cùng ảnh hưởng mạnh đến hằng số bền là *core-core repulsion* (x_2 , với giá trị $GMPx_2 = 10,7750$).

Như vậy, tập dữ liệu luyện là tốt và việc áp dụng mô hình QSPR_{OLR} rất có ý nghĩa thống kê. Kỹ thuật đánh giá chéo cho thấy mô hình QSPR_{OLR} có thể được sử
dụng để dự đoán các giá trị log β_{11} . Các giá trị thống kê đã được sử dụng để kiểm tra ý nghĩa của các hệ số trong các mô hình QSPR_{OLR} (Bảng 3.6).

k	Biến mô	tả	SE	R^{2}_{train}	R^{2}_{adj}	$Q^{2}L$	00	F _{stat}
2	x_1/x_2		2,1363	0,6175	0,6061	061 0,55		53,2341
3	$x_1/x_2/x_3$	3	1,6494	0,7754	0,7654	0,70)57	74,7898
4	$x_1/x_2/x_3/2$	x_4	1,5047	0,8167	0,8063	0,75	553	71,0125
5	$x_1/x_2/x_3/x_4$	$\sqrt{x_5}$	1,3472	0,8558	0,8432	0,79	99	74,1738
6	$x_1/x_2/x_3/x_4/$	x5/x6	1,1368	0,8982	0,8894	0,84	62	91,3484
7	$x_1/x_2/x_3/x_4/x_5$	x_{6}/x_{7}	1,0247	0,9195	0,9096	0,78	864	98,4622
8	$x_1/x_2/x_3/x_4/x_5/2$	$x_6/x_7/x_8$	0,9256	0,9353	0,9269	0,8293		107,3739
9	$x_1/x_2/x_3/x_4/x_5/x_6$	$\sqrt{x_7/x_8/x_9}$	0,8715	0,9433	0,9347	0,8502		108,6592
10	$x_1/x_2/x_3/x_4/x_5/x_6/x_6/x_6/x_6/x_6/x_6/x_6/x_6/x_6/x_6$	$x_7/x_8/x_9/x_{10}$	0,8021	0,9532	0,9445	0,86	522	116,5881
		K	Ký hiệu biế	ến mô tả				
k0		÷	x_1	SHHB	d			<i>x</i> ₆
core	core-core repulsion		x ₂ xp4					<i>X</i> 7
xp5		x ₃ HOMO		MO			<i>X</i> 8	
xch5 x		X4	LUMO)			<i>X</i> 9	
vale	ence		x5	xvc3	xvc3		<i>X</i> 10	

Bång 3.6. Mô hình QSPR_{OLR} (k từ 2 đến 10) và các giá trị thống kê

Ngoài mô hình QSPR_{OLR}, mô hình QSPR_{ANN} cũng được phát triển với kỹ thuật mạng thần kinh dựa trên các mô tả phân tử của mô hình QSPR_{OLR}. Kiến trúc của mạng nơron được tìm thấy gồm ba lớp là I(6)-HL(6)-O(1); lớp đầu vào I(6) bao gồm 6 nơron *k0, core-core repulsion, xp5, xch5, valence* và *SHHBd*; lớp đầu ra O(1) bao gồm 1 nơron log β_{11} ; lớp ẩn gồm 6 nơron. Giải thuật lan truyền ngược được sử dụng để luyện mạng. Hàm truyền hyperbolic sigmoid tangent được đặt trên mỗi nút của các lớp; các tham số mạng luyện bao gồm tốc độ học ,01; quán tính luyện 0,1 và tổng sai số 0,000016 với 1.000.000 vòng. Kết quả được đưa ra trong Bảng 3.7.

Tập dữ liệu	Hệ số hồi quy	Độ dốc	Giá trị chặn
Tập luyện	0,9768	0,9770	0,0025
Đánh giá	0,8687	1,4432	-0,1397

Bång 3.7. Kết quả luyện mạng QSPRANN I (6)-HL(6)-O(1)

Dựa trên kết quả nhận được (Bảng p5.2b; Phụ lục 5), mô hình QSPR_{ANN} I(6)-HL(6)-O(1) phù hợp và tương quan tốt hơn giữa các giá trị dự đoán và giá trị thực nghiệm so với mô hình QSPR_{OLR} với Q^2 lần lượt là 0,8734 và 0,7440.

Khả năng dự đoán của mô hình QSPR_{OLR} và QSPR_{ANN} đã được đánh giá ngoại cẩn thận bằng kỹ thuật loại bỏ dần từng trường hợp. Các kết quả dự đoán nhận được 9 chất với các giá trị thực nghiệm tương ứng trong bảng p5.2b; phụ lục 5.

Sử dụng phương pháp ANOVA một yếu tố để đánh giá hai mô hình, kết quả cũng cho thấy rằng không có sự khác biệt giữa các giá trị $\log\beta_{11}$ thực nghiệm và dự đoán từ hai mô hình ($F = 0,1728 < F_{0,05} = 3,4028$). Do đó, khả năng dự đoán của cả hai mô hình QSPR phù hợp tốt với dữ liệu thử nghiệm. Giá trị *MARE* (%) của hai mô hình QSPR_{OLR} và QSPR_{ANN} lần lượt là 30,29% và 23,42% cho thấy khả năng dự đoán của QSPR_{ANN} cao hơn mô hình QSPR_{OLR} và kết quả $\log\beta_{11}$ từ mô hình QSPR_{ANN} gần hơn với các giá trị thực nghiệm.

c. Mô hình QSPR nhóm dữ liệu 3

Trong mô hình này, các phương pháp sử dụng để xây dựng mô hình như MLR, PCR và PLSR. Quá trình xây dựng và đánh giá các mô hình QSPR từ tập dữ liệu mẫu gồm 62 quan sát và nhóm đánh giá ngoại gồm 10 hợp chất không thuộc nhóm luyện (bảng p5.3a và p5.3b; phụ lục 5). Các biến số độc lập được chọn đưa vào mô hình dựa vào hệ số tương quan nội và sự thay đổi của các giá trị thống kê MSE, R^2_{train} , R^2_{CV} , F_{stat} khi sử dụng kỹ thuật LOO hoặc nhập dần biến số vào mô hình. Kết quả được dẫn ra ở Bảng 3.8.

Các biến số chọn lựa đưa vào các mô hình QSPR_{MLR} (Bảng 3.8) đã cho thấy các giá trị R^2_{train} , Q^2_{test} và F_{stat} thay đổi và tăng theo số biến k. Khi các giá k tăng từ 9 đến 11 thì các giá trị thống kê tương ứng tăng thêm không đáng kể và còn có xu hướng giảm xuống như giá trị F_{stat} . Như vậy, chọn số biến k = 9 là phù hợp cho xu hướng thay đổi tối ưu này. Các biến số từ x_1 đến x_9 được kiểm tra mối tương quan nội giữa hai hay nhiều biến dựa vào ma trận hệ số tương quan Pearson, xác định mối tương quan có ý nghĩa đối với log β_{11} . Ma trận tương quan đã được tính toán và dựa trên kết quả hệ số tương quan của các biến độc lập và phụ thuộc cho thấy các biến được chọn vào mô hình QSPR_{MLR} với k = 9 là phù hợp và chấp nhận về mặt thống kê tương quan và kiểm định student (*t*-test) đặc trưng cho các biến số.

Số biến <i>k</i>	Biến số	trong mô hình QS	PR _{MLR}	MS.	E	$R^{2}t$	rain	R ² adj	R^2_{CV}	F stat
4		$x_1/x_2/x_3/x_4$			03	0,6	392	0,6136	0,5573	25,1928
5		$x_1/x_2/x_3/x_4/x_5$		1,54	92	0,6	727	0,6423	0,5522	22,8981
6		$x_1/x_2/x_3/x_4/x_5/x_6$		1,34	11	0,7	583	0,7328	0,6367	28,7568
7		$x_1/x_2/x_3/x_4/x_5/x_6/x_7$		1,19	67	0,8	114	0,7873	0,6963	33,1253
8	x	$x_1/x_2/x_3/x_4/x_5/x_6/x_7/x_8$		1,14	74	0,8	293	0,8044	0,7152	32,2235
9	$x_{1}/.$	$x_2/x_3/x_4/x_5/x_6/x_7/x_8/$	X 9	0,85	25	0,9	087	0,8922	0,8504	56,8949
10	x_1/x_2	./x3/x4/x5/x6/x7/x8/x9	$/x_{10}$	0,83	68	0,9	133	0,8963	0,8553	53,4399
11	$x_1/x_2/x_1$:3/x4/x5/x6/x7/x8/x9/x	x_{10}/x_{11}	0,83	93	0,9	146	0,8958	0,8531	48,2420
		-	Ký hiệu cá	c biến	số					
Năng lượng	; tổng	x_1	logP	logP		x ₅ Năng		g lượng electron		<i>X</i> 9
Knotp		<i>x</i> ₂	Điện tích Me ⁷		x	x ₆ Diệr		iện tích Cosmo		<i>x</i> ₁₀
Thể tích Cosmo		<i>x</i> ₃	ΔH_f	ΔH_f		x7 Thế		ế ion hóa		<i>x</i> ₁₁
pH		<i>x</i> 4	LUMO		x	8				

Bảng 3.8. Các mô hình $QSPR_{MLR}$ ($k = 4 \div 11$) và các giá trị thống kê

Mô hình QSPR_{MLR} với số biến k = 9 được xây dựng lại và nhận được các hệ số tương ứng cùng các giá trị thống kê mô hình QSPR_{MLR} như sau:

$$log\beta_{11} = 8,402 + 0,0195 \times x_1 + 13,690 \times x_2 - 0,066 \times x_3 + 0,885 \times x_4 + 3,871 \times x_5 - 3,184 \times x_6 - 0,050 \times x_7 + 2,961 \times x_8 - 0,005 \times x_9$$
(3.3)
$$n = 62; R^2_{\text{train}} = 0,9087; R^2_{\text{CV}} = 0,8504; MSE = 0,8525$$

Như vậy, tập dữ liệu dùng để xây dựng mô hình QSPR_{MLR} đạt yêu cầu về thống kê và có khả năng dự đoán tốt. Các tham số lựa chọn trong mô hình không có sự tương quan nào giữa các biến đã chọn. Dữ liệu xây dựng mô hình này sẽ được sử dụng để xây dựng các mô hình QSPR_{PCR} và QSPR_{PLS}.

Sử dụng ma trận dữ liệu với số biến độc lập k = 9 và biến phụ thuộc log β_{11} , thực hiện xây dựng mô hình QSPR_{PCR}. Kết quả phân tích PCA cho thấy 9 thành phần chính có ý nghĩa thống kê. Mô hình QSPR_{PCR} được biểu diễn như phương trình (3.4):

$$log\beta_{11} = 6,209 + 0,0214 \times x_1 + 13,513 \times x_2 - 0,065 \times x_3 + 0,786 \times x_4 + 3,867 \times x_5 - -3,100 \times x_6 - 0,052 \times x_7 + 3,307 \times x_8 - 0,006 \times x_9$$
(3.4)
$$n = 62; R^2_{\text{train}} = 0,9144; R^2_{\text{CV}} = 0,9483; MSE = 0,8272$$

Mô hình QSPR_{PLS} xây dựng dựa trên ma trận dữ liệu với 9 biến độc lập. Chất lượng mô hình được đánh giá qua các chỉ số thống kê như $Q^2_{\text{cum}} = 0,1473$; $R^2_{\text{Ycum}} =$

0,8582 và $R^{2}_{Xcum} = 0,9162$. Ngoài ra, đại lượng mức độ quan trọng của các biến số (VIP) ảnh hưởng đến log β_{11} được sử dụng để lựa chọn biến trong mô hình QSPR_{PLS}. Trên cơ sở đó, mô hình QSPR_{PLS} đã nhận được như phương trình (3.5):

$$log\beta_{11} = 6,102 + 0,023 \times x_1 + 13,467 \times x_2 - 0,062 \times x_3 + 0,802 \times x_4 + 3,884 \times x_5 - 2,984 \times x_6 - 0,049 \times x_{7+} 3,266 \times x_8 - 0,006 \times x_9$$
(3.5)
$$n = 62; R^2_{\text{train}} = 0,9083; R^2_{\text{CV}} = 0,8885; MSE = 0,6618$$

Trong các mô hình QSPR, giá trị R^2_{train} là hệ số tương quan bội được nhân với 100 cho phương sai giải thích hằng số bền log β_{11} . Khả năng dự đoán của các mô hình QSPR được đánh giá bằng R^2_{CV} và Q^2_{test} . Giá trị thống kê F_{stat} phản ánh tỷ lệ phương sai giải thích bởi mô hình và phương sai từ sai số hồi quy. Giá trị F_{stat} cao cho thấy mô hình có ý nghĩa về mặt thống kê. Giá trị *MSE* thấp cũng cho thấy mô hình có ý nghĩa về mặt thống kê. Khả năng dự báo của mô hình được thể hiện qua giá trị Q^2_{test} đánh giá ngoại đối với nhóm hợp chất không thuộc nhóm luyện ban đầu.

Khả năng dự đoán của các mô hình QSPR đều được đánh giá cẩn thận bằng kỹ thuật đánh giá chéo và đánh giá ngoại. Đánh giá ngoại các mô hình QSPR trên 10 hợp chất từ các kết quả nghiên cứu thực nghiệm được dẫn ra ở Bảng p5.3b trong Phụ lục 5. Kết quả đánh giá giữa ba mô hình QSPR_{MLR}, QSPR_{PLS} và QSPR_{PCR} dựa vào các giá trị *MARE* (%) cho thấy mô hình QSPR_{MLR} có khả năng dự đoán kém nhất, sau đó là QSPR_{PLS} và cuối cùng là QSPR_{PCR} với các giá trị 18,32 %, 15,21 % và 13,06 %. Đồng thời, các giá trị $Q^2_{\text{test},\text{PCR}} = 0,8842$ cho thấy kết quả dự đoán log β_{11} nhận được từ ba mô hình gần với thực nghiệm và các mô hình này có khả năng ứng dụng trong thực tiễn.

Sự khác biệt giữa các giá trị $\log\beta_{11}$ thực nghiệm và $\log\beta_{11}$ dự đoán từ ba mô hình trên được đánh giá bằng phương pháp ANOVA một yếu tố. Sự chênh lệch giữa các giá trị thực nghiệm và tính toán các hằng số bền $\log\beta_{11}$ ở cả ba mô hình là không đáng kể ($F = 0,0655 < F_{0,05} = 3,354$). Vì vậy, có thể khẳng định rằng khả năng dự báo của cả ba mô hình QSPR phù hợp với dữ liệu thực nghiệm.

d. Mô hình QSPR nhóm dữ liệu 4

Trong mô hình này, các phương pháp sử dụng để xây dựng mô hình gồm MLR, PLSR và ANN. Tập dữ liệu xây dựng mô hình bao gồm 67 giá trị hằng số bền logβ₁₁ của phức giữa 19 ion kim loại với các thiosemicarbazone khác nhau

trong dung dịch nước ở các điều kiện khác nhau và tập đánh giá ngoại gồm 10 giá trị hằng số bền $\log \beta_{11}$ của phức chất độc lập với tập luyện (Bảng p5.4; Phụ lục 5).

Tập luyện được sử dụng xây dựng các mô hình QSPR_{MLR} và đánh giá chéo bằng kỹ thuật loại bỏ dần từng trường hợp (LOO). Chất lượng mô hình đánh giá thông qua các giá trị cao nhất của R^2_{train} , R^2_{adj} , Q^2_{LOO} , F_{stat} và giá trị thấp nhất của *SE*. Kết quả giá trị thống kê của các mô hình QSPR_{MLR} (k = 1-8) được trình bày trong Bảng 3.9.

STT	Mô hình QSPR _{MLR}
1	$log\beta_{11} = 39,6557 - 1,9937 \times k0$ $n = 67; k = 1; RMSE = 2,480; R^{2}_{train} = 0,4393; Q^{2}_{LOO} = 0,3595; F_{stat} = 50,9325$
2	logβ ₁₁ = 21,3965 – 2,6370× <i>k</i> 0 + 0,0027× <i>core-core repulsion</i> <i>n</i> = 67; <i>k</i> = 2; <i>RMSE</i> = 2,0815; <i>R</i> ² _{train} = 0,6111; <i>Q</i> ² _{LOO} = 0,5409; <i>F</i> _{stat} = 50,2802
3	logβ ₁₁ = 19,7831 – 3,3896× <i>k</i> 0 + 0,0040× <i>core-core repulsion</i> + 1,0511× <i>Me</i> ⁷ <i>n</i> = 67; <i>k</i> = 3; <i>RMSE</i> = 1,7432; <i>R</i> ² _{train} = 0,7315; <i>Q</i> ² _{LOO} = 0,6669; <i>F</i> _{stat} = 57,2105
4	logβ ₁₁ = 4,4253 + 0,2930× <i>k</i> 0 + 0,0005× <i>core-core repulsion</i> + 0,2326× <i>Me</i> ⁷ + 0,0211cosmo volume. <i>n</i> = 67; <i>k</i> = 4; <i>RMSE</i> = 1,6556; <i>R</i> ² _{train} = 0,7617; <i>Q</i> ² _{LOO} = 0,6622; <i>F</i> _{stat} = 49,5335
5	$log\beta_{11} = 3,8071 + 0,2829 \times k0 + 0,0004 \times core \cdot core \ repulsion + 0,2468 \times Me^7 + 0,0225 \times cosmo \ volume \ + 0,1731 \times dipole. \ n = 67; \ k = 5; \ RMSE = 1,3965; \ R^2_{train} = 0,8332; \\ Q^2_{LOO} = 0,7274; \ F_{stat} = 60,9211$
6	$log\beta_{11} = 4,9339 + 0,5066 \times k0 + 0,0004 \times core \cdot core \ repulsion + 0,2539 \times Me^7 + 0,0207 \times cosmo \ volume \ + 0,1514 \times dipole + 1,8938 \times x1. \ n = 67; \ k = 6; \ \text{RMSE} = 1,2162; \\ R^2_{\text{train}} = 0,8755; \ Q^2_{\text{LOO}} = 0,7828; \ F_{\text{stat}} = 70,3430$
7	$ log \beta_{11} = -6,3488 - 6,0995 \times k0 + 0,0046 \times core \cdot core \ repulsion + 2,0513 \times Me^7 - 0,2220 \times cosmo \ volume \ + 0,6325 \times dipole + 16,3524 \times x1 - 3,8747 \times LUMO. \ n = 67; \ k = 7; \ RMSE = 0,8490; \ R^2_{train} = 0,9404; \ Q^2_{LOO} = 0,8714; \ F_{stat} = 132,8770 $
8	$log\beta_{11} = -17,1635 - 6,1928 \times k0 + 0,0048 \times core \cdot core \ repulsion + 2,0411 \times Me^7 - 0,2342 \times cosmo \ volume \ + 0,5130 \times dipole + 18,0747 \times x1 - 4,3128 \times LUMO + 13,1803 \times xch5. \ n = 67; \ k = 8; \ RMSE = 0,7732; \ R^2_{train} = 0,9514; \ Q^2_{LOO} = 0,8964; \ F_{stat} = 141,8426$

Bảng 3.9. Kết quả xây dựng các mô hình QSPR_{MLR} với các giá trị thống kê

Kết quả trong Bảng 3.9 cho thấy mô hình QSPR_{MLR} với k = 7 là mô hình chất lượng tốt với các giá trị thống kê cao. Khi k tăng lên 8 kết quả mô hình xây dựng được với các giá trị thống kê gần như không có sự thay đổi đáng kể so với mô hình 7 biến số (k = 7), tuy nhiên trong nghiên cứu QSPR một mô hình chất lượng có số lượng mô tả phân tử càng ít thì mô hình càng chất lượng nhưng cũng cần đảm bảo các tiêu chuẩn thống kê. Vì vậy, mô hình QSPR_{MLR} được chọn với k = 7 phù hợp với các tiêu chuẩn thống kê và có số lượng biến thích hợp nhất. Việc số biến tăng dần lên các mô tả phân tử đã được lựa chọn bằng cách sử dụng kỹ thuật chuyển tiếp. Kết quả nhận được giá trị *RMSE* và Q^2_{LOO} lần lượt là 0,8490 và 0,8714.

Sử dụng 7 biến từ mô hình QSPR_{MLR} để xây dựng mô hình QSPR_{PLSR}. Chất lượng của mô hình QSPR_{PLSR} cũng được đánh giá dựa trên các giá trị thống kê là R^2_{train} , Q^2_{LOO} và *RMSE*. Tương tự, mô hình này có chất lượng tốt với các giá trị R^2_{train} và Q^2_{LOO} cao nhất và các giá trị *RMSE* thấp nhất. Ngoài ra, phương pháp phân tích hồi quy PLSR cũng được đánh giá bằng các chỉ số thống kê tích lũy như Q^2_{cum} , R^2_{Ycum} và R^2_{Xcum} . Hơn nữa, các mô tả của mô hình QSPR_{PLSR} được đánh giá tầm quan trọng của biến (VIP) ảnh hưởng đến các hằng số bền và các giá trị độ lệch. Vì vậy, mô hình QSPR_{PLSR} được tìm thấy tốt nhất theo phương trình (3.6) dưới đây:

$$log\beta_{11} = -1,304 - 5,844 \times k0 + 0,0046 \times core \cdot core \ repulsion + 1,732 \times Me^{7} - 0,260 \times cosmo \ volume \ + \ 0,840 \times dipole \ + 16,717 \times x1 \ - \ 4,728 \times LUMO \ (3.6)$$

$$n = 67; k = 7; RMSE = 0,6474; R^{2}_{train} = 0,9540; Q^{2}_{LOO} = 0,9015;$$

 $Q^{2}_{cum} = 0,8132; R^{2}_{Ycum} = 0,9542; R^{2}_{Xcum} = 0,9993$

Kết quả cho thấy mô hình QSPR_{PLSR} với 7 mô tả đã giải thích 95,42% biến thiên của hằng số bền ($Q^2_{Ycum} = 0,9542$) và 99,93% biến trong bảy mô tả ($Q^2_{Xcum} = 0,9993$). Khả năng dự đoán được đánh giá bằng giá trị $Q^2_{LOO} = 0,9015$ và $Q^2_{test} = 0,9291$ (Bảng p5.4; Phụ lục 5). Các giá trị này lớn hơn tương quan chuẩn 0,6. Giá trị *RMSE* = 0,6474 là rất thấp và chỉ ra rằng mô hình QSPR_{PLSR} thỏa mãn về mặt thống kê.

Tiếp đến, mạng ANN được phát triển dựa trên các biến của mô hình MLR. Mạng được xây dựng theo hai bước: thăm dò để tìm các mạng tốt nhất trên tập luyện ban đầu và sử dụng tập đánh giá ngoại để tìm mạng tốt nhất cho đánh giá ngoại. Trên cơ sở đó, kết quả thăm dò mạng được trình bày trong Bảng 3.10.

Như vậy, kiến trúc mạng tốt nhất được tìm thấy là I(7)-HL(10)-O(1) (Bảng 3.10) đáp ứng ý nghĩa thống kê. Qua đó, các tham số luyện mạng noron này bao gồm tốc độ học là 0,01; quán tính luyện bằng 0,9; hàm hyperbolic sigmoid tangent và giá trị mục tiêu hội tụ 10⁻¹⁰. Các giá trị đánh giá được chọn có ý nghĩa thống kê cao như $R^2_{\text{train}} = 0,9903$; $R^2_{\text{test}} = 0,9799$ và $Q^2_{\text{cv}} = 0,9812$. Vì vậy, khả năng dự đoán của mô hình QSPR_{ANN} I(7)-HL(10)-O(1) tốt hơn hai mô hình đã xây dựng trước đó.

Phương pháp ANOVA một yếu tố cũng được sử dụng để so sánh các giá trị $\log \beta_{11}$ thực nghiệm với các giá trị dự báo từ các mô hình. Sự chênh lệch giữa chúng là không đáng kể ($F = 0,1092 < F_{0,05} = 2,8663$). Do đó, tất cả các kết quả dự đoán từ

các mô hình QSPR phù hợp tốt với dữ liệu thực nghiệm. Bên cạnh đó, các giá trị MARE (%) của các mô hình QSPR_{MLR}, QSPR_{PLSR} và QSPR_{ANN} lần lượt là 14,86%, 13,82% và 13,743% (Bảng p5.4 của Phụ lục 5) cho thấy mô hình QSPR_{ANN} thể hiện khả năng dự đoán cao nhất với $Q^2_{\text{test}} = 0,9477$ và các giá trị log β_{11} dự đoán từ mô hình này gần với các giá trị thực nghiệm.

STT	Mô hình QSPR _{ANN}	R ² train	R ² test	$Q^2_{ m cv}$	Sai số tập kiểm tra	Sai số tập đánh giá
1	I(7)-HL(4)-O(1)	0,9949	0,9622	0,9782	0,5093	0,5863
2	I(7)-HL(7)-O(1)	0,9837	0,9722	0,9796	0,5069	0,4556
3	I(7)-HL(10)-O(1)	0,9903	0,9799	0,9811	0,4767	0,4647
4	I(7)-HL(7)-O(1)	0,9945	0,9722	0,9906	0,3781	0,3463
5	I(7)-HL(5)-O(1)	0,9880	0,9774	0,9847	0,3315	0,3344

Bảng 3.10. Kết quả khảo sát các mô hình QSPRANN với giá trị thống kê

e. Mô hình QSPR nhóm dữ liệu 5

Trong mô hình này, các phương pháp sử dụng để xây dựng mô hình gồm MLR, PCR và ANN. Mô hình QSPR_{MLR} được xây dựng trên tập dữ liệu gồm 74 giá trị hằng số bền log β_{11} phức ML (Bảng p5.5a; Phụ lục 5). Sử dụng kiểm định Student (*t-test*) để so sánh các giá trị *RMSE* và R^2 ở mức độ tin cậy 95%. Ngoài ra, các hệ số đánh giá mô hình QSPR_{MLR} là $R_{\text{train}} = 0,9719$ và đánh giá chéo $Q_{\text{LOO}} = 0,9624$ (Hình 3.8).

Hình 3.8. a) Các giá trị kiểm định Student t-test để so sánh các giá trị R^2 ; b) Mối tương quan giữa các giá trị log β_{11} thực nghiệm và dự đoán nhận kết quả từ mô hình $QSPR_{MLR}$ với các giá trị $R^2_{train} = 0,9446$ và $Q^2_{LOO} = 0,9262$

Các biến mô tả được thay đổi trong phạm vi 1 đến 8 và sự thay đổi này dẫn đến sự thay đổi các giá trị *RMSE*, R^2_{train} , Q^2_{LOO} , *RMSE*_{train} và *RMSE*_{CV} (Bảng 3.11). Các mô hình QSPR_{MLR} được đánh giá chéo bằng phương pháp loại bỏ dần từng trường hợp (LOO) qua giá trị thống kê Q^2_{LOO} . Trên cơ sở đó, mô hình tốt nhất có giá trị R^2_{train} và Q^2_{LOO} cao nhất và giá trị *RMSE* thấp nhất với số *k* phù hợp. Bên cạnh đó, các biến mô tả được sàng lọc sơ bộ bằng giải thuật di truyền (GA) (Bảng 3.11). Từ Bảng 3.11, mô hình QSPR_{MLR} tốt nhất với k = 7 được chọn như được in đậm:

 $\log \beta_{11} = 53,803 - 7,024 \times nelem - 0,070 \times cosmo \ area + 0,534 \times xvp - 0,070 \times cosmo \ area + 0,534 \times xvp - 0,070 \times cosmo \ area + 0,534 \times xvp - 0,070 \times cosmo \ area + 0,070 \times cos$

 $-8,185 \times MaxNeg + 8,065 \times Hmin - 70,721 \times xch10 + 0,371 \times SsCH3$ (3.7)

 $R^{2}_{\text{train}} = 0,9446; Q^{2}_{\text{LOO}} = 0,9262; p-value < 0,05; F-\text{stat} = 160,8173, RMSE = 0,5292$

Bảng 3.11. Các mô hình QSPR_{MLR} thu được dựa trên kỹ thuật hồi quy đa biến và giải thuật di truyền. Mô hình tốt nhất là in đậm.

k	Biến mô tả	R ² train	$Q^{2}_{ m LOO}$	RMSE train	<i>RMSE</i> _{CV}
1	nelem	0,4988	0,4704	1,5242	1,5560
2	nelem; cosmoarea	0,7180	0,7018	1,1512	1,1676
3	nelem; cosmoarea; xvp3	0,8535	0,8007	0,8359	0,9546
4	nelem; cosmoarea; xvp3; Maxneg	0,8853	0,8291	0,7448	0,8838
5	nelem; cosmoarea; xvp3; Maxneg; Hmin	0,9017	0,8406	0,6947	0,8538
6	nelem; cosmoarea; xvp3; Maxneg; Hmin; xch10	0,9339	0,9057	0,5738	0,6564
7	nelem; cosmoarea; xvp3; Maxneg; Hmin; xch10; SsCH3	0,9446	0,9262	0,5292	0,5809
8	nelem; cosmoarea; xvp3; Maxneg; Hmin; xch10; SsCH3; dipole	0,9446	0,9183	0,5332	0,6110

Bảng 3.11 cho thấy giá trị *k* tăng lên 8 thì giá trị R^2_{train} và Q^2_{LOO} không tăng. Do đó, các giá trị thống kê thay đổi cụ thể các giá trị *RMSE*_{train} và *RMSE*_{CV} tăng lên nhưng không đáng kể. Do đó, mô hình tốt nhất với *k* = 7 được chọn trong biểu thức (3.7). Nghiên cứu này cũng tiếp cận xây dựng mô hình QSPR_{PCR} bằng cách sử dụng bộ dữ liệu này với 8 mô tả phân tử của mô hình QSPR_{MLR} (Bảng 3.11). Sự thay đổi của các thành phần chính trong mô hình QSPR_{PCR} ảnh hưởng đến các giá trị *RMSE*. Sự gia tăng của các thành phần chính (PC) gây ra sự suy giảm các giá trị *RMSE* cho quá trình luyện và đánh giá tương ứng. Vì vậy, mô hình QSPR_{PCR} tốt nhất với 7 thành phần chính. được chuyển đổi thành mô hình QSPR_{PCR} của các mô tả phân tử gốc thành mô hình biến thực như như sau:

$$log\beta_{11} = 54,718 - 7,011 \times nelem - 0,0721 \times cosmo \ area + 0,544 \times xvp3 - -7,040 \times MaxNeg + 7,944 \times Hmin - 79,413 \times xch10 + 0,352 \times SsCH3$$
(3.8)

 $R^{2}_{\text{train}} = 0,9493; Q^{2}_{\text{CV}} = 0,9282; MSE = 0,2921; RMSE = 0,5497; F_{\text{stat}} = 134,6176$

Kết quả nhận được cho thấy mô hình QSPR_{PCR} (phương trình 3.8) có ý nghĩa thống kê. Phương trình này có phương sai giải thích được là 94,93% biến cho hằng số bền. Tầm quan trọng thống kê của các mô tả phân tử trong mô hình QSPR có thể được sử dụng theo hướng tìm kiếm các phức chất mới. Do đó, các kết quả mô hình hóa có thể định hướng thiết kế các phối tử thiosemicarbazone mới dựa trên các mô tả cấu trúc để có được hằng số bền log β_{11} cao hơn.

Để phát triển mô hình QSPR_{ANN}, mạng thần kinh nhân tạo cũng đã được sử dụng trong công việc này. Mô hình QSPR_{ANN} được phát triển dựa trên các mô tả quan trọng về mặt thống kê của các mô hình QSPR_{MLR} và QSPR_{PCR}. Mạng ANN cũng được sử dụng để dự đoán các giá trị hằng số bền log β_{11} của tập đánh giá ngoại (Bảng p5.5b; Phụ lục 5). Trong nghiên cứu này, chúng tôi đã tìm ra mô hình QSPR_{ANN} tốt nhất với kiến trúc I(7)-HL(10)-O(1).

Qua đó, kiến trúc mạng I(7)-HL(10)-O(1) bao gồm các mô tả như nelem, Cosmo area, xvp3, MaxNeg, Hmin, xch10 và SsCH3 là 7 noron lớp đầu vào; lớp đầu ra O(1) có 1 noron là hằng số bền log β_{11} ; lớp ẩn HL(10) bao gồm 10 noron. Mạng ANN gồm ba lớp này được luyện bằng giải thuật lan truyền ngược kết hợp thuật toán Levenberg-Marquest. Hàm truyền hyperbolic sigmoid tangent được sử dụng để luyện. Kết quả các tham số mạng trong quá trình luyện như tốc độ học là 0,01; quán tính là 0,9; giá trị mục tiêu hội tụ 10⁻¹⁰ và hàm sai số sử dụng là *RMSE*. Mô hình QSPR_{ANN} I(7)-HL(10)-O(1) nhận các giá trị thống kê $R^2_{\text{train}} = 0,9860; Q^2_{\text{CV}} =$ 0,9840 và $R^2_{\text{test}} = 0,9830$. Các kết quả này chỉ ra rằng mô hình QSPR_{ANN} I(7)-HL(10)-O(1) tốt hơn mô hình QSPR_{MLR} và QSPR_{PCR}. Đồng thời, mô hình QSPR_{ANN} có thể giải thích được 98,60% biến trong tập dữ liệu, trong khi đó mô hình QSPR_{MLR} và QSPR_{PCR} giải thích tương ứng được 94,50% và 94,90% biến. Mô hình QSPR_{ANN} cũng thể hiện sự phù hợp tốt hơn giữa các giá trị dự đoán và thực nghiệm. Điều này được chứng minh qua các giá trị thống kê *MARE* (%) như Bảng p5.5b của Phụ lục 5.

Ngoài ra, các mô hình QSPR được đánh giá ngoại qua giá trị được đánh giá qua đại lượng Q^2_{CV} . Các hệ số tương quan *R* đã được xác định từ các giá trị hằng số bền dự đoán và thực nghiệm cho bộ dữ liệu đánh giá ngoại và phải nhận giá trị gần bằng 1. Trong nghiên cứu này, chúng tôi đã sử dụng bộ dữ liệu ngoài gồm 10 phức

từ thực nghiệm để kiểm tra khả năng ứng dụng của các mô hình QSPR được xây dựng (Bảng p5.5b; Phụ lục 5). Các mô hình QSPR đều đáp ứng các tiêu chí của Tropsha [43].

Mặt khác, các giá trị *MARE* (%) (Bảng p5.5b; Phụ lục 5) của các mô hình QSPR cũng cho thấy mô hình QSPR_{ANN} cho khả năng dự đoán cao nhất và các giá trị hằng số bền log β_{11} dự đoán rất gần với các giá trị thực nghiệm. Ngoài ra, phương pháp ANOVA một yếu tố được sử dụng để đánh giá sự khác biệt giữa các giá trị hằng số bền log β_{11} của ba mô hình QSPR. Theo đó, sự khác biệt giữa chúng là không đáng kể ($F = 0,0686 < F_{0,05} = 2,8663$). Do đó, có thể sử dụng các mô hình QSPR để ước tính hằng số bền log β_{11} của các phức mới.

f. Mô hình QSPR nhóm dữ liệu 6

Phương pháp sử dụng để xây dựng mô hình QSPR gồm MLR và ANN. Tập dữ liệu bao gồm tập xây dựng mô hình với 64 giá trị hằng số bền log β_{11} và tập đánh giá ngoại gồm 10 giá trị hằng số bền của phức (Bảng p5.6a và Bảng p5.6b; Phụ lục 5). Kết quả xây dựng các mô hình QSPR_{MLR} và các giá trị thống kê được trình bày trong Bảng 3.12.

k		SE	$R^{2}_{ ext{train}}$	Q^{2} LOO	F _{stat}	
4		$x_1/x_2/x_3/x_4$	1,9983	0,4625	0,312	12,6574
5	x	$x_1/x_2/x_3/x_4/x_5$	1,7474	0,5963	0,420	17,0852
6	<i>x</i> ₁ /	$x_{2}/x_{3}/x_{4}/x_{5}/x_{6}$	1,6298	0,6544	0,491	17,9857
7	x_1/x	$x_2/x_3/x_4/x_5/x_6/x_7$	1,5351	0,6993	0,537	18,5384
8	$x_1/x_2/$	$ x_3 x_4 x_5 x_6 x_7 x_8$	1,5462	0,7098	0,528	16,0273
9	$x_1/x_2/x$	1,3768	0,7663	0,574	19,6742	
10	$x_1/x_2/x_3/x_3/x_3/x_3/x_3/x_3/x_3/x_3/x_3/x_3$	$x_4/x_5/x_6/x_7/x_8/x_9/x_{10}$	1,1083	0,8516	0,668	30,3273
11	$x_1/x_2/x_3/x_4$	0,7896	0,9263	0,8425	58,9921	
12	$x_1/x_2/x_3/x_4/x_4$	$x_5/x_6/x_7/x_8/x_9/x_{10}/x_{11}/x_{12}$	0,6993	0,9436	0,8792	70,3134
13	$x_1/x_2/x_3/x_4/x_5/x_5/x_5/x_5/x_5/x_5/x_5/x_5/x_5/x_5$	$x_6/x_7/x_8/x_9/x_{10}/x_{11}/x_{12}/x_1$	3 0,6212	0,9561	0,9055	83,5026
		Giải thích biến mô	tả trong mô	hình		
хvрб	x_1	N ³	<i>X</i> 6	knotp		<i>x</i> ₁₀
xvpc4	x ₂ electric energy		<i>X</i> ₇	volume		<i>x</i> ₁₁
xvp7	<i>x</i> ₃	cosmo area	<i>x</i> ₈	surface		<i>x</i> ₁₂
xp5	<i>x</i> ₄	dipole	<i>X</i> 9	\mathbf{N}^4		<i>x</i> ₁₃
xp4	<i>x</i> ₅					

Bảng 3.12. Mô hình QSPR_{MLR} xây dựng $(k = 4 \div 13)$ và các giá trị thống kê

Khi giá trị *k* tăng thì giá trị R^2_{train} và Q^2_{LOO} tăng và giá trị *SE* giảm. Khi giá trị *k* đạt 11, giá trị R^2_{train} và Q^2_{LOO} thỏa mãn điều kiện thống kê. Khi giá trị *k* tăng lên 12, các tham số R^2_{train} và Q^2_{LOO} tiếp tục tăng và *SE* vẫn giảm nhưng sự thay đổi này là không đáng kể. Do đó, mô hình QSPR_{MLR} với *k* = 11 là kết quả phù hợp nhất trong tất cả các mô hình. Chất lượng của mô hình QSPR_{MLR} nhận được gồm $R^2_{\text{train}} = 0,9263$; *SE* = 0,7896; $F_{\text{stat}} = 58,9921$ và $Q^2_{\text{LOO}} = 0,8425$. Phương trình hồi quy tuyến tính của mô hình QSPR_{MLR} như sau:

- $\log \beta_{11} = 7,984 5,997 \times x_1 + 3,044 \times x_2 + 5,960 \times x_3 24,356 \times x_4 + 26,688 \times x_5 + 26,$
 - $+22,313 \times x_{6} 0,00127 \times x_{7} 0,227 \times x_{8} + 1,148 \times x_{9} + 13,437 \times x_{10} + 0,089 \times x_{11}$ (3.9)

Sự đóng góp quan trọng của các biến mô tả trong mỗi phức được sắp xếp theo thứ tự dựa trên các giá trị GMP_{xi} (giá trị trung bình của $MP_{xk,I}$, được tính từ kết quả của ba mô hình tốt với k = 11-13 là xp4 > xp5 > cosmo area > volume. Tham số xp4 (x_5) với giá trị $GMPx_5$ là 31,2463 có ảnh hưởng mạnh đến hằng số bền của phức. Tham số xp4 được gọi là Chi path 4 - chỉ số Chi thứ 4 đơn giản. Tiếp theo, tham số xp5 được gọi là Chi path 5 - chỉ số Chi thứ 5 đơn giản (x_4). Hai tham số cuối cùng ảnh hưởng mạnh đến hằng số bền là *cosmo area* (x_8) và *volume* (x_{11}), đây là các tham số hình học của phân tử.

Trong nghiên cứu này, mô hình QSPR_{ANN} cũng được phát triển dựa trên các biến của mô hình QSPR_{MLR}. Tập dữ liệu được chia ngẫu nhiên thành ba tập con, bao gồm 70% tập luyện; 15% tập đánh giá chéo và 15% tập kiểm tra độc lập. Mô hình QSPR_{ANN} được luyện với kiểu mạng MLP, giải thuật lan truyền ngược Levenberg-Marquest và hàm truyền hyperbolic sigmoid tangent được sử dụng để luyện mạng.

Kiến trúc mạng bao gồm ba lớp I(11)-H(8)-O(1) đã được tìm thấy. Trong đó, lớp đầu vào I(11) bao gồm 11 nơron là *xvp6, xvpc4, xvp7, xp5, xp4, N³, electric energy, cosmo area, dipole, knotp* và *volume*; lớp đầu ra O(1) gồm 1 nơron là log β_{11} và lớp ẩn gồm 8 nơron. Kết quả các tham số luyện mạng nhận được là tốc độ học là 0,01; quán tính là 0,9; giá trị mục tiêu hội tụ là 10⁻¹⁰ và hàm sai số sử dụng là *MSE*. Mô hình QSPR_{ANN} tốt nhất đã được tìm ra với các giá trị thống kê có ý nghĩa cao như $R^2_{\text{train}} = 0,994$; $Q^2_{\text{CV}} = 0,998$ và $R^2_{\text{test}} = 0,993$. Kết quả nhận được cho thấy trên cùng một tập dữ liệu được sử dụng để xây dựng mô hình thì mô hình QSPR_{ANN} cho hiệu suất dự đoán tốt hơn qua giá trị thống kê R^2_{train} và Q^2_{CV} . Khả năng dự đoán của các mô hình đã được thực hiện qua tập dữ liệu đánh giá ngoại gồm 10 phức chất và chất lượng mô hình đánh giá qua các giá trị Q^2_{test} . Các kết quả dự đoán nhận được trong Bảng p5.6b của Phụ lục 5. Giá trị *MARE*(%) của các mô hình QSPR_{MLR} và QSPR_{ANN} I(11)-HL(8)-O(1) lần lượt là 16,17% và 15,54% và các giá trị Q^2_{test} của các mô hình QSPR_{MLR} và QSPR_{ANN} là 0,8044 và 0,8963. Những giá trị này cho thấy rằng các mô hình có khả năng dự đoán tốt và mô hình QSPR_{ANN} cho khả năng dự đoán cao hơn so với mô hình QSPR_{MLR} và các giá trị log β_{11} dự báo từ mô hình QSPR_{ANN} gần với các giá trị thực nghiệm hơn.

Sự khác biệt giữa các giá trị thực nghiệm và tính toán của hằng số bền $\log\beta_{11}$ từ mô hình QSPR_{MLR} và mô hình QSPR_{ANN} I(11)-HL(8)-O(1) là không đáng kể (*F* = 0,0988 < *F*_{0,05} = 3,3541) qua phân tích phương sai ANOVA một yếu tố. Do đó, khả năng dự đoán của cả hai mô hình QSPR phù hợp với dữ liệu thực nghiệm.

g. Mô hình QSPR nhóm dữ liệu 7

Phương pháp sử dụng để xây dựng mô hình QSPR trong nghiên cứu này gồm MLR, PCR và ANN. Tập luyện bao gồm tập xây dựng mô hình với 50 giá trị hằng số bền log β_{11} và tập đánh giá ngoại cũng gồm 10 giá trị hằng số bền của phức (Bảng 5.7; Phụ lục 5). Mô hình QSPR_{MLR} được xây dựng bằng cách sử dụng kỹ thuật loại bỏ ngược và kỹ thuật hồi quy chuyển tiếp. Các mô hình QSPR được đánh giá chéo bằng phương pháp LOO bằng cách sử dụng thống kê Q^2_{LOO} . Kết quả của các mô hình QSPR_{MLR} được trình bày trong Bảng 3.13 với số lượng mô tả $k = 1 \div 12$.

Trong các mô hình khảo sát, mô hình $QSPR_{MLR}$ với giá trị *k* là 11 được chọn mặc dù các giá trị thống kê mô hình 12 biến tốt hơn. Tuy nhiên, khi số lượng biến tăng từ 11 đến 12 thì các giá trị thống kê tăng không đáng kể. Vì vậy, mô hình $QSPR_{MLR}$ với 11 biến (in đậm trong Bảng 3.13) thỏa mãn tiêu chí thống kê.

STT	Mô hình QSPR _{MLR}
1	logβ ₁₁ = 10,9658 + 2,0345× <i>knopt</i> . <i>n</i> = 50; <i>k</i> = 1; <i>MSE</i> = 1,7505; R^{2}_{train} = 0,2106; Q^{2}_{LOO} = 0,1526; F_{stat} = 12,8093
2	$logβ_{11} = 6,1372 + 2,0769 \times knopt + 0,2107 \times SHBa. n = 50; k = 2; MSE = 1,6150; R2train = 0,3421; Q2LOO = 0,2696; Fstat = 12,2220$
3	logβ ₁₁ = 16,2732 + 2,8514× <i>knopt</i> + 0,2374× <i>SHBa</i> + 1,2022× <i>HOMO</i> . <i>n</i> = 50; <i>k</i> = 3; <i>MSE</i> = 1,4937; $R^2_{\text{train}} = 0,4493; Q^2_{\text{LOO}} = 0,3635; F_{\text{stat}} = 12,5088.$
4	$ log\beta_{11} = 16,2307 + 3,6618 \times knopt + 0,2864 \times SHBa + 1,3207 \times HOMO + 0,3637 \times xvpc4. \ n = 50; \ k = 4; \ MSE = 0,4380; \ R^{2}_{train} = 0,5006; \ Q^{2}_{LOO} = 0,4066; \ F_{stat} = 11,2792 $

Bảng 3.13. Kết quả các mô hình $QSPR_{MLR}$ ($k = 1 \div 12$) với các giá trị thống kê

5	$ \begin{split} \log &\beta_{11} = 21,4966 + 4,4608 \times knopt + 0,2785 \times SHBa + 1,8510 \times HOMO + 0,5945 \times xvpc4 + \\ &4,1390 \times N^4. \ n = 50; \ k = 5; \ MSE = 1,3089; \ R^2_{\text{train}} = 0,5955; \ Q^2_{\text{LOO}} = 0,5077; \ F_{\text{stat}} = 12,9537 \end{split} $
6	$ logβ_{11} = 21,5880 + 4,7508 \times knopt + 0,2881 \times SHBa + 1,6149 \times HOMO + 0,6451 \times xvpc4 + 3,9674 \times N^4 + 1,4024 \times LUMO. n = 50; k = 6; MSE = 0,5729; R^2_{train} = 0,6886; Q^2_{LOO} = 0,5729; F_{stat} = 15,8470 $
7	logβ ₁₁ = 22,7487 + 4,8607× <i>knopt</i> + 0,3049× <i>SHBa</i> + 4,2879× <i>HOMO</i> + 0,6655× <i>xvpc4</i> + 4,6322× N^4 + 1,5772× <i>LUMO</i> + 2,53822× <i>ionization potential</i> . <i>n</i> = 50; <i>k</i> = 7; <i>MSE</i> = 1,1530; $R^2_{\text{train}} = 0,6504$; $Q^2_{\text{LOO}} = 0,5733$; $F_{\text{stat}} = 14,0257$
8	$logβ_{11} = 32,38996 + 5,8346 \times knopt + 0,2701 \times SHBa + 9,6031 \times HOMO + 0,7167 \times xvpc4 + 6,2790 \times N^4 + 2,4642 \times LUMO + 6,8985 \times ionization potential + 0,3638 \times dipole. n = 50; k = 8; MSE = 1,0627; R2train = 0,7515; Q2LOO = 0,6130; Fstat = 15,5024$
9	$ \begin{split} \log \beta_{11} &= 29,6371 + 7,3019 \times knopt + 0,3253 \times SHBa + 13,1749 \times HOMO + 1,1428 \times xvpc4 + \\ 10,2939 \times N^4 + 3,2718 \times LUMO + 10,1252 \times ionization \ potential + 0,5773 \times dipole + 0,0189 \times MW. \ n &= 50; \ k = 9; \ MSE = 0,8127; \ R^2_{\text{train}} = 0,8582; \ Q^2_{\text{LOO}} = 0,7315; \ F_{\text{stat}} = 26,9024 \end{split} $
10	$ \begin{split} \log \beta_{11} &= 32,9799 + 7,6504 \times knopt + 0,4048 \times SHBa + 15,0983 \times HOMO + 1,1431 \times xvpc4 + \\ 11,4920 \times N^4 + 3,6561 \times LUMO + 11,7072 \times ionization \ potential + 0,7992 \times dipole + 0,0210 \times MW + \\ 8,8653 \times Maxneg. \ n &= 50; \ k = 10; \ MSE = 0,7391; \ R^2_{\text{train}} = 0,8857; \ Q^2_{\text{LOO}} = 0,7921; \ F_{\text{stat}} = 30,2107 \end{split} $
11	$ \begin{split} \log \beta_{11} &= 41,1432 + 9,1226 \times knopt + 0,4786 \times SHBa + 19,0890 \times HOMO + 1,2860 \times xvpc4 + \\ 15,4336 \times N^4 + 4,2962 \times LUMO + 14,8059 \times ionization \ potential + 0,8880 \times dipole + 0,0273 \times MW + \\ 11,8044 \times Maxneg - 0,0157 \times \Delta H_{\rm f} \ . \ n = 50; \ k = 11; \ MSE = 0,5878; \ R^2_{\rm train} = 0,9296; \ Q^2_{\rm LOO} = \\ 0,8673; \ F_{\rm stat} = 45,5829 \end{split} $
12	$\begin{split} \log &\beta_{11} = 53,5937 + 8,6225 \times knopt + 0,4584 \times SHBa + 17,2750 \times HOMO + 1,2411 \times xvpc4 + \\ &13,7630 \times N4 + 4,3344 \times LUMO + 13,1842 \times ionization \ potential + 0,8293 \times dipole + 0,0267 \times MW + \\ &11,3017 \times Maxneg - 0,0130 \times \Delta H_{\rm f} - 8,8133 \times ovality. \ n = 50; \ k = 12; \ MSE = 0,5130; \ R^2_{\rm train} = \\ &0,9477; \ Q^2_{\rm LOO} = 0,8721; \ F_{\rm stat} = 55,9223 \end{split}$

Từ kết quả Bảng 3.13, giá trị $R^2_{\text{train}} = 0,9296$; MSE = 0,5878 chỉ ra rằng tập dữ liệu luyện để xây dựng mô hình QSPR_{MLR} có ý nghĩa thống kê, $Q^2_{\text{LOO}} = 0,8637$ ($Q^2_{\text{LOO}} > 0,5$) là điều kiện thiết yếu cho mô hình QSPR. Vì vậy, kỹ thuật đánh giá chéo cũng cho thấy mô hình QSPR_{MLR} có thể được sử dụng để dự đoán các giá trị log β_{11} .

Tiếp theo, mô hình QSPR_{PCR} được phát triển bằng cách sử dụng bộ dữ liệu này với 12 mô tả phân tử từ kết quả mô hình MLR. được xây dựng từ kết quả của kỹ thuật phân tích thành phần chính (PCA). Sự thay đổi của thành phần chính (PC) trong các mô hình QSPR_{PCR} ảnh hưởng đến các giá trị *MSE* cho quá trình luyện và đánh giá. Vì vậy, QSPR_{PCR} tốt nhất bao gồm 11 PC, có thể được chuyển đổi trong mô hình QSPR_{PCR} với các mô tả ban đầu như sau:

 $\log \beta_{11} = 41,9783 + 9,4330 \times knopt + 0,4959 \times SHBa + 19,7945 \times HOMO +$

+ 1,3160×*xvpc4* + 16,4278× N^4 + 4,4705×*LUMO* +

+ 15,4513×*ionization potential* + 0,9287×*dipole* + 0,0291×*MW* +

+ $13,5302 \times Maxneg - 0,0184 \times \Delta H_{\rm f}$ (3.10)

 $n = 50; R^{2}_{train} = 0.9236; Q^{2}_{CV} = 0.9423; MSE = 0.4190; F_{stat} = 30,7885$

Mô hình QSPR_{PCR} với 11 PC có ý nghĩa thống kê và phương trình (3.10) với 11 thành phần có phương sai giải thích 92,36% biến trong các hằng số bền của tập luyện.

Ngoài ra, mô hình QSPR_{ANN} cũng được phát triển từ tập dữ liệu của trên dựa trên các mô tả phân tử của mô hình QSPR_{MLR}. Kiến trúc của mạng noron gồm ba lớp I(11)-H(*n*)-O(1); lớp đầu vào I(11) bao gồm 11 noron là *knotp, SHBa, HOMO, xvpc4, N4, LUMO, ionization potential, dipole, MW, Maxneg* và ΔH_f ; lớp đầu ra O(1) bao gồm 1 noron là giá trị log β_{11} ; lớp ẩn bao gồm *n* noron. Đồng thời, các mô hình QSPR_{ANN} được sử dụng cũng để dự đoán các giá trị hằng số bền log β_{11} của tập đánh giá ngoại độc lập như trong Bảng 5.7 của Phụ lục 5.

Mạng truyền thẳng MLP ba lớp với giải thuật lan truyền ngược Levenberg-Marquest sử dụng luyện mạng. Hàm truyền hyperbolic sigmoid tangent đặt trên mỗi nút của các lớp mạng. Các tham số mạng luyện nhận được gồm tốc độ học là 0,01; hằng số quán tính là 0,9; giá trị mục tiêu hội tụ là 10⁻¹⁰ và hàm sai số sử dụng là *MSE*. Đầu tiên, chúng tôi khảo sát kiến trúc mạng và nhận được kết quả như Bảng 3.14.

STT	Kiến trúc mạng	R^{2}_{train}	$Q^2_{ m cv}$	R^2_{test}	Sai số tập kiểm tra	Sai số tập đánh giá
1	I(11)-HL(13)-O(1)	0,9634	0,9981	0,9836	0,1996	0,1813
2	I(11)-HL(11)-O(1)	0,9922	0,9879	0,9850	0,2286	0,4620
3	I(11)-HL(14)-O(1)	0,9912	0,9938	0,9948	0,2300	0,6464
4	I(11)-HL(10)-O(1)	0,7972	0,9804	0,9961	0,2569	0,3043
5	I(11)-HL(12)-O(1)	0,9939	0,9848	0,9148	0,2503	0,1570
6	I(11)-HL(8)-O(1)	0,9690	0,9937	0,9813	0,2839	0,3875

Bảng 3.14. Kết quả khảo sát kiến trúc mạng mô hình QSPR_{ANN} I(11)-HL(n)-O(1)

Tiếp đến, luyện mạng với các kiến trúc trên và đánh giá ngoại các mô hình mạng này. Mô hình QSPR_{ANN} tốt nhất với kiến trúc I(11)-HL(14)-O(1) được chọn thỏa mãn về điều kiện thống kê. Mô hình có ý nghĩa thống kê cao với $R^{2}_{train} = 0,9913$; $Q^{2}_{cv} = 0,9939$ và $R^{2}_{test} = 0,9949$. Ngoài ra, khả năng dự đoán của QSPR_{ANN} I(11)-HL(14)-O(1) tốt hơn so với các mô hình QSPR_{MLR} và QSPR_{PCR}. Đặc biệt, mô hình QSPR_{ANN} phù hợp để dự đoán với $Q^{2}_{test} = 0,9665$ trong khi đó mô hình MLR và PCR lần lượt nhận được là 0,9230 và 0,9308. Điều này thể hiện từ các kết quả dự đoán cho 10 phức chất chọn ngẫu nhiên của tập đánh giá ngoại mô tả trong Bảng p5.7 của Phụ lục 5.

Phương pháp ANOVA một yếu tố được sử dụng để xác nhận sự khác biệt giữa các giá trị $\log\beta_{11}$ thực nghiệm và dự đoán từ các mô hình QSPR_{MLR}, QSPR_{PCR} và QSPR_{ANN}. Theo đó, sự chênh lệch giữa chúng là không đáng kể ($F = 0,0077 < F_{0,05}$

= 2,8662). Do đó, tất cả các kết quả dự đoán từ các mô hình QSPR phù hợp tốt với dữ liệu thực nghiệm. Các giá trị *MARE* (%) cũng được sử dụng để so sánh hiệu quả dự đoán các giá trị log β_{11} . Giá trị *MARE* (%) của QSPR_{MLR}, QSRP_{PCR} và QSPR_{ANN} lần lượt là 7,37%; 6,60% và 6,23% cho thấy mô hình QSPR_{ANN} cho khả năng dự đoán cao nhất và các giá trị log β_{11} dự đoán rất gần với các giá trị thực nghiệm.

h. Mô hình QSPR nhóm dữ liệu 8

Phương pháp sử dụng để xây dựng mô hình QSPR trong nghiên cứu này là tương đối đầy đủ gồm OLS (một cách dùng từ khác của MLR), PLSR, PCR và ANN. Tập dữ liệu gồm tập xây dựng mô hình với 50 giá trị hằng số bền log β_{11} và tập đánh giá ngoại gồm 10 giá trị hằng số bền của phức (Bảng p5.8a và p5.8b của Phụ lục 5).

Mô hình OLS được xây dựng đầu tiên và được xác định qua các giá trị thống kê khi tăng số biến. Các mô hình QSPR_{PLS}, QSPR_{PCR} và QSPR_{ANN} được phát triển tiếp theo cũng dựa trên các biến của mô hình QSPR_{OLS} và cuối cùng mô hình mạng noron nhân tạo QSPR_{ANN} cũng được phát triển với các giá trị thống kê R^2_{train} và R^2_{CV} . Mô hình QSPR_{OLS} qua các biến được trình bày trong Bảng 3.15.

k	Biến mô tả		M	SE	R^{2} train	$R^2_{ m adj}$	Q^{2} L	00	F stat
2	x_1/x_2		3,1	491	0,3943	0,3685	0,27	/44	15,2854
3	$x_1/x_2/x_3$		2,7	163	0,5594	0,5303	0,42	293	19,4261
4	$x_1/x_2/x_3/x_4$		2,5	866	0,6096	0,5746	0,48	867	17,5203
5	$x_1/x_2/x_3/x_4/x_5$	5	2,3	3463	0,6852	0,6507	0,55	543	19,1666
6	$x_1/x_2/x_3/x_4/x_5/$	<i>x</i> ₆	2,0	894	0,7568	0,7221	0,62	222	22,2089
7	$x_1/x_2/x_3/x_4/x_5/x_6/x_7$		1,8	3753	0,8088	0,7762	0,6853		25,2756
8	$x_1/x_2/x_3/x_4/x_5/x_6/$	x_{7}/x_{8}	1,5	5864	0,8666	0,8404	0,7822		33,1239
9	x1/x2/x3/x4/x5/x6/x	7/ x 8/x9	1,0	354	0,9443	0,9322	0,90)35	75,2887
10	$x_1/x_2/x_3/x_4/x_5/x_6/x_7/x_7/x_7/x_7/x_7/x_7/x_7/x_7/x_7/x_7$	$x_8/x_9/x_{10}$	0,9	9407	0,9552	0,9443	0,88	807	83,2592
		Giải th	ích c	ác biế	n trong m	ô hình			
C ⁵		x_1			SsssN	SsssN		<i>x</i> ₆	
xp9 x2				cosmo area			<i>X</i> 7		
electric energy x ₃				xp10		<i>X</i> 8		<i>X</i> 8	
cosmo volume x4				core-co	ore repulsion		<i>X</i> 9		
N^4		<i>x</i> 5			Hmax				<i>x</i> ₁₀

Bảng 3.15. Kết quả mô hình QSPRoLs qua các biến với các giá trị thống kê

Các giá trị thống kê cho thấy rằng mô hình $QSPR_{OLS}$ tuyến tính tốt nhất với 9 biến mô tả bao gồm C^5 , *xp9*, *electric energy*, *cosmo volume*, N^4 , *SsssN*, *cosmo area*, *xp10 và core-core repulsion*. Phương trình hồi quy tuyến tính của mô hình $QSPR_{OLS}$:

$$\log\beta_{11} = -64,63 - 24,58 \times x_1 + 26,71 \times x_2 - 0,0233 \times x_3 - 0,355 \times x_4 + 25,47 \times x_5 - 0,0233 \times x_3 - 0,355 \times x_4 + 25,47 \times x_5 - 0,0233 \times x_3 - 0,0233 \times x_3 - 0,0233 \times x_4 - 25,47 \times x_5 - 0,0233 \times x_5 - 0,000 +$$

$$-2,143 \times x_6 + 0,531 \times x_7 - 38,16 \times x_8 - 0,0251 \times x_9 \tag{3.11}$$

Giá trị thống kê của các hệ số của các biến trong mô hình QSPR_{OLS} ở độ tin cậy 95% được trình bày trong Bảng 3.16. Mô hình QSPR_{PLS} được phát triển dựa trên các biến mô tả của mô hình QSPR_{OLS}. Kết quả nhận được từ mô hình QSPR_{PLS} như sau:

$$log\beta_{11} = -55,976 - 26,729 \times x_1 + 25,082 \times x_2 - 0,020 \times x_3 - 0,353 \times x_4 + 24,146 \times x_5 - 2,277 \times x_6 + 0,504 \times x_7 - 36,044 \times x_8 - 0,021 \times x_9$$
(3.12)

Một cách tương tự, mô hình QSPR_{PCR} cũng được phát triển dựa trên các biến mô tả của mô hình QSPR_{OLS}. Phương trình hồi quy của mô hình QSPR_{PCR} cũng đã nhận được với các giá trị thống kê như sau:

$$\log \beta_{11} = -64,064 - 23,655 \times x_1 + 24,918 \times x_2 - 0,022 \times x_3 - 0,400 \times x_4 + 0.000 \times x_4 + 0.000$$

 $+26,040 \times x_5 - 1,840 \times x_6 + 0,574 \times x_7 - 36,476 \times x_8 - 0,024 \times x_9$ (3.13)

Cấu trúc của mạng noron được tìm thấy gồm ba lớp I(9)-HL(12)-O(1); lớp đầu vào I(9) bao gồm 9 noron là C^5 , *xp9*, *electric energy, cosmo volume, N*⁴, *SsssN, cosmo area, xp10 và core-core repulsion;* lớp đầu ra O(1) bao gồm 1 noron là $\log\beta_{11}$; lớp ẩn bao gồm 12 noron.

Biến	Hệ số hồi quy	SE	P-value	t-test
Hằng số	- 64,63	7,9644	5,52157E-10	- 8,1153
<i>X</i> 1	- 24,58	2,9083	1,94764E-10	- 8,4524
x_2	26,71	3,0242	6,13225E-11	8,8317
<i>X</i> 3	- 0,02334	0,002893	6,20314E-10	- 8,0783
<i>X</i> 4	-0,355	0,0420	1,93409E-10	-8,4544
<i>X</i> 5	25,47	1,7524	1,47821E-17	14,5443
<i>x</i> ₆	- 2,143	0,2676	7,46051E-10	- 8,0191
<i>X</i> 7	0,531	0,0557	7,69789E-12	9,5262
<i>x</i> ₈	- 38,16	4,0574	1,09678E-11	- 9,4068
<i>X</i> 9	-0,02505	0,0033	3,89012E-09	- 7,4934

Bảng 3.16. Giá trị thống kê các biến trong mô hình QSPR_{OLS} ở độ tin cậy 95%

Giải thuật lan truyền ngược được sử dụng để luyện mạng, hàm truyền hyperbolic tangent đặt trên mỗi nút của lớp mạng nơron; các tham số luyện mạng bao gồm tốc độ học là 0,01; hệ số quán tính là 0,1. Kết quả nhận được tổng sai số bằng 0,000021 với 1.500.000 vòng lặp. Kết quả đánh giá nội mô hình qua các giá trị thống kê:

Mô hình QSPR_{OLS}: n = 50; $R^2_{\text{train}} = 0,9443$; $Q^2_{LOO} = 0,9035$; MSE = 1,0354Mô hình QSPR_{PLS}: n = 50; $R^2_{\text{train}} = 0,9345$; $R^2_{CV} = 0,9658$; MSE = 0,9826Mô hình QSPR_{PCR}: n = 50; $R^2_{\text{train}} = 0,9347$; $R^2_{CV} = 0,9485$; MSE = 1,1471

Bên cạnh đó, khả năng dự đoán của các mô hình QSPR đều được đánh giá cẩn thận bằng kỹ thuật đánh giá ngoại theo từng trường hợp. Khả năng dự đoán của các mô hình QSPR trên nhận được đối với 10 hợp chất từ các giá trị nghiên cứu thực nghiệm (Bảng p5.8b; Phụ lục 5) thông qua các giá trị *MARE* (%) và Q^2_{test} .

Phân tích dữ liệu Q^2_{test} cho thấy khả năng dự đoán của các mô hình là rất tốt. Theo đó, mô hình thần kinh QSPR_{ANN} thể hiện sự phù hợp và tương quan tốt nhất giữa các giá trị dự đoán và giá trị thực nghiệm, kế đến là mô hình QSPR_{PLS}, QSPR_{PCR} và cuối cùng là mô hình QSPR_{OLS} với Q^2_{test} lần lượt là 0,9334; 0,9033; 0,9058 và 0,8752. Các giá trị log β_{11} từ các mô hình QSPR gần với các giá trị thực nghiệm.

Sử dụng phương pháp ANOVA một yếu tố để đánh giá sự khác biệt giữa các giá trị $\log\beta_{11}$ thực nghiệm và $\log\beta_{11}$ dự đoán từ các mô hình trên. Kết quả cho thấy sự chênh lệch giữa các giá trị thực nghiệm và tính toán các hằng số bền $\log\beta_{11}$ cả ba mô hình không đáng kể ($F = 0,0435 < F_{0,05} = 2,8662$). Vì vậy có thể khẳng định rằng khả năng dự báo của cả ba mô hình QSPR phù hợp với dữ liệu thực nghiệm.

Giá trị *MARE* (%) của các mô hình QSPR_{OLS}, QSPR_{PCR}, QSPR_{PLS} và QSPR_{ANN} I(9)-HL(12)-O(1) tương ứng là 16,21%; 14,98%; 11,95% và 8,33% cho thấy mô hình QSPR_{ANN} cho kết quả dự đoán tốt nhất kế đến lần lượt các mô hình QSPR_{PLS}, QSPR_{PCR} và QSPR_{OLS} trong toàn bộ tập dữ liệu này.

i. Mô hình QSPR nhóm dữ liệu 9

Phương pháp sử dụng để xây dựng mô hình QSPR là MLR và ANN. Tập dữ liệu bao gồm tập xây dựng mô hình với 76 giá trị hằng số bền log β_{11} và tập đánh giá ngoại gồm 17 giá trị hằng số bền của phức (Bảng p5.9a và p5.9b của Phụ lục 5). Mô hình QSPR_{MLR} được xây dựng với các tham số thống kê được trình bày Bảng 3.17.

Từ Bảng 3.17 cho thấy khi giá trị *k* tăng thì giá trị R^2_{train} và Q^2_{LOO} tăng và giá trị *RMSE* giảm. Khi giá trị k = 5, giá trị R^2_{train} và Q^2_{LOO} thỏa mãn điều kiện thống kê. Khi giá trị k tăng lên 6, các tham số R^2_{train} và Q^2_{LOO} tiếp tục tăng và *RMSE* vẫn giảm nhưng sự thay đổi này là không đáng kể. Do đó, mô hình QSPR_{MLR} với k = 5 là kết quả phù hợp nhất trong tất cả các mô hình. Các tham số thống kê của mô hình QSPR_{MLR} nhận được gồm $R^2_{\text{train}} = 0,8213$; *RMSE* = 0,7445; $F_{\text{stat}} = 64,3644$ và giá trị $Q^2_{\text{LOO}} = 0,7886$. Phương trình hồi quy tuyến tính của mô hình QSPR_{MLR} như sau:

 $\log \beta_{11} = 29,585 + 0,310 \times x_1 - 0,120 \times x_2 - 0,896 \times x_3 + 0,249x_4 - 1,342 \times x_5 \quad (3.14)$

k	Biến mô tả	RMSE	R ² train	$R^{2}_{ m adj}$	Q^{2} LOO	F _{stat}	PRESS				
1	x_1	1,5762	0,1547	0,1431	0,1188	13,4636	191,6032				
2	x_1/x_2	1,4523	0,2923	0,2722	0,2487	15,0196	163,2434				
3	$x_1/x_2/x_3$	1,0626	0,6266	0,6117	0,5784	40,2067	91,7376				
4	$x_1/x_2/x_3/x_4$	0,8862	0,7443	0,7295	0,7085	51,4509	63,4145				
5	$x_1/x_2/x_3/x_4/x_5$	0,7445	0,82138	0,8085	0,7886	64,3644	45,9234				
6	$x_1/x_2/x_3/x_4/x_5/x_6$	0,7096	0,8483	0,8275	0,7992	64,5886	43,5943				
Giải thích các biến trong mô hình											
cosn	no area	x_1		SHBa		<i>X</i> 4					
cosn	no volume	<i>x</i> ₂		Gmin		<i>x</i> 5					
ko		<i>x</i> ₃		S 6		<i>X</i> 6					

Bảng 3.17. Kết quả xây dựng mô hình QSPR_{MLR} với các tham số thống kê

Mức độ đóng góp của các mô tả phân tử trong mỗi phức được sắp xếp theo thứ tự dựa trên các giá trị GMP_{xi} , được tính từ kết quả của ba mô hình tốt với k = 4÷6 là *cosome area* > *cosmo volume* > *k*0. Tham số *cosmo area* (*x*₁) với giá trị $GMPx_1$ là 57,146 có ảnh hưởng mạnh đến hằng số bền của phức. Tham số *cosmo area* là diện tích cosmo của phức chất. Tiếp theo, tham số *cosmo volume* (*x*₂) là thể tích cosmo của phức. Tham số cuối cùng ảnh hưởng mạnh đến hằng số bền là *k*0 (*x*₃), đây là các tham số hình học của phân tử. Sử dụng 5 biến từ mô hình QSPR_{MLR} làm giá trị đầu vào để xây dựng mô hình ANN. Tập dữ liệu được chia ngẫu nhiên thành ba tập con, bao gồm 70% cho tập luyện; 15% cho tập đánh giá chéo và 15% cho tập kiểm tra.

Kiến trúc ANN I(5)-HL(m)-O(1) được thiết lập với giải thuật toán tối ưu hóa Levenberg-Marquest với phương pháp lan truyền ngược. Hàm truyền hyperbolic sigmoid tangent được sử dụng để luyện ANN. Số nơron *m* trong lớp ẩn HL(*m*) được khảo sát. Kết quả được đưa ra trong Bảng 3.18.

STT	QSPR _{ANN}	R^{2}_{train}	Q ² test	$Q^2_{\rm CV}$	Sai số tập luyện	Sai số tập kiểm tra	Sai số tập đánh giá
1	I(5)-HL(11)-O(1)	0,9677	0,9753	0,9831	0,0753	0,1214	0,0634
2	I(5)-HL(8)-O(1)	0,9655	0,9651	0,9823	0,0825	0,1940	0,1418
3	I(5)-HL(6)-O(1)	0,9785	0,9768	0,9836	0,0505	0,1303	0,0622
4	I(5)-HL(10)-O(1)	0,9567	0,9823	0,9841	0,1012	0,0820	0,0587
5	I(5)-HL(6)-O(1)	0,9645	0,9795	0,9846	0,0834	0,1000	0,0742

Bång 3.18. Kết quả khảo sát mô hình QSPR_{ANN} I(5)-HL(m)-O(1)

Để tìm mạng tốt nhất, các mô hình QSPR_{ANN} đã được đánh giá về khả năng dự đoán trên cùng tập dữ liệu đánh giá ngoại giống mô hình MLR. Kết quả khảo sát cho thấy mô hình QSPR_{ANN} với kiến trúc ANN I(5)-HL(10)-O(1) được in đậm như trong Bảng 3.18 có khả năng dự đoán là tốt nhất với giá trị $Q^2_{\text{test}} = 0,9567$ và $Q^2_{\text{CV}} = 0,9841$. Theo đó, các tham số luyện của ANN bao gồm tốc độ học là 0,01; hằng số quán tính luyện là 0,1; giá trị mục tiêu hội tụ của mạng là 10⁻¹⁰. Dựa trên các giá trị thống kế cũng như giá trị MARE (%) nhận được ở Bảng p5.9b của Phụ lục 5 cho thấy rằng mô hình mạng ANN I(5)-HL(10)-O(1) có khả năng dự báo tốt hơn so với mô hình QSPR_{MLR} trên cùng một tập luyện và tập đánh giá ngoại.

Sự khác biệt giữa các giá trị thực nghiệm và tính toán của hằng số bền $\log\beta_{11}$ xuất phát từ mô hình QSPR_{MLR} và mô hình QSPR_{ANN} I(5)-HL(10)-O(1) là không đáng kể ($F = 0,0509 < F_{0,05} = 3,1907$) qua phân tích phương sai ANOVA. Do đó, khả năng dự đoán của cả hai mô hình QSPR phù hợp với dữ liệu thực nghiệm.

3.1.2.2. Mô hình QSPR của phức chất ML₂

a. Mô hình QSPR nhóm dữ liệu 1

Nghiên cứu sử dụng hai phương pháp để xây dựng mô hình QSPR là MLR và ANN. Tập dữ liệu bao gồm tập xây dựng mô hình với 51 giá trị hằng số bền $\log\beta_{12}$ của phức (ML₂) và tập đánh giá ngoại gồm 12 giá trị hằng số bền của phức (Bảng p6.1a và p6.1b; Phụ lục 6).

Đầu tiên, sử dụng XLSTAT2016 để sàng lọc các biến cho mô hình, sau đó sử dụng nhóm biến mô tả vừa tìm được để phát triển các mô hình QSPR_{MLR} bằng cách sử dụng hai kỹ thuật hồi quy chuyển tiếp và loại bỏ dần để tìm biến tốt nhất. Các

mô hình QSPR_{MLR} được đánh giá chéo (CV) theo phương pháp LOO. Mười mô hình QSPR_{MLR} xây dựng (Bảng 3.19) với 3 biến mô tả đều đáp ứng các yêu cầu thống kê với các giá trị R^2_{train} , Q^2_{LOO} , F_{stat} rất cao và giá trị *SE*, *PRESS* rất thấp. Tuy nhiên, để chọn mô hình phù hợp cần phải tiến hành đánh giá ngoại các mô hình này.

Tiếp đến, sử dụng bộ dữ liệu gồm 12 giá trị hằng số bền $\log\beta_{12}$ của các phức chất thực nghiệm (Bảng p6.1b; Phụ lục 6) để đánh giá ngoại 10 mô hình QSPR_{MLR} đã được xây dựng. Các đánh giá được theo dõi chặt chẽ qua chuẩn thống kê Q^2_{test} và thu được ba mô hình (được in đậm trong Bảng 3.19) đáp ứng các điều kiện thống kê.

Ba mô hình QSPR_{MLR} đã xây dựng có thể dự đoán tốt hơn với các giá trị Q^2_{test} . Sau đó sử dụng phương pháp ANOVA để so sánh các giá trị $\log\beta_{12}$ thực nghiệm và dự đoán từ ba mô hình này. Sự khác biệt giữa giá trị thực nghiệm và giá trị dự đoán là không đáng kể ($F = 0,8388 < F_{0,05} = 2,8165$). Tuy nhiên, mô hình QSPR_{MLR7} có giá trị Q^2_{test} cao nhất. Do đó mô hình này có khả năng dự đoán tốt nhất so với các mô hình còn lại. Hơn nữa, giá trị *MARE* (%) của mô hình QSPR_{MLR7} cũng nhận thấp nhất (Bảng p6.1b, Phụ lục 6). Vì vậy, chúng tôi có thể sử dụng mô hình này để phát triển mô hình ANN nhằm dự đoán các giá trị hằng số bền $\log\beta_{12}$ cho hợp chất thiết kế mới.

STT	Ký hiệu	Mô hình QSPR _{MLR}
1	MI R1	$\log \beta_{12} = 179,590 - 16,1095 \times x0 - 0,000634 \times cosmo \ volume + 0,3811 \times total \ energy$
1	WILKI	$n = 51; R^{2}_{train} = 0,9972; Q^{2}_{LOO} = 0,9965; SE = 0,3252; F_{stat} = 4815,8; PRESS = 6,3610$
2	MLR2	$\log \beta_{12} = -9,621 + 69,0756 \times N^{l} + 7,1530 \times ionization \ potential + 0,0431 \times \Delta H_{\rm f}$
2	MLR2	$n = 51; R^{2}_{train} = 0,9973; Q^{2}_{LOO} = 0,9966; SE = 0,3099; F_{stat} = 5305,7; PRESS = 5,6825$
3	MI R3	$\log \beta_{12} = 177,395 - 15,6909 \times x0 + 0,3681 \times cosmo \ volume + 2,0175 \times ovality$
5	MERS	$n = 51; R^2_{\text{train}} = 0,9973; Q^2_{\text{LOO}} = 0,9967; \text{SE} = 0,3253; F_{\text{stat}} = 4813,0; \text{PRESS} = 6,3605$
4	MI R4	$\log \beta_{12} = -88,235 - 0,0012 \times electric \ energy + 0,0713 \times MW - 3,9449 \times SssCH2$
-	WILK	$n = 51; R^{2}_{train} = 0,9936; Q^{2}_{LOO} = 0,9917; SE = 0,4787; F_{stat} = 2214,1; PRESS = 13,8058$
5	MLR5	$\log \beta_{12} = 90,568 - 10,6343 \times ABSQ - 0,0411 \times cosmo \ area + 6,7789 \times xvch5$
5		$n = 51; R^{2}_{\text{train}} = 0,9896; Q^{2}_{\text{LOO}} = 0,9888; SE = 0,5868; F_{\text{stat}} = 1468,2; PRESS = 18,8823$
6	MI R6	$\log \beta_{12} = -26,997 + 0,0289 \times \Delta H_{\rm f} - 3,3882 \times SaasC - 6,3372 \times HOMO$
0	MERO	$n = 51; R^2_{\text{train}} = 0,9974; Q^2_{\text{LOO}} = 0,9965; SE = 0,3252; F_{\text{stat}} = 4815,8; PRESS = 6,3610$
7	MI R7	$\log \beta_{12} = 27,570 - 5,6037 \times SaasC - 0,3342 \times LUMO + 2,3297 \times xvp10$
,		$n = 51; R^{2}_{train} = 0,9943; Q^{2}_{LOO} = 0,9933; SE = 0,4342; F_{stat} = 2693,9; PRESS = 10,9412$
8	MLR8	$\log \beta_{12} = -29,908 - 1,7203 \times SssO + 2,2188 \times xv0 - 0,1902 \times xvpc4$
0	MERO	$n = 51; R^{2}_{\text{train}} = 0,9955; Q^{2}_{\text{LOO}} = 0,9936; SE = 0,4216; F_{\text{stat}} = 2858,9; PRESS = 10,2241$
9	MLR9	$\log \beta_{12} = -50,622 + 288,0053 \times MaxQp + 3,8334 \times SdsCH + 0,4518 \times xv1$
,	MLK)	$n = 51; R^{2}_{\text{train}} = 0,9962; Q^{2}_{\text{LOO}} = 0,9964; SE = 0,3381; F_{\text{stat}} = 4454,9; PRESS = 6,8477$
10	MLR10	$\log \beta_{12} = 63,341 - 0,00158 \times electric \ energy \ -2,8855 \times LUMO + 2,3439 \times SaaCH$
10	WILKIU	$n = 51; R^2_{\text{train}} = 0.9754; Q^2_{\text{LOO}} = 0.9707; SE = 0.8991; F_{\text{stat}} = 498.2; PRESS = 46.2372$

Bảng 3.19. Các mô hình QSPR_{MLR} được xây dựng với các giá trị thống kê

Ba biến từ mô hình QSPR_{MLR7} làm giá trị đầu vào để xây dựng cho mô hình ANN. Tập dữ liệu được chia ngẫu nhiên thành ba tập con, bao gồm 60% cho tập luyện; 20% cho tập đánh giá chéo và 20% cho tập kiểm tra. Kiến trúc ANN I(3)-HL(m)-O(1) được thiết lập với giải thuật tối ưu hóa Levenberg-Marquest qua phương pháp lan truyền ngược. Hàm truyền hyperbolic sigmoid tangent được sử dụng để luyện ANN. Số noron m trong lớp ẩn HL(m) được khảo sát (Bảng 3.20).

Để tìm mạng tốt nhất, các mô hình QSPR_{ANN} được đánh giá về khả năng dự đoán trên cùng tập dữ liệu đánh giá ngoại tương tự mô hình MLR. Khảo sát cho thấy mô hình QSPR_{ANN} với kiến trúc ANN I(3)-HL(10)-O(1) (Bảng 3.20) có khả năng dự đoán tốt nhất với $Q^2_{\text{test}} = 0,9978$ và $Q^2_{\text{CV}} = 0,9996$. Theo đó, các thông số luyện của ANN bao gồm tốc độ học là 0,01; hằng số quán tính luyện là 0,1; giá trị mục tiêu hội tụ của mạng là 10⁻¹⁰. Dựa trên các giá trị thông kê trên tập luyện và tập đánh giá cũng như giá trị *MARE* (%) (Bảng p6.1b; Phụ lục 6) cho thấy rằng mô hình mạng ANN I(3)-HL(10)-O(1) có khả năng dự báo tốt hơn so với mô hình MLR.

STT	QSPRANN	R ² train	Q^2 test	Q^2 cv	Sai số tập luyện	Sai số tập kiểm tra	Sai số tập đánh giá
1	I(3)-HL(3)-O(1)	0,9995	0,9975	0,9996	0,0219	0,1526	0,0757
2	I(3)-HL(7)-O(1)	0,9993	0,9977	0,9996	0,0203	0,1378	0,0434
3	I(3)-HL(9)-O(1)	0,9994	0,9965	0,9997	0,0212	0,1542	0,0276
4	I(3)-HL(10)-O(1)	0,9994	0,9978	0,9996	0,0230	0,1397	0,0270

Bång 3.20. Kết quả khảo sát mô hình QSPR_{ANN} I(3)-HL(m)-O(1)

b. Mô hình QSPR nhóm dữ liệu 2

Phương pháp xây dựng mô hình QSPR là MLR và ANN. Tập dữ liệu bao gồm tập xây dựng mô hình với 79 hằng số bền $\log\beta_{12}$ của các phức và tập đánh giá ngoại gồm 10 giá trị hằng số bền của phức (Bảng p6.2a và p6.2b của Phụ lục 6).

Trong quá trình mô hình hóa QSPR_{MLR} sử dụng XLSTAT2016 để phân tích mối tương quan và sàng lọc các biến trong mô hình. Sau đó, các mô hình QSPR_{MLR} được phát triển dựa trên các kỹ thuật chọn biến hồi quy chuyển tiếp và loại bỏ dần. Các mô hình QSPR_{MLR} được đánh giá chéo (CV) bằng kỹ thuật LOO. Mười mô hình QSPR_{MLR} xây dựng được trình bày trong Bảng 3.21.

Bảng 3.21. Các mô hình	$QSPR_{MLR}$	được xây dựng	với các	giá trị thông	kê
------------------------	--------------	---------------	---------	---------------	----

STT	Ký hiệu	Mô hình QSPR _{MLR}
1	MLR1	$log \beta_{12} = -10,0592 + 0,0133 \times MW + 18,5079 \times C^5 + 6,1168 \times Hmin. n = 79; R^2_{train} = 0,9338; Q^2_{LOO} = 0,9226; RMSE = 0,4369; F_{stat} = 353,2; PRESS = 16,758$
2	MLR2	$log\beta_{12} = 3,6859 - 0,0385 \times cosmo \ area + 2,5659 \times xp6 + 13,3033 \times C^2. \ n = 79; \ R^2_{train} = 0,9265; \ Q^2_{LOO} = 0,9176; \ RMSE = 0,4605; \ F_{stat} = 315,4; \ PRESS = 17,853$
3	MLR3	$log\beta_{12} = -10,5895 + 1,3269 \times ABSQ + 15,8569 \times C^{5} + 0,2487 \times xv1. \ n = 79; R^{2}_{train} = 0,9234; Q^{2}_{LOO} = 0,9168; RMSE = 0,4701; F_{stat} = 301,7; PRESS = 18,019$
4	MLR4	$log\beta_{12} = -8,8636 - 0,00161 \times total \ energy - 0,2645 \times knotpv + 10,921 \times C^5. \ n = 79; \ R^2_{train} = 0,9126; \ Q^2_{LOO} = 0,9003; \ RMSE = 0,5025; \ F_{stat} = 260,9; \ PRESS = 21,593$
5	MLR5	$log\beta_{12} = -3,5632 + 0,03079 \times cosmo \ volume + 15,5589 \times C^2 - 0,0299 \times cosmo \ area. \ n = 79; \\ R^2_{train} = 0,8994; \ Q^2_{LOO} = 0,8867; \ RMSE = 0,5389; \ F_{stat} = 223,6; \ PRESS = 24,543$
6	MLR6	$ \log\beta_{12} = -2,7958 - 0,00008 \times electric\ energy + 0,1369 \times xvpc4 + 9,1212 \times C^5.\ n = 79;\ R^2_{\text{train}} = 0,8989;\ Q^2_{\text{LOO}} = 0,8777;\ RMSE = 0,5403;\ F_{\text{stat}} = 222,3;\ PRESS = 26,487 $
7	MLR7	$\log \beta_{12} = -33,2523 + 10,4883 \times Hmax + 1,6293 \times SssCH2 + 1,3713 \times ionization potential. n = 79; R^{2}_{train} = 0,9086; Q^{2}_{LOO} = 0,8929; RMSE = 0,5137; F_{stat} = 248,5; PRESS = 23,205$
8	MLR8	$log\beta_{12} = -12,7964 - 9,0030 \times knotp - 0,0431 \times cosmo \ area + 6,4254 \times Hmin. \ n = 79; \ R^{2}_{train} = 0,9274; \ Q^{2}_{LOO} = 0,0929; \ RMSE = 0,4579; \ F_{stat} = 318,3; \ PRESS = 21,020$
9	MLR9	$ \log \beta_{12} = -7,9299 + 0,3346 \times ka1 + 13,7238 \times C^5 + 0,3959 \times xvc3. \ n = 79; \ R^2_{\text{train}} = 0,8988; \\ Q^2_{\text{LOO}} = 0,8784; \ RMSE = 0,5405; \ F_{\text{stat}} = 222,1; \ PRESS = 26,335 $
10	MLR10	$\log \beta_{12} = -2,0449 + 1,2639 \times ka3 + 20,0044 \times C5 - 0,5014 \times SsCH3. \ n = 79; \ R^{2}_{\text{train}} = 0,9007; \\ Q^{2}_{\text{LOO}} = 0,8883; \ RMSE = 0,5355; \ F_{\text{stat}} = 226,8; \ PRESS = 24,198$

Các tham số thống kê cho thấy mô hình QSPR_{MLR} với ba biến mô tả tồn tại ba mô hình chất lượng tốt. Ba mô hình này đáp ứng yêu cầu thống kê với các giá trị rất cao của R^2_{train} , Q^2_{LOO} , F_{stat} và giá trị rất thấp của *RMSE*, *PRESS*. Tuy nhiên, cần phải đánh giá ngoại để tìm mô hình phù hợp. Chúng tôi đã sử dụng tập dữ liệu độc lập bao gồm 10 phức (Bảng p6.2b; Phụ lục 6). Các đánh giá được khảo sát chặt chẽ thông qua đại lượng thống kê Q^2_{test} . Hai mô hình tốt nhất (in đậm trong Bảng 3.21) được chọn ra phù hợp với các điều kiện thống kê như được mô tả trong Phụ lục 8.2 cho thấy các mô hình QSPR_{MLR5} và QSPR_{MLR8} có dự đoán tốt hơn với các giá trị Q^2_{test} .

Tuy nhiên, giá trị *MAPE* (%)mô hình QSPR_{MLR8} thấp hơn mô hình QSPR_{MLR5} (Bảng p6.2b, Phụ lục 6). Vì vậy, mô hình này được chọn để phát triển các mô hình ANN và được sử dụng để dự đoán hằng số bền cho các hợp chất được thiết kế mới.

Mô hình ANN được luyện từ ba biến và trên tập dữ liệu của mô hình QSPR_{MLR8}. Tập dữ liệu được chia ngẫu nhiên thành ba tập con gồm 65% cho tập luyện; 20% dữ liệu cho đánh giá chéo và 15% cho tập kiểm tra. Vì vậy, kiểu kiến trúc ANN là I(3)-HL(m)-O(1) được khảo sát với m nút ẩn và mô hình cũng được phát triển với giải thuật Levenberg-Marquest. Cả hai hàm truyền log-sigmoid và hyperbolic được sử dụng. Kết quả khảo sát noron m được đưa ra trong Bảng 3.22.

Để chọn mô hình QSPR_{ANN} tốt nhất từ các mô hình khảo sát chúng tôi sử dụng tập ngoại để đánh giá và tìm thấy mô hình QSPR_{ANN} có kiến trúc ANN I(3)-HL(6)-O(1) (Bảng 3.22) có khả năng dự đoán tốt nhất với $Q^2_{\text{test}} = 0,8931$ với các tham số luyện gồm quán tính luyện là 0,1; tốc độ học là 0,01 và mục tiêu hội tụ là 10⁻¹⁰.

STT	Mô hình QSPR _{ANN}	R ² train	Q^{2}_{test}	Q^2 cv	Sai số luyện	Sai số kiểm tra	Sai số đánh giá
1	I(3)-HL(9)-O(1)	0,9668	0,9896	0,9858	0,0822	0,0268	0,0689
2	I(3)-HL(5)-O(1)	0,9832	0,9898	0,9896	0,0423	0,0256	0,0431
3	I(3)-HL(6)-O(1)	0,9844	0,9899	0,9922	0,0396	0,0259	0,0287
4	I(3)-HL(5)-O(1)	0,9863	0,9901	0,9913	0,0342	0,0255	0,0332
5	I(3)-HL(7)-O(1)	0,9740	0,9898	0,9865	0,0648	0,0259	0,0634

Bång 3.22. Kết quả khảo sát mô hình QSPR_{ANN} I(3)-HL(m)-O(1)

3.2. ΤΗΙΈΤ ΚΈ ΗϘ́Ρ CHẤT ΜΌΙ

3.2.1. Thiết kế dẫn xuất thiosemicarbazone

Dựa vào các kết quả xây dựng mô hình QSPR và thực nghiệm đã công bố [52], [67], [124], luận án này đã thiết kế 22 thiosemicarbazone mới dựa trên khung dẫn xuất 10H-phenothiazine và 22 hợp chất dẫn xuất thiosemicarbazone mới dựa trên khung dẫn xuất 9H-carbazole tại nhóm R₄. Tổng cộng 44 dẫn xuất thiosemicarbazone thiết kế mới này được trình bày trong Phụ lục 7.

3.2.2. Thiết kế phức chất

Chúng tôi lựa chọn sự tạo phức của 44 ligand thiết kế mới với 5 ion kim loại phổ biến (Cu^{2+} , Zn^{2+} , Ni^{2+} , Cd^{2+} , Ag^+). Các phức chất này đều ở hai dạng ML và ML₂. Như vậy, đã có 220 phức chất ML (Bảng p8.1; Phụ lục 8) và 220 phức chất ML₂ (Bảng p8.2; Phụ lục 8) đã được thiết kế mới. Các phức chất này cũng được sàng lọc tương tự như các phức chất thu thập dữ liệu ban đầu từ thực nghiệm để tạo ra các bộ mô tả phục vụ cho việc dự đoán hằng số bền.

Do cấu trúc của các ligand khác nhau nên sự phân bố điện tử của các nguyên tử trên khung cấu trúc là khác nhau, đặc biệt là nguyên tử N ở vị trí 4 (azomethine) – đây là vị trí đánh giá khả năng tạo phức đã được nhiều công trình nghiên cứu [41], [71], [137]. Bên cạnh đó, khả năng tạo phức còn phụ thuộc vào bản chất ion kim loại, trong trường hợp này là mức năng lượng của các orbital tham gia liên kết. Do đó, khi tham gia liên kết giữa ion kim loại với S và N ở vị trí 4 của khung thiosemicarbazone, tùy thuộc vào mức năng lượng của các orbital mà liên kết có

hình thành hay không. Nếu có sự khác biệt lớn về mức năng lượng thì liên kết sẽ không hình thành. Vì vậy, khi tối ưu hóa cấu trúc bằng các tính toán lượng tử, kết quả cho thấy một số phức ML và ML_2 không hình thành liên kết như mong đợi và cấu trúc đã bị thay đổi so với khung cấu trúc nghiên cứu nên đã bị loại bỏ khỏi bộ dữ liệu (Phụ lục 8).

3.3. DỰ ĐOÁN HẰNG SỐ BỀN VÀ ĐÁNH GIÁ KHẢ NĂNG HÌNH THÀNH CỦA CÁC LIGAND VÀ PHỨC CHẤT THIẾT KẾ MỚI

3.3.1. Phức chất ML

Hằng số bền của phức ML được dự báo theo trình tự như Hình 2.11. Quá trình dự báo hằng số bền các phức chất thiết kế mới được đưa vào toàn bộ 9 nhóm dữ liệu của nhóm phức ML. Sử dụng các tham số đánh giá miền ứng dụng (AD), kết quả cho thấy chỉ có ba mô hình trên nhóm dữ liệu 1, 4 và 9 đáp ứng yêu cầu của miền ứng dụng và sử dụng ba mô hình của ba nhóm dữ liệu này để dự báo. Tuy nhiên, một vài phức chất thiết kế mới khi đưa vào ba mô hình cũng bị loại bỏ vì nằm trong vùng ngoại biên (outliers). Tất cả kết quả được trình bày trong Phụ lục 8.

3.3.1.1. Kết quả dự báo trên mô hình nhóm dữ liệu 1

Mô hình này đã được xây dựng với các mô tả *xp5* và *xp3*, *Ovality* và *nrings*. Chúng ảnh hưởng rất lớn đến các tính chất cấu trúc, do đó, hằng số bền của các phức cũng bị ảnh hưởng. Vì vậy, chúng tôi tiến hành thiết kế mới và tổng hợp các thiosemicarbazone mới dựa trên sự đóng góp đáng kể của các mô tả đó.

Như đã trình bày, hai dẫn xuất thiosemicarbazone mới được thiết kế bằng cách thay thế nhóm R₄ bằng các nhóm vòng dị vòng thơm lớn hơn để tăng khả năng đóng góp của các mô tả *xp5, xp3, Ovality* và *nrings*. Từ định hướng này, hai ligand mới này (BEPT và BECT, ký hiệu chung là L) làm thuốc thử được tổng hợp trong phòng thí nghiệm. Vì vậy, các phức mới có thể tạo thành bằng cách cho các thuốc thử mới phản ứng với các ion kim loại Cu²⁺, Ni²⁺, Zn²⁺ và Cd²⁺ và được sử dụng để xác định các ion đó trong các mẫu môi trường bằng phương pháp UV-Vis. Chúng tôi đã chọn tám phức thực nghiệm để xác định bốn ion kim loại Cu²⁺, Ni²⁺, Zn²⁺ và Cd²⁺, Ni²⁺, Zn²⁺ và Cd²⁺ (Bảng p5.1; Phụ lục 5) được sử dụng để đánh giá với các phức tổng hợp mới. Giá trị log β_{11} của tất cả các phức đó với các ion kim loại được dự đoán bằng cách sử dụng ba mô hình QSPR trong Phụ lục 8.

Các giá trị $\log\beta_{11}$ dự đoán của tập dữ liệu dự đoán chất mới từ mô hình $QSPR_{GA-SVR}$ và $QSPR_{GA-ANN}$ gần với dữ liệu thử nghiệm, trong đó mô hình $QSPR_{GA-MLR}$ có sai số lớn nhất. Đây là cách phù hợp để phát triển các mô hình QSPR từ các hằng số bền có sẵn của các phức do cho phép sàng lọc các phức chất một cách có ý nghĩa.

Ngoài ra, chúng tôi cũng có thể tìm các cách khác để xác định các hằng số bền dựa trên mối tương quan giữa các hằng số bền thực nghiệm và dự đoán cho từng ion riêng lẻ (Cu²⁺, Zn²⁺, Cd²⁺ và Ni²⁺). Điều này có thể đạt được thông qua các kết quả tính toán cho từng phức chất Cu(II)L, Zn(II)L, Cd(II)L và Ni(II)L qua tập dữ liệu luyện, tập đánh giá và tập kiểm tra bổ sung từ mô hình QSPR_{GA-SVR} và QSPR_{GA-ANN} từ việc thiết lập các phương trình tương quan. Trong trường hợp này, các giá trị R^2 nằm trong khoảng từ 0,8933 đến 0,9766 cho mô hình QSPR_{GA-SVR} và từ 0,8897 đến 0,9836 cho mô hình QSPR_{GA-ANN} (Hình 3.9).

Hình 3.9. Sự tương quan giữa các giá trị $log\beta_{11}$ thực nghiệm và tính toán các phức Cu(II)L, Zn(II)L, Cd(II)L và Ni (II)L trong tập luyện, tập đánh giá và dự đoán bổ sung

Ký hiệu: ●: kết quả từ QSPR_{GA-SVR}; ○: kết quả từ QSPR_{GA-ANN}

Hằng số bền của các phức mới được nội suy từ các phương trình tương quan của từng ion riêng lẻ (Bảng p8.1c; Phụ lục 8) dựa trên quy tắc tương quan của miền

dự đoán. Đây là kết quả của việc đánh giá bổ sung về những gì đã đạt được từ các mô hình QSPR_{GA-SVR} và QSPR_{GA-ANN} cho dự đoán phức chất mới. Ở đây, chúng tôi chọn các phức chất có thể được sử dụng để thiết kế các ligand mới. Hằng số bền của tám phức thực nghiệm dự đoán chất mới và bốn phức mới Cu(II)L, Zn(II)L, Cd(II)L và Ni (II)L có nguồn gốc từ các mô hình QSPR được so sánh với nhau (Hình 3.10).

Hằng số bền dự đoán của các phức chất mới có kết quả cao hơn của các phức thực nghiệm. Vì vậy, chúng tôi tin rằng các phức chất mới cũng có thể đáp ứng nhu cầu thuốc thử trong hóa học phân tích. Đối với các phức này, giá trị logβ₁₁ từ các phương trình tương quan cũng phù hợp với các giá trị từ mô hình QSPR_{GA-SVR} và QSPR_{GA-ANN} và dữ liệu thực nghiệm. Điều này phù hợp với suy luận của chúng tôi đối với việc thiết kế các thuốc thử mới dựa trên sự đóng góp đáng kể của *xp5, xp3, ovality* và *nrings*.

Hình 3.10. So sánh giá trị $log\beta_{11}$ dự đoán từ các mô hình QSPR_{GA-SVR} và QSPR_{GA-ANN} của phức mới với dữ liệu thực nghiệm của phức từ tập dự đoán chất mới

Hằng số bền log β_{11} của các phức mới được tìm thấy gần với đường tương quan của tám phức thực nghiệm trong nhóm dự báo cho chất mới (Hình 3.11). Các giá trị log β_{11} được dự đoán phù hợp với dữ liệu thực nghiệm với các giá trị thống kê $Q^2_{\text{pred}} = 0,9455$ cho QSPR_{GA-SVR} và $Q^2_{\text{pred}} = 0,9504$ cho QSPR_{GA-ANN}. Các giá trị log β_{11} này nằm trong phạm vi không chắc chắn của phép đo thử nghiệm ở mức độ tin cậy 95%.

Hình 3.11. So sánh giá trị $log\beta_{11}$ dự đoán của 4 phức mới từ mô hình $QSPR_{GA-SVR}$ và $QSPR_{GA-ANN}$ với dữ liệu thực nghiệm của nhóm phức dự đoán mới.

3.3.1.2. Kết quả dự báo trên mô hình nhóm dữ liệu 4 và 9

Mô hình này được sử dụng để dự đoán hằng số bền của phức còn lại giữa dẫn xuất thiosemicarbazone thiết kế mới dựa trên các dẫn xuất phenothiazine và carbazole ở vị trí R₄ của khung thiosemicarbazone đã thiết kế với 5 ion kim loại Ag⁺, Cd²⁺, Cu²⁺, Ni²⁺ và Zn²⁺. Kết quả được đưa ra trong Phụ lục 7 và 8.

Xuất phát từ kết quả của các mô hình dự đoán, các phức chất mới này được đưa vào mô hình và sử dụng các chỉ số đánh giá để kiểm tra miền ứng dụng và các quan sát ngoại biên. Các phức chất nằm trong miền ứng dụng sẽ được dự đoán. Kết quả dự đoán các phức chất này được trình bày trong Phụ lục 8.

3.3.2. Phức chất ML₂

Hằng số bền của phức ML_2 được dự báo trên hai mô hình xây dựng được trên hai nhóm dữ liệu. Cả hai kết quả này đã được trình bày trong Phụ lục 8.

3.3.2.1. Kết quả dự báo trên mô hình nhóm dữ liệu 1

Mô hình này được sử dụng để dự đoán hằng số bền của một số phức giữa dẫn xuất thiosemicarbazone thiết kế mới dựa trên các dẫn xuất carbazole ở vị trí R4 của khung thiosemicarbazone với 5 ion kim loại Ag⁺, Cd²⁺, Cu²⁺, Ni²⁺ và Zn²⁺.

Xuất phát từ kết quả của các mô hình dự đoán, các phức chất mới này được đưa vào mô hình và sử dụng các chỉ số đánh giá để kiểm tra miền ứng dụng và các quan sát ngoại biên. Các phức chất nằm trong miền ứng dụng sẽ được dự đoán. Kết quả dự đoán các phức chất này được trình bày trong Phụ lục 8.

3.3.2.2. Kết quả dự báo trên mô hình nhóm dữ liệu 2

Mô hình này được sử dụng để dự đoán hằng số bền của một số phức giữa dẫn xuất thiosemicarbazone thiết kế mới dựa trên các dẫn xuất phenothiazine ở vị trí R_4 của khung thiosemicarbazone với 5 ion kim loại Ag^+ , Cd^{2+} , Cu^{2+} , Ni^{2+} và Zn^{2+} như đã trình bày. Tương tự, kết quả của các mô hình dự đoán ở tập dữ liệu sẽ được dự đoán cho các phức chất mới. Kết quả dự đoán các phức chất này cũng được trình bày trong Phụ lục 8.

3.3.3. Phân tích cấu dạng bền

3.3.3.1. Cấu dạng bền của BEPT và BECT

a. Đánh giá khả năng hình thành BEPT

Kết quả tính toán trình bày trong Bảng 3.23 cho thấy rằng các năng lượng cần thiết để hoán đổi rào cản giữa năng lượng tối đa và tối thiểu khác nhau đáng kể tùy thuộc vào góc giữa hai mặt phẳng. Sự thay đổi của các hàng rào thế năng phụ thuộc vào từng góc này. Sự khác biệt tuyệt đối giữa năng lượng tối thiểu và tối đa của hàng rào năng lượng giữa hai góc lượng diện a₁ và a₂ cho thấy sự phù hợp lớn ở mức năng lượng thấp và cấu dạng bền, tạo ra thế năng lượng bề mặt. Sự quay của góc lượng diện a₁ và a₂ dẫn đến năng lượng cần thiết để vượt qua hàng rào năng lượng cực đại bằng -3898,5231 kcal/mol cho góc a₁ và -3903,6066 kcal/mol cho góc a₂. Sự phù hợp năng lượng thấp nhất tương ứng với một giá trị của góc nhị diện bằng 180° và hai giá trị cao nhất của góc nhị diện bằng 90° và 270° (Hình 3.12a).

										~			
$D^2 - 2 2 2$	<u><u> </u></u>	1			1		4		· · · ·	A •		1 :	1: 4
Kang v Zv	lac	nano	ran	nano	ΠΡΛΉΟ	anav	τικανσ	ipno	var	$m \cap i$	$\sigma \cap c$	ททา	nion
Dang Jing Jing Jing Jing Jing Jing Jing Ji	Cuc	nung	140	nung	inonz	guuy	inong	ung	voi	moi	SUC	11111	uiçii

Múre	Tươ	Tương quan giữa năng lượng (kcal.mol ⁻¹) và góc nhị diện (độ)											
with	Năng lượng	a 1	Năng lượng	a ₂	Năng lượng	a 3	Năng lượng	a 4					
Cực tiểu	-3920,3981	180	-3921,7656	360	-3921,7644	180	-3921,7648	360					
Cực đại	-3898,5231	90	-3903,6066	100	-3849,8757	360	-3918,8779	90					

Góc nhị diện a₃ tạo ra một hàng rào năng lượng cực đại bằng -3849,8757 kcal/mol. Cấu dạng có năng lượng thấp nhất là góc nhị diện 180° với năng lượng tối thiểu -3921,7644 kcal/mol.

Hình 3.12. Hàng rào năng lượng quay theo các góc nhị diện đối với BEPT a) Góc nhị diện a₁: H-N₁-C₂-N₃ và a₂: N₁-C₂-N₃-N₄; b) Góc nhị diện a₃: C₂ - N₃ - N₄ - C₅ và a₄: N₄ - C₅ - C₆ - C₇.

Từ góc quay của góc nhị diện a4, hai cấu dạng phù hợp năng lượng cao nhất được ghi nhận khi góc nhị diện a4 thay đổi tương ứng từ 90° đến 100° và từ 260° đến 290°. Các cấu trúc năng lượng thấp nhất được tìm thấy tương ứng với góc nhị diện a4 tại 180°. Trong trường hợp này, cấu dạng bền có thể tạo ra hàng rào năng lượng tối thiểu - 3921,7648 kcal/mol (hình 3.12b). Vì vậy, khả năng phản ứng của BEPT có thể phụ thuộc vào một trong những sự phù hợp tương ứng với năng lượng thấp nhất.

b. Đánh giá khả năng hình thành BECT

Tương tự, kết quả tính toán cho BECT được trình bày trong Bảng 3.24.

Báng 3.24. Các hàng rào năng lượng quay tương ứng với môi góc r	thị diện
---	----------

Méro	Tu	Tương qua giữa năng lượng (kcal.mol ⁻¹) và góc nhị diện (độ)										
Muc	Năng lượng	\mathbf{a}_1	Năng lượng	\mathbf{a}_2	Năng lượng	a3	Năng lượng	a 4				
Cực tiểu	-3878,8064	180	-3889,9305	180	-3880,0955	60	-3878,8053	180				
Cực đại	-3860,2633	90	-3869,3797	80	-3859,8757	360	-3875,6913	280				

Sự quay góc nhị diện a₁ và a₂ dẫn đến năng lượng cần thiết để vượt qua hàng rào giữa năng lượng cực đại và cực tiểu bằng 18,5434 kcal/mol đối với góc a₁ và 20,5512 kcal/mol đối với góc a₂. Sự phù hợp năng lượng thấp nhất tương ứng với một giá trị của góc xoắn bằng 180° và hai giá trị cao nhất của góc xoắn bằng 90° và 270° (Hình 3.13a). Sự quay góc nhị diện a₃ có thể tạo ra một hàng rào năng lượng 20,220 kcal/mol. Hai sự phù hợp năng lượng thấp nhất là góc xoắn 60° và 300°. Sự quay của góc nhị diện a₄, hai sự phù hợp năng lượng cao nhất được nhận ra khi góc a₄ thay đổi tương ứng từ 70° đến 100° và từ 260° đến 290°. Các cấu dạng bền có năng lượng thấp nhất được tìm thấy tương ứng với góc nhị diện a_4 là 180°. Trong trường hợp này, cấu dạng bền có thể tạo ra hàng rào năng lượng 3,115 kcal/mol (Hình 3.13b).

Hình 3.13. Hàng rào năng lượng quay theo các góc nhị diện đối với BECT a) Góc nhị diện a₁: H-N₁-C₂-N₃ và a₂: N₁-C₂-N₃-N₄; b) Góc nhị diện a₃: C₂ - N₃ - N₄ - C₅ và a₄: N₄ - C₅ - C₆ - C₇.

3.3.3.2. Đánh giá khả năng tạo phức bằng tính toán lượng tử

a. Khả năng tạo phức của BEPT với các ion kim loại

Đối với quá trình tìm kiếm cấu dạng, cả hai phép thử hình học và năng lượng được sử dụng để làm tiêu chí cho việc chấp nhận sự phù hợp mới. Kết quả tìm kiếm cấu dạng cho từng phức riêng lẻ được trình bày trong Bảng 3.25. Để thực hiện tìm kiếm cấu dạng, trước tiên, chúng tôi đã khám phá các liên kết vòng tối ưu có thể đưa ra đồng thời khả năng uốn xoắn trong mỗi bước Monte Carlo cho các phức chất. Chúng tôi cũng đã tìm hiểu về sự đột biến tối ưu của các góc xoắn (Bảng 3.25).

Trong đó, 1000 lần lặp Monte Carlo được sử dụng để áp dụng cho các góc uốn khác nhau. Chúng tôi đã tiến hành nghiên cứu ảnh hưởng của việc uốn đồng thời bốn liên kết vòng (điều này được tìm thấy ngẫu nhiên) với các thay đổi góc xoắn ngẫu nhiên được chọn từ bốn phạm vi góc khác nhau. Việc điều tra được sử dụng để kiểm tra khả năng hội tụ và xác định sự trùng lặp. Việc kiểm tra năng lượng được chọn ra dựa vào năng lượng thấp nhất. Nhiệt độ khảo sát từ 298 K đến 473 K với tiêu chí của Metropolis. Các dạng hình học của các phức năng lượng thấp nhất Cu(II)L₂, Cd(II)L₂, Ni(II)L₂, Mn(II)L₂, Zn(II)L₂, Pb(II)L₂ và Hg(II)L₂ tương ứng với số lượng của chúng được tìm thấy bằng cách tìm kiếm (Hình 3.14).

ML ₂	Số cấu dạng	Năng lượng thấp nhất, kcal/mol	Năng lượng cao nhất, kcal/mol	Tốc độ chấp nhận	Số vòng lặp	Kiểm tra xoắn
Cd(II)L ₂	15	94,6306	110,7383	0,1344	1209	0
Cu(II)L ₂	43	75,1161	90,2138	0,1833	1224	0
Hg(II)L ₂	22	95,9306	111,5423	0,2019	1179	1
Mn(II)L ₂	35	75,4783	90,3102	0,0982	1212	0
Ni(II)L ₂	31	74,2235	89,0475	0,1106	1191	0
Pb(II)L ₂	27	94,2928	110,1317	0,1826	1176	0
Zn(II)L ₂	47	72,6551	79,6411	0,1807	1143	0

Bảng 3.25. Kết quả tìm kiếm các phức ở nhiệt độ từ 298 K đến 473 K

Khảo sát cho thấy các tìm kiếm cấu dạng dựa trên quy trình uốn xoắn đã thành công liên quan đến khả năng tìm kiếm sự phù hợp năng lượng thấp của phức chất giữa BEPT và các ion kim loại. Ion kim loại Me²⁺ trong nước có thể tương tác với các nguyên tử N₅, N₉ và S₂, S₆ của thiosemicarbazone để tạo phức Me(II)L₂.

Hình 3.14. Cấu dạng với năng lượng thấp nhất của phức với 4 góc uốn; t₁: C₁₂-N₅-Me₁-N₉, t₂: C₃-S₂-Me₁-S₆, t₃: N₉-N₈-C₇-S₆, t₄: N₅-N₄-C₃-S₂.

Ion kim loại Me²⁺ tương tác đồng thời với các nguyên tử N và S của hai phân tử thiosemicarbazone từ các khoảng cách khác nhau. Thế năng bề mặt được tính toán trong quá trình tương tác. Vì vậy, độ dài liên kết của Me-N và Me-S được xác định bởi vị trí năng lượng thấp nhất trên bề mặt năng lượng tương tác. Chúng được trình bày trong Bảng 3.26 cho bảy phức Me(II)L₂. Thế năng bề mặt tương tác của phức Ni(II)L₂ [153] cho thấy các tương tác nguyên tử được quan sát bởi hàm thế Lennard-Jones – hàm được sử dụng phổ biến nhờ sự nhanh nhạy trong tính toán của.

Độ dài	Phức chất Me(II)L ₂							
liên kết, Å	Cd(II)L ₂	Hg(II)L ₂	Cu(II)L ₂	Pb(II)L ₂	Ni(II)L ₂	Mn(II)L ₂	Zn(II)L ₂	
Me-S ₂	2,5422	2,5552	2,2441	2,5330	2,2235	2,2447	2,3203	
Me-S ₆	2,5421	2,5553	2,2440	2,5330	2,2236	2,2445	2,3202	
Me-N ₅	2,1463	2,1651	1,8606	2,1466	1,8393	1,8623	1,9338	
Me-N ₉	2,1462	2,1651	1,8605	2,1466	1,8393	1,8624	1,9337	

Bảng 3.26. Độ dài liên kết giữa Me^{2+} và phối tử trong bảy phức mới

Khảo sát cho thấy dựa vào thế năng bề mặt tương tác giữa các ion kim loại Ni^{2+} và các phối tử N_5 và N_9 của thiosemicarbazone đầu tiên và S_2 và S_6 của phân tử thiosemicarbazone thứ hai đại diện cho cấu trúc bền của các phức hợp đó.

b. Khả năng tạo phức của BECT với các ion kim loại

Kết quả tìm kiếm cấu dạng cho từng phức riêng lẻ (Bảng 3.27). Các thông số và kỹ thuật tính toán hoàn toàn giống như phức của BEPT, cấu dạng bền của các phức Cu(II)L₂, Cd(II)L₂, Ni(II)L₂, Mn(II)L₂, Zn(II)L₂, Pb(II)L₂ và Hg(II)L₂ tương ứng với năng lượng thấp nhất của chúng được tìm thấy như Hình 3.15.

Bảng 3.27. Kết quả tìm kiếm cấu dạng phức chất ở nhiệt độ từ 298 K đến 473 K

ML ₂	Cấu dạng	Năng lượng thấp nhất, kcal/mol	Năng lượng cao nhất, kcal/mol	Tỷ lệ chấp nhận	Số vòng lặp	Kiểm tra xoắn
Cd(II)L ₂	15	65,2903	163,8078	0,234	1246	3
Cu(II)L ₂	23	48,4294	50,2096	0,253	1170	2
Hg(II)L ₂	23	103,5891	118,4575	0,180	1207	1
Mn(II)L ₂	14	83,5703	97,2144	0,155	1233	0
Ni(II)L ₂	20	82,2663	95,8973	0,131	1206	1
Pb(II)L ₂	26	102,7820	117,8339	0,242	1248	1
Zn(II)L ₂	11	88,8526	102,0090	0,170	1182	0

Như vậy, có thể khẳng định rằng kết quả khảo sát cho thấy các tìm kiếm cấu dạng dựa trên quy trình uốn xoắn là thành công đối với khả năng tìm kiếm sự phù hợp năng lượng thấp nhất của phức chất giữa BECT và các ion kim loại.

Hình 3.15. Cấu dạng với năng lượng thấp nhất của phức với 4 góc uốn C17-N18-Me19-N41, t2: C21-S20-Me19-N18, t3: C43-S42-Me19-N41, t4: N18-Me19-N41-N44

3.4. TỔNG HỢP LIGAND VÀ PHỨC CHẤT

3.4.1. Tổng hợp BEPT và phức Ni(II)-BEPT, Cd(II)-BEPT

Quá trình tổng hợp BEPT đi từ tiền chất ban đầu là phenothiazine (1) qua bốn giai đoạn phản ứng thông qua các hợp chất trung gian. Tất cả các giai đoạn thực nghiệm chúng tôi đã tìm ra quy trình cụ thể ở các bước và được trình bày trong Phụ lục 9. Kết quả thu được ở các giai đoạn cụ thể như sau:

3.4.1.1. Giai đoạn ethyl hóa phenothiazine

Giai đoạn này gắn nhóm ethyl lên phenothiazine (1), cho sản phẩm trung gian(2). Hiệu suất phản ứng:

- Khối lượng tính theo lý thuyết: 0,1000x227,3300 = 22,7300 g;
- Khối lượng chất rắn (2) thu được thực tế 19,5127 g;
- Hiệu suất phản ứng: 85,85 %.

3.4.1.2. Giai đoạn carbonyl hóa ethyl phenothiazine

Giai đoạn này là giai đoạn carbonyl hóa ethyl phenothiazine (2) cho sản phẩm hợp chất trung gian (3). Hiệu suất phản ứng:

- Khối lượng (3) tính theo lý thuyết: 0,0480x255,0700 = 12,2400 g;
- Khối lượng chất rắn (3) thu được thực tế: 10,0500g;
- Hiệu suất: 82,10%.

3.4.1.3. Giai đoạn brom hóa carbonyl phenothiazine

Đây là giai đoạn này thế brom trên phenothiazine, cho sản phẩm hợp chất trung gian (4). Hiệu suất phản ứng:

- Khối lượng chất rắn (4) theo lý thuyết: 0,0234x332,9800 = 7,7900 g;
- Khối lượng chất rắn (4) thực tế: 7,1100 g;
- Hiệu suất: 91,30%.

3.4.1.4. Giai đoạn tổng hợp BEPT

Giai đoạn này tạo BEPT, phản ứng cộng nucleophile của bromoethyl phenothiazine carbonyl với thiosemicarbazide hình thành sản phẩm (5) là BEPT. Hiệu suất phản ứng:

- Khối lượng theo lý thuyết: 0,01495x405,99220 = 6,06960 g;
- Khối lượng chất rắn thực tế (5): 4,85000 g;
- Hiệu suất: 79,90%.

3.4.1.5. Giai đoạn tổng hợp phức Ni(II)-BEPT và Cd(II)-BEPT

Kết quả phức Ni(II)-BEPT:

- Khối lượng theo lý thuyết: 0,001232x867,904000 = 1,069258 g;
- Khối lượng chất rắn thực tế (5): 0,820463 g;
- Hiệu suất: 76,73%.

Kết quả phức Cd(II)-BEPT:

- Khối lượng theo lý thuyết: 0,001232x83,930000 = 1,138210 g;
- Khối lượng chất rắn thực tế (5): 0,954121 g;
- Hiệu suất: 83,83%.

3.4.2. Tổng hợp BECT và phức Cu(II)-BECT, Zn(II)-BECT

Tương tự, quá trình tổng hợp BECT đi từ tiền chất ban đầu là carbazole (1) cũng qua bốn giai đoạn phản ứng thông qua các hợp chất trung gian. Tất cả các giai đoạn thực nghiệm chúng tôi đã tìm ra quy trình cụ thể ở các bước được trình bày trình bày trong Phụ lục 10. Kết quả cụ thể như sau:

3.4.2.1. Giai đoạn ethyl hóa carbazole

Giai đoạn này gắn nhóm ethyl lên carbazole (1), cho sản phẩm trung gian (2). Hiệu suất phản ứng:

- Khối lượng theo lý thuyết: 0,1200x195,2600 = 23,4312 g;
- Khối lượng chất rắn (2) thực tế: 22,4000 g;
- Hiệu suất: 95,59%.

3.4.2.2. Giai đoạn carbonyl hóa ethyl carbazole

- Khối lượng theo lý thuyết: 0,0060x223,2700 = 14,7358 g;
- Khối lượng chất rắn (3) thực tế: 11,0000g;
- Hiệu suất: 74,65%.

3.4.2.3. Giai đoạn brom hóa carbonyl carbazole

- Khối lượng theo lý thuyết: $0,0223 \times 302,1700 = 6,7384$ g;
- Khối lượng chất rắn (4) thực tế: 4,2400 g;
- Hiệu suất: 62,92%.

3.4.2.4. Giai đoạn tổng hợp BECT

- Khối lượng theo lý thuyết: 0,0100x375,2900 = 3,7529 g;
- Khối lượng chất rắn (5) thực tế: 3,1000 g;
- Hiệu suất: 82,60%.

3.4.2.5. Giai đoạn tổng hợp phức Cu(II)-BECT và Zn(II)-BECT

Kết quả phức Cu(II)-BECT:

- Khối lượng theo lý thuyết: 0,00070x812,10000 = 0,56847 g;
- Khối lượng chất rắn Cu(II)-BECT thực tế: 0,40000 g;
- Hiệu suất: 70,36%.

Kết quả phức Zn(II)-BECT:

- Khối lượng theo lý thuyết: 0,00070x83,93000 = 0,56975 g;
- Khối lượng chất rắn Zn(II)-BECT thực tế: 0,44000 g;
- Hiệu suất: 77,23%.

3.4.3. Xác định cấu trúc của ligand và phức chất

3.4.3.1. Cấu trúc của BEPT

a. Phân tích phổ FT-IR (Phụ lục 11)

Trên phổ FT-IR của BEPT xuất hiện các tín hiệu đặc trưng ở tần số hấp thụ λ_{max} (cm⁻¹) cho ra các dao động liên kết (Bảng 3.28).

Ở giai đoạn phản ứng này, cấu trúc của BEPT có sự thay đổi đáng kể so với tiền chất trước đó. Đầu tiên, có thể nhận thấy sự vắng mặt nhóm chức -CHO ở 1672,42 cm⁻¹ trên phổ FT-IR hợp chất (4). Mặc khác, một tín hiệu cũng xuất hiện ở hợp chất (4) tại 3146,43 cm⁻¹ đặc trưng cho dao động liên kết -NH. Một điểm chú ý nữa đó là ở 1097,14 cm⁻¹ đặc trưng cho liên kết C=S. Điều này cho thấy quá trình phản ứng với BEPT đã thành công. Các tín hiệu ở vùng "dấu vân tay" thay đổi không đáng kể.

STT	Tần số, cm ⁻¹	Loại dao động	Liên kết	Ghi chú
1	3465,00; 3347,00	$v_{\text{N-H}}$	N-H	NH ₂
2	3146,43	$v_{\text{N-H}}$	NH	NH
3	1596,72	V _{C=N}	C=N	Azomathine
4	1529,00	V _{C=C}	C=C	Vòng thơm
5	1462,23	VC-H	С-Н	methylene
6	1245,62	VC-N	C-N	Amin bậc 3
7	1097,14	VC=S	C=S	

Bảng 3.28. Kết quả phân tích phổ FT-IR của BEPT

b. Phân tích phổ ¹H-NMR (Phụ lục 12)

Phổ ¹H-NMR (500 MHz, DMSO-*d*₆) của BEPT cho các tín hiệu cộng hưởng của 15 H như sau:

– $\delta_{ppm} = 1,27$ ppm, mũi triplet (t), 3H của nhóm CH₃, hằng số ghép cặp:

$$J = \frac{500.(1,283 - 1,255)}{2} = 7,0 \ Hz$$

- $\delta_{ppm} = 3,89$ ppm, mũi quartet (q), 2H của nhóm CH₂, hằng số ghép cặp:

$$J = \frac{500.(3,898 - 3,882)}{1} = 6,5 \ Hz$$

- $\delta_{ppm} = 6,92$ ppm, mũi doublet (d), 1H liên kết với vòng thơm, hằng số ghép cặp:

$$J = \frac{500.(6,932 - 6,915)}{1} = 8,5 \ Hz$$

– $\delta_{ppm} = 6,97$ ppm, mũi doublet (d), 1H liên kết với vòng thơm, hằng số ghép cặp:

$$J = \frac{500.(6,983 - 6,965)}{1} = 9,0 \ Hz$$

- $\delta_{ppm} = 7,31$, mũi singlet (s), 1H liên kết vòng thơm.
- $\delta_{ppm} = 7,33$, mũi multilet (m), 1H liên kết vòng thơm.
- $\delta_{ppm} = 7,47$ ppm, mũi doublet (d), 1H liên kết với vòng thơm, hằng số ghép cặp J₁ = 8,8 Hz, J₂ = 1,8 Hz.
- $\delta_{ppm} = 7,71$ ppm, mũi doublet (d), 1H liên kết với vòng thơm:

$$J = \frac{500.(7,707 - 7,704)}{1} = 1,5 \ Hz$$

- $\delta_{ppm} = 7,92$ ppm, mũi singlet (s), 1H liên kết với nhóm CH=N;
- $\delta_{ppm} = 8,0$ ppm, mũi singlet (s), 1H liên kết của nhóm chức NH₂;
- $\delta_{ppm} = 8,1$ ppm, mũi singlet (s), 1H liên kết của nhóm chức NH₂;
- $\delta_{ppm} = 11,32$ ppm, mũi singlet (s), 1 H của nhóm chức NH (liên kết N-NH).

c. Phân tích phổ ¹³C-NMR và phổ DEPT (Phụ lục 13)

Phổ ¹³C-NMR (125 MHz, DMSO- d_6) kết hợp với phổ DEPT 90 và CPD của BEPT cho các tín hiệu cộng hưởng của 16 carbon như sau:

- Có 7 C bậc 4 xuất hiện ở các vị trí 113,9; 122,5; 124,8; 127,9; 142,8; 144,9 và 177,7 ppm;
- Có 1 C của nhóm CH₃ ở vị trí 12,3 ppm, mũi hấp thụ cộng hưởng dương;
- Có 1 C của nhóm CH_2 ở vị trí 41,4 ppm, mũi hấp thụ cộng hưởng âm;
- Có 7 C của nhóm CH ở vị trí 113,5; 115,2; 117,1; 124,7; 128,8; 130,2; 141,0.

d. Phổ HR-MS (Phụ lục 14)

Phổ khối phân giải cao (HR-MS) theo phương pháp phun mù điện tử (ESI) - 2 lần MS: (MS-MS), ion hóa dương.

- Tính toán lý thuyết hợp chất BEPT: $[M+H]^+ = 407,0000;$
- Tính toán phổ nghiệm: $[M+H]^+ = 406,9988;$
- Sai số giữa lý thuyết và thực nghiệm:

ARE, $\% = |407,0000 - 406,9988| \times 100\% = 0,12\%$.

Dựa vào kết quả phân tích phổ FT-IR, ¹H-NMR, ¹³C-NMR, ESI-MS kết hợp phổ DEPT có thể kết luận rằng BECT đã được tổng hợp thành công.

3.4.3.2. Cấu trúc của phức chất Cd(II)-BEPT

a. Phân tích phổ FT-IR (Phụ lục 15)

Trên phổ FT-IR của phức chất Cd(II)-BEPT xuất hiện các tín hiệu đặc trưng ở tần số hấp thụ λ_{max} (cm⁻¹) cho các dao động liên kết trình bày trong Bảng 3.29.

Sự vắng mặt của dao động 1097 cm⁻¹ (dao động của liên kết đôi C=S) trên phổ của phức chất Cd(II)-BEPT, nhưng lại xuất hiện trên phổ của BEPT là do liên kết đôi C=S trong BEPT đã chuyển thành liên kết đơn do sự tạo phức. Đồng thời, có sự xuất hiện các dao động C-S tại tần số 813,55 cm⁻¹ và Cd-S tại tần số 524,51 cm⁻¹.

STT	Tần số, cm ⁻¹	Loại dao động	Liên kết	Ghi chú
1	3423,16	$v_{\text{N-H}}$	N-H	NH_2
2	3226,30	$v_{\text{N-H}}$	N-H	NH_2
3	1596,69	VC=N	C=N	Azomethine
4	1548,53	v _{C=C}	C=C	Vòng thơm
5	1465,38	v _{C-H}	С-Н	Methylene
6	1251,39	v _{C-N}	C-N	Amin bậc 3
7	813,55	VC-S	C-S	
8	524,51	V _{Cd-S}	Cd-S	

Bảng 3.29. Kết quả phân tích phổ FT-IR của phức Cd(II)-BEPT

b. Phân tích phổ ¹H-NMR (Phụ lục 16)

Phổ ¹H-NMR (500 MHz, DMSO- d_6) của hợp chất Cd(II)-BEPT cho các tín hiệu cộng hưởng của 14 H như sau:

- $\delta_{ppm} = 1,27$ ppm, mũi triplet (t), 3H của nhóm CH₃, hằng số ghép cặp:

$$J = \frac{500.(1,282 - 1,2563)}{2} = 6,8 \ Hz$$

- $\delta_{ppm} = 3,89$ ppm, mũi quartet (q), 2H của nhóm CH₂, hằng số ghép cặp:

$$J = \frac{500.(3,913 - 3,878)}{2} = 5,8 \ Hz$$

- $\delta_{ppm} = 6,93$ ppm, mũi doublet (d), 1H liên kết với vòng thơm:

$$J = \frac{500.(6,934 - 6,926)}{1} = 8,5 \ Hz$$

– $\delta_{ppm} = 6,98$ ppm, mũi doublet (d), 1H liên kết với vòng thơm:

$$J = \frac{500.(6,992 - 6,974)}{1} = 9,0 \ Hz$$

- $\delta_{ppm} = 7,32$ ppm, mũi singlet (s), 1H liên kết với vòng thơm;
- $\delta_{ppm} = 7,34$ ppm, mũi singlet (s), 1H liên kết với vòng thơm;
- δ_{ppm} = 7,50 ppm, mũi doublet (d), 1H liên kết với vòng thơm;

$$J = \frac{500.(7,480 - 7,464)}{1} = 8,0 \ Hz$$

- $\delta_{ppm} = 7,72$ ppm, mũi singlet (s), 1H liên kết với vòng thơm;
- $\delta_{ppm} = 7,90$ ppm, mũi singlet (s), 1H của nhóm chức CH=N;
- $\delta_{ppm} = 8,10$ ppm, mũi singlet (s), 1H của nhóm chức NH₂;
- $\delta_{ppm} = 8,15$ ppm, mũi singlet (s), 1H của nhóm chức NH₂;

c. Phân tích phổ ¹³C-NMR (Phụ lục 17)

Phổ ¹³C-NMR (125 MHz, DMSO-*d*₆) kết hợp với phổ DEPT 90, DEPT135 và CPD của phức Cd(II)-BEPT cho các tín hiệu cộng hưởng của 16 carbon như sau:

- Có 7 carbon bậc bốn xuất hiện ở các vị trí 114,0; 122,5; 124,8; 128,7; 142,8; 145,0; 177,3 ppm;
- Có 1 C của nhóm CH₃ ở vị trí 12,3 ppm, mũi hấp thụ cộng hưởng dương;
- Có 1 C của nhóm CH_2 ở vị trí 41,5 ppm, mũi hấp thụ cộng hưởng âm;
- Có 7 C của nhóm CH ở các vị trí 115,2; 117,2; 124,8; 128,1; 128,8; 130,2; 141,4 ppm.

d. Phân tích phổ HSQC và HMBC (Phụ lục 18)

Phổ HSQC và HMBC của phức Cd(II)-BEPT cho các tín hiệu hai chiều tương ứng với các vị trí H, C của các phổ ¹H-NMR và ¹³C-NMR thể hiện trong Phụ lục 18 và kết quả phân tích phổ được tổng hợp trong Bảng p18.1.

e. Phân tích phổ khối lượng HR-MS (Phụ lục 19)

Phổ khối phân giải cao (HR-MS) được ghi theo phương pháp phun mù điện tử (ESI) - 2 lần MS: (MS-MS), ion dương.

Tính toán lý thuyết phức chất Cd(II)-BEPT:

 $[M+H]^+ = 923,8720 + 1,0078 = 924,8798;$

- Thực nghiệm: $[M+H]^+ = 924,8783;$
- Sai số giữa lý thuyết và thực nghiệm:

ARE, $\% = |924,8798 - 924,8783| \times 100\% = 0,15\%$.

e. Phổ EDX và SEM (Phụ lục 20)

Phổ EDX cho thấy sự xuất hiện của Cd trong cấu trúc và hình thái bề mặt của phức cũng được quan sát trên ảnh SEM. Dựa vào kết quả phân tích phổ FT-IR, ¹H-NMR, ¹³C-NMR, ESI-MS kết hợp phổ DEPT, HSQC và HMBC có thể kết luận rằng Cd(II)-BEPT đã được tổng hợp thành công.

3.4.3.3. Cấu trúc phức chất Ni(II)-BEPT

a. Phân tích phổ FT-IR (Phụ lục 21)

Trên phổ FT-IR của phức chất Ni(II)-BEPT xuất hiện các tín hiệu đặc trưng ở tần số hấp thụ λ_{max} (cm⁻¹) cho các dao động liên kết trong Bảng 3.30.

STT	Tần số, cm ⁻¹	Loại dao động	Liên kết	Ghi chú
1	3260,27	$v_{\text{N-H}}$	NH	NH ₂
2	3159,09	VN-H	NH	NH ₂
3	1596,36	VC=N	C=N	Azomathine
4	1529,04	v _{C=C}	C=C	Vòng thơm
5	1462,90	VC-H	C-H	Methylen
6	1400,50	VC-H	C-H	Methyl
7	1250,95	VC-N	C-N	Amin bậc 3
8	819,00	v _{C-S}	C-S	
9	557,61	v _{C-Ni}	C-Ni	

Bảng 3.30. Kết quả phân tích phổ FT-IR của phức chất Ni(II)-BEPT

Tương tự phức Cd(II)-BEPT, sự vắng mặt của dao động tại 1097 cm⁻¹ (dao động dãn liên kết đôi C=S) trên phổ của phức chất Cd(II)-BEPT, nhưng lại xuất hiện trên phổ của BEPT là do liên kết đôi trong C=S trong BEPT đã chuyển thành liên kết đơn C-S do sự tạo phức. Đồng thời, có sự xuất hiện dao động C-S tại tần số 819,00 cm⁻¹ và Ni-S tại tần số 557,61 cm⁻¹.

b. Phân tích phổ ¹H-NMR của phức Ni(II)-BEPT (Phụ lục 22)

Phổ ¹H-NMR (500 MHz, DMSO-*d*₆) cho các tín hiệu cộng hưởng của 14 H:

- $\delta_{ppm} = 1,25$, mũi triplet (t), 3H của nhóm CH₃, hằng số ghép cặp *J*:

$$J = \frac{500.(1,262 - 1,236)}{2} = 6,5 \ Hz$$

- $\delta_{ppm} = 3,90$, mũi doublet (d), 2H của nhóm CH₂, hằng số ghép cặp *J*:

$$J = \frac{500.(3,874 - 3,861)}{1} = 6,5 \ Hz$$

 $-\delta_{ppm} = 6,93$, mũi doublet (d), 1H liên kết với vòng thơm, hằng số ghép cặp J:

$$J = \frac{500.(6,919 - 6,902)}{1} = 8,5 \ Hz$$

- $\delta_{ppm}=$ 7,0, mũi doublet (d), 1H liên kết với vòng thơm, hằng số ghép cặp J:

$$J = \frac{500.(6,971 - 6,954)}{1} = 8,5 \ Hz$$

- $\delta_{ppm}=$ 7,3, mũi singlet (s), 1H liên kết vòng thơm;
- $\delta_{ppm} = 7,3$, mũi doublet (d), 1H liên kết vòng thơm, hằng số ghép cặp J:

$$J = \frac{500.(7,335 - 7,319)}{1} = 8,0 \ Hz$$

– $\delta_{ppm}=7,5$, mũi doublet (d), 1H liên kết với vòng thơm, hằng số ghép cặp J:

$$J = \frac{500.(7,480 - 7,464)}{1} = 8,0 \ Hz$$

- $\delta_{ppm} = 7,7$, mũi singlet (s), 1H liên kết với vòng thơm;
- $\delta_{ppm} = 7,9$, mũi singlet (s), 1H của nhóm chức CH=N;
- $\delta_{ppm} = 8,08$, mũi singlet (s), 1H của nhóm chức NH₂;
- $\delta_{ppm} = 8,15$, mũi singlet (s), 1H của nhóm chức NH₂;

c. Phân tích phổ ¹³C-NMR của phức Ni(II)-BEPT (Phụ lục 23)

Phổ ¹³C-NMR (125 MHz, DMSO-d₆) kết hợp với phổ DEPT 90, DEPT135 và

CPD của hợp chất (5) cho các tín hiệu cộng hưởng của 16 C như sau:

- 7 carbon bậc bốn xuất hiện ở các vị trí 113,5; 122,1; 124,4; 142,4; 144,5;
 177,1 ppm;
- 1 C nhóm CH₃ xuất hiện ở vị trí 11,9 ppm với mũi cộng hưởng dương.
- 1 C của nhóm CH₂ xuất hiện ở vị trí 41,1 ppm, mũi hấp thụ cộng hưởng âm.
- 7 C của nhóm CH xuất hiện ở các vị trí 114,8; 116,7; 124,3; 127,5; 128,3; 129,8; 140,7 ppm.

d. Phân tích phổ HMQC và HMBC của phức Ni(II)-BEPT (Phụ lục 24)

Phố HSQC và HMBC của phức Ni(II)-BEPT cho các tín hiệu hai chiều tương ứng với các vị trí H, C của các phổ ¹H-NMR và ¹³C-NMR thể hiện trong Phụ lục 18 và kết quả phân tích phổ được tổng hợp trong Bảng p24.1.

e. Phân tích phổ khối lượng HR-MS (Phụ lục 25)

Phổ khối phân giải cao (HR-MS) được ghi theo phương pháp phun mù điện (ESI) - 2 lần MS: (MS-MS), ion dương.

– Tính toán lý thuyết phức chất Ni(II)-BEPT:

 $[M+H]^+ = 867,9040 + 1,0078 = 868,9118;$

- Thực nghiệm: $[M+H]^+ = 868,9127;$

– Sai số giữa lý thuyết và thực nghiệm:

ARE, $\% = |868,9118 - 868,9127| \times 100\% = 0,09\%$.

f. Phổ EDX và SEM (Phụ lục 26)

Phổ EDX cho thấy sự xuất hiện của Ni trong cấu trúc và hình thái bề mặt của phức cũng được quan sát trên ảnh SEM.

Dựa vào kết quả phân tích phổ FT-IR, ¹H-NMR, ¹³C-NMR, ESI-MS kết hợp phổ DEPT, HSQC và HMBC có thể kết luận rằng Ni(II)-BEPT đã được tổng hợp thành công.

3.4.3.4. Cấu trúc của BECT

a. Kết quả phổ FT-IR (Phụ lục 27)

Phổ FT-IR BECT xuất hiện các tín hiệu đặc trưng ở tần số hấp thụ λ_{max} (cm⁻¹) cho ra các tín hiệu được phân tích cụ thể ở Bảng 3.31. Ở giai đoạn này, BECT có sự thay đổi đáng kể về mặt cấu trúc so với tiền chất trước đó. Đầu tiên, có thể nhận thấy sự vắng mặt có nhóm chức -CHO tại 1681,46 cm⁻¹ phổ FT-IR hợp chất (4). Mặc khác, một tín hiệu cũng xuất hiện ở giai đoạn phản ứng này là 3144,40 cm⁻¹, là tín hiệu đặc trưng của liên kết NH. Một điểm chú ý nữa đó là tín hiệu ở độ hấp thụ 1088,45 cm⁻¹, đặc trưng cho liên kết C=S. Điều này có thể giải thích rằng, quá trình phản ứng với BECT đã thành công. Các tín hiệu ở vùng "dấu vân tay" không thay đổi đáng kể.

STT	Tần số, cm ⁻¹	Loại dao động	Liên kết
1	3425	$v_{\text{N-H}}$	NH
2	3281	$v_{\text{N-H}}$	NH
3	3144	$v_{\text{N-H}}$	NH
4	2979	VC-H	С-Н
5	1590	VC=H	HC=N
6	1526	VC=C	C=C (vòng thơm)
7	1446	δ _{C-H}	C-H (dao động biến dạng)
8	1282	V _{C-N}	C-N
9	1227	V _{C-N}	C-N
10	1088	VC=S	C=S
11	800	VAr-X	Ar-X (vòng thơm mang nhóm thế)
12	625	VC-Br	C-Br (vòng thơm mang nhóm thế)

Bảng 3.31. Kết quả phân tích phổ FT-IR của BECT

b. Kết quả phổ ¹H-NMR (Phụ lục 28)

Phổ ¹H-NMR (500 MHz, DMSO-*d*₆) của BECT cho các tín hiệu cộng hưởng của một số proton H như sau:

- δ_H = 4,43 ppm, mũi quartet (q), hằng số ghép cặp:

$$J = \frac{4,451 - 4,409}{3} \times 500 = 7,0 \text{ Hz}$$

– $\delta_{\rm H} = 7,63$ ppm, mũi doublet (d), hằng số ghép cặp:

 $J = (7,636 - 7,619) \times 500 = 8,5$ Hz

- δ_H = 7,96 ppm, mũi doublet (d), hằng số ghép cặp:

 $J = (7,966 - 7,9485) \times 500 = 8,8$ Hz

Phổ ¹H-NMR (500 MHz, DMSO- d_6 , δ ppm), δ (ppm): 1,29 (t, J = 7,0 Hz, 3H, CH₃), 4,43 (q, J = 7,0 Hz, 2H, CH₂), 7,58 -7,59 (m, 1H, CH vòng thơm), 7,58 (s, 1H, CH vòng thơm), 7,63 (d, J = 8,5 Hz, 1H, CH vòng thơm), 7,96 (d, $J_1 = 8,8$ Hz, 2H, CH vòng thơm), 8,17 (s, 1H, CH vòng thơm), 8,22 (s, 1H, NH của NH₂), 8,42 (s, 1H, CH=N), 8,65 (s, 1H, NH của NH₂), 11,41 (s, 1H, NH). Tổng hợp số liệu phổ trong bảng Phụ lục 28.

c. Kết quả phổ ¹³C-NMR, DEPT và CPD (Phụ lục 29)

Phổ ¹³C-NMR (DMSO- d_6 ,), DEPT 90, 135 và CPD (DMSO- d_6) đã được trình bày trong Phụ lục 29.

Phổ ¹³C-NMR (125MHz, DMSO- d_6 , δ ppm) kết hợp với phổ DEPT 90, 135, CPD cho thấy có tổng cộng 16 tín hiệu tương ứng với 16 carbon, bao gồm 1 carbon tại δ (ppm): 13,7 (CH₃), 37,3 (CH₂), 109,6 (CH), 111,4 (CH), 111,5 (C bậc bốn), 120,6 (CH), 121,4 (C bậc bốn), 123,1 (CH), 124,2 (C bậc bốn), 125,6 (CH), 125,9 (bậc bốn), 128,4 (CH), 138,7 (C bậc bốn), 140,8 (C bậc bốn), 143,2 (CH) và 177,6 (C bậc bốn).

d. Kết quả phổ HR-MS (Phụ lục 30)

Phổ khối phân giải cao (HR-MS) được ghi theo phương pháp phun mù điện (ESI) - 2 lần MS: (MS-MS), ion dương.

– Tính toán lý thuyết phức chất BECT:

 $[M+H]^+ = 374,0201 + 1,0078 = 375,0279;$

Thực nghiệm: [M+H]⁺ = 375,0260;

Sai số giữa lý thuyết và thực nghiệm:

ARE, $\% = |375,0279 - 375,0260| \times 100 = 0,19\%$.

Dựa vào kết quả phân tích phổ FT-IR, ¹H-NMR, ¹³C-NMR, ESI-MS kết hợp phổ DEPT có thể kết luận rằng BECT đã được tổng hợp thành công.

3.4.3.5. Cấu trúc của phức Cu(II)-BECT

a. Kết quả phổ FT-IR (Phụ lục 31)

Trên phổ FT-IR phức chất Cu(II)-BECT xuất hiện các tín hiệu đặc trưng ở tần số hấp thụ λ_{max} (cm⁻¹) cho các dao động liên kết (Bảng 3.32).

Sự vắng mặt của dao động tại 1088 cm⁻¹ (dao động liên kết đôi C=S) trên phổ của phức chất Cu(II)-BECT, nhưng lại xuất hiện trên phổ của BECT là do liên kết đôi trong C=S trong BECT đã chuyển thành liên kết đơn do sự tạo phức. Đồng thời, có sự xuất hiện các dao động C-S tại 869,55 cm⁻¹ và Cu-S tại 564,56 cm⁻¹.

STT	Tần số, cm ⁻¹	Loại dao động	Liên kết
1	3078	VN-H	N-H
2	1578	V _{C=N}	HC=N
3	1468	δ _{C-H}	C-H (dao động biến dạng)
4	1284	VC-N	C-N amin bậc ba
5	1230	VC-N	C-N amin bậc ba
6	869	VC=S	C-S
7	798	V _{Ar-X}	Ar-X (vòng thơm mang nhóm thế)
8	564	V _{Cu-S}	Cu-S

Bảng 3.32. Kết quả phân tích phổ FT-IR của phức Cu(II)-BECT

b. Kết quả phổ ¹H-NMR (Phụ lục 32)

Phổ ¹H-NMR (500 MHz, DMSO- d_6) của BECT cho các tín hiệu cộng hưởng của một số proton H như sau:

- $\delta_H = 1,31$ ppm, mũi triplet (t), hằng số ghép cặp:

$$J = \frac{1,328 - 1,300}{2} \times 500 = 7,0 \text{ Hz}$$

- $\delta_{\rm H} = 4,47$ ppm, mũi quartet (q), hằng số ghép cặp:

$$J = \frac{4,475 - 4,462}{2} \times 500 = 6,5 \text{ Hz}$$

- δ_H = 7,7 ppm, mũi doublet (d), hằng số ghép cặp:

 $J = (7,710 - 7,689) \times 500 = 8,5$ Hz

– $\delta_{\rm H} = 8,03$ ppm, mũi doublet (d), hằng số ghép cặp:

 $J = (8,804 - 8,016) \times 500 = 8,5 \text{ Hz}$

Phổ ¹H-NMR (500 MHz, DMSO-*d*₆, δ ppm), δ (ppm): 1,31 (t, *J* = 7,0 Hz, 3H, CH₃), 4,47 (q, *J* = 6,5 Hz, 2H, CH₂), 7,60÷7,65 (m, 1H, H vòng thơm), 7,63 (s, 1H, CH=N), 7,70 (d, 1H, *J* = 8,5 Hz, H vòng thơm), 8,03 (d, *J* = 8,5 Hz, 1H, H vòng thơm), 8,29 (s, 1H, H của vòng thơm), 8,41 (s, 1H, CH vòng thơm), 8,52 (s, 1H, H của NH₂), 8,68 (s, 1H, H vòng thơm), 8,7 (s, 1H, NH của NH₂). Tổng hợp số liệu phổ ¹H-NMR được trình bày đầy đủ trong Phụ lục 32.

c. Kết quả phổ ¹³C-NMR (Phụ lục 33)

Phổ ¹³C-NMR (DMSO- d_6 ,), DEPT 90, 135 và CPD (DMSO- d_6) được trình bày đầy đủ trong Phụ lục 33.

Phổ ¹³C-NMR 125 MHz, DMSO-*d*₆, δ (ppm) kết hợp với phổ DEPT 90, 135 và CPD cho thấy có tổng cộng 16 tín hiệu tương ứng với 16 carbon. Tại δ (ppm): 13,5 (CH₃), 37,2 (CH₂), 109,6 (CH), 111,3 (CH), 111,4 (C bậc bốn), 121,2 (CH), 122,9 (C bậc bốn), 123,9 (CH), 124,7 (C bậc bốn), 125,8 (CH), 128,3 (CH), 128,9 (C bậc bốn), 138,6 (C bậc bốn), 141,0 (C bậc bốn), 146,4 (CH) và 191,51 (C bậc bốn).

d. Phân tích phổ HSQC và HMBC (Phụ lục 34)

Phổ HSQC và HMBC của phức Cu(II)-BECT cho các tín hiệu hai chiều tương ứng với các vị trí H, C của các phổ ¹H-NMR và ¹³C-NMR thể hiện trong Phụ lục 34 và kết quả phân tích phổ được tổng hợp trong Bảng p34.1.

e. Kết quả phổ HR-MS (Phụ lục 35)

Phổ khối phân giải cao (HR-MS) được ghi theo phương pháp phun mù điện (ESI) - 2 lần MS: (MS-MS), ion dương.

Tính toán lý thuyết phức chất Cu(II)-BECT:

 $[M+H]^+ = 808,9541 + 1,0078 = 809,9619;$

- Thực nghiệm: $[M+H]^+ = 809,9527;$
- Sai số giữa lý thuyết và thực nghiệm: ARE, % = 0.92%.

Dựa vào kết quả phân tích phổ FT-IR, ¹H-NMR, ¹³C-NMR, ESI-MS kết hợp phổ DEPT, tương tác phổ 2 chiều HSQC, HMBC, kỹ thuật lắc D₂O có thể kết luận rằng Cu(II)-BECT đã được tổng hợp thành công.

3.4.3.6. Cấu trúc của phức Zn(II)-BECT

a. Kết quả phổ FT-IR (Phụ lục 36)

Trên phổ FT-IR của phức chất Zn(II)-BECT xuất hiện các tín hiệu đặc trưng ở tần số hấp thụ λ_{max} (cm⁻¹) cho các dao động liên kết (Bảng 3.33).

STT	Tần số, cm ⁻¹	Loại dao động	Liên kết
1	3166	VN-H	N-H
2	1501	V _{C=N}	C=N
3	1468	δ _{C-H}	C-H (dao động biến dạng)
4	1224	VC-N	C-N
5	1148	VC-N	C-N
6	1018	VC=S	C=S
7	693	V _{Ar-X}	Ar-X (vòng thơm mang nhóm thế)
8	621	VZn-S	C-Br

Bảng 3.33. Kết quả phân tích phổ FT-IR của phức Zn(II)-BECT

Sự vắng mặt của dao động tại 1088 cm⁻¹ (dao động của liên kết đôi C=S) trên phổ của phức chất Zn(II)-BECT, nhưng lại xuất hiện trên phổ của BECT là do liên kết đôi trong C=S trong BECT đã chuyển thành liên kết đơn do sự tạo phức. Đồng thời, có sự xuất hiện của dao động Cu-S tại 621,95 cm⁻¹.

b. Kết quả phổ ¹H-NMR (Phụ lục 37)

Phổ ¹H-NMR (500 MHz, DMSO- d_6) của Zn(II)-BECT cho các tín hiệu cộng hưởng của một số proton H như sau:

- δ_H =1,30 ppm, mũi triplet (t), hằng số ghép cặp:

$$J = \frac{3,313 - 1,284}{2} \times 500 = 7,3 \text{ Hz}$$

- $\delta_H = 4,44$ ppm, mũi quartet (q), hằng số ghép cặp:

$$J = \frac{4,464 - 4,424}{3} \times 500 = 6,7 \text{ Hz}$$

– $\delta_{\rm H}$ =7,96 ppm, mũi doublet (d), hằng số ghép cặp:

$$J = (7,968 - 7,951) \times 500 = 8,5$$
 Hz

– $\delta_{\rm H}$ =7,96 ppm, mũi doublet (d), hằng số ghép cặp:

$$J = (7,968 - 7,951) \times 500 = 8,5$$
 Hz

Phổ ¹H-NMR, 500 MHz, DMSO- d_6 , δ (ppm): 1,30 (t, $J = 7,3, 3H, CH_3$), 4,44 (q, J = 6,7 Hz, 2H, CH₂), 7,56÷7,67 (m , 3H, vòng thơm), 7,96 (d, J = 8,5 Hz, 1H, vòng thơm), 7,99 (s, 1H, NH₂), 8,23 (s, 1H, NH₂), 8,23 (s, 1H, CH=N), 8,45 (s, 1H, vòng thơm), 8,65 (s, 1H, vòng thơm). Tổng hợp số liệu theo Phụ lục 37.

c. Kết quả phổ ¹³C-NMR (Phụ lục 38)

Phổ ¹³C-NMR (DMSO-*d*₆,) và DEPT 90, 135 và CPD (DMSO-*d*₆) được trình bày trong Phụ lục 38. Phổ ¹³C-NMR 125 MHz, DMSO-*d*₆, δ (ppm) kết hợp với phổ DEPT 90, 135 và CPD cho thấy có tổng cộng 16 tín hiệu tương ứng với 16 carbon. Tại δ (ppm): 13,7 (CH₃), 37,4 (CH₂), 109,7 (CH), 111,4 (C bậc bốn), 111,6 (CH), 120,7 (CH), 121,5(C bậc bốn), 123,2(CH), 124,2(C bậc bốn), 124,4(C bậc bốn), 125,7 (CH), 128,5 (CH), 138,0 (C bậc bốn), 140,9 (C bậc bốn), 143,8(CH), 177,0 (C bậc bốn).

d. Phân tích phổ HSQC và HMBC (Phụ lục 39)

Phổ HSQC và HMBC của phức Zn(II)-BECT cho các tín hiệu hai chiều tương ứng với các vị trí H, C của các phổ ¹H-NMR và ¹³C-NMR thể hiện trong Phụ lục 39 và kết quả phân tích phổ được tổng hợp trong Bảng p39.1.

e. Kết quả phổ HR-MS (Phụ lục 40)

Phổ khối phân giải cao (HR-MS) được ghi theo phương pháp phun mù điện (ESI) - 2 lần MS: (MS-MS), ion dương.

– Tính toán lý thuyết phức chất Zn(II)-BECT:

 $[M+H]^+ = 809,9537 + 1,0078 = 810,9615;$

- Thực nghiệm: $[M+H]^+ = 810,9610;$
- Sai số giữa lý thuyết và thực nghiệm: ARE, % = 0.05%.

Dựa vào kết quả phân tích phổ FT-IR, ¹H-NMR, ¹³C-NMR, ESI-MS kết hợp phổ DEPT, tương tác phổ 2 chiều HSQC, HMBC, kỹ thuật lắc D₂O có thể kết luận rằng Zn(II)-BECT đã được tổng hợp thành công.

3.5. XÁC ĐỊNH HẰNG SỐ BỀN CỦA PHỨC VÀ ĐÁNH GIÁ MÔ HÌNH

3.5.1. Phức chất Ni(II)-BEPT và Cd(II)-BEPT

3.5.1.1. Khảo sát thăm dò

Khảo sát thăm dò cho thấy quá trình tạo phức diễn ra rất nhanh dựa trên hiện tượng thay đổi màu sắc giữa BEPT ban đầu và các phức chất của Ni²⁺ và Cd²⁺.

Ligand/ phức	Quan sát					
của kim loại	Tức thời	15 phút	30 phút	60 phút	120 phút	
BEPT	Vàng xanh					
Ni(II)-BEPT	Vàng nhạt					
Cd(II)-BEPT	Vàng đậm					

Bảng 3.34. Theo dõi màu sắc của sự tạo thành phức

3.5.1.2. Phức chất Cd(II)-BEPT

a. Khảo sát λ_{max}

Phổ được quét trong khoảng bước sóng từ 200 đến 600 nm (Hình 3.16).

Hình 3.16. Phổ UV-Vis của BEPT và phức chất Cd(II)-BEPT

Dung dịch ion kim loại Cd²⁺ được khảo sát ở hai nồng độ 6 ppm (3 mL) và 10 ppm (5 mL) có khả năng hấp thụ quang mạnh ở bước sóng 242 và 408 nm; và của BEPT là 342 nm. Tuy nhiên, tại bước sóng 242 nm ion kim loại bị ảnh hưởng của peak ligand thấp hơn, và tại đây độ hấp thụ quang thường không ổn định, dễ bị nhiễu. Vì vậy, bước sóng tối ưu tại 408 nm được chọn và tại đây chất phân tích không bị ảnh hưởng của các chất tham gia phản ứng như BEPT, KNO₃. Như vậy, chọn bước sóng 408 nm để khảo sát các bước tiếp theo.

b. Khảo sát pH

Ở giai đoạn thăm dò, định tính qua màu sắc phức và độ hấp thụ quang (A) cho thấy sự tạo phức tốt hơn ở pH ≥ 7, do đó chọn pH = 7÷11. Tuy nhiên, chúng tôi cũng đo tại pH = 6 để kiểm chứng điều này qua giá trị hấp thụ quang và để phục vụ cho việc xác định hằng số bền. Kết quả được trình bày trong Bảng p41.3 của Phụ lục 41 và biểu diễn trên Hình 3.17.

Hình 3.17. Ảnh hưởng của pH đến độ hấp thụ quang của phức Cd(II)-BEPT

Như vậy, pH là một yếu tố quan trọng, ảnh hưởng đến độ hấp thụ quang của chất tạo thành. pH thay đổi thì mật độ quang cũng thay đổi, khi thay đổi pH từ 6 đến 11 thì độ hấp thụ quang cũng tăng dần rồi giảm. Dựa vào biểu đồ ta thấy tại pH = 9 thì độ hấp thụ quang là lớn nhất ở cả hai nồng độ khảo sát.

Như đã trình bày, trong dung dịch thiosemicarbazone có thể tồn tại ở dạng thione hoặc thiol theo cân bằng (hình 1.3) [71]. Trong điều kiện, pH > 7 sẽ thuận lợi cho quá trình tạo phức khi proton của N vị trí 4 sẽ chuyển dịch qua lưu huỳnh và tương tác dễ dàng với OH⁻ (do pH > 7) nên tạo ra phối tử hai càng mang điện tích và từ đó hai dạng phối tử trên có thể tạo phức hai càng với các ion kim [71], [137]. Tuy nhiên quá trình tạo phức tốt nhất ở pH = 9 là vì ở pH < 9 nồng độ OH⁻ không đủ tương tác với proton của BEPT dẫn đến khả năng tạo phức cò hạn chế. Ngược lại, khi pH > 9 lượng OH⁻ dư dẫn đến khả năng tạo phức hydroxo hoặc tạo phức với chính ion kim loại Cd²⁺ điều này cũng ảnh hưởng đến khả năng tạo phức của hệ. Do đó, lựa chọn pH = 9 cho các khảo sát tiếp theo.

c. Khảo sát lực ion

Kết quả khảo sát sự phụ thuộc của độ hấp thụ quang vào lực ion được trình bày trong Bảng p41.6 của Phụ lục 41 và biểu diễn trên Hình 3.18.

Hình 3.18. Ảnh hưởng của lực ion đến độ hấp thụ quang của phức Cd(II)-BEPT

Kết quả cho thấy lực ion có ảnh hưởng đến độ hấp thụ quang. Lự ion ảnh hưởng đến hệ số hoạt độ của ion Cd²⁺ trong dung dịch và được tính toán qua định luật Debye-Huckel [38]. Khi nồng độ KNO₃ lớn, lực ion sẽ lớn từ đó hệ số hoạt độ tính toán sẽ nhỏ do đó ảnh hưởng đến khả năng hoạt động của ion kim loại trong hệ bởi vì tất cả các ion trong hệ đều chịu tác động chung cùng một lực ion (Định luật Lewis – Randall). Mặt khác, khi nồng độ KNO₃ quá nhỏ, mặc dù sự phân ly KNO₃ là hoàn toàn, lực ion sẽ lớn và hệ số hoạt độ lớn nhưng không đủ lượng K⁺ tương tác với Cd²⁺ góp vào khả năng tạo phức. Như vậy, KNO₃ nhận giá trị 0,01 M theo thực nghiệm là đủ để khả năng tạo phức tốt nhất dựa trên giá trị quang đo được. Trong trường hợp này, chúng tôi chọn lực ion với giá trị nồng độ KNO₃ 0,01 M để khảo sát tiếp theo.

d. Khảo sát nồng độ BEPT

Kết quả khảo sát nồng độ thuốc thử BEPT ở hai mức nồng độ của Cd²⁺ là 6 ppm và 10 ppm và độ hấp thụ quang được trình bày trong Bảng p41.8 của Phụ lục 41 và biểu diễn trên Hình 3.19.

Kết quả cho thấy rằng khi nồng độ thuốc thử đạt đến 20 ppm thì độ hấp thụ quang hầu như không đổi. Do đó, trong các khảo sát chúng tôi chọn nồng độ ligand là 20 ppm tương ứng 10 mL từ nồng độ đầu 50 ppm.

Hình 3.19. Ảnh hưởng nồng độ BEPT đến độ hấp thụ quang của Cd(II)-BEPT

e. Khảo sát thời gian bền màu của phức

Kết quả khảo sát thời gian bền màu được chỉ ra trong Bảng p41.10 ở Phụ lục 41 và biểu diễn như Hình 3.20.

Thực tế khảo sát định tính thông qua màu sắc của phức chất cho thấy phức bền màu trong khoảng thời gian khá dài (khoảng 72 giờ). Dựa trên kết quả đo quang cho

thấy rằng phức sau 60 phút có thể bị ảnh hưởng do sự tác động của ánh sáng kèm theo sự oxy hóa do sự khuếch tán không khí vào bên trong dung dịch. Tuy nhiên, đây là khoảng thời gian khá dài đủ để khảo sát và phân tích.

Hình 3.20. Thời gian bền màu của phức Cd(II)-BEPT

f. Xác định công thức phức theo phương pháp Job

Trong phương pháp này, tổng nồng độ mol của hai chất phản ứng được giữ không đổi nhưng tỷ lệ của chúng thay đổi. Từ đó ta có được tỷ lệ mol của kim loại trên tổng của kim loại và BEPT. Kết quả được chỉ ra trong Bảng p41.11 ở Phụ lục 41 và Hình 3.21a.

Hình 3.21. Kết quả đo quang công thức phức Cd(II)-BEPT

Khảo sát cho thấy giá trị độ hấp thụ quang lớn nhất tại tỷ lệ mol của $Cd^{2+}/(Cd^{2+}+BEPT)$ xấp xĩ bằng 0,3 tương ứng với tỷ lệ 1/3. Điều này có nghĩa là một ion kim loại sẽ liên kết với hai ligand để tạo thành hợp chất phức với công thức là ML₂.

g. Xác định công thức theo phương pháp tỷ lệ mol

Để đảm bảo chắc chắn hơn trong kết quả nghiên cứu, tiếp theo dùng phương pháp tỷ lệ mol để xác định công thức phức. Trong phương pháp này, chúng tôi sẽ cố định nồng độ kim loại và thay đổi nồng độ thuốc thử thông qua việc thay đổi thể tích. Kết quả được trình bày trong Bảng p41.12 ở Phụ lục 41 và Hình 3.21b.

Như vậy, kết quả khảo sát cho thấy độ hấp thụ quang đạt giá trị lớn nhất và không đổi tại tỷ lệ mol của BEPT/Cd²⁺ xấp xĩ bằng 2 tương ứng với tỷ lệ 2/1. Điều đó cũng có nghĩa là một ion kim loại sẽ liên kết với hai ligand để tạo thành hợp chất phức. Như vậy, phương pháp này cũng cho kết quả công thức phức ML₂.

3.5.1.3. Phức chất Ni(II)-BEPT

a. Khảo sát λ_{max}

Một cách tượng tự, tiến hành quét phổ trong khoảng bước sóng từ 200 đến 600 nm. Kết quả được biểu diễn qua Hình 3.22.

Hình 3.22. Phổ UV-Vis của BEPT và phức chất Ni(II)-BEPT

Như vậy, khi tiến hành quét bước sóng từ 200 đến 600 nm. Phức Ni(II)-BEPT được khảo sát với hai nồng độ Ni²⁺ là 6 ppm và 10 ppm. Kết quả cho thấy dung dịch phức có khả năng hấp thụ quang cao ở bước sóng 262 và 424 nm. Tuy nhiên, tại bước sóng 262 nm ion kim loại ảnh hưởng của peak thuốc thử, và tại đây mật độ quang thường không ổn định, dễ bị nhiễu. Vì vậy chọn bước sóng 424 nm để khảo sát các bước tiếp theo.

b. Khảo sát pH

Tương tự như phức Cd(II)-BEPT, ở giai đoạn thăm dò định tính qua màu sắc phức và các giá trị A cho thấy sự tạo phức tốt hơn ở pH \geq 7. Do đó, sự lựa chọn pH

để đo trong trường hợp này là pH = $7 \div 11$. Tuy nhiên, ở bước này chúng tôi cũng đo tại pH = 6 để so sánh. Kết quả được trình bày trong Bảng p41.4 của Phụ lục 41 và biều diễn như Hình 3.23.

Hình 3.23. Ảnh hưởng của pH đến độ hấp thụ quang của phức Ni(II)-BEPT

Kết quả cho thấy rằng, khi thay đổi pH từ 6 đến 11 thì độ hấp thụ quang tăng dần rồi lại giảm. Dựa vào biểu đồ, chúng tôi nhận thấy tại pH = 9 độ hấp thụ quang là lớn nhất ở hai cả nồng độ khảo sát. Do đó, chúng tôi lựa chọn pH = 9 cho các khảo sát tiếp theo.

c. Khảo sát lực ion

Khảo sát sự phụ thuộc của lực ion vào độ hấp thụ quang được trình bày trong Bảng p41.6 của Phụ lục 41 và biểu diễn trên Hình 3.24.

Lực ion được khảo sát qua KNO₃ ở các nồng độ khác nhau, kết quả cũng cũng cho thấy rằng tại nồng độ KNO₃ 0,01 M giống kết quả của phức Cd(II)-BEPT thì giá trị độ hấp thụ quang là cực. Vì vậy, chúng tôi chọn lực ion với giá trị nồng độ KNO₃ 0,01 M để khảo sát bước tiếp theo cho phức này.

Hình 3.24. Ảnh hưởng lực ion đến độ hấp thụ quang của Ni(II)-BEPT

d. Khảo sát nồng độ BEPT

Kết quả khảo sát nồng độ thuốc thử BEPT ở hai mức nồng độ khác nhau 6 ppm và 10 ppm với các ion Ni²⁺ tạo phức và đo độ hấp thụ quang được trình bày trong Bảng p41.8 của Phụ lục 41 và biểu diễn trên Hình 3.25.

Hình 3.25. Ảnh hưởng nồng độ BEPT đến độ hấp thụ quang của Ni(II)-BEPT

Kết quả cho thấy, với nồng độ BEPT khoảng trên 17,5 ppm thì độ hấp thụ quang ổn định và không thay đổi. Tương tự như phức Cd(II)-BEPT, trong trường hợp này chúng tôi chọn nồng độ ligand là 20 ppm để khảo sát tương ứng với 10 mL nồng độ ban đầu 50 ppm.

e. Khảo sát thời gian bền màu của phức

Kết quả khảo sát thời gian bền màu được chỉ ra trong Bảng p41.10 của Phụ lục 41 và biểu diễn trên Hình 3.26. Hoàn toàn tương tự, kết qua khảo sát thời gian bền màu thông qua giá trị độ hấp thụ quang của phức, có thể kết luận rằng việc thực nghiệm trong khoảng thời gian sau 15 phút đến trước 60 phút thì độ hấp thụ quang ổn định nhất.

Hình 3.26. Thời gian bền màu của phức Ni(II)-BEPT qua độ hấp thụ quang

f. Xác đinh công thức phức theo phương pháp Job

Kết quả được chỉ ra trong Bảng p41.11 của Phu lục 41 và như Hình 3.27a. Từ kết quả khảo sát cho thấy độ hấp thụ quang lớn nhất tại tỷ lệ mol của $\rm Ni^{2+}/(\rm Ni^{2+}+$ BEPT) xấp xĩ bằng 0.3 tương ứng với tỷ lê 1/3. Tức là một ion kim loại sẽ liên kết với hai ligand để tao thành hợp chất phức có màu vàng. Như vây, có thể khẳng đinh công thức của phức qua phương pháp Job là ML₂.

g. Xác định công thức phức theo phương pháp tỷ lê mol

Môt cách tương tư, thực hiện phương pháp này giống phức Cd(II)-BEPT. Kết quả được chỉ ra như Bảng p41.12 của Phu lục 41 và như Hình 3.27b.

Kết quả nhận được cho thấy độ hấp thụ quang cao nhất khi tỷ lệ mol của BEPT/Ni²⁺ xấp xĩ bằng 2 tương ứng với tỷ lệ 2/1. Tức là một ion kim loại sẽ liên kết với hai ligand BEPT để tạo thành hợp chất phức. Như vậy, theo phương pháp này công thức vẫn là ML₂. Do đó, công thức của phức chất hoàn toàn phù hợp mong đơi ban đầu.

(a) Kết quả theo phương pháp Job

Hình 3.27. Kết quả đo quang của phức Ni(II)-BEPT

3.5.1.4. Hằng số bền của phức Cd(II)/Ni(II)-BEPT và đánh giá mô hình

Dưa vào phổ UV-Vis của sư tao phức Cd(II)-BEPT và Ni(II)-BEPT, sử dung công cụ Datan 3.1 tính toán hằng số bền cho kết quả như Bảng 3.35.

стт	Ligond	Vim lasi	Thung nghiâm	Dự đ	oán
511	Ligand	Kim ioại	1 nực ngmẹm	QSPR _{MLR}	QSPRANN
1	BEPT	Ni(II)	11,1400	8,9813	11,9612
2	BEPT	Cd(II)	11,8900	8,3473	11,8360

Bảng 3.35. So sánh giá trị $\log \beta_{12}$ thực nghiệm và dự đoán các phức

Sử dụng phương pháp ANOVA một yếu tố, so sánh các giá trị hằng số bền $(\log\beta_{12})$ thực nghiệm và dự báo từ hai mô hình MLR, ANN. Đối với phức Ni(II)-BEPT nhận giá trị F = 0,2014 < F_{0,05} = 18,5128 và của Cd(II)-BEPT là F = 1,0628 < F_{0,05} = 18,5128. Điều đó cho thấy rằng các giá trị thực nghiệm này không có sự khác biệt so với các giá trị dự báo.

Hình 3.28. So sánh hằng số bền của phức CdL₂ và NiL₂ trong nghiên cứu với các giá trị từ thực nghiệm khác và giá trị dự đoán

Trên cơ sở kết quả thu được, có thể thấy rằng giá trị thực nghiệm rất gần với giá trị dự đoán từ hai mô hình QSPR_{MLR} và QSPR_{ANN} của nhóm dữ liệu thứ 2 thuộc ML₂. Bên cạnh đó, có thể so sánh kết quả thực nghiệm với các giá trị hằng số bền của các phức khác theo Phụ lục 43, Hình 3.28. Từ kết quả cho thấy rằng, với các phức thực nghiệm trong luận án khi gắn vị trí R₄ với dẫn xuất phenothiazine có cấu trúc dị vòng phức tạp hơn sẽ cho các giá trị hằng số bền lớn hơn.

3.5.2. Phức chất Cu(II)-BECT và Zn(II)-BECT

3.5.2.1. Khảo sát thăm dò

Khảo sát thăm dò cho thấy quá trình tạo phức diễn ra rất nhanh dựa trên sự thay đổi màu sắc giữa ligand ban đầu và các phức của Cu^{2+} và Zn^{2+} .

Ligand/ phức		Quan sát					
của kim loại	Tức thời	15 phút	30 phút	60 phút	120 phút		
BECT	Vàng nhạt						
Cu(II)-BECT	Vàng xanh						
Zn(II)-BECT	Vàng tươi						

Bảng 3.36. Theo dõi màu sắc của sự tạo thành phức

3.5.2.2. Phức chất Cu(II)-BECT

a. Khảo sát λ_{max}

Phổ được quét trong khoảng bước sóng từ 200 đến 600 nm. Dung dịch ion kim loại Cu²⁺ được khảo sát ở hai nồng độ 4 ppm và 6 ppm. Ở cả hai nồng độ này, phức Cu(II)-BECT hấp thụ cực đại ở bước sóng 394 nm. Vì vậy, chọn bước sóng tối ưu giá trị này cho các bước khảo sát tiếp theo.

Hình 3.29. Phổ UV-Vis của BECT và phức chất Cu(II)-BECT

b. Khảo sát pH

Ở giai đoạn thăm dò, định tính qua màu sắc phức và độ hấp thụ quang cho thấy sự tạo phức xảy ra dễ dàng ở pH ≥ 7. Do đó, chúng tôi lựa chọn pH để khảo sát từ 7 đến 11. Bên cạnh đó, cũng giống như phức giữa Cd(II) và Ni(II) với BEPT, chúng tôi cũng khảo sát tại pH = 6 để so sánh và xác định hằng số bền được trình bày trong Bảng p42.3 của Phụ lục 42 và biểu diễn trên Hình 3.30.

Hình 3.30. Ảnh hưởng pH đến độ hấp thụ quang của Cu(II)-BECT

Khi thay đổi pH từ 6 đến 11 thì độ hấp thụ quang tăng dần rồi giảm. Dựa vào biểu đồ tại pH = 8 thì độ hấp thụ quang là lớn nhất ở hai nồng độ khảo sát. Do đó, chúng tôi lựa chọn pH = 8 cho các khảo sát tiếp theo.

c. Khảo sát lực ion

Kết quả khảo sát sự phụ thuộc của lực ion (sử dụng dung dịch KNO₃) vào độ hấp thụ quang được trình bày trong Bảng p42.6 của Phụ lục 42 và Hình 3.31. Lực ion có ảnh hưởng đến độ hấp thụ quang do đó sẽ ảnh hưởng đến khả năng tạo phức Cu(II)-BECT. Trong trường hợp này, chúng tôi nhận thấy rằng ở các nồng độ KNO₃ gần 0,01 M thì độ hấp thụ quang của phức là lớn hơn so với các nồng độ khác. Như vậy, chọn lực ion với nồng độ KNO₃ 0,01 M để khảo sát tiếp theo.

Hình 3.31. Ảnh hưởng lực ion đến độ hấp thụ quang của Cu(II)-BECT

d. Khảo sát nồng độ BECT

Kết quả khảo sát nồng độ thuốc thử BECT ở hai mức nồng độ khác nhau của Cu²⁺ là 4 ppm và 6 ppm và đo độ hấp thụ quang được trình bày trong Bảng p42.8 của Phụ lục 42 và biểu diễn trên Hình 3.32.

Hình 3.32. Ảnh hưởng của nồng độ BECT đến độ hấp thụ quang của Cu(II)-BECT

Kết quả cho thấy, với nồng độ BECT khoảng trên 16 ppm thì độ hấp thụ quang ổn định và không thay đổi. Trong trường hợp này chúng tôi chọn nồng độ ligand là 16 ppm để khảo sát tương ứng với 8 mL nồng độ ban đầu 50 ppm.

e. Khảo sát thời gian bền màu của phức

Khảo sát thời gian bền màu cũng được thực hiện ở hai nồng độ ion là 4 ppm và 6 ppm. Khảo sát thời gian bền màu được chỉ ra trong Bảng p38.10 của Phụ lục 38 và biểu diễn trên Hình 3.33.

Hình 3.33. Thời gian bền màu của phức Cu(II)-BECT

Khảo sát cho thấy phức bền màu trong thời gian từ 5 đến 60 phút thì độ hấp thụ quang thay đổi không đáng kể. Thực tế quan sát cho thấy phức bền màu trong khoảng 72 giờ khi bảo quản kín và tránh ánh sáng. Với khoảng thời gian bền màu này có thể sử dụng ligand BECT để phân tích các ion kim loại bằng phương pháp trắc quang. Do đo, trong thực nghiệm chúng tôi cố gắng thực hiện trong khoảng 60 phút đầu.

f. Xác định công thức phức theo phương pháp Job

Khảo sát cho thấy tại tỷ lệ mol của $Cu^{2+}/(Cu^{2+}+BECT)$ xấp xĩ bằng 0,3 nhận được giá trị độ hấp thụ quang lớn nhất. Như vậy, tương ứng với tỷ lệ của ion kim loại và ligand là 1/3. Tức là một ion kim loại sẽ liên kết với hai ligand để tạo thành hợp chất phức có màu vàng. Như vậy, công thức của phức là ML₂. Kết quả được chỉ ra trong Bảng p42.11 của Phụ lục 42 và Hình 3.34a.

Hình 3.34. Kết quả đo độ hấp thụ quang của phức Cu(II)-BECT

g. Xác định công thức phức theo phương pháp tỷ lệ mol

Khảo sát cho thấy độ hấp thụ quang lớn nhất và không thay đổi tại tỷ lệ mol của BECT/Cu²⁺ xấp xĩ bằng 2 tương ứng với tỷ lệ 2/1. Tức là một ion kim loại sẽ liên kết với hai ligand để tạo thành hợp chất phức. Như vậy, phương pháp này cũng cho kết quả công thức phức ML₂. Kết quả được chỉ ra trong Bảng p42.12 của Phụ lục 42 và Hình 3.34b.

3.5.2.3. Phức chất Zn(II)-BECT

a. Khảo sát λ_{max}

Tiến hành quét phổ trong khoảng bước sóng từ 200 đến 600 nm được biểu diễn trên Hình 3.35. Dung dịch Zn^{2+} ở hai nồng độ tương ứng 3 ppm và 5 ppm có khả năng hấp thụ quang cao ở bước sóng 276 và 410 nm. Tuy nhiên, tại bước sóng 276 nm ion kim loại ảnh hưởng của peak thuốc thử, và tại đây mật độ quang thường không ổn định, dễ bị nhiễu. Vì vậy chọn bước sóng 410 nm để khảo sát các bước tiếp theo.

Hình 3.35. Phổ UV-Vis của BEPT và phức chất Zn(II)-BECT

b. Khảo sát pH

Tương tự như phức Cu(II)-BECT, chúng tôi dựa trên định tính qua màu sắc phức ở giai đoạn thăm dò và đo độ hấp thụ quang của phức hình thành. Kết quả cho thấy sự tạo phức tốt ở pH \geq 7. Bằng cách tương tự như các phức trước đó, chúng tôi lựa chọn pH = 6÷11 để khảo sát và sử dụng nồng độ ion Zn²⁺ ở 3 ppm và 5 ppm. Kết quả được trình bày trong Bảng p42.4 của Phụ lục 42 và biểu diễn trên Hình 3.36.

Hình 3.36. Ảnh hưởng pH đến độ hấp thụ quang của Zn(II)-BECT

Khi thay đổi pH từ 6 đến 11 thì độ hấp thụ quang tăng dần rồi giảm. Dựa vào biểu đồ, tại pH = 8 độ hấp thụ quang lớn nhất ở hai cả nồng độ khảo sát. Do đó, chúng tôi lựa chọn pH = 8 cho các khảo sát tiếp theo.

c. Khảo sát lực ion

Khảo sát sự phụ thuộc lực ion (sử dụng dung dịch KNO₃) và độ hấp thụ quang được trình bày trong Bảng p42.6 của Phụ lục 42 và biểu diễn trên Hình 3.37.

Hình 3.37. Ảnh hưởng lực ion đến độ hấp thụ quang của Zn(II)-BECT

Lực ion có ảnh hưởng đến khả năng tạo phức và sự ảnh hưởng này rõ rệt ở nồng độ 0,01 M. Do đó, trong trường hợp này chúng tôi chọn lực ion với nồng độ KNO₃ này để khảo sát tiếp theo.

d. Khảo sát nồng độ ligand BECT

Khảo sát ảnh hưởng nồng độ của thuốc thử BECT với hai mức nồng độ của ion Zn²⁺ là 3 ppm và 5 ppm và đo độ hấp thụ quang A được trình bày trong Bảng p42.8 của Phụ lục 42 và biểu diễn trên Hình 3.38.

Hình 3.38. Ảnh hưởng nồng độ BECT đến độ hấp thụ quang của Zn(II)-BECT

Khảo sát cho thấy ở nồng độ 3 ppm thì với nồng độ ligand trên 14 ppm thì độ hấp thụ quang là không đổi. Tuy nhiên, ở nồng độ 5 ppm thì nồng độ BECT trên 16 ppm mới không đổi. Do đó, chúng tôi chọn nồng độ của BECT để khảo sát là 16 ppm tương ứng với 8 mL.

e. Khảo sát thời gian bền màu của phức

Dữ liệu khảo sát thời gian bền màu được chỉ ra trong Bảng p42.10 của Phụ lục 42 và biểu diễn trên hình 3.39.

Hình 3.39. Thời gian bền màu của phức Ni(II)-BEPT qua độ hấp thụ quang

Kết quả trên cho thấy về quan sát cảm quan màu sắc thì phức có thể bền màu trong thời gian dài (kéo dài đến 72 giờ). Tuy nhiên, độ hấp thụ quang cho thấy phản ứng tạo phức xảy ra rất nhanh nhưng ổn định nhất trong khoảng thời gian từ 15 đến 40 phút. Do đó, chúng tôi cũng đã chú ý khoảng thời gian này để thực nghiệm phản ứng tạo phức khi xác định hằng số bền.

f. Xác định công thức phức theo phương pháp Job

Dữ liệu khảo sát trình bày trong Bảng p42.11 của Phụ lục 42 và Hình 3.40a.

Từ khảo sát cho thấy tỷ lệ mol của $Zn^{2+}/(Zn^{2+} + BECT)$ xấp xĩ bằng 0,3 tương ứng với tỷ lệ 1/3. Tức là cứ một ion kim loại sẽ liên kết với 2 ligand để tạo thành hợp chất phức có màu vàng.

Hình 3.40. Kết quả đo độ hấp thụ quang của phức Zn(II)-BECT

g. Xác định công thức phức theo phương pháp tỷ lệ mol

Tiếp theo, chúng tôi cũng dùng phương pháp tỷ lệ mol để xác định công thức phức. Trong phương pháp này, chúng tôi sẽ cố định nồng độ ion kim loại và thay đổi nồng độ BECT bằng cách thay đổi thể tích. Kết quả được chỉ ra trong Bảng p42.12 của Phụ lục 42 và Hình 3.40b.

Khảo sát cho thấy độ hấp thụ quang cao nhất khi tỷ lệ mol của BECT/Zn^{2+} xấp xĩ bằng 2 tương ứng với tỷ lệ 2/1, tức là một ion kim loại liên kết với 2 ligand BECT để tạo thành hợp chất phức. Như vậy, theo phương pháp này công thức vẫn là ML₂.

3.5.2.4. Hằng số bền của phức Cu(II)/Zn(II)-BECT và đánh giá mô hình

Dựa vào phổ UV-Vis của phức Cu(II)-BECT và Zn(II)-BECT, sử dụng công cụ Datan 3.1 tính toán hằng số bền cho kết quả trong Bảng 3.37.

STT			Hằng số bền, logβ ₁₂			
	Ligand	Kim loại	Thực	Dự đoán		
			nghiệm	QSPR _{MLR}	QSPRANN	
1	BECT	Cu(II)	11,7300	10,0415	11,5213	
2	BECT	Zn(II)	10,3900	10,1578	11,8751	

Bảng 3.37. So sánh $log\beta_{12}$ thực nghiệm và dự đoán các phức từ kết quả luận án

Một cách tương tự, phương pháp ANOVA một yếu tố cũng được sử dụng để đánh giá sự khác biệt giữa các giá trị hằng số bền (log β_{12}) thực nghiệm và dự báo từ hai mô hình MLR, ANN. Kết quả nhận được đối với phức Cu(II)-BECT nhận giá trị F = 1,6437 < F_{0,05} = 18,5128 và của Zn(II)-BECT là F = 0,5323 < F_{0,05} = 18,5128. Điều đó cho thấy rằng các giá trị thực nghiệm này không có sự khác biệt so với các giá trị dự báo. Trên cơ sở kết quả thu được, có thể thấy rằng giá trị thực nghiệm rất gần với giá trị dự đoán từ hai mô hình QSPR_{MLR} và QSPR_{ANN} của nhóm dữ liệu thứ 1 thuộc ML₂.

Bên cạnh đó, có thể so sánh kết quả thực nghiệm với các giá trị hằng số bền của các phức khác theo Phụ lục 43, Hình 3.41. Kết quả cho thấy các phức thực nghiệm trong luận án khi gắn vào khung cấu trúc của thiosemicarbazone tại vị trí R₄ với dẫn xuất carbazole có cấu trúc dị vòng phức tạp hơn cho các giá trị hằng số bền lớn hơn.

Hình 3.41. So sánh hằng số bền của phức CuL₂ và ZnL₂ trong nghiên cứu với các giá trị từ thực nghiệm khác và giá trị dự đoán

KẾT LUẬN VÀ KIẾN NGHỊ

KÊT LUÂN

Về phần lý thuyết, chúng tôi đã trình bày đầy đủ cơ sở lý thuyết của phương pháp mô hình hóa mối quan hệ định lượng cấu trúc và tính chất dựa trên các phương pháp tính toán lượng tử kết hợp sử dụng các phương pháp thống kê và các phương pháp toán học hiện đại để xây dựng hàng loạt mô hình dự đoán trên đối tượng phức chất giữa thiosemicarbazone và các ion kim loại. Như vậy, trong phần này chúng tôi đã đạt được những kết quả cụ thể như sau:

- Đã xây dựng mới 9 mô hình quan hệ định lượng cấu trúc và tính chất trên đối tượng phức ML và 2 mô hình trên đối tượng ML₂ dựa trên các phương pháp thống kê và phương pháp máy học thông minh. Đây là tính mới của luận án, đều đó đã được chứng minh bởi vì các mô hình này đã được công bố qua 10 bài báo trong đó có một bài thuộc hệ thống SCI. Các mô hình này được xây dựng từ các dữ liệu thực nghiệm thu thập được từ các công trình đã được công bố trên các tạp chí uy tín bao gồm 292 giá trị logβ₁₁ của phức ML và 135 giá trị logβ₁₂ của phức ML₂.
- Mặt khác, cấu trúc của các phức chất ML và ML₂ được tối ưu hóa cấu trúc cuối cùng bằng cơ học lượng tử với phương pháp bán thực nghiệm mới PM7 và PM7/sparkle. Kết quả này cũng là một trong những điểm nổi bật của luận án vì đây là một trong những phương pháp mới ứng dụng trong nghiên cứu.
- Bên cạnh đó, 44 dẫn xuất thiosemicarbazone đã được thiết kế mới và tạo phức với 5 ion kim loại phổ biến (Cu²⁺, Zn²⁺, Ni²⁺, Cd²⁺, Ag⁺). Các dẫn xuất này được thiết kế dựa trên hai dẫn xuất phenothiazine và carbazole gắn vào vị trí R₄ của khung cấu trúc thiosemicarbazone. Chúng tôi cũng đã sử dụng các mô hình xây dựng được để dự đoán hằng số bền của các phức chất thiết kế mới. Một số hằng số bền của các phức chất thiết kế mới của đã được công bố qua các bài báo.
- Tiếp đến, để định hướng nghiên cứu thực nghiệm, chúng tôi lựa chọn hai dẫn xuất thiosemicarbazole đó là 2- ((6-bromo-9-ethyl-9H-carbazol-3-yl) methylene) hydrazine-1-carbothioamide và 2-((7-bromo-10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazine-1-carbothioamide để tổng hợp và tạo

phức với các ion kim loại như Cd²⁺, Ni²⁺, Cu²⁺ và Zn²⁺. Tuy nhiên, trước khi thực nghiệm tổng hợp, chúng tôi đã tiến hành khảo sát tìm kiếm cấu dạng bền bằng các tính toán lượng tử kết hợp các phương pháp Monte Carlo và giải thuật Metropolis của các phức chất giữa các ligand này với các ion kim loại có chứa ion nghiên cứu thực nghiệm. Kết quả cũng đã cho thấy rằng qua thế năng bề mặt tương tác, khả năng hình thành các ligand và phức chất là khả thi.

Về phần thực nghiệm, chúng tôi đã tiến hành thực nghiệm tổng hợp ligand 2-((6-bromo-9-ethyl-9H-carbazol-3-yl) methylene) hydrazine-1-carbothioamide với hai phức tương ứng với hai ion kim loại Cu²⁺, Zn²⁺ và ligand 2-((7-bromo-10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazine-1-carbothioamide với hai phức tương ứng với hai ion Cd²⁺, Ni²⁺. Hai ligand và bốn phức chất này hoàn toàn là những chất mới được tổng hợp thành công, đây cũng là tính mới trong Luận án. Kết quả các nghiên cứu này cụ thể như sau:

- Trình bày đầy đủ quy trình tổng hợp với các số liệu cụ thể của hai dẫn xuất thiosemicarbazone này với các phức chất tương ứng. Kết quả tổng hợp các ligand và phức chất này đã được kiểm chứng qua các phương pháp phân tích hóa lý hiện đại như phổ hấp thụ hồng ngoại FT-IR, phổ cộng hưởng từ hạt nhân ¹H-NMR, ¹³C-NMR kết hợp phổ DEPT 90, 135, CPD, HSQC và HMBC; phổ khối lượng phân giải cao HR-MS và phổ EDX. Kết quả đã khẳng định được các ligand và phức chất này đã được tổng hợp thành công với các cấu trúc như mong đợi trong định hướng nghiên cứu. Một số kết quả sơ bộ cũng đã được công bố hai bài qua tạp chí quốc tế thuộc hệ thống ISI.
- Bên cạnh đó, chúng tôi đã khảo sát khả năng tạo phức của chúng trong môi trường nước bằng phương pháp đo quang phổ UV-Vis. Chúng tôi cũng đã tìm được các yếu tố tối ưu cho quá trình tạo phức và xác định được công thức của các phức này qua hai phương pháp cổ điển là phương pháp Job và phương pháp tỷ lệ mol. Đồng thời, chúng tôi cũng đã xác định hằng số bền của các phức chất này và kết quả cho thấy phù hợp với các mô hình dự đoán.

KIÉN NGHĮ

Tuy nhiên, như tôi đã trình bày, do đề tài trải dài qua nhiều lĩnh vực, do đó kết quả nghiên cứu này chỉ định hướng sử dụng các ligand này để làm thuốc thử trong

phân tích trắc quang mà chưa thực nghiệm trong thực tế. Bên cạnh đó, chúng tôi đã xây dựng rất nhiều mô hình dự đoán hằng số bền các phức chất nhưng chỉ áp dụng dự đoán thiết kế mới trên một nhóm đối tượng. Vì vậy, chúng tôi cũng đề xuất việc áp dụng phương pháp mô hình hóa QSPR này để nghiên cứu thiết kế mới trên các nhóm đối tượng khác gắn trên khung cấu trúc của thiosemicarbazone, hoặc trên các nhóm phức chất của các ligand như: semicarbazone, pentamethylcyclopentadienyl azaindoles, theophylline... Ngoài ra, cũng có thể áp dụng phương pháp này để nghiên cứu QSAR trong đó hàm mục tiêu là hoạt tính sinh học trên hàng loạt các đối tượng có hoạt tính đã được nghiên cứu như thiosemicarbazone, thiazole , axít humic... Đây cũng là hướng nghiên cứu tiếp theo mà chúng tôi sẽ thực hiện trong thời gian tới.

Hơn nữa, dẫn xuất thiosemicarbazone và phức chất của chúng được biết đến là những chất có khả năng kháng khuẩn, kháng nấm [39]; có hoạt tính sinh học rất lớn [15], [50]; đồng thời, chúng cũng có khả năng ức chế các tế bào ưng thư [113], [121]. Trên cơ sở đó, trong nghiên cứu của chúng tôi, một nội dung quan trong trong phần kết quả này mà chúng tôi đã thực hiên nhưng không công bố trong luân án này, đó là khả năng kháng ung thư của các ligand và phức rất khả quan. Hai ligand và các phức chất được tổng hợp được thực nghiêm hoat tính sinh học bằng phương pháp SRB với ba dòng tế bào ung thư vú MCF-7, ung thư phổi NCI H50 và ung thư gan HepG2. Với ligand 2-((7-bromo-10-ethyl-10H-phenothiazin-3yl)methylene)hydrazine-1-carbothioamide và hai phức tương ứng với ion Cd²⁺, Ni²⁺ nhận các giá trị IC₅₀ rất cao với nồng độ tác chất thấp. Tuy nhiên, đối với ligand 2-((6-bromo-9-ethyl-9H-carbazol-3-yl) methylene) hydrazine-1-carbothioamide và hai phức tương ứng với hai ion Cu²⁺, Zn²⁺ cho hoạt tính tương đối thấp. Như vậy, các dẫn xuất thiosemicarbazone và phức chất của chúng có rất nhiều ứng dụng trong thực tế, nhưng trong nghiên cứu này chưa sử dụng rộng rãi các kết quả thực nghiệm nghiên cứu như khảo sát hoạt tính sinh học, đánh giá khả năng tạo phức trên các ion kim loại khác. Vì vậy, những ưu điểm của phức chất tổng hợp này sẽ định hướng nghiên cứu tiếp theo trong thời gian sắp tới từ kết quả của luận án.

DANH MỤC CÔNG TRÌNH KHOA HỌC CÔNG BỐ

Tạp chí quốc tế

- 1. Nguyen Minh Quang, Tran Xuan Mau, Nguyen Thi Ai Nhung, Tran Nguyen Minh An, Pham Van Tat, *Novel QSPR modeling of stability constants of complexes between thiosemicarbazones and metal ions in aqueous solution by hybrid multivariate technique: GA-MLR, GA-SVR and GA-ANN*, Journal of Molecular Structure, Vol. 1195, pp. 95-109, ISSN 0022-2860, (2019).
- Tran Nguyen Minh An, Nguyen Van Cuong, Nguyen Minh Quang, Truong Vu Thanh, Mahboob Alam, Green Synthesis Using PEG-400 Catalyst, Antimicrobial Activities, Cytotoxicity and In Silico Molecular Docking of New Carbazole Based on α-Aminophosphonate, ChemistrySelect, Vol. 5, pp. 6339-6349, ISSN 2365-6549, doi.org/10.1002/slct.202000855, (2020).
- 3. Tran Nguyen Minh An, Pham Thai Phuong, Nguyen Minh Quang, Nguyen Van Son, Nguyen Van Cuong, Le Van Tan, Mai Dinh Tri, Mahboob Alam, Pham Van Tat, Synthesis, docking study, cytotoxicity, antioxidant and anti-microbial activities of novel 2,4-disubstituted thiazoles based on phenothiazine, Current Organic Synthesis, Vol. 2, No. 17, pp. 1-9, DOI: 10.2174/1570179417666191220100614, (2020).
- Nguyen Minh Quang, Pham Nu Ngoc Han, Nguyen Thi Ai Nhung, Pham Van Tat, *Calculation of Stability Constant Of Metal-Thiosemicarbazone Complexes Using MLR, PCR And ANN*, Indian Journal of Science and Technology, Vol 12(25), pp. 1-10, DOI: 10.17485/ijst/2019/v12i25/145108, (2019).
- 5. Nguyen Minh Quang, Nguyen Thi Ai Nhung, Pham Van Tat, An insight OSPR-based prediction model for stability constants of metalthiosemicarbazone complexes using MLR and ANN methods, Vietnam J. Vol. 57, No. 4, 500-506, ISSN: Chem., pp. 2572-8288 DOI:10.1002/vjch.201900070, (2019).

Tạp chí/hội nghị trong nước

6. Nguyen Minh Quang, Tran Xuan Mau, Pham Van Tat, Tran Nguyen Minh An, Vo Thanh Cong, *In silico model QSPR for prediction of stability constants of* *metal-thiosemicarbazone complexes*, Hue University Journal of Science: Natural Science, Vol. 127, No. 1A, pp. 61-76, ISSN 1859-1388, DOI: 10.26459/hueuni-jns.v127i1A.4791, (2018).

- 7. Nguyễn Minh Quang, Trần Xuân Mậu, Phạm Văn Tất, Ứng dụng QSPR: so sánh dự báo hằng số bền của phức thiosemicarbazone với ion kim loại sử dụng các mô hình MLR, PCR và PLS cùng với các tham số mô tả phân tử, Tạp chí khoa học và công nghệ, Trường Đại học Khoa học, ĐH Huế, Tập 13, Số 2, Tr. 51-63, ISSN 2354-0842, (2018).
- Nguyen Minh Quang, Tran Nguyen Minh An, Bui Thi Phuong Thuy, Tran Xuan Mau, Pham Van Tat, In silico approach of stability constants of metalthiosemicarbazone complexes in aqueous solution using multivariate methods MLR, PLSR and ANN, Vietnam J. Chem., Vol. 56, No. 6e2, pp. 272-281, ISSN 2572-8288, (2018).
- 9. Nguyen Minh Quang, Phạm Thị Thu Trang, Tran Xuan Mau, Tran Thi Thanh Ngoc, Pham Van Tat, QSPR modelling of stability constants of metalthiosemicarbazone complexes using artificial neural network and multivariate linear regression in environmental analysis, Proceeding, The fourth Scientific Conference - SEMREGG 2018, pp. 10-22, ISBN: 978-604-913-755-6, (2018).
- Nguyen Minh Quang, Huynh Nhat Lam, Pham Thai Phuong, Tran Xuan Mau, Tran Thi Thanh Ngoc, Pham Van Tat, *Application of MLR, PCR and ANN* model for the prediction of stability constants of diverse metal cations with thiosemicarbazone derivatives in environmental monitoring, Proceeding, The fourth Scientific Conference - SEMREGG 2018, pp. 23-35, ISBN: 978-604-913-755-6, (2018).
- 11. Nguyen Minh Quang, Tran Nguyen Minh An, Nguyen Hoang Minh, Tran Xuan Mau, Pham Van Tat, *QSPR modelling of stability constants of metalthiosemicarbazone complexes using multivariate regression methods and artificial neural network*, Tạp chí khoa học và công nghệ, Trường Đại học Công nghiệp TpHCM, ISSN: 2525-2267, (2019).
- 12. Nguyen Minh Quang, Tran Nguyen Minh An, Tran Xuan Mau, Nguyen Thi Ai Nhung, Pham Van Tat, Novel QSPR modeling of stability constants of complexes between metal ions with thiosemicarbazones using MLR and ANN

methods, Vietnam J. Chem., Vol. 57, No. 2e12, pp. 216-222, ISSN 2572-8288, (2019).

- 13. Nguyen Minh Quang, Tran Nguyen Minh An, Pham Nu Ngoc Han, Nguyen Thi Ai Nhung, Pham Van Tat, Using semi-empirical quantum and molecular mechanics calculation for construction of potential energy surfaces of conformations of new thiosemicarbazone reagent and complexes with metal ions, Tạp chí khoa học và công nghệ, Trường Đại học Công nghiệp TpHCM, ISSN: 2525-2267, (2019).
- 14. Nguyen Minh Quang, Tran Xuan Mau, Pham Nu Ngoc Han, Pham Van Tat, Conformational search of thiosemicarbazone reagents and metal-complexes using PM3 and MM+ calculation and Monte Carlo simulation, Tap chí khoa học Đại học Huế: Khoa học tự nhiên, Accepted, ISSN 1859-1388, (2020).

Đề tài nghiên cứu khoa học

- 15. Chủ nhiệm đề tài, Nghiên cứu xây dựng các mô hình quan hệ cấu trúc tính chất (QSPR) của các phức chất giữa thiosemicarbazone với các ion kim loại, thời gian thực hiện 01/2018 đến 03/2019, cấp cơ sở.
- 16. Tham gia, Tổng hợp một số dẫn xuất dị vòng 1,3-thiazole dựa trên plumbagin và thử nghiệm hoạt tính sinh học, thời gian thực hiện 01/2018 đến 03/2019, cấp cơ sở.
- Tham gia, Tổng hợp xanh một số aminophosphate mới dựa trên carbazole và hoạt tính sinh học, thời gian thực hiện 03/2020 đến 02/2021, Đã nghiệm thu 7/2020.

TÀI LIỆU THAM KHẢO

Tiếng việt

- [1]. Trịnh Ngọc Châu (1993), Tổng hợp, nghiên cứu cấu tạo của các phức chất Coban, Niken, Đồng và Molipđen với một số thiosemicacbazon và thăm dò hoạt tính sinh học của chúng, Luận án Phó tiến sĩ hoá học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội.
- [2]. Trịnh Ngọc Châu (2014), Nghiên cứu tổng hợp, cấu tạo của một số phức chất của Cu(II) với dẫn xuất thiosemicarbazone benzadehit và thiosemicacbazon isatin, *Tạp chí phân tích Hóa, Lý và Sinh học*, 20, tr. 25-35.
- [3]. Lê Chí Kiên (2006), Hỗn hợp phức chất, Nxb. Đại học Quốc gia Hà Nội.
- [4]. Trần Tứ Hiếu (2003), Phân tích trắc quang phổ hấp thụ UV-Vis, Nxb Đại học Quốc gia Hà Nội.
- [5]. Nguyễn Thị Bích Hường (2012), Tổng hợp, nghiên cứu cấu tạo và thăm dò hoạt tính sinh học của phức chất Pd(II), Ni(II) với một số dẫn xuất thiosemicacbazon, Luận án tiến sĩ hoá học, Trường Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội.
- [6]. Nguyễn Thị Kim Phụng (2005), Cô lập chiết xuất hợp chất thiên nhiên, Nxb. Đại học Quốc Gia TpHCM.
- [7]. Dương Tuấn Quang (2002), Tổng hợp nghiên cứu cấu trúc và thăm dò hoạt tính sinh học của phức Platin với một số Thiosemicacbazon, Luận án tiến sĩ hoá học, Viện Hoá học, Trung tâm khoa học Tự nhiên và Công nghệ quốc gia Hà Nội.
- [8]. Dương Tuấn Quang, Vũ Đăng Độ, Chu Đình Kính (2005), Phổ hấp thụ electron của một số phức chất thiosemicacbazonat của platin (II), *Tạp chí Hoá học*, 43, Tr. 322-325.
- [9]. Hồ Viết Quý (2003), Các phương pháp phân tích quang học trong hóa học, Nxb. Đại học Quốc gia Hà Nội.
- [10]. Phạm Văn Tất (2009), Phát triển mô hình quan hệ cấu trúc tính chất và cấu trúc – hoạt tính, Nxb. Khoa học tự nhiên và công nghệ, Hà Nội.
- [11]. Phan Thị Hồng Tuyết (2007), Tổng hợp nghiên cứu cấu trúc và thăm dò hoạt tính sinh học của một số phức chất kim loại với thiosemicacbazon, Luận án tiến sĩ hóa học, Viện Hóa học, Viện khoa học và công nghệ Việt Nam.
- [12]. Phan Thị Hồng Tuyết, Hà Phương Thư (2013), Tổng hợp, nghiên cứu cấu trúc của phức chất Pt(II), Zn(II) với thiosemicacbazon caphor, *Tạp chí Hóa* học, 51(3AB), Tr.164-168.

Tiếng Anh

- [13]. Admasu D., Reddy D.N., Mekonnen K.N. (2016), Spectrophotometric determination of Cu(II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone, *SpringerPlus*, 5 (1169), pp. 1-8.
- [14]. Alex J.S., Bernhard S. (2004), A tutorial on support vector regression, *Statistics and Computing*, 14, pp. 199-222.
- [15]. Aljahdali M., EL-Sherif. A.A. (2013), Synthesis, characterization, molecular modeling and biological activity of mixed ligand complexes of Cu(II), Ni(II) and Co(II) based on 1,10-phenanthroline and novel thiosemicarbazone, *Inorg. Chimica Acta.*, 407, pp. 58-68.
- [16]. Allinger N.L (1977), Conformational analysis: A hydrocarbon force field utilizing V1 and V2 torsional terms, *J. Am. Chem. Soc.*, 99, pp. 8127-8134.
- [17]. Arabie P., Hubert L.J., De Soete G. (1996), *Clustering and Classification*, Wold Scientific, Singapore.
- [18]. Atalay T., Akgemci E.G. (1998), Thermodynamic studies of some complexes of 2-benzoylpyridine 4-phenyl-3-thiosemicarbazone, *Tr. J. Chem.*, 22, pp. 123-127.
- [19]. Atalay T., Ozkan E. (1994), Thermodynamic stabilities. Thermodynamic parameters of some complexes of 4'-morpholinoacetophenone 4-phenyl-3thiosemicarbazone, *Thermochimica Acta.*, 246, pp. 193-197.
- [20]. Atalay T., Ozkan E. (1994), Thermodynamic studies of some complexes of 4'-morpholinoacetophenone thiosemicarbazone, *Thermochimica Acta.*, 237, pp. 369-374.
- [21]. Atalay T., Ozkan. E. (1994), Evaluation of thermodynamic parameters and stability constants of Cu(II), Ag(I) and Hg(II) complexes of 2methylindole-3-carboxaldehyde thiosemicarbazone, *Thermochimica Acta.*, 244, pp. 291-295.
- [22]. Atkins P.W., De Paula J. (2006), Section 7.4: The Response of Equilibria to Temperature, Physical Chemistry, Oxford University Press, England.
- [23]. Avogadro 1.2.0. (2017), Jekyll & Minimal Mistakes, Avogadro Chemistry, USA.
- [24]. Babu S.V., Reddy K.H. (2012), Direct spectrophotometric determination of mercury(II) using 2-acetylpyridine thiosemicarbazone in environmental samples, *Indian J. Adv. Chem. Sci.*, 1, pp. 65-72.
- [25]. Baselt R.C. (2008), Disposition of Toxic Drugs and Chemicals in Man, Biomedical Publication, 23, pp. 212-214.
- [26]. Benesi H., Hildebrand J. (1949), A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc., 71(8), pp. 2703-2707.
- [27]. Bernhardt P.V., Sharpe P.C., Islam M., Lovejoy D.B., Kalinowski D.S., Richardson D.R. (2009), Iron chelators of the dipyridylketone thiosemicarbazone class: precomplexation and transmetalation effects on anticancer activity, J. Med. Chem., 52(2), pp. 407-415.
- [28]. BIOVA Draw 2017 R2 (2016), Dassault Systèmes., France.
- [29]. Biswas R., Brahman D., Sinha B. (2014), Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu(II) ions in methanol-1,4-dioxane binary solutions, J. Serb. Chem. Soc., 79(5), pp. 565-578.
- [30]. Borges R.H.U., Paniago E., Beraldo H. (1997), Equilibrium and Kinetic studies of iron(II) and iron(III) complexes of some a(N)-Heterocyclic thiosemicarbazones. Reduction of the iron(III) complexes of 2-formylpyridine thiosemicarbazone and 2-acetylpyridine thiosemicarbazone by cellular thiol-like reducing agents, *J. Inor. Biochem.*, 65, pp. 267-275.
- [31]. Chanin N., Chartchalerm I.N.A., Thanakorn N., Virapong P. (2009), Review article: A practical overview of quantitative structure-activity relationship, *EXCLI Journal*, 8, pp. 74-88.
- [32]. ChemBioDraw Ultra 13 (2012), PerkimElmer, CambridgeSoft, England.
- [33]. Chen B., Zhang T., Bond T., Gan Y. (2015), Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources, *Journal of Hazardous Materials*, 299, pp. 260-279.
- [34]. Chirico N., Gramatica P. (2011), Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, *J. Chem. Inf. Model.*, 51, pp. 2320-2335.
- [35]. Cortes C., Vapnik V.N. (1995), Support-vector networks, *Machine Learning*, 20, pp. 251-261.
- [36]. Cristianini N., Shawe T.J. (2000), An introduction to support vector machines and other Kernel-based learning methods, Cambridge university press, Cambridge, England.

- [37]. Datan 5.0 (2018), MultiD Analyses AB, Odinsgatan Göteborg, Sweden.
- [38]. Debye P., Hückel E. (1923), *The Theory of Electrolytes. I. Lowering of Freezing Point and Related Phenomena*, Physikalische Zeitschrift, German.
- [39]. Domagk G.D., Chenich R.B., Mietzch F.M., Schmidt H. (1946), Biology activity of phenothiazine, *Naturwissenchaften*, 33, pp. 494.
- [40]. Douglas C.M. (2013), Design and Analysis of Experiments -Eighth Edition, John Wiley & Sons, Inc., USA.
- [41]. Duong Ba Vu (2016), Synthesis and structural characteristics of platinum(II) complexes with N(4)-substituted thiosemicarbazones, *Vietnam journal of chemistry*, 26(5A), pp. 459-466.
- [42]. El-Karim A.T.A., El-Sherif A.A. (2016), Potentiometric, equilibrium studies and thermodynamics of novel thiosemicarbazones and their bivalent transition metal(II) complexes, *J. Mol. Liq.*, 219, pp. 914-922.
- [43]. Everitt B.S, Landau S., Leese M. (2001), *Cluster analysis*, Arnold, London.
- [44]. Forgy E.W. (1965), Cluster analysis of multivariate data: efficiency versus interpretability of classifications, *Biometrics*, 21, pp. 768-769.
- [45]. Friedman H.P., Rubin J. (1967), On some invariant criteria for grouping data, *Journal of the American Statistical Association*, 62, pp. 1159-1178.
- [46]. Gaál A., Orgován G., Polgári Z., Réti A., Mihucz V.G., Bősze S., Streli. C. (2014), Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator, *J. Inorg. Biochem.*, 130, pp. 52-58.
- [47]. Garg B. S., Saxena V., Dixit R. (1992), Evaluation of thermodynamic functions and stability constants of lanthanon(III) complexes with 1,2naphthoquinone-2-thiosemicarbazone-4-sulphonic acid (sodium salt) (NQTS.4S) from potentiometric data, *Thermochimica Acta.*, 195, 169-175.
- [48]. Garg B. S., Singh S. R., Basnet. S. B Singh R. P. (1988), Potentiometric studies on the complexation equilibria between La(III), Pr(III), Nd(III), Gd(III), Sm(III), Tb(III), Dy(III), Ho(III) and 2-acetylpyridinethiosemicarbazone (2-APT)., *Polyhedron*, 7(2), pp. 147-150.
- [49]. Garg B.S., Ghosh S., Jain V.K., Singh P.K. (1990), Evaluation of thermodynamic parameters of bivalent metal complexes of 2hydroxyacetophenonethiosemicarbazone (2-HATS), *Thermochimica Acta.*, 157, pp. 365-368.
- [50]. Garg B.S., Jain V.K. (1989), Determination of thermodynamic parameters and stability constants of complexes of biologically active o-

vanillinthiosemicarbazone with bivalent metal ions, *Thermochimica Acta.*, 146, pp. 375-379.

- [51]. Gasteiger J., Zupan J. (1993), Neural networks in chemistry, Chiw. Inr. Ed. EngI, 32, pp. 503-521.
- [52]. Georgiades S.N., Nicolaou P.G. (2019), Recent advances in carbazole syntheses, *Advances in Heterocyclic Chemistry*, 129, pp. 1-88.
- [53]. Gomaa E.A., Hassan N.M. (2014), Evaluation of thermodynamic parameters (conductometrically) for the interaction of Cu(II) ion with 4phenyl -1-diacetyl monoxime -3- thiosemicarbazone (BMPTS) in (60%V) ethanol (EtOH-H₂O) at different temperatures, *Int J. Eng. Sci.*, 3(1), pp. 44-51.
- [54]. González D. M. et at (2017), QSPR/QSAR-based Perturbation Theory approach and mechanistic electrochemical assays on carbon nanotubes with optimal properties against mitochondrial Fenton reaction experimentally induced by Fe²⁺-overload, *Carbon*, 115, pp. 312-330.
- [55]. Guha R., Willighagen E. (2012), A survey of quantitative descriptions of molecular structure, *Curr Top Med Chem*, 12, pp. 1946-1956.
- [56]. Guveli S., Ozdemir N., Bal-Demirci T., Ulkuseven B., Andac M.D.O. (2010), Quantum-chemical, spectroscopic and X-ray diffraction studies on nickel complex of 2-hydroxyacetophenone thiosemicarbazone with triphenylphospine, *Polyhedron*, 29, pp. 2393-2403.
- [57]. Harvey D. (2000), *Equilibrium Chemistry Modern analytical Chemistry*, the second ed., Mc.Graw-Hill, pp. 144
- [58]. Hendrickson J.B. (1961), Molecular geometry. I. Machine computation of the common rings, *J. Am. Chem. Soc.*, 83, pp 4537-4547.
- [59]. Hinz F.P., Margerum D.W. (1974), Effect of ligand solvation on the stability of metal complexes in solution. Explanation of the macrocyclic effect, J. Amer. Chem. Soc., 96, pp. 4993.
- [60]. Holland J.H. (1992), Genetic algorithms, Sci. Am., 267, pp. 44-50.
- [61]. Huang L., Ling F.Z., Tao W.Y., Gen L.L. (2017), Anticancer carbazole alkaloids and coumarins from Clausena plants: A review, *Chinese Journal* of Natural Medicines, 15(12), pp. 0881-0888.
- [62]. Hymavathi M., Viswanatha C., Devanna N. (2014), A sensitive and selective chromogenic reagent using 2-hydroxy 3, 5-dimethoxy benzaldehyde thiosemicarbazone (HDMBTSC) for direct and derivative

spectrophotometric determination of Molybdenum (VI), Int. J. Math. and Phys. Sci. Res., 2(1), pp. 43-48.

- [63]. Hymavathi M., Viswanatha C., Devanna N. (2014), A Study on Synthesis of Novel Chromogenic Organic Reagent 3,4-dihydroxy-5-methoxy benzaldehyde thiosemicarbazone and Spectrophotometric Determination of Nickel (II) in Presences of Triton X-100, *Res. J. Pharm. Bio. and Chem. Sci.*, 5(5), pp. 625-630.
- [64]. Hymavathi M., Viswanatha C., Devanna N. (2014), Direct and derivative spectrophotometric determination of Copper (II) using a sensitive and selective chromogenic organic reagent 2-hydroxy 3,5-dimethoxy benzaldehyde thiosemicarbazone (HDMBTSC), W. J. Pharm . Phar. Sci., 3(8), pp. 1688-1695.
- [65]. Hymavathi M., Viswanatha C., Devanna. N. (2014), A study on synthesis of novel chromogenic organic reagent 3,4-dihydroxy-5-methoxy benzaldehyde thiosemicarbazone and spectrophotometric determination of Cobalt (II) in presences of Triton X-100, J. Chem. Pharm. Res., 6(7), pp. 2787-2791.
- [66]. HyperChem 8.0.6. (1995-2008), Hypercube Inc, USA.
- [67]. Jaszczyszyn A., Gsiorowski K., Ewitek P., Malinka W., Cieœlik B.K., Petrus J., Czarnik M.B. (2012), Review: Chemical structure of phenothiazines and their biological activity, *Pharmacological Reports*, 64, pp. 16-23.
- [68]. Jiménez M.A., Luque De Castro M.D., Valcárcel M. (1985)., Titration of thiosemicarbazones with Cu(II) and vice versa by use of a copper selective electrode in acetone-water mixture: Determination of the conditional formation constants of the cupric thiosemicarbazonates, *Microchemical Journal*, 32, pp. 166-173.
- [69]. Jiménez A., Luque De Castro D., Valcárcel. M. (1980), Potentiometric study of silver(I)-thiosemicarbazonates, *Microchemical Journal*, 25, pp. 301-308.
- [70]. Jobson J.D. (1992), Applied multivariate data analysis. Volume II: Categorical and multivariate methods, Springer-Verlag, New York.
- [71]. Jonathan R.D., Rebekka H. (2012), Metal complexes of thiosemicarbazones for imaging and therapy, *Inorganica Chimica Acta*, 389, pp. 3-15.
- [72]. Joseph G. (2003), *Scanning Electron Microscopy and X-Ray Microanalysis.*, Springer, Switzerland.

- [73]. Judd C.M., McClelland G.H., Ryan C.S. (2009), Data Analysis: A Model Comparison Approach, Routledge, New York, USA.
- [74]. Jung S.K., McDonald K. (2011), Visual Gene Developer: a fully programmable bioinformatics software for synthetic gene optimization, *BMC Bioinformatics*, 12(1), pp. 340.
- [75]. Jürgen H.G. (2004), *Mass Spectrometry, A Textbook*, Springer-Verlag, Heidelberg, Berlin, German.
- [76]. Kenie D.N., Satyanarayana A. (2015), Protolitic Equilibria and Stability Constants of Mn (II) and Ni (II) Complexes of 3-formylpyridine Thiosemicarbazone in Sodium Dodecyl Sulphate (SDS)- Water Mixture., *Sci. Technol. Arts Res. J.*, 4(1), pp. 74-79.
- [77]. Kenie DN., Satyanarayana A. (2015), Solution equilibrium study of the complexation of Co(II) and Zn(II) with nicotinaldehyde thiosemicarbazone, *Sci. Technol. Arts Res. J.*, 4(3), pp. 145-149.
- [78]. Koduru J. R., Lee K.D. (2014), Evaluation of thiosemicarbazone derivative as chelating agent for the simultaneous removal and trace determination of Cd(II) and Pb(II) in food and water samples, *Food Chemistry*, 150, pp. 1-8.
- [79]. Kotz S., Johnson N.L. (1992), *Breakthroughs in statistics, Vol. 1. Foundations and basic theory*, Springer, New York, USA.
- [80]. Kriegel, H.P., Schubert E., Zimek A. (2016), The (black) art of runtime evaluation: Are we comparing algorithms or implementations?, *Knowledge and Information Systems*, 52, pp. 341-378.
- [81]. Krishna D.G., Devi C.K. (2015), Determination of cadmium (II) in presence of micellar medium using cinnamaldehyde thiosemicarbazone by spectrophotometry, *Int. J. Green Chem. Biopro.*, 5(2), pp. 28-30.
- [82]. Krishna D.G., Mohan G.V.K. (2013), A Facile synthesis, characterization of cinnamaldehyde thiosemicarbazone and determination of molybdenum(VI) by spectrophotometry in presence of micellar medium, *Indian J. Appl. Res.* 3(8), pp. 7-8.
- [83]. Kumar S., Singh J., Das S., Garg M. (2012), AAS estimation of heavy metals and trace elements in indian herbal cosmetic preparations, *Res. J. Chem. Sci.*, 2(3), pp. 46-51.
- [84]. Kunal R., Rudra N.D. (2014), A review on principles, theory and practices of 2D-QSAR, *Current Drug Metabol*, 15, pp. 346-379.
- [85]. Kunal R., Supratik K. (2010), Synthesis and characterization of some transition metal complexes: section – C Stability constants of metal complexes, Springer-Verlag, New York, USA.

- [86]. Kunal R., Supratik K., Rudra N.D. (2015), A Primer on QSAR/QSPR Modeling - Fundamental Concepts, Springer, Switzerland.
- [87]. Lazaro M., Castro M.D. (1984), Valcárcel M., Potentiometric aspects of mercury(II)-thiosemicarbazonates, *Microchemical Journal*, 30, pp. 358-368.
- [88]. Legendre P., Legendre L. (1998), Numerical Ecology Second English Edition, Elsevier, Amsterdam, Holland.
- [89]. Livingstone D.J. (2000), The characterization of chemical structures using molecular properties: A survey, *J. Chem. Inf. Comput. Sci.*, 40, pp. 195-209.
- [90]. Luis E. Santos-Figueroa et al (2012), Synthesis and evaluation of fluorimetric and colorimetric chemosensors for anions based on (oligo)thienyl-thiosemicarbazones, *Tetrahedron*, 68, pp. 7179-7186.
- [91]. MacQueen J.B. (1967), Some methods for classification and analysis of multivariate observations, University of California Press. pp. 281-297.
- [92]. Makridakis S. (1993), Accuracy measures: theoretical and practical concerns, *Int. J. Forecast*, 9, pp. 527-529.
- [93]. Marguí E. et al (2013), Analytical possibilities of different X-ray fluorescence systems for determination of trace elements in aqueous samples pre-concentrated with carbon nanotubes, Spectrochimica Acta -Part B: Atomic Spectroscopy, 88, pp. 192-197.
- [94]. Matlab R2016a 9.0.0.341360. (2016), MathWorks, USA.
- [95]. Milunovic M.N.M., Enyedy E.A., Nagy N.V., Kiss T., Trondl R., Jakupec M.A., Keppler B.K., Krachler R., Novitchi G., Arion. V.B. (2012), L- and D-Proline Thiosemicarbazone Conjugates: Coordination Behavior in Solution and the Effect of Copper(II) Coordination on Their Antiproliferative Activity., *Inorg. Chem.*, 51, pp. 9309-9321.
- [96]. MS. Excel 2013 (2013), Microsoft, USA.
- [97]. Murmann R.K. (1964), *Inorganic Complex Compounds*, Chapman & Hall Ltd., London.
- [98]. Nair A.P., Jeyaseelan C. (2013), Spectrophotometric determination of Cu(II) and Ni(II) using 4 phenyl-3-thiosemicarbazone of 2-hydroxy-4-npropoxy-5-bromoacetophenone (HnPBAPT) as analytical reagent, Amer. Int. J. Res. in Form. Appl. Natur. Sci., 3(1), pp. 46-50.
- [99]. Niemantsverdriet J.W. (2007), *Spectroscopy in Catalysis: An introduction*, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, USA.
- [100]. OECD (2007), Guidance Document on the Validation of (Quantitative) Structure- Activity Relationships Models, Organisation for Economic Cooperation and Development, France.

- [101]. Ohlow M.J., Moosmann B. (2011), Foundation review: Phenothiazine: the seven lives of pharmacology's first lead structure, *Drug Discovery Today*, 16(3-4), pp. 119-131.
- [102]. Origin 9.0.0 (1991-2012), OriginLab Corparation, USA.
- [103]. Padmanabha S.K., Rao S.V. (2011), Spectrophotometric method for the determination of trace amount of bismuth in alloy samples using 4hydroxybenzaldehyde., *Rasayan J. Chem.*, 4(4), pp. 857-862.
- [104]. Paewars E. (2003), Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Kluwer Academic Publishers, London, pp. 1-378.
- [105]. Parikh K. S., Patel R. M., Patel. K. N. (2009), New Spectrophotometric Method for Determination of Cadmium., *E-J. Chem.*, 6(S1), pp. 496-500.
- [106]. Parikh K.S., Patel R.M., Patel K.N. (2010), 2-Hydroxy-4-n-butoxy-5-bromo propiophenone thiosemicarbazone as spectrophotometric reagent for iron, *Asian J. Chem.*, 22(4), pp. 2805-2810.
- [107]. Patel K.N., Parikh K.S., Patel. R.M. (2010), 2-Hydroxy-4-n-butoxy-5bromoacetophenone thiosemicarbazone as an extractive spectrophotometric reagent for nickel, *Orbital. Elec. J. Chem.*, 2(4), pp. 341-346.
- [108]. Patel N.B., Solanki. Y.J. (2016), 2,4-Dihydroxy-5-Bromo [2'Methyl]
 Propiophenone Thiosemicarbazone [DHBMPT] as an Analytical Reagent: Studies on Co(II) Chelate, J. App. Chem., 5(3), pp. 654-660.
- [109]. Patel N.C., Patel B.A. (2014), Spectrophotometric Method for determination of Copper (II) using p-Chlorobenzaldehyde -4-(2'-carboxy-5sulphophenyl)-3-thiosemicarbazone [pCBCST], *Res. J. Chem. Sci.*, 4(2), pp. 1-6.
- [110]. Patel N.C., Patel. B.A. (2013), Nickel as an extractive spectrophotometric reagent of p-chlorobenzaldehyde -4-(2'-carboxy-5'-sulphophenyl)-3thiosemicarbazone., *Der Pharma Chemica*, 5(2), pp. 193-198.
- [111]. Patel R.M., Parikh K.S., Patel. K.N. (2010), 2-hydroxy-4-n-butoxy-5bromopropiophenone as an extraction spectrophotometric reagent for Nickel (II), *Int. J. ChemTech. Res.*, 2(2), pp. 1090-1093.
- [112]. QSARIS 1.1. (2001), Statistical Solutions Ltd., USA.
- [113]. Ramanjaneyulu G., Reddy P.R., Reddy T.S. (2008), Direct and derivative spectrophotometric determination of Cu(II) with thiosemicarbazone 5bromosalicylaldehyde, *The Open Anal. Chem. J.*, 2, pp. 78-82.

- [114]. Reddy D. N., Tegegne B.M., Reddy. V.K. (2012), Development of a highly sensitive extractive spectrophotometric method for the determination of Nickel(II) from environmental matrices using 2-acetylpyridine-4-methyl-3thiosemicarbazone, *American J. Anal. Chem.*, 3, pp. 719-726.
- [115]. Reddy K.H., Prasad N.B.L. (2004), Spectrophotometric determination of copper (II) in edible oils and seed using novel oxime-thiosemicarbazones, *India J. Chem.*, 43A, pp. 111-114.
- [116]. Reddy K.H., Prasad N.B.L., Reddy T.S. (2003), Analytical properties of 1phenyl-1,2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper(II) and nickel(II) in edible oils and seeds, *Talanta*, 59, pp. 425-433.
- [117]. Reddy K.J., Kumar J.R., Ramachandraiah C., Reddy S.A, Reddy A.V. (2008), Selective and sensitive extractive spectrophotometric determination of micra amounts of palladium(II) in spiked sample: using a new reagent Nethel-3-carbazolecarbaxaledehyde thiosemicarbazone, *Environ Monit Assess.*, 136, pp. 337-346.
- [118]. Reddy K.V., Reddy D. N., Babu S.V., Reddy. K.H. (2011), Spectrophometric determination of copper (II) in Biological samples by using 2-acetylpyridine 4-methyl-3-thiosemicarbazone, *Der Pharmacia Sinica*, 2(4), pp. 176-183.
- [119]. Reddy N.S.R., Reddy D.V. (1983), Spectrophotometric determination of vanaditun(V) with salicylaldehyde thiosemicarbazone, *J. Indian. Inst. Sci.*, 64(B), pp. 133-136.
- [120]. Reddy S.L., Sekhar. K.B.C. (2013), Analytical applications of 3acetylpyridine thiosemicarbazone (3-APT): Simple and sensitive spectrophotometric determination of nickel (II) in soil and alloy samples, *Int. J. Bas. App. Chem. Sci.*, 3(4), pp. 62-68.
- [121]. Rogolino D., Cavazzoni A., Gatti A., Tegoni M., Pelosi G., Verdolino V., Fumarola C., Cretella D., Petronini P.G., Carcelli. M. (2017), Antiproliferative effects of copper(II) complexes with Hydroxyquinoline-Thiosemicarbazone ligands, *Eu. J. Med. Chem.*, 128, pp. 140-153.
- [122]. Rojas R. (1996), Neural Networks, Springer-Verlag, Berlin, German.
- [123]. Rossotti F.J.C., Rossotti H. (1961), *Chapter 2: Activity and Concentration Quotients, The Determination of Stability Constants*. McGraw–Hill, USA.
- [124]. Roy J., Jana A.K., Mal D. (2012), Recent trends in the synthesis of carbazoles: an update, *Tetrahedron*, 68, pp. 6099-6121.

- [125]. Rumelhart D.E., Hinton G.E., Williams J. (1986), Learning representations by back-propagating errors, *Nature*, 323 (6088), pp. 533-536.
- [126]. Sahadev, Sharma R.K., Sindhwani S.K. (1992), Potentiometric studies on the complexation equilibria between some trivalent lanthanide metal ions and biologically active 2-hydroxy-1- naphthaldehyde thiosemicarbazone (HNATS), *Monatshefte fur Chemie.*, 123, pp. 883-889.
- [127]. Sahadev, Sharma R.K., Sindhwani S.K. (1992), Thermal studies on the chelation behaviour of biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS) towards bivalent metal ions: a potentiometric study, *Thermochimica Acta*, 202, pp. 291-299.
- [128]. Sarkar K., Garg B. S. (1987), Determination of thermodynamic parameters and stability constants of the complexes of p-MITSC with transition metal ions, *Thermochimica Acta*, 113, pp. 7-14.
- [129]. Satheesh K.P., Rao V.S. (2016), A Study on spectrophotometric determination of copper from wastewater and its removal using magnatite nanoparticles, *Arch. Appl. Sci. Res.*, 8(8), pp. 31-36.
- [130]. Satheesh K.P., Ravichandran S., Suryanara V. (2011), Spectrophotometric determination of Cu(II) and Ni(II) using 4-hydroxy benzaldehyde thiosemicarbazone., *Int. J. ChemTech. Res.*, 3(4), pp. 2062-2065.
- [131]. Sawhney S.S, Sati R.M. (1983), pH-metric studies on Cd(II)-, Pb(II)-, AI(III)-, Cr(III)- and Fe(III)-p-nitrobenzaldehyde thiosemicarbazone systems, *Thermochimica Acta*, 66, pp. 351-355.
- [132]. Sawhney S.S., Chandel S.K. (1983), Solution chemistry of Cu(II)-, Co(II)-, Ni(II)-, Mn(II)- and Zn(II)-p-aminobenzaldehyde thiosemicarbazone systems, *Thermochimica Acta*, 71, pp. 209-214.
- [133]. Sawhney S.S., Chandel S.K. (1984), Stability and thermodynamics of La(III)-, Pr(III)-, Nd(III)-, Gd(III)- and Eu(III)-p-nitrobenzaldehyde thiosemicarbazone systems, *Thermochimica Acta.*, 72, pp. 381-385.
- [134]. Schrödinger E. (1926), Quantisierung als Eigenwertproblem (Erste Mitteilung), Ann. Phys. 79, pp. 361-376.
- [135]. Scott R. (1956), Some comments on the Benesi–Hildebrand equation, *Rec. Trav. Chim.*, 75, pp. 787-789.
- [136]. Singh D.K., Jha P.K., Mishra P.M., Jha A., Jha S.K., Bharti R.P. (2009), Equilibrium studies of transition metal complexes with tridentate ligands containing N, O, S as donor atoms, *Asian J. Chem.*, 21(7), pp. 5055-5060.

- [137]. Singh R.B., Garg B.S., Singh R.P. (1978), Analytical applications of thiosemicarbazones and semicarbazonos: a review, *Talanta*, 25, pp.619-632.
- [138]. Singh R.N., Kumar Amit, Tiwari R.K., Rawat P., Verma D., Baboo V. (2012), Synthesis, molecular structure and spectral analysis of ethyl 4-formyl-3,5-dimethyl-1H-pyrrole-2-carboxylate thiosemicarbazone: A combined DFT and AIM approach, *J. Molecular Structure* 1016, 97-108.
- [139]. Sreevani I., Reddy P.R., Reddy V.K. (2013), A rapid and simple spectrophotometric determination of traces of chromium(VI) in Waste water samples and in soil samples by using 2-hydroxy, 3-methoxy benzaldehyde thiosemicarbazone (HMBATSC), *IOSR J. Appl. Phys.*, 3(1), pp. 40-45.
- [140]. Steppan D.D., Werner J., Yeater P.R. (1998), Essential Regression and Experimental Design for Chemists and Engineers, Free Software Package, 1998. http://home.t-online.de/home/jowerner98/indexeng.html.
- [141]. Stewart J.J.P. (1989), Optimization of parameters for semiempirical methods I. Method, *The Journal of Computational Chemistry*, Wiley InterScience, 10(2), pp. 209-220.
- [142]. Stewart J.J.P. (2013), Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and reoptimization of parameters, J. Mol. Model, 19, 1-32.
- [143]. Stewart J.J.P. (2016), *MOPAC2016*, *version:* 17.240W, Stewart Computational Chemistry, USA.
- [144]. Syamasundar K., Chari M.A., Shobha D. (2006), Extractive spectrophotometric determination of Co(II) with 1-(Benzimidazol-2-Yl) ethanone thiosemicarbazone, *Anal. Chem. Indian J.*, 2(2), pp. 45-47.
- [145]. Tenenhaus M., Pagès J., Ambroisine L., Guinot C. (2005), PLS methodology for studying relationships between hedonic judgements and product characteristics, *Food Quality and Preference*, 16 (4), pp. 315-325.
- [146]. Terence N.M., Burkhard C. (2007), NMR From Spectra to Structures An Experimental Approach, Second Revised and Expanded Edition, Springer-Verlag. Heidelberg, Berlin.
- [147]. Thiel W. (2014), Semiempirical quantum–chemical methods, WIREs Comput Mol Sci., 4, pp. 145-157.
- [148]. Todeschini R., Consonni V. (2000), Handbook of molecular descriptors.Wiley-VCH, Weinheim, German.

- [149]. Toribio F., Fernandez J.M.L., Bendito D.P., Valcárcel M. (1980), 2,2'dihydroxybenzophenone as a spectrophotometric Reagent for the determination of copper, cobalt, nickel, and iron trace amounts in mixtures without previous separations, *Microchemical Journal*, 25, pp. 338-347.
- [150]. Tropsha A., Gramatica P., Gombar V.K. (2003), The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, *QSAR Comb. Sci.*, 22, pp. 69-77.
- [151]. U.S. EPA Method 200.7 (1994), Determination of metals and trace elements in water and wastes by Inductively coupled plasma optical emission spectrometry, Ohio, U.S, 1994.
- [152]. Veeranna V., Rao V.S., Laxmi V.V., Varalakshmi T.R. (2013), Simultaneous second order derivative spectrophotometric determination of cadmium and cobalt using furfuraldehyde thiosemicarbazone (FFTSC), *Res. J. Pharm. and Tech.*, 6(5), pp. 577-584.
- [153]. Ward J.H. (1963), Hierarchical grouping to optimize an objective function, *Journal of the American Statistical Association*, 58, pp. 238-24.
- [154]. Weka 3.9.3. (2018), The University of Waikato Hamilton, New Zealand.
- [155]. XLSTAT2016, version 2016.02.28451 (2016). Addinsoft, USA.
- [156]. Xue C.B, Zhang L., Luo W.C., Xie X.Y., Jiang L., Xiao T. (2008), 3D-QSAR and molecular docking studies of benzaldehydethiosemicarbazone, benzaldehyde, benzoic acid, and their derivatives as phenoloxidase inhibitors, *Bioorganic & Medicinal Chemistry*, 15, pp. 2006-2015.
- [157]. Yadav L.D.S. (2005), Organic spectroscopy, Springer-Science+Business Media, B.V, Switzerland.
- [158]. Yatsimirskii K.B., Vasil'ev V.P. (1960), *Instability Constants of Complex Compounds*, D. Van. Nostrand Company, Inc. Princeton, New York.
- [159]. Yousef T.A., Abu El-Reash G.M., El-Rakhawy E.R. (2014), Structural, spectral, thermal and biological studies on (E)-2-(1-(4hydroxyphenyl)ethylidene)-N-(pyridin-2-yl) hydrazinecarbothioamide and its metal complexes, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 133, pp. 568-578.
- [160]. Yousefinejad, Hemmateenejad B. (2015), Chemometrics tools in QSAR/QSPR studies: A historical perspective, *Chemometrics and Intelligent Laboratory Systems*, 149, pp. 177-204.

PHŲ LŲC

Phụ lục 1. Mô tả các tham số 2D trong mô hình

STT	Tham số 2D	Mô tả	Công thức tính và ý nghĩa	
Ι	Nhóm chỉ số chi phân tử hay chỉ số chi truyền thống			
I.1.	Nhóm chỉ số chi	Nhóm chỉ số chi đơn giản		
<i>I.1.1</i> .	Chỉ số chi bậc th	âp		
1	x0	χ^0	Chi 0	
2	x1	$^{1}\chi$	Chi 1	
3	x2	² χ	Chi 2	
I.1.2	Chỉ số chi đường	g (p – path)		
4	xp3	${}^{3}\chi^{P}$	Chi đường 3	
5	xp4	${}^{4}\chi^{P}$	Chi đường 4	
6	xp5	(⁵ χ ^P)	Chi đường 5	
7	хрб	${}^6\chi^{\mathrm{P}}$	Chi đường 6	
8	xp7	$^{7}\chi^{P}$	Chi đường 7	
9	xp8	${}^8\chi^{P}$	Chi đường 8	
10	xp9	⁹ χ ^P	Chi đường 9	
11	xp10	$^{10}\chi^{\mathrm{P}}$	Chi đường 10	
I.1.3	Chỉ số chi nhóm	(c – cluster)		
12	xc3	${}^{3}\chi^{C}$	Chi nhóm 3	
13	xc4	${}^{4}\chi^{C}$	Chi nhóm 4	
14	xc5	⁵ χ ^C	Chi nhóm 5	
15	хсб	⁶ χ ^C	Chi nhóm 6	
<i>I.1.4</i> .	Chỉ số chi đường và nhóm (pc – path/cluster)			
16	xpc4	$^{4}\chi^{PC}$	Chi đường và nhóm 4	
17	xpc5	${}^{5}\chi^{PC}$	Chi đường và nhóm 5	

Bảng p1.1. Mô tả các tham số 2D

18	хрсб	${}^6\chi^{\rm PC}$	Chi đường và nhóm 6
<i>I.1.5</i> .	Chỉ số chi mạch (ch – chain)		
19	xch3	³ х сн	Chi mạch 3
20	xch4	⁴ χch	Chi mạch 4
21	xch5	5χсн	Chi mạch 5
22	xch6	⁶ ХСН	Chi mạch 6
23	xch7	⁷ ҲСН	Chi mạch 7
24	xch8	⁸ ХСН	Chi mạch 8
25	xch9	⁹ ХСН	Chi mạch 9
26	xch10	¹⁰ Хсн	Chi mạch 10
I.2.	Nhóm chỉ số chi	hóa trị	
<i>I.2.1</i> .	Chỉ số chi hóa tr	ự bậc thấp	
1	xv0	°χ ^v	Chi 0 hóa trị
2	xv1	$^{1}\chi^{v}$	Chi 1 hóa trị
3	xv2	$^{2}\chi^{v}$	Chi 2 hóa trị
I.2.2	Chỉ số chi đường hóa trị (vp – valence path)		
4	xvp3	${}^{3}\chi^{v}P$	Chi đường hóa trị 3
5	xvp4	${}^{4}\chi^{v}{}_{P}$	Chi đường hóa trị 4
6	xvp5	${}^5\chi^{v}P$	Chi đường hóa trị 5
7	хvрб	⁶ χ ^v P	Chi đường hóa trị 6
8	xvp7	$^{7}\chi^{v}P$	Chi đường hóa trị 7
9	xvp8	⁸ χ ^v P	Chi đường hóa trị 8
10	xvp9	⁹ χ ^v Ρ	Chi đường hóa trị 9
11	xvp10	¹⁰ χ ^v Ρ	Chi đường hóa trị 10
I.2.3	Chỉ số chi nhóm hóa trị (vc – valence cluster)		
12	xvc3	³ χ ^v c	Chi nhóm hóa trị 3
13	xvc4	⁴ χ ^v c	Chi nhóm hóa trị 4
14	xvc5	⁵ χ ^v c	Chi nhóm hóa trị 5
15	xvc6	(⁶ χ ^v c	Chi nhóm hóa trị 6
<i>I.2.4</i> .	Chỉ số chi đường và nhóm hóa trị (vpc – valence path/cluster)		
16	xvpc4	${}^{4}\chi^{v}_{PC}$	Chi đường và nhóm hóa trị 4

17	xvpc5	⁵ χ ^v PC	Chi đường và nhóm hóa trị 5
18	хvрсб	⁶ χ ^v PC	Chi đường và nhóm hóa trị 6
<i>I.2.5</i> .	Chỉ số chi mạch hóa trị (vch – valence chain)		
19	xvch3	${}^3\chi^{v}$ CH	Chi mạch hóa trị 3
20	xvch4	$^4\chi^{v}$ CH	Chi mạch hóa trị 4
21	xvch5	⁵ χ ^v CH	Chi mạch hóa trị 5
22	xvch6	$^6\chi^{v}$ СН	Chi mạch hóa trị 6
23	xvch7	$^7\chi^{v}$ CH	Chi mạch hóa trị 7
24	xvch8	$^8\chi^v$ сн	Chi mạch hóa trị 8
25	xvch9	⁹ Х ^v Сн	Chi mạch hóa trị 9
26	xvch10	¹⁰ х ^v сн	Chi mạch hóa trị 10
I.3.	Chỉ số hình học	Kappa	
I.3.1	Nhóm chỉ số hìn	h học kappa tru	yền thống
1	k0	⁰ к	Kappa 0: là chỉ số thông tin Shannon dựa trên loại nguyên tử. $k_0 = IC = i(nvx)$ nvx - số đỉnh của khung, nhóm hydrua hoặc không có nguyên tử hydro
2	k1	¹ κ	Kappa 1, 2, 3. Trường hợp theo số đường: ${}^{m}\kappa = C \frac{{}^{m}P_{max} {}^{m}P_{min}}{2}$
3	k2	² ĸ	$({}^{m}P_{i})^{2}$ Trong đó: + ${}^{m}P_{max}$: số lượng đường bậc m trong mật phận tử tham chiấu
4	k3	³ к	không có nhánh với cùng một số nguyên tử như phân tử được mô tả+ ${}^{m}P_{min}$: số lượng đường bậc m trong một phân tử tham chiếu có đặc tính cấu trúc vô cực và cùng một số nguyên tử như phân tử được mô tả.+ ${}^{m}P_{i}$: số lượng đường bậc m trong phân tử thực tế i được mô tả; + m = bậc đường + C = 2 (m = 1,2); C = 4 (m = 3)Trường hợp theo số nguyên tử và

			đường:
			$^{1}\kappa = \frac{A(A-1)^{2}}{(^{1}P_{i})^{2}}$ với m = 1
			$^{2}\kappa = \frac{(A-1)(A-2)^{2}}{(^{2}P_{i})^{2}}$ với m = 2
			${}^{3}\kappa = \frac{(A-1)(A-3)^{2}}{({}^{3}P_{i})^{2}}$ với m = 3 khi A số
			lẻ
			${}^{3}\kappa = \frac{(A-2)^{2}(A-3)}{({}^{3}P_{i})^{2}}$ với m = 3 khi A số
			chăn
			Trong đó, A = số đỉnh (các nguyên từ hoặc nhóm hydrua) trong khung phân tử.
I.3.2	Chỉ số hình học	Kappa alpha	
			Kappa alpha 0,1, 2, 3
			Trường hợp theo số nguyên tử và
5	ka0	$^{0}\kappa_{lpha}$	đường:
			$^{1}\kappa_{\alpha} = \frac{(A+\alpha)(A+\alpha-1)^{2}}{(^{1}P_{i}+\alpha)^{2}}$ với m = 1
6	ka1	$^{1}\kappa_{lpha}$	${}^{2}\kappa_{\alpha} = \frac{(A+\alpha-1)(A+\alpha-2)^{2}}{\left({}^{2}P_{i}+\alpha\right)^{2}} \text{ với } m =$
			$(A + \alpha - 1)(A + \alpha - 2)^2$
			${}^{3}\kappa_{\alpha} = \frac{(A+\alpha-1)(A+\alpha-3)}{({}^{3}P_{i}+\alpha)^{2}} \text{ với } m =$
			3 khi A lẻ
7	ka2	$^{2}\kappa_{\alpha}$	${}^{3}\kappa_{\alpha} = \frac{(A + \alpha - 2)^{2}(A + \alpha - 3)}{({}^{3}P_{i} + \alpha)^{2}} \text{ với } m =$
			3 khi A chẵn
			Trong đó:
			+ $A = s\hat{o}$ lượng các nguyên tử trong
			phân từ được mô tâ $\alpha = bán kính công báo trị nguyên$
8	ka3	³ Ка	$+$ α – ban khin cộng hoa trị nguyên tử của các nguyên tử trong hợp
	in	120	chất vòng khác carbon;
			+ ^m Pi: số lượng đường bậc m trong
			phân tử thực tê i được mô tả $m = h_{00}^2 a_{10}^2 a_{10}^2$
			+ $m = pac a u ong$

			Bán kính cộng hóa trị nguyên tử là bán kính được sắp xếp dạng bảng của mỗi nguyên tử và được sử dụng để tính giá trị alpha cho chỉ số chỉ số hình học Kappa Alpha. Bán kính cộng hóa trị nguyên tử được định nghĩa như sau: $\alpha = 1 - r_x / r_{C(sp^3)}$ Trong đó, $r_x =$ nguyên tử trong phân tử được mô tả; $r_{x(sp3)} = 77$ pm (bán kính của nguyên tử cacbon sp ³ , đơn vị
			(picometers) $W = \frac{1}{N} \sum_{n=1}^{N} \delta_{n}$
9	Chỉ số Wiener	W	 N = 2 λ_{i=1} λ_{j=1} σ_{ij} N là số đỉnh hoặc nguyên tử; δ_{ij} là ma trận khoảng cách của đường ngắn nhất giữa các đỉnh i và j
10	Chỉ số nhóm Zagreb	Zagreb	$Zagreb = \sum_{i} \delta_{i}^{2}$ δ_{i} là hóa trị của nguyên tử đỉnh i.
11	Chỉ số Balaban	J	$J = \frac{M}{\mu + 1} \sum_{all \text{ edges}} (\delta_i \delta_j)^{-0.5}$ - M là số cạnh; - μ là số cyclomatic; - $\delta_i (\delta_j)$ xác định theo công thức $\delta_i = \sum_{j=1} \delta_{ij}$
12	Nhóm chỉ số ETA (Extended topochemical atom)		Một số định nghĩa chỉ số ETA cơ bản như sau: $\alpha = \frac{Z - Z^{\nu}}{Z^{\nu}} \frac{1}{PN - 1};$ $\beta = \Sigma x \sigma + \Sigma y \pi + \delta;$ $\gamma_i = \frac{\alpha_i}{\beta_i};$ $[\eta]_i = \sum_{j \neq i} \left[\frac{\gamma_i \gamma_j}{r_{ij}^2} \right]^{0.5};$ $\varepsilon = -\alpha + 0, 3 \times Z^{\nu}; \ \psi = \frac{\alpha}{\varepsilon}$ $- \alpha là số hạt nhân;- \beta là số electron hóa trị di động (VEM);$

			$-\gamma$ là tổng đỉnh VEM;
			 – η là chỉ số mức nguyên tử;
			 – ε là độ âm điện;
			$-\psi$ là tham số xu hướng liên kết
			hydro;
			 – Z và Z^v là số nguyên tử và điện tích
			hóa trị;
			– PN là số chu kỳ trong bảng tuần
			hoàn;
			$-\sigma$ và π là liên kết sigma và pi với
			phần đóng góp là x và y;
			$-\delta$ số cặp electron độc thân công
			hưởng trong hệ chất thơm;
			- r _{ii} là khoảng cách hình học giữa hai
			nguyên tử
II.	Nhóm chỉ số top	ological điện tử	
II.1.	Nhóm chỉ số kiể	u nguyên tử E-S	TATE
	<i>a a</i> .		Tổng tất cả giá trị E-State nhóm (– CH ₃)
1	SsCH3	$S^{T}(-CH_{3})$	trong phân tử
			Tầng tất cả giá trị E Stata nhâm (
2	SdCH2	$S^{T} (= CH_2)$	Tong tai ca gia trị E-State nnom (=
3	SssCH2	$S^{T}(-CH_{2}-)$	Tông tât cả giá trị E-State nhóm (– CH ₂)
_			trong phân tử
Л	StCU	ST (-CU)	Tổng tất cả giá trị E-State nhóm (≡ CH)
4	SICH	S (= CH)	trong phân tử
			Tổng tất cả giá trị E-State nhóm (= CH
5	SdsCH	$S^{T} (= CH -)$	-) trong phân tử
6	SaaCH	$S^{T}($ \cdots CH \cdots $)$	I ong tat ca gia trị E-State nhom (CH
			···) trong phan tư
7	SsssCH	$S^{T}(>CH -)$	Tổng tất cả giá trị E-State nhóm (> CH
/	5555011	5 (> CII)	–) trong phân tử
0	0.110		Tổng tất cả giá tri E-State nhóm (= C =)
8	SddC	$S^{T} (= C =)$	trong phân tử
			Tầng tất gả giá trị E Stata cháng (- C)
9	StsC	$S^{T} (\equiv C -)$	Tong tai ca gia trị E-State nnom ($\equiv C -)$
10	SdssC	$S^{T}(=C <)$	Tông tât cả giá trị E-State nhóm (= C <)
	24000	~ (~)	trong phân tử
		1	The state of side the E. State share ("C")
11	SaasC	$S^{T}(\ddot{-}\dot{c}\ddot{-})$	Tong tai ca gia trị E-State nnom $(-)$
		· · ·	uong phan tu

12	SaaaC	$S^{T}(\ddot{-}^{\parallel}\dot{c}\ddot{-})$	Tổng tất cả giá trị E-State nhóm ($\overset{\square}{-}^{\overset{\square}{c}}$ $\overset{\square}{-}$) trong phân tử
13	SssssC	S ^T (> C <)	Tổng tất cả giá trị E-State nhóm (> C <) trong phân tử
14	SsNH3p	$S^{T}\left(-NH_{3}^{+} ight)$	Tổng tất cả giá trị E-State nhóm (– NH ₃ ⁺) trong phân tử
15	SsNH2	$S^{T}(-NH_{2})$	Tổng tất cả giá trị E-State nhóm (– NH ₂) trong phân tử
16	SssNH2p	$S^{T}(-NH_{2}^{+}-)$	Tổng tất cả giá trị E-State nhóm (– NH_2^+ –) trong phân tử
17	SdNH	$S^{T}(= NH)$	Tổng tất cả giá trị E-State nhóm (= NH) trong phân tử
18	SssNH	S ^T (- NH -)	Tổng tất cả giá trị E-State nhóm (– NH –) trong phân tử
19	SaaNH	$S^{T}($ \cdots NH $\cdots)$	Tổng tất cả giá trị E-State nhóm (NH) trong phân tử
20	StN	$S^{T} (\equiv N)$	Tổng tất cả giá trị E-State nhóm (≡ N) trong phân tử
21	SsssNHp	S ^T (> NH ⁺ -)	Tổng tất cả giá trị E-State nhóm (> NH ⁺ –) trong phân tử
22	SdsN	$S^{T} (= N -)$	Tổng tất cả giá trị E-State nhóm (= N –) trong phân tử
23	SaaN	$S^{T}($ $\cdots $ $N \cdots $ $)$	Tổng tất cả giá trị E-State nhóm (: N :) trong phân tử
24	SsssN	S ^T (> N -)	Tổng tất cả giá trị E-State nhóm (> N –) trong phân tử
25	SddsN	S ^T (N)	Tổng tất cả giá trị E-State nhóm (\gg_N —) trong phân tử
26	SdaaN	$S^{T}(\overset{\parallel}{\leftarrow}\overset{\parallel}{N}\overset{\cdots}{-})$	Tổng tất cả giá trị E-State nhóm ([∥]) trong phân tử
27	SssssNp	$S^{T}(> N^{+} <)$	Tổng tất cả giá trị E-State nhóm (> N ⁺ <) trong phân tử
28	SsOH	$S^{T}(-OH)$	Tổng tất cả giá trị E-State nhóm (– OH) trong phân tử
29	SdO	$S^{T}(=O)$	Tổng tất cả giá trị E-State nhóm (= O) trong phân tử
30	SssO	S ^T (- O -)	Tổng tất cả giá trị E-State nhóm (– O –)

			trong phân tử
31	SaaO	$S^{T}(- O - O)$	Tổng tất cả giá trị E-State nhóm (O) trong phân tử
32	SsF	$S^{T}(-F)$	Tổng tất cả giá trị E-State nhóm (– F) trong phân tử
33	SsPH2	$S^{T}(-PH_{2})$	Tổng tất cả giá trị E-State nhóm (– PH ₂) trong phân tử
34	SssPH	S ^T (- PH -)	Tổng tất cả giá trị E-State nhóm (– PH –) trong phân tử
35	SsssP	S ^T (> P -)	Tổng tất cả giá trị E-State nhóm (> P –) trong phân tử
36	SdsssP	$S^{T}(\geq P=)$	Tổng tất cả giá trị E-State nhóm ($\ge P =$) trong phân tử
37	SssssP	$S^{T}(\geq P \leq)$	Tổng tất cả giá trị E-State nhóm (⇒ P<) trong phân tử
38	SsSH	$S^{T}(-SH)$	Tổng tất cả giá trị E-State nhóm (– SH) trong phân tử
39	SdS	$S^{T} (= S)$	Tổng tất cả giá trị E-State nhóm (= S) trong phân tử
40	SssS	S ^T (– S –)	Tổng tất cả giá trị E-State nhóm (– S –) trong phân tử
41	SaaS	$S^{T}({\cdot \cdot \cdot} S {\cdot \cdot \cdot})$	Tổng tất cả giá trị E-State nhóm (: S :) trong phân tử
42	SdssS	S ^T (= S <)	Tổng tất cả giá trị E-State nhóm (= S <) trong phân tử
43	SddssS	$S^{T}(\gtrsim S \leq)$	Tổng tất cả giá trị E-State nhóm (S <) trong phân tử
44	SsssssS	$S^{T}(\geq S \leq)$	Tổng tất cả giá trị E-State nhóm (\ge S \le) trong phân tử
45	SsCl	$S^{T}(-Cl)$	Tổng tất cả giá trị E-State nhóm (– Cl) trong phân tử
46	SsBr	$S^{T}(-Br)$	Tổng tất cả giá trị E-State nhóm (– Br) trong phân tử
47	SsI	$S^{T}(-I)$	Tổng tất cả giá trị E-State nhóm (– I) trong phân tử
IV.	Nhóm chỉ số tổn	g kiểu nguyên t	ử E-state-Acnt
1	SsCH3_acnt	$C^{T}(-CH_{3})$	Tổng tất cả các nhóm (– CH ₃) trong phân tử

2	SdCH2_acnt	$C^{T} (= CH_2)$	Tổng tất cả các nhóm (= CH ₂) trong phân tử
3	SssCH2_acnt	C ^T (- CH ₂ -)	Tổng tất cả các nhóm (– CH ₂) trong phân tử
4	StCH_acnt	$C^{T} (\equiv CH)$	Tổng tất cả giá trị E-State nhóm (≡ CH) trong phân tử
5	SdsCH_acnt	C ^T (= CH –)	Tổng tất cả các nhóm (= CH –) trong phân tử
6	SaaCH_acnt	$C^{T}($ \cdots CH \cdots $)$	Tổng tất cả các nhóm (··· CH ···) trong phân tử
7	SsssCH_acnt	$S^{T} (> CH -)$	Tổng tất cả các nhóm (> CH –) trong phân tử
8	SddC_acnt	C ^T (= C =)	Tổng tất cả các nhóm (= C =) trong phân tử
9	StsC_acnt	$C^{T} (\equiv C -)$	Tổng tất cả các nhóm (≡ C –) trong phân tử
10	SdssC_acnt	C ^T (= C <)	Tổng tất cả các nhóm (= C <) trong phân tử
11	SaasC_acnt	$C^{T}(\ddot{-}^{C}\ddot{-})$	Tổng tất cả các nhóm $(\ddot{-}^{c} \ddot{-})$ trong phân tử
12	SaaaC_acnt	$C^{T}(\ddot{-}^{U}\dot{c}\ddot{-})$	Tổng tất cả các nhóm (^C) trong phân tử
13	SssssC_acnt	C ^T (> C <)	Tổng tất cả các nhóm (> C <) trong phân tử
14	SsNH3p_acnt	$C^{T}(-NH_{3}^{+})$	Tổng tất cả các nhóm (– NH ₃ ⁺) trong phân tử
15	SsNH2_acnt	$C^{T}(-NH_{2})$	Tổng tất cả các nhóm (– NH ₂) trong phân tử
16	SssNH2p_acnt	$C^{T}(-NH_{2}^{+}-)$	Tổng tất cả các nhóm $(-NH_2^+-)$ trong phân tử
17	SdNH_acnt	$C^{T} (= NH)$	Tổng tất cả các nhóm (= NH) trong phân tử
18	SssNH_acnt	C ^T (– NH –)	Tổng tất cả các nhóm (– NH –) trong phân tử
19	SaaNH_acnt	$C^{\mathrm{T}}(\overset{\ldots}{=}\mathrm{NH}\overset{\ldots}{=})$	Tổng tất cả các nhóm (··· NH ···) trong phân tử
20	StN_acnt	$C^{T} (\equiv N)$	Tổng tất cả các nhóm (\equiv N) trong phân

			tử
21	SsssNHp_acnt	C ^T (> NH ⁺ -)	Tổng tất cả các nhóm (> NH ⁺ -) trong phân tử
22	SdsN_acnt	C ^T (= N –)	Tổng tất cả các nhóm (= N –) trong phân tử
23	SaaN_acnt	$C^{T}($ $\cdots $ $N $ $\cdots)$	Tổng tất cả các nhóm (··· N ···) trong phân tử
24	SsssN_acnt	C ^T (> N -)	Tổng tất cả các nhóm (> N –) trong phân tử
25	SddsN_acnt	$C^{T}(\gg N-)$	Tổng tất cả các nhóm ($\gg_N - $) trong phân tử
26	SdaaN_acnt	$C^{T}(\overset{\parallel}{-}^{N}\overset{\parallel}{-})$	Tổng tất cả các nhóm ($\stackrel{\parallel}{\cdots}$ $\stackrel{N}{\cdots}$) trong phân tử
27	SssssNp_acnt	$C^{T} (> N^{+} <)$	Tổng tất cả các nhóm (> N ⁺ <) trong phân tử
28	SsOH_acnt	C ^T (– OH)	Tổng tất cả các nhóm (– OH) trong phân tử
29	SdO_acnt	$C^{T}(=O)$	Tổng tất cả các nhóm (= O) trong phân tử
30	SssO_acnt	C ^T (- O -)	Tổng tất cả các nhóm (– O –) trong phân tử
31	SaaO_acnt	$C^{T}($ $\cdots $ O $\cdots)$	Tổng tất cả các nhóm (O) trong phân tử
32	SsF_acnt	C ^T (– F)	Tổng tất cả các nhóm (– F) trong phân tử
33	SsPH2_acnt	C ^T (– PH2)	Tổng tất cả các nhóm (– PH2) trong phân tử
34	SssPH_acnt	C ^T (- PH -)	Tổng tất cả các nhóm (– PH –) trong phân tử
35	SsssP_acnt	$C^{T} (> P -)$	Tổng tất cả các nhóm (> P –) trong phân tử
36	SdsssP_acnt	$C^{T} \not \subseteq P \equiv $)	Tổng tất cả các nhóm ($\ge_{P=}$) trong phân tử
37	SsssssP_acnt	$C^{T} \underbrace{\not \leftarrow}_{P \lesssim} P \lesssim 0$	Tổng tất cả các nhóm ($\ge P \le$) trong phân tử
38	SsSH_acnt	$C^{T}(-SH)$	Tổng tất cả các nhóm (– SH) trong phân tử

39	SdS_acnt	$C^{T}(=S)$	Tổng tất cả các nhóm (= S) trong phân tử
40	SssS_acnt	$C^{T}(-S -)$	Tổng tất cả các nhóm (– S –) trong phân tử
41	SaaS_acnt	$C^{T}(\stackrel{\cdots}{\cdots} S \stackrel{\cdots}{\cdots})$	Tổng tất cả các nhóm (\cdots S \cdots) trong phân tử
42	SdssS_acnt	C ^T (= S <)	Tổng tất cả các nhóm (= S <) trong phân tử
43	SddssS_acnt	$C^{T}(\bigotimes_{S \leq I})$	Tổng tất cả các nhóm ($\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
44	SsssssS_acnt	$C^{T} \not \in S \leq 0$	Tổng tất cả các nhóm ($\ge_{S \leq}$) trong phân tử
45	SsCl_acnt	$C^{T}(-Cl)$	Tổng tất cả các nhóm $(-Cl)$ trong phân tử
46	SsBr_acnt	$C^{T}(-Br)$	Tổng tất cả các nhóm (– Br) trong phân tử
47	SsI_acnt	$C^{T}(-I)$	Tổng tất cả các nhóm (– I) trong phân tử
V.	Nhóm hydro E-	State	
1	HsOH	HsOH	$S_i = I_i + \Delta I_i$, với
2	HdNH	HdNH	$\int [(2/N)^2 \delta^{\nu} + 1]$
3	HsSH	HsSH	$I_i = \frac{\delta}{\delta}$
4	HsNH2	HsNH2	$\Delta I_i = \sum_{i=1}^{n} \frac{I_i - I_j}{2}$
5	HssNH	HssNH	r_{ij}^{2}
6	HtCH	HtCH	I_i là một tham số trạng thái hiện hữu và
7	Hother	Hother	ΔI_i là yêu tổ nhiều loạn;
8	SHCHnX	SHCHnX	cách topological giữa các nguyên tử i và
9	Hmax	Hmax	j.
10	Gmax	Gmax	
11	Hmin	Hmin	
12	Gmin	Gmin	
13	Hmaxpos	Hmaxpos	
14	Hminneg	Hminneg	
III.	Một số tham số 1	nô tả khác	
1	fw	fw	Khối lượng phân tử theo công thức
2	nvx	nvx	Số đỉnh của khung (số nguyên tử không phải hydro, số các nhóm hydrua; ví dụ CH3, - OH)

3	nelem	nelem	Tổng số nguyên tố trong phân tử
4	nrings	nrings	Số vòng thơm trong khung phân tử $R = {}^{1}p - (nvx - 1)$ Ở đây: ${}^{1}p = số cạnh của khung (đường có chiều dài bằng 1)$
5	ncirc	ncirc	Số khung mạch (graph circuits), tổng số tất cả các vòng trong phân tử-graph; 2 đối với biphenyl, nhưng 3 đối với naphtalen; đó là hai vòng 6 cạnh và 1 vòng 10 cạnh. Sự kết hợp của nrings và ncirc (theo tỷ lệ hoặc sự khác biệt) là đặc tính của cấu trúc vòng.
6	phia	Kappa linh hoạt (Φ _α)	Các đại lượng Kappa Alpha 1 và Kappa Alpha 2 được kết hợp với một số nguyên tử (bình thường) để tạo thành chỉ số Kappa linh hoạt (Kappa Flexibility), Φ_{α} (phia). Chỉ số Kappa linh hoạt phia được định nghĩa như sau: $\Phi_{\alpha} = [({}^{1}\kappa_{\alpha})({}^{2}\kappa_{\alpha})]/A$ Trong đó: ${}^{1}\kappa_{\alpha} =$ giá trị của kappa alpha 1 ${}^{2}\kappa_{\alpha} =$ giá trị của kappa alpha 2 A = số đỉnh (các nguyên tử hoặc nhóm hydrua) trong khung phân tử
7	knotp		Sự khác nhau giữa chi nhóm 3 và chi đường/nhóm 4
8	knotpv		Sự khác nhau giữa chi nhóm hóa trị 3 và chi đường/nhóm hóa trị 4
9	numHBa	numhba	Số liên kết hydro thừa nhận
10	numHBd	numhbd	Số liên kết hydro hỗ trợ

			LogP là logarithm (cơ số 10) của hệ số		
			phân tán P của octanol - nước. P là tỉ lệ		
			nồng độ của chất tan phân bố trong dung		
			môi hòa tan trong nước 1-octanol và		
			nước. LogP được tính toán bằng kỹ thuật		
11	LogP	LogP	nơ ron. kỹ thuật này sử dụng các tham số		
			2D, 3D được tính toán bởi Bodor và cộng		
			sự [9]. Tạo một mạng nơ ron với 1200		
			hợp chất đa dạng, kết quả \mathbb{R}^2 là 0,81		
			trong 300 hợp chất ngoài trong trường		
			hợp để dự đoán Log		

Phụ lục 2. Mô tả các tham số 3D trong mô hình

STT	Tham số 3D	Mô tả	Công thức tính và ý nghĩa
1	ABSQ	ABSQ	Tổng điện tích của các nguyên tử trong phân tử. $ABSQ = \sum_{i} Q_{i} $ Q _i – điện tích của nguyên tử i. Phương pháp tính "điện tích nguyên tử hay điện tích nguyên tử riêng phân" sử dụng mô hình thực nghiệm dựa trên nguyên tắc sự cân bằng riêng phần orbital điện môi (Partial Equalization of Orbital Electronegativity – PEOE) được phát triển bởi Gasteiger and Marsili. Điện tích của nguyên tử phụ thuộc vào liên kết với các nguyên tử khác, không phải trên cấu trúc 3-D của phân tử. Tất các điện tích được tính thể hiện thông qua một phần của điện tích electron.
2	ABSQon	ABSQon	Tổng giá trị tuyệt đối điện tích của nito và oxy trong phân tử. $ABSQon = \sum_{i} (Q_{ni} + Q_{oi})$
3	Dipole	Dipole	Là moment lưỡng cực của phân tử. Giá trị dipole (μ) được tính dựa trên cấu trúc 3D và điện tích nguyên tử được tính bằng phương pháp Gasteiger-Marsili thực hiện trong SciQSAR. Đơn vị là debye (1D = 3.336.10 ⁻³⁰ coulomb-meter).

Bảng p2.1. Mô tả các tham số 3D

4	MaxHp	MaxHp	Là điện tích dương lớn nhất của các các nguyên tử trong một phân tử.
5	MaxNeg	MaxNeg	Là điện tích âm lớn nhất của nguyên tử hydro trong một phân tử.
6	MaxQp	MaxQp	Là điện tích dương lớn nhất của các nguyên tử trong một phân tử.
7	Ovality	Ovality	Là chỉ số hình học oval của phân tử. $Ovality = \frac{SA}{SA_0} = \frac{SA}{4\pi R^2} = \frac{SA}{4\pi \left(\frac{3V_{\text{VDW}}}{4\pi}\right)^{2/3}} \ge 1$ SA là diện tích bề mặt phân tử; SA ₀ là bề mặt phân tử cực tiểu; V _{VDW} là thể tích Van Der Waals; R là bán kính nguyên tử.
			Là độ phân cực của phân tử, được tính dựa trên phương pháp của Miller:
8	Polarizability	Polarizabilit y	$\alpha = \sum_{A} \alpha_A (ahp)$ Trong đó, α_A là độ phân cực trung bình nguyên tử của nguyên tử A. Phương pháp này sử dụng 400 hợp chất chứa H, C, N, O, S, F, Cl, B, I, và P để xác định sai số của α_A với sai số 2,2-2,8% giữa phép phân cực phân tử thực nghiệm và tính toán. Đơn vị là Å ³ .
8	Polarizability SpcPolarizabilit y	Polarizabilit y SpcPolariza bility	$\alpha = \sum_{A} \alpha_A (ahp)$ Trong đó, α_A là độ phân cực trung bình nguyên tử của nguyên tử A. Phương pháp này sử dụng 400 hợp chất chứa H, C, N, O, S, F, Cl, B, I, và P để xác định sai số của α_A với sai số 2,2-2,8% giữa phép phân cực phân tử thực nghiệm và tính toán. Đơn vị là Å ³ . Sp.Pol = Polar/Volume
8 9 10	Polarizability SpcPolarizabilit y Surface	Polarizabilit y SpcPolariza bility Surface	$\alpha = \sum_{A} \alpha_A (ahp)$ Trong đó, α_A là độ phân cực trung bình nguyên tử của nguyên tử A. Phương pháp này sử dụng 400 hợp chất chứa H, C, N, O, S, F, Cl, B, I, và P để xác định sai số của α_A với sai số 2,2-2,8% giữa phép phân cực phân tử thực nghiệm và tính toán. Đơn vị là Å ³ . Sp.Pol = Polar/Volume Diện tích bề mặt của một phân tử

			khối lưới trên mỗi nguyên tử có cạnh là
			đường kính của nguyên tử, thể tích đóng
			góp của nguyên tử, I, là:
			$V_i = \frac{4}{3} \prod r_i^3 (n / n_t)$
			Trong đó n là số điểm lưới trong nguyên tử
			và không phụ thuộc các nguyên tử khác; $n_{\rm t}$
			là tổng số điểm lưới trong một nguyên tử
			và r _i là bán kính Van Der Waals của
			nguyên tử thứ <i>i</i> .
			Thể tích của nguyên tử V:
			$V = \sum_{i} V_{i}$
			đơn vị là $Å^3(1Å = 10^{-10} \text{ m})$
12	НОМО	Highest occupied molecular orbital (HOMO) energy	Đây là mức năng lượng cao nhất trong phân tử có chứa các electron. Khi một phân tử hoạt động như một bazơ Lewis (nhường cặp cặp electron) trong hình thành liên kết, các electron được cung cấp từ quỹ đạo này và đo khả năng nucleophilicity của một phân tử.
13	LUMO	Lowest unoccupied molecular orbital (LUMO) energy	Đây là mức năng lượng thấp nhất trong phân tử không chứa electron. Khi một phân tử hoạt động như một axít Lewis (nhận cặp electron) trong sự hình thành liên kết, các cặp electron đến được nhận trong quỹ đạo này và đo tính electrophilicity của một phân tử;

Phụ lục 3. Các thuật ngữ năng lượng trong tính tổng năng lượng MM

Lực	Phương trình	Mô tả ngắn gọn
	$E_{\rm T} = \frac{1}{2} k_{\phi} \Big[1 + \cos m \big(\phi + \phi_{\rm offset} \big) \Big]$	Năng lượng xoắn thể hiện năng lượng cần thiết để xoay tự do của
Sự xoắn liên kết	 + φ_{offset} là góc xoắn lý tưởng liên quan đến một hình dạng so le của hai nguyên tử; + k_φ là hàng rào năng lượng để quay về góc xoắn φ; + m là chu kỳ quay. 	liên kết sigma. Góc hai mặt phẳng (dihedral) mô tả khuynh hướng tương đối của các nguyên tử là 'góc xoắn'. Hình dưới đây cho thấy góc xoắn φ giữa hai nguyên tử mẫu trong một hình dạng so le.
		R
	$E_{\rm s} = \frac{1}{2} k_{\rm s} \times \left(r - r_{\rm o} \right)^2$	Định luật Hooke sử dụng tính toán năng lượng liên kết co giãn khi
Sự co giãn	+ r_0 là độ dài liên kết lý tưởng	xem xét một liên kết cộng hóa trị
liên kết	+ r là độ dài liên kết co giãn	được tạo thành từ sự co giãn. Tuy
	+ $k_{\rm S}$ là hằng số lực cho phép	nhiên, hàm Morse cũng cho phép
	đo cường độ của co giãn.	tính toán sự giãn liên kết.
Survía	$E_{B} = \frac{1}{2}k_{\theta} \times \left(\theta - \theta_{0}\right)^{2}$	Góc uốn lý tưởng là góc được hình thành bởi ba nguyên tử liên
Sự uon	+ θ_0 là góc liên kết lý tưởng;	tiếp ở vị trí năng lượng tối thiểu
goc nen ket	+ θ là góc liên kết ở vị trí uốn.	của chúng. Góc uốn θ có thể được biểu diễn như sau:

Bảng p3.1. Giải thích các thuật ngữ năng lượng trong MM

		θ
Lực Van Der Waals	$E_{\rm v} = \varepsilon \times \left[\left(\frac{r_{\rm min}}{r} \right)^{12} - 2 \times \left(\frac{r_{\rm min}}{r} \right)^6 \right]$ + ε là giá trị năng lượng tối thiểu; + $r_{\rm min}$ khoảng cách giữa nguyên tử i và j với r là khoảng cách thực tế;	Lực Van Der Waals được biểu diễn bằng phương trình thế Lennard – Jones, trong đó phần chứa mũ 6 mô tả lực hút và phần chứa mũ 12 biểu thị lực đẩy trong khoảng ngắn.
Lực tương tác tĩnh điện Coulomb	$E_{\rm C} = \frac{q_i \times q_j}{D \times r_{ij}}$ + q _i và q _j là điện tích của nguyên tử i và j; + r _{ij} là khoảng cách giữa	Đo sự ảnh hưởng của điện tích giữa hai điểm. Sự tương tác hút hoặc đẩy giữa hai nguyên tử i và j được tách bằng khoảng cách rij có thể được biểu thị là:
	chúng; + D là hằng số điện môi.	$ \begin{array}{c} (i) & (j) \\ \hline & \\ \hline \\ \hline$

Phụ lục 4. Dữ liệu thực nghiệm ligand và phức trong nghiên cứu

STT	Ligand	\mathbf{R}_1	\mathbf{R}_2	R 3	R 4	ML/ML ₂	Tài liệu
1	tsc_fc1	Н	-C ₆ H ₃ (COOH)(HSO ₃)	Н	-C ₆ H ₄ Cl	ML_2	[109][110]
2	tsc_fc2	Н	Н	Н	- C5H4N	ML/ML ₂	[76],[77]
3	tsc_fc3	Н	Н	Н	- C ₆ H ₄ OH	ML/ML ₂	[68,69, 87,103,130]
4	tsc_fc4	Н	Н	Н	- C ₆ H ₄ OH	ML/ML ₂	[62,68,69,87,107]
5	tsc_fc5	Н	Н	-CH ₃	$-C_6H_2BrOH(C_4H_9)$	ML_2	[111]
6	tsc_fc6	Н	Н	-C ₂ H ₅	-C6H ₂ BrOH(OC4H9)	-C6H ₂ BrOH(OC4H9) ML ₂	
7	tsc_fc7	Н	Н	Н	-C ₁₃ H ₁₆ NO ₃ ML		[95]
8	tsc_fc8	Н	Н	Н	-CH=CHC ₆ H ₅	ML	[81]
9	tsc_fc10	Н	Н	Н	-C ₆ H ₂ (OH) ₂ (OCH ₃)	ML	[63],[65]
10	tsc_fc11	Н	Н	-C(CH3)2	$-C_6H_2(OH)_2Br$	ML_2	[108]
11	tsc_fc12	Н	Н	Н	-C ₆ H ₂ (OCH ₃) ₂ OH	ML	[62],[64]
12	tsc_fc13	Н	Н	-C ₆ H ₅	-C(CH ₃)=N-OH	ML_2	[116]
13	tsc_fc14	Н	-CH ₃	-CH ₃	- C5H4N	ML_2	[114]
14	tsc_fc15	Н	Н	Н	-C ₆ H ₃ (OH)(OCH ₃)	ML/ML ₂	[50],[136]
15	tsc_fc16	Н	Н	-CH ₃	$-C_7H_5N_2$	ML ₂	[144]

Bảng p4.1. Cấu trúc 54 ligand sử dụng nghiên cứu

STT	Ligand	R ₁	R ₂	R 3	R 4	ML/ML ₂	Tài liệu
16	tsc_fc17	Н	-C ₆ H ₅	-CH ₃	-C(CH ₃)=N-OH	ML/ML ₂	[53]
17	tsc_fc18	Н	Н	-CH ₃	- C5H4N	ML/ML ₂	[24],[30],[48]
18	tsc_fc19	Н	Н	-CH ₃	- C5H4N	ML/ ML ₂	[13]
19	tsc_fc20	Н	-C ₆ H ₅	-C ₆ H ₅	- C5H4N	ML ₂	[18]
20	tsc_fc22	Н	-CH ₃	-CH ₃	- C5H4N	ML	[118]
21	tsc_fc23	Н	Н	Н	-C ₆ H ₃ BrOH	ML	[113]
22	tsc_fc25	Н	Н	Н	-C ₄ H ₃ O	ML/ML ₂	[152]
23	tsc_fc26	Н	Н	Н	-C9H8N	ML_2	[21]
24	tsc_fc28	Н	Н	-CH ₃	-CH=N-NHC ₆ H ₅	ML/ML ₂	[15],[42]
25	tsc_fc29	Н	-C ₆ H ₅	-CH ₃	$-C_6H_4-C_4H_8NO$	ML_2	[19]
26	tsc_fc30	Н	Н	Н	$-C_5H_4N$	ML/ML ₂	[30],[20],[68-69]
27	tsc_fc32	Н	Н	Н	-CH=CHC ₆ H ₅	ML	[82]
28	tsc_fc33	Н	Н	Н	-C ₆ H ₃ (OH)(OCH ₃)	ML	[139]
29	tsc_fc34	-CH ₃	-CH ₃	-C ₅ H ₄ N	- C5H4N	ML/ML ₂	[27],[46]
30	tsc_fc35	Н	Н	$-C_5H_4N$	- C5H4N	ML_2	[27]
31	tsc_fc36	Н	-CH ₃	$-C_5H_4N$	- C5H4N	ML_2	[27]
32	tsc_fc37	Н	-C ₂ H ₅	-C5H4N	- C5H4N	ML_2	[27]
33	tsc_fc38	Н	-C ₆ H ₅	-C5H4N	- C5H4N	ML ₂	[27]
34	tsc_fc39	Н	-C-CH=CH ₂	-C ₅ H ₄ N	- C5H4N	ML ₂	[27]
35	tsc_fc40	Н	Н	-	$-C_{10}H_7O_4S$	ML/ML ₂	[47]

STT	Ligand	R ₁	R ₂	R 3	R 4	ML/ML ₂	Tài liệu
36	tsc_fc41	Н	-CH ₃	-CH ₃	-CH=N-NH-C ₆ H ₅	ML/ML ₂	[42]
37	tsc_fc42	Н	Н	Н	-C ₁₀ H ₆ OH	ML/ML ₂	[126],[127]
38	tsc_fc43	Н	Н	Н	$-C_{14}H_{12}N$	ML	[78],[117]
39	tsc_fc44	Н	Н	Н	-C9H5NOH	ML	[121]
40	tsc_fc45	Н	-C ₂ H ₅	Н	-C9H5NOH	ML	[121]
41	tsc_fc46	Н	-C ₆ H ₅	Н	-C9H5NOH	ML	[121]
42	tsc_fc47	Н	Н	Н	-C ₆ H ₅	ML/ML ₂	[68],[69],[87]
43	tsc_fc48	Н	Н	Н	-C ₅ H ₃ N-CH ₃	ML	[68],[69]
44	tsc_fc50	Н	Н	Н	-C ₆ H ₄ -N-(CH ₃) ₂	ML	[20],[68],[69]
45	tsc_fc51	Н	Н	-CH ₃	-C(CH ₃)=N-OH	ML	[20],[68],[115]
46	tsc_fc52	Н	Н	-CH ₃	$-C_6H_4-C_4H_8NO$	ML_2	[20]
47	tsc_fc53	Н	Н	-CH ₃	- C ₆ H ₄ OH	ML/ML ₂	[49]
48	tsc_fc54	Н	Н	-C ₆ H ₅	-C(CH ₃)N=OH	ML_2	[115]
49	tsc_fc55	Н	Н	-C ₆ H ₅	-C(C ₆ H ₅)=N-OH	ML	[115]
50	tsc_fc56	Н	Н	-	-C ₉ H ₈ NO	ML/ML ₂	[128]
51	tsc_fc57	Н	Н	Н	$-C_6H_4NH_2$	ML/ML ₂	[132]
52	tsc_fc58	Н	Н	Н	-C ₆ H ₄ NO ₂	ML/ML ₂	[131],[133]
53	tsc_fc59	Н	Н	-C ₆ H ₄ OH	- C ₆ H ₄ OH	ML/ML ₂	[149]
54	tsc_fc60	Н	-C ₆ H ₅	-CH ₃	-C ₆ H ₂ Br(OH)(OC ₃ H ₇)	ML_2	[98]

STT	Ligand	Ion	logβ11	pН	T, °C	Lực ion	Tài liệu
1	tsc_fc2	Ni ²⁺	5,6300	6,0	30	0,10	[76]
2	tsc_fc2	Mn ²⁺	4,3200	7,0	30	0,10	[76]
3	tsc_fc4	Cu ²⁺	5,2800	7,0	25	0	[29]
4	tsc_fc4	Cu ²⁺	5,1400	7,0	25	0	[29]
5	tsc_fc4	Cu ²⁺	4,9200	7,0	25	0	[29]
6	tsc_fc4	Cu ²⁺	4,9700	7,0	25	0	[29]
7	tsc_fc4	Cu ²⁺	4,9000	7,0	35	0	[29]
8	tsc_fc4	Cu ²⁺	4,8400	7,0	35	0	[29]
9	tsc_fc4	Cu ²⁺	4,7500	7,0	35	0	[29]
10	tsc_fc4	Cu ²⁺	4,8300	7,0	35	0	[29]
11	tsc_fc4	Cu ²⁺	4,8900	7,0	45	0	[29]
12	tsc_fc4	Cu ²⁺	4,7600	7,0	45	0	[29]
13	tsc_fc4	Cu ²⁺	4,8000	7,0	45	0	[29]
14	tsc_fc4	Cu ²⁺	5,0000	7,0	45	0	[29]
15	tsc_fc7	Cu ²⁺	17,5400	7,4	25	0,10	[95]
16	tsc_fc7	Zn ²⁺	12,4000	7,4	25	0,10	[95]
17	tsc_fc7	Fe ²⁺	12,2400	7,4	25	0,10	[95]
18	tsc_fc7	Fe ³⁺	19,4800	7,4	25	0,10	[95]
19	tsc_fc8	Cd^{2+}	5,5440	9,0	25	0	[81]
20	tsc_fc10	Ni ²⁺	6,4886	8,5	25	0	[63]
21	tsc_fc10	Co ²⁺	6,3820	4,0	25	0	[65]
22	tsc_fc4	V ⁵⁺	5,3222	6,0	25	0	[119]
23	tsc_fc12	Mo ⁶⁺	6,3365	4,0	25	0	[62]
24	tsc_fc12	Cu ²⁺	6,2355	9,0	25	0	[64]
25	tsc_fc15	Cu ²⁺	13,3300	5,0	35	0,10	[136]
26	tsc_fc15	Ni ²⁺	12,6200	5,5	35	0,10	[136]
27	tsc_fc15	Co ²⁺	11,9700	4,0	35	0,10	[136]
28	tsc_fc15	Mn ²⁺	10,5500	4,0	35	0,10	[136]
29	tsc_fc17	Cu ²⁺	6,1790	7,0	20	0	[53]
30	tsc_fc17	Cu ²⁺	6,4683	7,0	25	0	[53]

Bảng p4.2. Dữ liệu phức ML trong nghiên cứu QSPR

STT	Ligand	Ion	logβ11	pН	T, ⁰C	Lực ion	Tài liệu
31	tsc_fc17	Cu^{2+}	7,4183	7,0	30	0	[53]
32	tsc_fc17	Cu^{2+}	7,7559	7,0	35	0	[53]
33	tsc_fc22	Cu^{2+}	6,1140	6,0	25	0	[118]
34	tsc_fc23	Cu^{2+}	5,6330	4,5	25	0	[113]
35	tsc_fc2	Co ²⁺	5,3600	6,0	30	0,10	[77]
36	tsc_fc2	Zn ²⁺	5,2300	6,0	30	0,10	[77]
37	tsc_fc25	Co ²⁺	5,0990	9,0	25	0	[152]
38	tsc_fc28	Cu ²⁺	11,9500	5,0	25	0,10	[15]
39	tsc_fc28	Co ²⁺	10,2200	5,0	25	0,10	[15]
40	tsc_fc28	Ni ²⁺	10,8900	5,0	25	0,10	[15]
41	tsc_fc28	Cu ²⁺	11,8400	8,0	15	0,10	[42]
42	tsc_fc28	Ni ²⁺	11,0800	8,0	15	0,10	[42]
43	tsc_fc28	Co ²⁺	10,1800	8,0	15	0,10	[42]
44	tsc_fc32	Mo ⁶⁺	6,5514	4,0	25	0	[82]
45	tsc_fc33	Cr ⁶⁺	4,8420	6,0	25	0	[139]
46	tsc_fc34	Cu ²⁺	7,0800	5,0	25	0,15	[46]
47	tsc_fc34	Fe ³⁺	7,0600	5,0	25	0,15	[46]
48	tsc_fc18	La ³⁺	7,6000	1,0	25	0	[48]
49	tsc_fc18	Pr ³⁺	7,7600	1,0	25	0	[48]
50	tsc_fc18	Nd^{3+}	7,9500	1,0	25	0	[48]
51	tsc_fc18	Gd^{3+}	8,1600	1,0	25	0	[48]
52	tsc_fc18	Sm ³⁺	8,2600	1,0	25	0	[48]
53	tsc_fc18	Tb^{3+}	8,3400	1,0	25	0	[48]
54	tsc_fc18	Dy^{3+}	8,4900	1,0	25	0	[48]
55	tsc_fc18	Ho ³⁺	8,6400	1,0	25	0	[48]
56	tsc_fc18	La ³⁺	6,8200	1,0	25	0,20	[48]
57	tsc_fc18	Pr ³⁺	7,0500	1,0	25	0,20	[48]
58	tsc_fc18	Nd^{3+}	7,3800	1,0	25	0,20	[48]
59	tsc_fc18	Gd^{3+}	7,5100	1,0	25	0,20	[48]
60	tsc_fc18	Sm ³⁺	7,6000	1,0	25	0,20	[48]
61	tsc_fc18	Tb ³⁺	7,8600	1,0	25	0,20	[48]

STT	Ligand	Ion	logβ11	pН	T, ⁰C	Lực ion	Tài liệu
62	tsc_fc18	Dy ³⁺	7,8800	1,0	25	0,20	[48]
63	tsc_fc18	Ho ³⁺	7,9500	1,0	25	0,20	[48]
64	tsc_fc18	La ³⁺	6,9100	1,0	25	0,10	[48]
65	tsc_fc18	Pr ³⁺	7,1200	1,0	25	0,10	[48]
66	tsc_fc18	Nd ³⁺	7,5400	1,0	25	0,10	[48]
67	tsc_fc18	Gd ³⁺	7,5700	1,0	25	0,10	[48]
68	tsc_fc18	Sm ³⁺	7,6600	1,0	25	0,10	[48]
69	tsc_fc18	Tb ³⁺	7,8100	1,0	25	0,10	[48]
70	tsc_fc18	Dy ³⁺	7,9300	1,0	25	0,10	[48]
71	tsc_fc18	Ho ³⁺	8,0200	1,0	25	0,10	[48]
72	tsc_fc18	La ³⁺	7,0200	1,0	25	0,05	[48]
73	tsc_fc18	Pr ³⁺	7,3300	1,0	25	0,05	[48]
74	tsc_fc18	Nd ³⁺	7,5900	1,0	25	0,05	[48]
75	tsc_fc18	Gd ³⁺	7,6300	1,0	25	0,05	[48]
76	tsc_fc18	Sm ³⁺	7,7900	1,0	25	0,05	[48]
77	tsc_fc18	Tb ³⁺	8,0600	1,0	25	0,05	[48]
78	tsc_fc18	Dy ³⁺	8,0800	1,0	25	0,05	[48]
79	tsc_fc18	Ho ³⁺	8,1500	1,0	25	0,05	[48]
80	tsc_fc18	La ³⁺	7,1400	1,0	25	0,02	[48]
81	tsc_fc18	Pr ³⁺	7,4000	1,0	25	0,02	[48]
82	tsc_fc18	Nd ³⁺	7,7400	1,0	25	0,02	[48]
83	tsc_fc18	Gd ³⁺	7,8400	1,0	25	0,02	[48]
84	tsc_fc18	Sm ³⁺	7,9500	1,0	25	0,02	[48]
85	tsc_fc18	Tb ³⁺	8,0600	1,0	25	0,02	[48]
86	tsc_fc18	Dy ³⁺	8,2400	1,0	25	0,02	[48]
87	tsc_fc18	Ho ³⁺	8,2600	1,0	25	0,02	[48]
88	tsc_fc28	Mn ²⁺	9,8700	8,0	15	0,10	[42]
89	tsc_fc28	Cu ²⁺	11,7000	8,0	25	0,10	[42]
90	tsc_fc28	Ni ²⁺	10,9400	8,0	25	0,10	[42]
91	tsc_fc28	Co ²⁺	10,0200	8,0	25	0,10	[42]
92	tsc_fc28	Mn ²⁺	9,7200	8,0	25	0,10	[42]
STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
-----	----------	-------------------	---------	-----	-------	---------	-----------
93	tsc_fc28	Cu^{2+}	11,5300	8,0	35	0,10	[42]
94	tsc_fc28	Ni ²⁺	10,7900	8,0	35	0,10	[42]
95	tsc_fc28	Co ²⁺	9,9000	8,0	35	0,10	[42]
96	tsc_fc28	Mn^{2+}	9,6000	8,0	35	0,10	[42]
97	tsc_fc41	Cu ²⁺	12,3000	8,0	15	0,10	[42]
98	tsc_fc41	Ni ²⁺	11,2100	8,0	15	0,10	[42]
99	tsc_fc41	Co ²⁺	10,5900	8,0	15	0,10	[42]
100	tsc_fc41	Mn ²⁺	10,0500	8,0	15	0,10	[42]
101	tsc_fc41	Cu ²⁺	12,1400	8,0	25	0,10	[42]
102	tsc_fc41	Ni ²⁺	11,0300	8,0	25	0,10	[42]
103	tsc_fc41	Co ²⁺	10,4700	8,0	25	0,10	[42]
104	tsc_fc41	Mn ²⁺	9,9100	8,0	25	0,10	[42]
105	tsc_fc41	Cu ²⁺	11,9800	8,0	35	0,10	[42]
106	tsc_fc41	Ni ²⁺	10,9100	8,0	35	0,10	[42]
107	tsc_fc41	Co ²⁺	10,3000	8,0	35	0,10	[42]
108	tsc_fc41	Mn ²⁺	9,7700	8,0	35	0,10	[42]
109	tsc_fc43	Cd^{2+}	5,8600	6,0	25	0	[78]
110	tsc_fc44	Cu ²⁺	14,5600	7,4	25	0	[121]
111	tsc_fc44	Zn^{2+}	6,6800	7,4	25	0	[121]
112	tsc_fc45	Cu ²⁺	14,6700	7,4	25	0	[121]
113	tsc_fc45	Zn^{2+}	6,1300	7,4	25	0	[121]
114	tsc_fc46	Cu ²⁺	15,6500	7,4	25	0	[121]
115	tsc_fc46	Zn^{2+}	7,3000	7,4	25	0	[121]
116	tsc_fc47	Ag^+	15,5000	5,0	20	0	[69]
117	tsc_fc30	Ag^+	14,0000	5,0	20	0	[69]
118	tsc_fc48	Ag^+	14,5000	5,0	20	0	[69]
119	tsc_fc4	Ag^+	15,7000	5,0	20	0	[69]
120	tsc_fc49	Ag^+	15,6000	5,0	20	0	[69]
121	tsc_fc50	$\overline{Ag^+}$	17,2000	5,0	20	0	[69]
122	tsc_fc47	Cu ²⁺	17,7000	4,5	25	0	[20],[68]
123	tsc_fc30	Cu ²⁺	20,4000	4,5	25	0	[20],[68]

STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
124	tsc_fc48	Cu ²⁺	19,1000	4,5	25	0	[20],[68]
125	tsc_fc50	Cu^{2+}	15,3000	4,5	25	0	[20],[68]
126	tsc_fc51	Cu ²⁺	19,1000	4,5	25	0	[20],[68]
127	tsc_fc4	Cu ²⁺	19,1000	4,5	25	0	[20],[68]
128	tsc_fc49	Cu ²⁺	17,2000	4,5	25	0	[20],[68]
129	tsc_fc15	Mn ²⁺	5,3600	2,7	15	0,10	[50]
130	tsc_fc15	Mn ²⁺	5,2800	2,7	25	0,10	[50]
131	tsc_fc15	Mn ²⁺	5,0600	2,7	35	0,10	[50]
132	tsc_fc15	Mn ²⁺	4,1200	2,7	45	0,10	[50]
133	tsc_fc15	Pb^{2+}	7,1000	2,7	15	0,10	[50]
134	tsc_fc15	Pb^{2+}	6,8300	2,7	25	0,10	[50]
135	tsc_fc15	Pb ²⁺	6,7200	2,7	35	0,10	[50]
136	tsc_fc15	Pb ²⁺	6,5300	2,7	45	0,10	[50]
137	tsc_fc15	Cd ²⁺	7,3400	2,7	15	0,10	[50]
138	tsc_fc15	Cd^{2+}	7,0700	2,7	25	0,10	[50]
139	tsc_fc15	Cd^{2+}	6,9900	2,7	35	0,10	[50]
140	tsc_fc15	Cd^{2+}	6,7900	2,7	45	0,10	[50]
141	tsc_fc15	Zn^{2+}	7,4700	2,7	15	0,10	[50]
142	tsc_fc15	Zn^{2+}	7,4200	2,7	25	0,10	[50]
143	tsc_fc15	Zn^{2+}	7,2800	2,7	35	0,10	[50]
144	tsc_fc15	Zn^{2+}	7,1100	2,7	45	0,10	[50]
145	tsc_fc15	Fe ²⁺	8,1500	2,7	15	0,10	[50]
146	tsc_fc15	Fe ²⁺	7,9900	2,7	25	0,10	[50]
147	tsc_fc15	Fe ²⁺	7,8400	2,7	35	0,10	[50]
148	tsc_fc15	Fe ²⁺	7,6900	2,7	45	0,10	[50]
149	tsc_fc15	Co ²⁺	8,4700	2,7	15	0,10	[50]
150	tsc_fc15	Co ²⁺	8,0200	2,7	25	0,10	[50]
151	tsc_fc15	Co ²⁺	7,9400	2,7	35	0,10	[50]
152	tsc_fc15	Co ²⁺	7,8600	2,7	45	0,10	[50]
153	tsc_fc15	Ni ²⁺	8,6500	2,7	15	0,10	[50]
154	tsc_fc15	Ni ²⁺	8,4800	2,7	25	0,10	[50]

STT	Ligand	Ion	logβ11	pН	T, ⁰C	Lực ion	Tài liệu
155	tsc_fc15	Ni ²⁺	8,3700	2,7	35	0,10	[50]
156	tsc_fc15	Ni ²⁺	8,1100	2,7	45	0,10	[50]
157	tsc_fc15	Cu ²⁺	9,8300	2,7	15	0,10	[50]
158	tsc_fc15	Cu ²⁺	9,4400	2,7	25	0,10	[50]
159	tsc_fc15	Cu ²⁺	9,3600	2,7	35	0,10	[50]
160	tsc_fc15	Cu ²⁺	9,0300	2,7	45	0,10	[50]
161	tsc_fc53	Mg^{2+}	3,3000	2,7	15	0,10	[49]
162	tsc_fc53	Mg^{2+}	3,0300	2,7	30	0,10	[49]
163	tsc_fc53	Mg ²⁺	2,9200	2,7	50	0,10	[49]
164	tsc_fc53	Mn ²⁺	5,0000	2,7	15	0,10	[49]
165	tsc_fc53	Mn ²⁺	4,5100	2,7	30	0,10	[49]
166	tsc_fc53	Mn^{2+}	4,3200	2,7	50	0,10	[49]
167	tsc_fc53	Cd^{2+}	5,5900	2,7	15	0,10	[49]
168	tsc_fc53	Cd^{2+}	4,8300	2,7	30	0,10	[49]
169	tsc_fc53	Cd^{2+}	4,7400	2,7	50	0,10	[49]
170	tsc_fc53	Pb ²⁺	5,7400	2,7	15	0,10	[49]
171	tsc_fc53	Pb^{2+}	5,0100	2,7	30	0,10	[49]
172	tsc_fc53	Pb^{2+}	4,900	2,7	50	0,10	[49]
173	tsc_fc53	Ni ²⁺	5,9400	2,7	15	0,10	[49]
174	tsc_fc53	Ni ²⁺	5,3100	2,7	30	0,10	[49]
175	tsc_fc53	Ni ²⁺	5,1400	2,7	50	0,10	[49]
176	tsc_fc53	Cu ²⁺	6,8400	2,7	15	0,10	[49]
177	tsc_fc53	Cu ²⁺	5,9100	2,7	30	0,10	[49]
178	tsc_fc53	Cu^{2+}	5,8100	2,7	50	0,10	[49]
179	tsc_fc55	Cu^{2+}	5,7482	4,5	25	0	[115]
180	tsc_fc42	Mg^{2+}	3,4000	10	20	0,10	[127]
181	tsc_fc42	Mg^{2+}	3,3400	10	30	0,10	[127]
182	tsc_fc42	Mg^{2+}	3,3100	10	40	0,10	[127]
183	tsc_fc42	Mg^{2+}	3,2500	10	50	0,10	[127]
184	tsc_fc42	Mn ²⁺	5,6700	10	20	0,10	[127]
185	tsc_fc42	Mn ²⁺	5,3600	10	30	0,10	[127]

STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
186	tsc_fc42	Mn ²⁺	5,2000	10	40	0,10	[127]
187	tsc_fc42	Mn ²⁺	4,6600	10	50	0,10	[127]
188	tsc_fc42	Cd^{2+}	6,5600	10	20	0,10	[127]
189	tsc_fc42	Cd ²⁺	6,4700	10	30	0,10	[127]
190	tsc_fc42	Cd ²⁺	6,1200	10	40	0,10	[127]
191	tsc_fc42	Cd ²⁺	5,9300	10	50	0,10	[127]
192	tsc_fc42	Pb^{2+}	7,6400	10	20	0,10	[127]
193	tsc_fc42	Pb ²⁺	7,2300	10	30	0,10	[127]
194	tsc_fc42	Pb ²⁺	6,6800	10	40	0,10	[127]
195	tsc_fc42	Pb ²⁺	6,5700	10	50	0,10	[127]
196	tsc_fc42	Zn ²⁺	8,3500	10	20	0,10	[127]
197	tsc_fc42	Zn ²⁺	8,1100	10	30	0,10	[127]
198	tsc_fc42	Zn ²⁺	7,7000	10	40	0,10	[127]
199	tsc_fc42	Zn ²⁺	7,1700	10	50	0,10	[127]
200	tsc_fc42	Co ²⁺	9,0000	10	20	0,10	[127]
201	tsc_fc42	Co ²⁺	8,4300	10	30	0,10	[127]
202	tsc_fc42	Co ²⁺	8,1300	10	40	0,10	[127]
203	tsc_fc42	Co ²⁺	7,8900	10	50	0,10	[127]
204	tsc_fc42	Ni ²⁺	9,6000	10	20	0,10	[127]
205	tsc_fc42	Ni ²⁺	9,1300	10	30	0,10	[127]
206	tsc_fc42	Ni ²⁺	9,0700	10	40	0,10	[127]
207	tsc_fc42	Ni ²⁺	8,3700	10	50	0,10	[127]
208	tsc_fc42	Cu^{2+}	9,7800	10	20	0,10	[127]
209	tsc_fc42	Cu ²⁺	9,3400	10	30	0,10	[127]
210	tsc_fc42	Cu^{2+}	9,2900	10	40	0,10	[127]
211	tsc_fc42	Cu ²⁺	8,6800	10	50	0,10	[127]
212	tsc_fc56	Cu ²⁺	8,7140	10	30	0,02	[127]
213	tsc_fc56	Cu ²⁺	8,4190	10	30	0,05	[128]
214	tsc_fc56	Cu ²⁺	8,1780	10	30	0,10	[128]
215	tsc_fc56	Cu ²⁺	7,7960	10	30	0,20	[128]
216	tsc_fc56	Cu ²⁺	8,2890	10	40	0,10	[128]

STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
217	tsc_fc56	Cu ²⁺	8,6340	10	45	0,10	[128]
218	tsc_fc56	Cu ²⁺	8,7410	10	50	0,10	[128]
219	tsc_fc56	Cu ²⁺	9,060	10	30	0,00	[128]
220	tsc_fc56	Ni ²⁺	8,2210	10	30	0,02	[128]
221	tsc_fc56	Ni ²⁺	8,1240	10	30	0,05	[128]
222	tsc_fc56	Ni ²⁺	7,9100	10	30	0,10	[128]
223	tsc_fc56	Ni ²⁺	7,7090	10	30	0,20	[128]
224	tsc_fc56	Ni ²⁺	7,9980	10	40	0,10	[128]
225	tsc_fc56	Ni ²⁺	8,0910	10	45	0,10	[128]
226	tsc_fc56	Ni ²⁺	8,1630	10	50	0,10	[128]
227	tsc_fc56	Ni ²⁺	8,5000	10	30	0,00	[128]
228	tsc_fc56	Pb^{2+}	8,1090	10	30	0,02	[128]
229	tsc_fc56	Pb^{2+}	7,8610	10	30	0,05	[128]
230	tsc_fc56	Pb^{2+}	7,6530	10	30	0,10	[128]
231	tsc_fc56	Pb^{2+}	7,3070	10	30	0,20	[128]
232	tsc_fc56	Pb ²⁺	7,8520	10	40	0,10	[128]
233	tsc_fc56	Pb^{2+}	7,9920	10	45	0,10	[128]
234	tsc_fc56	Pb^{2+}	8,0650	10	50	0,10	[128]
235	tsc_fc56	Co ²⁺	8,0140	10	30	0,02	[128]
236	tsc_fc56	Co ²⁺	7,6680	10	30	0,05	[128]
237	tsc_fc56	Co ²⁺	7,5910	10	30	0,10	[128]
238	tsc_fc56	Co ²⁺	7,2510	10	30	0,20	[128]
239	tsc_fc56	Co ²⁺	7,8060	10	40	0,10	[128]
240	tsc_fc56	Co ²⁺	7,9140	10	45	0,10	[128]
241	tsc_fc56	Co ²⁺	7,9630	10	50	0,10	[128]
242	tsc_fc56	Co ²⁺	8,3400	10	30	0,00	[128]
243	tsc_fc56	Zn^{2+}	7,8200	10	30	0,02	[128]
244	tsc_fc56	Zn^{2+}	7,5340	10	30	0,05	[128]
245	tsc_fc56	Zn ²⁺	7,4230	10	30	0,10	[128]
246	tsc_fc56	Zn ²⁺	7,0390	10	30	0,20	[128]
247	tsc_fc56	Zn ²⁺	7,6450	10	40	0,10	[128]

STT	Ligand	Ion	logβ11	pН	T, ⁰C	Lực ion	Tài liệu
248	tsc_fc56	Zn^{2+}	7,6540	10	45	0,10	[128]
249	tsc_fc56	Zn^{2+}	7,9190	10	50	0,10	[128]
250	tsc_fc56	Zn^{2+}	8,1600	10	30	0,00	[128]
251	tsc_fc56	Cd ²⁺	7,4090	10	30	0,02	[128]
252	tsc_fc56	Cd ²⁺	7,0150	10	30	0,05	[128]
253	tsc_fc56	Cd ²⁺	6,8630	10	30	0,10	[128]
254	tsc_fc56	Cd ²⁺	6,6110	10	30	0,20	[128]
255	tsc_fc56	Cd^{2+}	7,1840	10	40	0,10	[128]
256	tsc_fc56	Cd^{2+}	7,5990	10	45	0,10	[128]
257	tsc_fc56	Cd^{2+}	7,8890	10	50	0,10	[128]
258	tsc_fc56	Mn ²⁺	6,0410	10	30	0,02	[128]
259	tsc_fc56	Mn ²⁺	5,8200	10	30	0,05	[128]
260	tsc_fc56	Mn ²⁺	5,6210	10	30	0,10	[128]
261	tsc_fc56	Mn ²⁺	5,4390	10	30	0,20	[128]
262	tsc_fc56	Mn ²⁺	5,8490	10	40	0,10	[128]
263	tsc_fc56	Mn ²⁺	5,9420	10	45	0,10	[128]
264	tsc_fc56	Mn ²⁺	5,9480	10	50	0,10	[128]
265	tsc_fc56	Mn ²⁺	6,2300	10	30	0,00	[128]
266	tsc_fc57	Cu ²⁺	11,6100	2,4	28	0,10	[132]
267	tsc_fc57	Cu^{2+}	10,5700	2,4	38	0,10	[132]
268	tsc_fc57	Ni ²⁺	12,7100	2,4	28	0,10	[132]
269	tsc_fc57	Ni ²⁺	11,2100	2,4	38	0,10	[132]
270	tsc_fc57	Co ²⁺	11,9500	2,4	28	0,10	[132]
271	tsc_fc57	Co ²⁺	9,8700	2,4	38	0,10	[132]
272	tsc_fc57	Mn ²⁺	12,1400	2,4	28	0,10	[132]
273	tsc_fc57	Mn ²⁺	9,9900	2,4	38	0,10	[132]
274	tsc_fc57	Zn ²⁺	11,3200	2,4	28	0,10	[132]
275	tsc_fc57	Zn ²⁺	8,7400	2,4	38	0,10	[132]
276	tsc_fc58	La ³⁺	10,8400	2,4	28	0,10	[133]
277	tsc_fc58	La ³⁺	9,4500	2,4	38	0,10	[133]
278	tsc_fc58	Pr ³⁺	11,0400	2,4	28	0,10	[133]

STT	Ligand	Ion	logβ11	pН	T, ⁰C	Lực ion	Tài liệu
279	tsc_fc58	Pr ³⁺	10,4200	2,4	38	0,10	[133]
280	tsc_fc58	Nd^{3+}	9,0900	2,4	28	0,10	[133]
281	tsc_fc58	Nd^{3+}	8,4100	2,4	38	0,10	[133]
282	tsc_fc58	Cd^{2+}	10,6300	2,4	28	0,10	[131]
283	tsc_fc58	Cd^{2+}	10,9500	2,4	38	0,10	[131]
284	tsc_fc58	Al^{3+}	11,2400	2,4	28	0,10	[131]
285	tsc_fc58	Al^{3+}	10,9800	2,4	38	0,10	[131]
286	tsc_fc58	Cr ³⁺	10,1500	2,4	28	0,10	[131]
287	tsc_fc58	Cr ³⁺	11,2500	2,4	38	0,10	[131]
288	tsc_fc58	Fe ³⁺	11,6300	2,4	28	0,10	[131]
289	tsc_fc58	Fe ³⁺	11,1000	2,4	38	0,10	[131]
290	tsc_fc59	Fe ³⁺	5,4960	3,4	25	1,0	[149]
291	tsc_fc18	Cu ²⁺	5,4910	9,0	25	0	[13]
292	tsc_fc19	Cu ²⁺	5,9240	9,0	25	0	[13]

STT	Ligand	Kim loại	logβ ₁₂	pН	T,⁰C	Lực ion	Tài liệu
1	tsc_fc1	Cu^{2+}	12,0730	4,0	30	0	[109]
2	tsc_fc13	Cu ²⁺	7,9164	5,0	27	0,20	[116]
3	tsc_fc13	Cu ²⁺	7,9165	5,0	25	0	[115]
4	tsc_fc17	Cu ²⁺	6,1732	7,0	20	0	[53]
5	tsc_fc17	Cu ²⁺	6,6345	7,0	25	0	[53]
6	tsc_fc17	Cu ²⁺	6,9469	7,0	30	0	[53]
7	tsc_fc17	Cu ²⁺	7,2878	7,0	35	0	[53]
8	tsc_fc1	Ni ²⁺	10,7440	5,0	25	0	[110]
9	tsc_fc25	Cd^{2+}	5,5100	9,0	25	0	[152]
10	tsc_fc26	Cu ²⁺	8,6946	5,7	40	0,2	[21]
11	tsc_fc26	Ag^+	10,3362	5,7	35	0,12	[21]
12	tsc_fc26	Ag^+	10,1625	5,7	40	0,12	[21]
13	tsc_fc26	Hg^{2+}	10,1625	5,7	40	0	[21]
14	tsc_fc26	Hg ²⁺	10,2493	5,7	40	0,12	[21]
15	tsc_fc3	Cu^{2+}	10,7730	6,5	25	0	[129]
16	tsc_fc29	Co^{2+}	10,1104	9,3	25	0	[19]
17	tsc_fc29	Co ²⁺	10,0365	9,3	30	0	[19]
18	tsc_fc29	Co ²⁺	9,9584	9,3	35	0	[19]
19	tsc_fc29	Co ²⁺	9,8715	9,3	40	0	[19]
20	tsc_fc29	Ni ²⁺	10,5056	9,3	25	0	[19]
21	tsc_fc29	Ni ²⁺	10,3753	9,3	30	0	[19]
22	tsc_fc29	Ni ²⁺	10,2624	9,3	35	0	[19]
23	tsc_fc29	Ni ²⁺	10,1408	9,3	40	0	[19]
24	tsc_fc29	Cu^{2+}	11,9952	9,3	25	0	[19]
25	tsc_fc29	Cu^{2+}	11,8823	9,3	30	0	[19]
26	tsc_fc29	Cu ²⁺	11,7781	9,3	35	0	[19]
27	tsc_fc29	Cu ²⁺	11,6434	9,3	40	0	[19]
28	tsc_fc29	Ag^+	9,9410	9,3	25	0	[19]
29	tsc_fc29	$\overline{Ag^+}$	9,8802	9,3	30	0	[19]
30	tsc_fc29	Ag^+	9,8151	9,3	35	0	[19]

Bảng p4.3. Dữ liệu phức ML₂ trong nghiên cứu QSPR

STT	Ligand	Kim loại	logβ ₁₂	pН	T, ⁰C	Lực ion	Tài liệu
31	tsc_fc29	Ag^+	9,7369	9,3	40	0	[19]
32	tsc_fc29	Cd^{2+}	11,1310	9,3	25	0	[19]
33	tsc_fc29	Cd^{2+}	11,0398	9,3	30	0	[19]
34	tsc_fc29	Cd^{2+}	10,9225	9,3	35	0	[19]
35	tsc_fc29	Cd^{2+}	10,8183	9,3	40	0	[19]
36	tsc_fc29	Hg^{2+}	11,6825	9,3	25	0	[19]
37	tsc_fc29	Hg^{2+}	11,5522	9,3	30	0	[19]
38	tsc_fc29	Hg ²⁺	11,4176	9,3	35	0	[19]
39	tsc_fc29	Hg ²⁺	11,2569	9,3	40	0	[19]
40	tsc_fc28	Cu ²⁺	22,3200	8,0	25	0,10	[42]
41	tsc_fc28	Cu ²⁺	22,0200	8,0	35	0,10	[42]
42	tsc_fc28	Ni ²⁺	20,9300	8,0	25	0,10	[42]
43	tsc_fc28	Ni ²⁺	20,6300	8,0	35	0,10	[42]
44	tsc_fc28	Co ²⁺	19,9500	8,0	15	0,10	[42]
45	tsc_fc28	Co ²⁺	19,6600	8,0	25	0,10	[42]
46	tsc_fc28	Mn ²⁺	19,1800	8,0	15	0,10	[42]
47	tsc_fc41	Cu^{2+}	23,4400	8,0	15	0,10	[42]
48	tsc_fc41	Cu ²⁺	23,1800	8,0	25	0,10	[42]
49	tsc_fc41	Cu^{2+}	22,8200	8,0	35	0,10	[42]
50	tsc_fc41	Ni ²⁺	21,4000	8,0	15	0,10	[42]
51	tsc_fc41	Ni ²⁺	21,1200	8,0	25	0,10	[42]
52	tsc_fc41	Ni ²⁺	20,8200	8,0	35	0,10	[42]
53	tsc_fc41	Co^{2+}	20,2100	8,0	15	0,10	[42]
54	tsc_fc41	Co^{2+}	19,9600	8,0	25	0,10	[42]
55	tsc_fc41	Co^{2+}	19,6500	8,0	35	0,10	[42]
56	tsc_fc41	Mn^{2+}	19,4500	8,0	15	0,10	[42]
57	tsc_fc41	Mn^{2+}	19,2000	8,0	25	0,10	[42]
58	tsc_fc41	Mn^{2+}	18,9000	8,0	35	0,10	[42]
59	tsc_fc52	Cu ²⁺	8,3211	4,0	25	0	[20]
60	tsc_fc52	Cu ²⁺	8,3558	4,0	25	0,20	[20]
61	tsc_fc52	Cu ²⁺	8,3428	4,0	25	0,13	[20]

STT	Ligand	Kim loại	logβ ₁₂	pН	T,⁰C	Lực ion	Tài liệu
62	tsc_fc52	Cu ²⁺	8,3341	4,0	25	0,07	[20]
63	tsc_fc52	Cu ²⁺	8,2342	4,0	30	0	[20]
64	tsc_fc52	Cu ²⁺	8,2646	4,0	30	0,20	[20]
65	tsc_fc52	Cu ²⁺	8,2559	4,0	30	0,13	[20]
66	tsc_fc52	Cu ²⁺	8,1995	4,0	30	0,07	[20]
67	tsc_fc52	Cu ²⁺	8,1474	4,0	35	0	[20]
68	tsc_fc52	Cu ²⁺	8,1734	4,0	35	0,20	[20]
69	tsc_fc52	Cu ²⁺	8,1647	4,0	35	0,13	[20]
70	tsc_fc52	Cu ²⁺	8,0692	4,0	35	0,07	[20]
71	tsc_fc52	Cu ²⁺	8,0518	4,0	40	0	[20]
72	tsc_fc52	Cu ²⁺	8,1995	4,0	40	0,20	[20]
73	tsc_fc52	Cu ²⁺	8,1387	4,0	40	0,13	[20]
74	tsc_fc52	Cu ²⁺	8,0692	4,0	40	0,07	[20]
75	tsc_fc52	Hg ²⁺	10,3020	4,0	25	0	[20]
76	tsc_fc52	Hg ²⁺	10,4750	4,0	25	0,20	[20]
77	tsc_fc52	Hg ²⁺	10,4190	4,0	25	0,13	[20]
78	tsc_fc52	Hg ²⁺	10,3710	4,0	25	0,07	[20]
79	tsc_fc52	Hg ²⁺	10,4100	4,0	30	0	[20]
80	tsc_fc52	Hg ²⁺	10,5620	4,0	30	0,20	[20]
81	tsc_fc52	Hg^{2+}	10,5140	4,0	30	0,13	[20]
82	tsc_fc52	Hg^{2+}	10,4710	4,0	30	0,07	[20]
83	tsc_fc52	Hg ²⁺	10,5230	4,0	35	0	[20]
84	tsc_fc52	Hg^{2+}	10,6490	4,0	35	0,20	[20]
85	tsc_fc52	Hg^{2+}	10,6100	4,0	35	0,13	[20]
86	tsc_fc52	Hg^{2+}	10,5750	4,0	35	0,07	[20]
87	tsc_fc52	Hg^{2+}	10,6320	4,0	40	0	[20]
88	tsc_fc52	Hg^{2+}	10,7400	4,0	40	0,20	[20]
89	tsc_fc52	Hg^{2+}	10,7050	4,0	40	0,13	[20]
90	tsc_fc52	Hg ²⁺	10,6750	4,0	40	0,07	[20]
91	tsc_fc52	Ag^+	9,1984	4,0	25	0	[20]
92	tsc_fc52	Ag^+	9,6457	4,0	25	0,20	[20]

STT	Ligand	Kim loại	logβ ₁₂	pН	T, ⁰C	Lực ion	Tài liệu
93	tsc_fc52	Ag^+	9,4893	4,0	25	0,13	[20]
94	tsc_fc52	Ag^+	9,3547	4,0	25	0,07	[20]
95	tsc_fc52	Ag^+	9,3460	4,0	30	0	[20]
96	tsc_fc52	Ag^+	9,8585	4,0	30	0,20	[20]
97	tsc_fc52	Ag^+	9,6761	4,0	30	0,13	[20]
98	tsc_fc52	Ag^+	9,4763	4,0	30	0,07	[20]
99	tsc_fc52	Ag^+	9,5197	4,0	35	0	[20]
100	tsc_fc52	Ag^+	10,1190	4,0	35	0,20	[20]
101	tsc_fc52	Ag^+	9,8932	4,0	35	0,13	[20]
102	tsc_fc52	Ag^+	9,7282	4,0	35	0,07	[20]
103	tsc_fc52	Ag^+	9,6717	4,0	40	0	[20]
104	tsc_fc52	Ag^+	10,1930	4,0	40	0,20	[20]
105	tsc_fc52	Ag^+	10,0110	4,0	40	0,13	[20]
106	tsc_fc52	Ag^+	9,8541	4,0	40	0,07	[20]
107	tsc_fc52	Ni ²⁺	6,7229	9,6	25	0	[20]
108	tsc_fc52	Ni ²⁺	6,7576	9,6	25	0,20	[20]
109	tsc_fc52	Ni ²⁺	6,7446	9,6	25	0,13	[20]
110	tsc_fc52	Ni ²⁺	6,7359	9,6	25	0,07	[20]
111	tsc_fc52	Ni ²⁺	6,7620	9,6	30	0	[20]
112	tsc_fc52	Ni ²⁺	6,7967	9,6	30	0,20	[20]
113	tsc_fc52	Ni ²⁺	6,7793	9,6	30	0,13	[20]
114	tsc_fc52	Ni ²⁺	6,7750	9,6	30	0,07	[20]
115	tsc_fc52	Ni ²⁺	6,8228	9,6	35	0	[20]
116	tsc_fc52	Ni ²⁺	6,8575	9,6	35	0,20	[20]
117	tsc_fc52	Ni ²⁺	6,8445	9,6	35	0,13	[20]
118	tsc_fc52	Ni ²⁺	6,8401	9,6	35	0,07	[20]
119	tsc_fc52	Ni ²⁺	6,8879	9,6	40	0	[20]
120	tsc_fc52	Ni ²⁺	6,9270	9,6	40	0,20	[20]
121	tsc_fc52	Ni ²⁺	6,9096	9,6	40	0,13	[20]
122	tsc_fc52	Ni ²⁺	6,9009	9,6	40	0,07	[20]
123	tsc_fc42	Mg ²⁺	6,5200	10	30	0,10	[127]

STT	Ligand	Kim loại	logβ ₁₂	рН	Т, °С	Lực ion	Tài liệu
124	tsc_fc42	Mg^{2+}	6,2100	10	40	0,10	[127]
125	tsc_fc56	Cu ²⁺	16,5830	10	30	0,02	[128]
126	tsc_fc56	Cu ²⁺	16,2850	10	30	0,05	[128]
127	tsc_fc56	Cu ²⁺	15,6200	10	30	0,10	[128]
128	tsc_fc56	Cu ²⁺	14,8530	10	30	0,20	[128]
129	tsc_fc56	Cu ²⁺	15,9720	10	40	0,10	[128]
130	tsc_fc56	Cu ²⁺	16,4230	10	45	0,10	[128]
131	tsc_fc56	Cu ²⁺	16,6390	10	50	0,10	[128]
132	tsc_fc56	Zn ²⁺	15,0560	10	50	0,10	[128]
133	tsc_fc56	Cd^{2+}	13,8370	10	50	0,10	[128]
134	tsc_fc58	Cd^{2+}	18,3200	2,4	38	0,10	[131]
135	tsc_fc60	Cu ²⁺	10,3630	6,5	25	0	[98]

Phụ lục 5. Dữ liệu thực nghiệm phức ML

		d Tom	logfu		Mô hình QSPR		Tài liệu
STT	Ligand	Ion	logβ11,exp	GA-MLR	GA-SVR	GA-ANN	tham khảo
1t	tsc_fc18	Dy ³⁺	8,49	7,51(0,98)	8,275(0,22)	8,301(0,19)	[48]
2v	tsc_fc2	Zn^{2+}	5,23	8,59(-3,36)	4,765(3,73)	5,299(3,19)	[77]
3t	tsc_fc18	Pr ³⁺	7,76	7,981(-0,22)	8,732(-0,24)	8,357(0,13)	[48]
4a	tsc_fc41	Cu^{2+}	12,14	10,557(1,58)	11,275(-2,79)	12,125(-3,64)	[42]
5v	tsc_fc57	Mn ²⁺	12,14	11,814(0,33)	11,272(-2,78)	11,797(-3,31)	[132]
бt	tsc_fc17	Cu^{2+}	6,468	6,298(0,17)	7,336(1,15)	6,03(2,46)	[53]
7t	tsc_fc58	Nd^{3+}	9,09	10,185(-1,10)	9,956(-1,47)	9,13(-0,64)	[133]
8a	tsc_fc30	Ag^+	14	3,511(10,49)	14,868(-6,38)	14,58(-6,09)	[69]
9t	tsc_fc59	Fe ³⁺	5,496	6,898(-1,40)	6,364(2,13)	5,544(2,95)	[149]
10p	tsc_fc58	Cd^{2+}	10,63	4,929(5,70)	9,759(-1,27)	10,508(-2,02)	[131]
11v	tsc_fc2	Co ²⁺	5,36	8,742(-3,38)	6,227(2,26)	5,392(3,10)	[77]
12t	tsc_fc7	Fe ³⁺	19,48	18,885(0,59)	18,613(-10,12)	19,568(-11,08)	[95]
13a	tsc_fc28	Cu^{2+}	11,95	10,736(1,21)	11,189(-2,70)	12,142(-3,65)	[15]
14t	tsc_fc55	Cu^{2+}	5,748	6,216(-0,47)	6,617(1,87)	5,934(2,56)	[115]
15v	tsc_fc44	Zn^{2+}	6,68	6,388(0,29)	7,549(0,94)	6,853(1,64)	[121]
16t	tsc_fc34	Fe ³⁺	7,06	7,093(-0,03)	7,93(0,56)	7,395(1,10)	[46]
17a	tsc_fc2	Mn ²⁺	4,32	9,34(-5,02)	5,188(3,30)	3,454(5,04)	[76]
18t	tsc_fc10	Ni ²⁺	6,489	5,653(0,84)	6,357(2,13)	5,654(2,84)	[63]
19p	tsc_fc8	Cd^{2+}	5,544	10,25(-4,71)	6,413(2,08)	5,297(3,19)	[81]
20t	tsc_fc15	Cd^{2+}	7,07	6,849(0,22)	7,942(0,55)	6,911(1,58)	[50]
21a	tsc_fc47	Ag^+	15,5	8,897(6,60)	14,633(-6,14)	15,47(-6,98)	[69]
22t	tsc_fc56	Pb^{2+}	8,109	6,072(2,04)	8,979(-0,49)	7,681(0,81)	[128]
23a	tsc_fc56	Cu^{2+}	9,06	9,927(-0,87)	9,659(-1,17)	8,64(-0,15)	[128]
24v	tsc_fc57	Cu^{2+}	11,61	10,975(0,64)	975(0,64) 10,741(-2,25) 11,723(-3,23)		[132]
25t	tsc_fc18	Tb ³⁺	8,34	7,573(0,77)	9,208(-0,72) 8,35(0,14)		[48]
26t	tsc_fc42	Cu^{2+}	9,34	7,308(2,03)	9,039(-0,55) 9,133(-0,64)		[127]
27a	tsc_fc30	Cu^{2+}	20,4	3,011(17,39)	19,531(-11,04)	20,846(-12,36)	[20],[68]

Bảng p5.1. Dữ liệu và kết quả dự đoán nhóm 1 - phức ML

		_			Tài liệu		
STT	Ligand	Ion	logβ11,exp	GA-MLR	GA-SVR	GA-ANN	tham khảo
28a	tsc_fc15	Co ²⁺	11,97	7,553(4,42)	11,104(-2,61)	12,514(-4,02)	[136]
29t	tsc_fc50	Ag^+	17,2	16,403(0,80)	16,328(-7,84)	17,62(-9,13)	[69]
30a	tsc_fc15	Ni ²⁺	12,62	7,488(5,13)	11,748(-3,26)	12,47(-3,98)	[136]
31t	tsc_fc42	Co ²⁺	8,43	7,936(0,49)	9,1(-0,61)	7,523(0,97)	[127]
32t	tsc_fc18	La ³⁺	7,6	8,529(-0,93)	8,469(0,02)	7,511(0,98)	[48]
33p	tsc_fc57	Ni ²⁺	12,71	12,428(0,28)	11,841(-3,35)	12,061(-3,57)	[132]
34t	tsc_fc42	Mn ²⁺	5,36	7,776(-2,42)	6,229(2,26)	5,189(3,30)	[127]
35p	tsc_fc56	Ni ²⁺	8,50	2,135(6,37)	9,366(-0,88)	8,047(0,44)	[128]
36v	tsc_fc50	Cu ²⁺	15,3	15,084(0,22)	15,543(-7,05)	15,203(-6,71)	[20],[68]
37v	tsc_fc15	Zn ²⁺	7,42	7,242(0,18)	8,289(0,20)	7,197(1,29)	[50]
38v	tsc_fc33	Cr ³⁺	4,842	7,659(-2,82)	4,937(3,55)	5,27(3,22)	[139]
39a	tsc_fc58	Al ³⁺	11,24	6,391(4,85)	10,372(-1,88)	10,593(-2,10)	[131]
40t	tsc_fc42	Pb ²⁺	7,23	7,023(0,21)	8,1(0,39)	6,738(1,75)	[127]
41v	tsc_fc45	Zn ²⁺	6,13	6,928(-0,80)	6,999(1,49)	6,647(1,84)	[121]
42a	tsc_fc25	Co ²⁺	5,099	7,36(-2,26)	5,968(2,52)	5,089(3,40)	[152]
43t	tsc_fc18	Ho ³⁺	8,64	7,413(1,23)	9,509(-1,02)	8,76(-0,27)	[48]
44a	tsc_fc18	Cu ²⁺	5,491	1,625(3,87)	6,36(2,13)	5,215(3,28)	[13]
45t	tsc_fc56	Zn ²⁺	8,16	8,893(-0,73)	9,029(-0,54)	7,624(0,87)	[128]
46t	tsc_fc15	Pb ²⁺	6,83	6,194(0,64)	7,699(0,79)	6,495(2,00)	[50]
47v	tsc_fc41	Mn ²⁺	9,91	11,277(-1,37)	9,758(-1,27)	10,074(-1,58)	[42]
48p	tsc_fc46	Zn ²⁺	7,30	15,215(-7,92)	8,169(0,32)	7,171(1,32)	[121]
49p	tsc_fc7	Zn ²⁺	12,40	18,404(-6,00)	11,532(-3,04)	13,017(-4,53)	[95]
50a	tsc_fc49	Ag^+	15,6	4,544(11,06)	14,731(-6,24)	15,067(-6,58)	[69]
51v	tsc_fc53	Ni ²⁺	5,31	5,693(-0,38)	6,18(2,31)	5,183(3,31)	[49]
52v	tsc_fc53	Cd ²⁺	4,83	5,066(-0,24)	5,698(2,79)	6,339(2,15)	[49]
53a	tsc_fc32	Mo ⁵⁺	6,551	10,292(-3,74)	7,419(1,07)	6,602(1,89)	[82]
54a	tsc_fc48	Cu ²⁺	19,1	-1,59(20,69)	18,232(-9,74)	19,392(-10,90)	[20],[68]
55a	tsc_fc51	Cu ²⁺	19,1	5,197(13,90)	15,793(-7,30)	19,621(-11,13)	[20],[68]
56a	tsc_fc45	Cu ²⁺	14,67	6,696(7,97)	13,799(-5,31) 14,081(-5,59)		[121]
57t	tsc_fc53	Pb ²⁺	5,01	5,392(-0,38)	6,879(1,61)	5,48(3,01)	
58v	tsc_fc28	Mn ²⁺	9,87	10,606(-0,74)	9,658(-1,17)	10,062(-1,57)	[42]
59a	tsc_fc7	Fe ²⁺	12,24	18,859(-6,62)	13,112(-4,62)	12,234(-3,74)	[95]

	STT Ligand Ion log811					Tài liệu	
STT	Ligand	Ion	logβ11,exp	GA-MLR	GA-SVR	GA-ANN	tham khảo
60a	tsc_fc49	Cu^{2+}	17,2	4,383(12,82)	16,333(-7,84)	16,777(-8,29)	[20],[68]
61t	tsc_fc42	Zn ²⁺	8,11	7,48(0,63)	8,978(-0,49)	8,547(-0,06)	[127]
62v	tsc_fc15	Ni ²⁺	8,48	7,55(0,93)	8,843(-0,35)	7,857(0,63)	[50]
63t	tsc_fc28	Co ²⁺	10,22	10,89(-0,67)	9,658(-1,17)	9,205(-0,72)	[15]
64a	tsc_fc15	Cu^{2+}	13,33	7,116(6,21)	12,461(-3,97)	10,185(-1,70)	[136]
65t	tsc_fc12	Cu^{2+}	6,236	6,681(-0,45)	6,104(2,39)	6,697(1,79)	[64]
66t	tsc_fc42	Cd^{2+}	6,47	7,085(-0,62)	7,339(1,15)	7,114(1,38)	[127]
67p	tsc_fc19	Cu^{2+}	5,924	10,235(-4,31)	6,792(1,70)	5,867(2,62)	[13]
68v	tsc_fc53	Mn ²⁺	4,51	6,167(-1,66)	5,382(3,11)	4,206(4,28)	[49]
69t	tsc_fc46	Cu^{2+}	15,65	15,25(0,40)	14,782(-6,29)	15,169(-6,68)	[121]
70v	tsc_fc15	Mn ²⁺	5,28	7,616(-2,34)	4,41(4,08)	5,081(3,41)	[50]
71v	tsc_fc4	Cu^{2+}	5,28	5,197(0,08)	7,793(0,70)	5,621(2,87)	[29]
72t	tsc_fc18	Nd^{3+}	7,95	8,073(-0,12)	8,667(-0,18)	8,324(0,17)	[48]
73t	tsc_fc18	Sm ³⁺	8,26	7,812(0,45)	8,883(-0,39)	8,426(0,06)	[48]
74v	tsc_fc2	Ni ²⁺	5,63	8,881(-3,25)	6,499(1,99)	5,011(3,48)	[76]
75a	tsc_fc58	Fe ³⁺	11,63	5,664(5,97)	10,761(-2,27)	10,746(-2,26)	[131]
76a	tsc_fc47	Cu^{2+}	17,7	8,975(8,73)	16,83(-8,34)	16,807(-8,32)	[20],[68]
77t	tsc_fc18	Gd^{3+}	8,16	7,814(0,35)	8,934(-0,44)	8,41(0,08)	[48]
78t	tsc_fc28	Ni ²⁺	10,89	12,405(-1,52)	10,021(-1,53)	10,274(-1,78)	[15]
79t	tsc_fc42	Mg^{2+}	3,34	5,328(-1,99)	4,208(4,28)	2,754(5,74)	[127]
80t	tsc_fc56	Cd^{2+}	7,409	8,666(-1,26)	8,279(0,21)	7,446(1,04)	[128]
81v	tsc_fc15	Co ²⁺	8,02	7,641(0,38)	7,149(1,34)	8,144(0,35)	[50]
82a	tsc_fc4	Cu^{2+}	19,1	3,188(15,91)	18,229(-9,74)	19,152(-10,66)	[20],[68]
83t	tsc_fc58	La ³⁺	10,84	10,933(-0,09)	10,46(-1,97)	10,25(-1,76)	[133]
84v	tsc_fc53	Cu^{2+}	5,91	5,531(0,38)	6,302(2,19)	5,411(3,08)	[49]
85p	tsc_fc22	Cu^{2+}	6,114	2,442(3,67)	6,984(1,51)	6,382(2,11)	[118]
86t	tsc_fc43	Cd^{2+}	5,86	5,365(0,50)	6,728(1,76)	5,803(2,69)	[78]
87t	tsc_fc7	Cu^{2+}	17,54	17,506(0,03)	506(0,03) 16,67(-8,18) 17,754(-9,26)		[95]
88v	tsc_fc15	Cu^{2+}	9,44	7,162(2,28)	7,162(2,28) 8,807(-0,32) 10,067(-1,58)		[50]
89a	tsc_fc48	Ag^+	14,5	3,375(11,13)	3,375(11,13) 15,026(-6,54) 14,647(-6,16)		[69]
90v	tsc_fc23	Cu^{2+}	5,633	3,593(2,04)	6,501(1,99)	6,832(1,66)	[113]
91a	tsc_fc4	Ag^+	15,7	6,033(9,67)	14,833(-6,34)	15,36(-6,87)	[69]

STT Ligand		_			Mô hình QSPR		Tài liệu
STT	Ligand	Ion	logβ11,exp	GA-MLR	GA-SVR	GA-ANN	tham khảo
92t	tsc_fc10	Co ²⁺	6,382	5,107(1,28)	7,25(1,24)	6,137(2,35)	[65]
93t	tsc_fc34	Cu ²⁺	7,08	6,659(0,42) 7,947(0,54) 7,304(1,19)		[46]	
94a	tsc_fc15	Mn ²⁺	10,55	7,778(2,77)	7,778(2,77) 9,678(-1,19) 9,688(-1,20)		[136]
95a	tsc_fc44	Cu ²⁺	14,56	6,453(8,11)	13,692(-5,20)	14,782(-6,29)	[121]
96t	tsc_fc42	Ni ²⁺	9,13	7,74(1,39)	9,075(-0,58)	9,501(-1,01)	[127]
97a	tsc_fc57	Cu ²⁺	11,95	7,746(4,20)	11,082(-2,59)	12,105(-3,62)	[132]
98t	tsc_fc56	Mn ²⁺	6,23	6,443(-0,21)	6,443(-0,21) 7,098(1,39) 6,243(2,25)		[128]
99v	tsc_fc41	Co ²⁺	10,47	10,982(-0,51)	9,658(-1,17)	8(-1,17) 10,407(-1,92)	
100t	tsc_fc41	Ni ²⁺	11,03	11,777(-0,75)	10,161(-1,67)	10,616(-2,13)	[42]
101v	tsc_fc57	Zn ²⁺	11,32	10,866(0,45)	10,452(-1,96)	12,244(-3,75)	[132]
102t	tsc_fc58	Pr ³⁺	11,04	10,237(0,80)	10,171(-1,68)	10,11(-1,62)	[133]
103v	tsc_fc15	Fe ²⁺	7,99	7,544(0,45)	8,859(-0,37)	7,638(0,85)	[50]
104t	tsc_fc56	Co ²⁺	8,34	8,011(0,33)	9,206(-0,72)	7,455(1,04)	[128]
105a	tsc_fc53	Mg ²⁺	3,03	2,502(0,53))2(0,53) 3,899(4,59) 2,775(5,72)		[49]
106v	tsc_fc4	V ⁵⁺	5,322	5,793(-0,47)	,793(-0,47) 6,191(2,30) 5,354(3,14)		[119]
107t	tsc_fc12	Mo ⁵⁺	6,337	7,278(-0,94) 7,205(1,29) 5,551(2,94)		[62]	
108a	tsc_fc58	Cr ³⁺	10,15	6,217(3,93)	9,925(-1,44)	10,916(-2,43)	[131]

<u>Ghi chú:</u>

t: tập luyện; v: tập đánh giá; a: tập kiểm tra bổ sung; p: tập dự đoán phức chất mới.

STT	Ligand	Ion	logβ₁1	pН	Т, °С	Lực ion	Tài liệu
1	tsc_fc2	Ni ²⁺	5,6300	6,0	30	0,10	[76]
2	tsc_fc2	Mn ²⁺	4,3200	7,0	30	0,10	[76]
3	tsc_fc4	V ⁵⁺	5,3222	6,0	25	0	[119]
4	tsc,pk2	Co ²⁺	5,3600	6,0	30	0,10	[77]
5	tsc,pk2	Zn ²⁺	5,2300	6,0	30	0,10	[77]
6	tsc_fc25	Co ²⁺	5,0990	9,0	25	0	[152]
7	tsc_fc18	La ³⁺	7,6000	1,0	25	0	[48]
8	tsc_fc18	Pr ³⁺	7,7600	1,0	25	0	[48]
9	tsc_fc18	Nd ³⁺	7,9500	1,0	25	0	[48]
10	tsc_fc18	Gd^{3+}	8,1600	1,0	25	0	[48]
11	tsc_fc18	Sm ³⁺	8,2600	1,0	25	0	[48]
12	tsc_fc18	Tb ³⁺	8,3400	1,0	25	0	[48]
13	tsc_fc18	Dy ³⁺	8,4900	1,0	25	0	[48]
14	tsc_fc18	Ho ³⁺	8,6400	1,0	25	0	[48]
15	tsc_fc18	La ³⁺	6,8200	1,0	25	0,20	[48]
16	tsc_fc18	Pr ³⁺	7,0500	1,0	25	0,20	[48]
17	tsc_fc18	Nd ³⁺	7,3800	1,0	25	0,20	[48]
18	tsc_fc18	Gd^{3+}	7,5100	1,0	25	0,20	[48]
19	tsc_fc18	Sm ³⁺	7,6000	1,0	25	0,20	[48]
20	tsc_fc18	Tb ³⁺	7,8600	1,0	25	0,20	[48]
21	tsc_fc18	Dy ³⁺	7,8800	1,0	25	0,20	[48]
22	tsc_fc18	Ho ³⁺	7,9500	1,0	25	0,20	[48]
23	tsc_fc18	La ³⁺	6,9100	1,0	25	0,10	[48]
24	tsc_fc18	Pr ³⁺	7,1200	1,0	25	0,10	[48]
25	tsc_fc18	Nd ³⁺	7,5400	1,0	25	0,10	[48]
26	tsc_fc18	Gd^{3+}	7,5700	1,0	25	0,10	[48]
27	tsc_fc18	Sm ³⁺	7,6600	1,0	25	0,10	[48]
28	tsc_fc18	Tb ³⁺	7,8100	1,0	25	0,10	[48]
29	tsc_fc18	Dy ³⁺	7,9300	1,0	25	0,10	[48]
30	tsc_fc18	Ho ³⁺	8,0200	1,0	25	0,10	[48]

Bảng p5.2a. Dữ liệu tập luyện nhóm 2 - phức ML

STT	Ligand	Ion	logβ ₁₁	рН	Т, °С	Lực ion	Tài liệu
31	tsc_fc18	La ³⁺	7,0200	1,0	25	0,05	[48]
32	tsc_fc18	Pr ³⁺	7,3300	1,0	25	0,05	[48]
33	tsc_fc18	Nd ³⁺	7,5900	1,0	25	0,05	[48]
34	tsc_fc18	Gd ³⁺	7,6300	1,0	25	0,05	[48]
35	tsc_fc18	Sm ³⁺	7,7900	1,0	25	0,05	[48]
36	tsc_fc18	Tb ³⁺	8,0600	1,0	25	0,05	[48]
37	tsc_fc18	Dy ³⁺	8,0800	1,0	25	0,05	[48]
38	tsc_fc18	Ho ³⁺	8,1500	1,0	25	0,05	[48]
39	tsc_fc18	La ³⁺	7,1400	1,0	25	0,02	[48]
40	tsc_fc18	Pr ³⁺	7,4000	1,0	25	0,02	[48]
41	tsc_fc18	Nd ³⁺	7,7400	1,0	25	0,02	[48]
42	tsc_fc18	Gd^{3+}	7,8400	1,0	25	0,02	[48]
43	tsc_fc18	Sm ³⁺	7,9500	1,0	25	0,02	[48]
44	tsc_fc18	Tb ³⁺	8,0600	1,0	25	0,02	[48]
45	tsc_fc18	Dy ³⁺	8,2400	1,0	25	0,02	[48]
46	tsc_fc18	Ho ³⁺	8,2600	1,0	25	0,02	[48]
47	tsc_fc47	Ag^{+}	15,5000	5,0	20	0	[69]
48	tsc_fc30	Ag^+	14,0000	5,0	20	0	[69]
49	tsc_fc49	Ag^+	15,6000	5,0	20	0	[69]
50	tsc_fc47	Cu^{2+}	17,7000	4,5	25	0	[20], [68]
51	tsc_fc30	Cu ²⁺	20,4000	4,5	25	0	[20], [68]
52	tsc_fc51	Cu ²⁺	19,1000	4,5	25	0	[20], [68]
53	tsc_fc53	Mg^{2+}	3,3000	2,7	15	0,10	[49]
54	tsc_fc53	Mg^{2+}	3,0300	2,7	30	0,10	[49]
55	tsc_fc53	Mg^{2+}	2,9200	2,7	50	0,10	[49]
56	tsc_fc53	Cd^{2+}	5,5900	2,7	15	0,10	[49]
57	tsc_fc53	Cd^{2+}	4,8300	2,7	30	0,10	[49]
58	tsc_fc53	Cd^{2+}	4,7400	2,7	50	0,10	[49]
59	tsc_fc53	Pb^{2+}	5,7400	2,7	15	0,10	[49]
60	tsc_fc53	Pb^{2+}	5,0100	2,7	30	0,10	[49]
61	tsc_fc53	Pb^{2+}	4,9000	2,7	50	0,10	[49]

STT	Ligand	Ion	logβ ₁₁	pН	T, ⁰C	Lực ion	Tài liệu
62	tsc_fc57	Cu ²⁺	10,5700	2,4	38	0,10	[132]
63	tsc_fc57	Ni ²⁺	12,7100	2,4	28	0,10	[132]
64	tsc_fc57	Ni ²⁺	11,2100	2,4	38	0,10	[132]
65	tsc_fc57	Co ²⁺	11,9500	2,4	28	0,10	[132]
66	tsc_fc57	Co ²⁺	9,8700	2,4	38	0,10	[132]
67	tsc_fc57	Mn^{2+}	12,1400	2,4	28	0,10	[132]
68	tsc_fc57	Mn ²⁺	9,9900	2,4	38	0,10	[132]
69	tsc_fc57	Zn ²⁺	11,3200	2,4	28	0,10	[132]

Bảng p5.2b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của nhóm 2 – phức ML

стт	Licond	Ion	loge	Tài liệu –	QSPR	Rolr	QSP	R _{ANN}
511	Ligand	101	logp _{11,exp}	1 ai neu	logβ _{11,cal}	ARE, %	logβ _{11,cal}	ARE, %
1	tsc_fc22	Cu ²⁺	6,1140	[118]	6,5280	6,7721	9,7353	59,2289
2	tsc_fc23	Cu ²⁺	5,6330	[113]	7,0116	24,4729	2,9897	46,9245
3	tsc_fc4	Ag^+	15,7000	[126]	14,1818	9,6700	15,2536	2,8435
4	tsc_fc48	Cu^{2+}	19,1000	[69]	10,0826	47,2116	16,0061	16,1984
5	tsc_fc4	Cu ²⁺	19,1000	[20],[68]	12,7401	33,2981	16,4007	14,1325
6	tsc_fc49	Cu^{2+}	17,2000	[20],[68]	14,4635	15,9098	12,5361	27,1158
7	tsc_fc53	Mn^{2+}	4,3200	[20],[68]	6,4178	48,5592	4,4445	2,8828
8	tsc_fc53	Ni ²⁺	5,1400	[49]	7,4541	45,0205	4,3317	15,7250
9	tsc_fc53	Cu ²⁺	5,8100	[49]	8,2349	41,7361	4,3133	25,7603
					MARE, %	30,29	MARE, %	23,42

STT	Ligand	Ion	$\log \beta_{11}$	pН	Т, °С	Lực ion	Tài liệu
1	tsc_fc10	Co ²⁺	6,3820	4,0	25	0	[119]
2	tsc_fc15	Cu ²⁺	13,330	5,0	35	0,10	[136]
3	tsc_fc15	Ni ²⁺	12,620	5,5	35	0,10	[136]
4	tsc_fc15	Co ²⁺	11,970	4,0	35	0,10	[136]
5	tsc_fc15	Mn^{2+}	10,550	4,0	35	0,10	[136]
6	tsc_fc22	Cu ²⁺	6,1140	6,0	25	0	[118]
7	tsc_fc28	Cu ²⁺	11,9500	5,0	25	0,10	[15]
8	tsc_fc28	Cu ²⁺	11,8400	8,0	15	0,10	[42]
9	tsc_fc33	Cr ⁶⁺	4,842	6,0	25	0	[139]
10	tsc_fc28	Cu ²⁺	11,7000	8,0	25	0,10	[42]
11	tsc_fc28	Cu ²⁺	11,5300	8,0	35	0,10	[42]
12	tsc_fc50	Ag^+	17,2000	5,0	20	0	[69]
13	tsc_fc50	Cu^{2+}	15,3000	4,5	25	0	[20], [68]
14	tsc_fc15	Mn^{2+}	5,3600	2,7	15	0,10	[50]
15	tsc_fc15	Mn^{2+}	5,2800	2,7	25	0,10	[50]
16	tsc_fc15	Mn^{2+}	5,0600	2,7	35	0,10	[50]
17	tsc_fc15	Mn^{2+}	4,1200	2,7	45	0,10	[50]
18	tsc_fc15	Pb^{2+}	7,1000	2,7	15	0,10	[50]
19	tsc_fc15	Pb^{2+}	6,8300	2,7	25	0,10	[50]
20	tsc_fc15	Pb^{2+}	6,7200	2,7	35	0,10	[50]
21	tsc_fc15	Pb^{2+}	6,5300	2,7	45	0,10	[50]
22	tsc_fc15	Cd^{2+}	7,3400	2,7	15	0,10	[50]
23	tsc_fc15	Cd^{2+}	7,0700	2,7	25	0,10	[50]
24	tsc_fc15	Cd^{2+}	6,9900	2,7	35	0,10	[50]
25	tsc_fc15	Cd^{2+}	6,7900	2,7	45	0,10	[50]
26	tsc_fc15	Zn^{2+}	7,4700	2,7	15	0,10	[50]
27	tsc_fc15	Zn^{2+}	7,4200	2,7	25	0,10	[50]
28	tsc_fc15	Zn^{2+}	7,2800	2,7	35	0,10	[50]
29	tsc_fc15	Zn^{2+}	7,1100	2,7	45	0,10	[50]
30	tsc_fc15	Fe ²⁺	8,1500	2,7	15	0,10	[50]

Bảng p5.3a. Dữ liệu tập luyện nhóm 3 - phức ML

STT	Ligand	Ion	logβ ₁₁	pН	T, ⁰C	Lực ion	Tài liệu
31	tsc_fc15	Fe ²⁺	7,9900	2,7	25	0,10	[50]
32	tsc_fc15	Fe ²⁺	7,8400	2,7	35	0,10	[50]
33	tsc_fc15	Fe ²⁺	7,6900	2,7	45	0,10	[50]
34	tsc_fc15	Co ²⁺	8,4700	2,7	15	0,10	[50]
35	tsc_fc15	Co ²⁺	8,0200	2,7	25	0,10	[50]
36	tsc_fc15	Co ²⁺	7,9400	2,7	35	0,10	[50]
37	tsc_fc15	Co ²⁺	7,8600	2,7	45	0,10	[50]
38	tsc_fc15	Ni ²⁺	8,6500	2,7	15	0,10	[50]
39	tsc_fc15	Ni ²⁺	8,4800	2,7	25	0,10	[50]
40	tsc_fc15	Ni ²⁺	8,3700	2,7	35	0,10	[50]
41	tsc_fc15	Ni ²⁺	8,1100	2,7	45	0,10	[50]
42	tsc_fc15	Cu ²⁺	9,8300	2,7	15	0,10	[50]
43	tsc_fc15	Cu ²⁺	9,4400	2,7	25	0,10	[50]
44	tsc_fc15	Cu ²⁺	9,3600	2,7	35	0,10	[50]
45	tsc_fc15	Cu ²⁺	9,0300	2,7	45	0,10	[50]
46	tsc_fc53	Mn ²⁺	5,0000	2,7	15	0,10	[49]
47	tsc_fc53	Mn ²⁺	4,5100	2,7	30	0,10	[49]
48	tsc_fc53	Mn^{2+}	4,3200	2,7	50	0,10	[49]
49	tsc_fc53	Ni ²⁺	5,9400	2,7	15	0,10	[49]
50	tsc_fc53	Ni ²⁺	5,3100	2,7	30	0,10	[49]
51	tsc_fc53	Ni ²⁺	5,1400	2,7	50	0,10	[49]
52	tsc_fc53	Cu ²⁺	6,8400	2,7	15	0,10	[49]
53	tsc_fc53	Cu ²⁺	5,9100	2,7	30	0,10	[49]
54	tsc_fc53	Cu ²⁺	5,8100	2,7	50	0,10	[49]
55	tsc_fc56	Cu ²⁺	8,7140	10	30	0,02	[128]
56	tsc_fc56	Cu ²⁺	8,4190	10	30	0,05	[128]
57	tsc_fc56	Cu ²⁺	8,1780	10	30	0,10	[128]
58	tsc_fc56	Cu ²⁺	7,7960	10	30	0,20	[128]
59	tsc_fc56	Cu ²⁺	8,2890	10	40	0,10	[128]
60	tsc_fc56	Cu ²⁺	8,6340	10	45	0,10	[128]
61	tsc_fc56	Cu ²⁺	8,7410	10	50	0,10	[128]

STT	Ligand	Ion	$\log \beta_{11}$	pН	T, ⁰C	Lực ion	Tài liệu
62	tsc_fc56	Cu^{2+}	9,060	10	30	0,00	[128]

Bảng p5.3b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của nhóm 3 – phức ML

æ		Ŧ	1 0	Tài	QSPI	R _{MLR}	QSP	RPLS	QSP	R _{PCR}
11	Ligand	Ion	10gp11, exp	liệu	logβ11,cal	ARE, %	logβ11,cal	ARE, %	logβ11,cal	ARE, %
1	tsc_fc28	Ni ²⁺	10,9400	[42]	12,402	13,366	12,264	12,101	11,894	8,724
2	tsc_fc28	Mn^{2+}	9,7020	[42]	11,584	19,172	11,780	21,195	11,236	15,594
3	tsc_fc28	Ni ²⁺	10,7900	[42]	12,402	14,942	12,264	13,659	11,894	10,236
4	tsc_fc28	Co ²⁺	9,9000	[42]	13,374	35,087	13,823	39,628	13,322	34,561
5	tsc_fc28	Mn^{2+}	9,600	[42]	11,584	20,662	11,780	22,710	11,236	17,039
6	tsc_fc56	Zn ²⁺	8,1600	[128]	8,409	3,055	8,644	5,929	8,317	1,921
7	tsc_fc56	Cd^{2+}	6,6110	[128]	6,048	8,520	6,010	9,085	5,595	15,370
8	tsc_fc56	Mn^{2+}	6,2300	[128]	6,450	3,527	6,622	6,287	6,339	1,746
9	tsc_fc18	Cu ²⁺	5,4910	[13]	7,754	41,216	6,621	20,574	6,688	21,806
10	tsc_fc19	Cu ²⁺	5,9240	[13]	7,324	23,627	5,979	0,924	6,136	3,581
		MARE, %	18,32	MARE ,%	15,21	MARE, %	13,06			

CTT	T • 1	T	10		logβ11,cal		T `` 1*^
511	Ligand	Ion	10 g/ _{11,exp}	MLR	PLSR	ANN	1 ai neu
Tập l	uyện và tậ	p đánh g	giá chéo				
1	tsc_fc2	Ni ²⁺	5,6300	5,2185	5,3562	5,6530	[76]
2	tsc_fc2	Mn^{2+}	4,3200	4,8311	4,6094	4,2932	[76]
3	tsc_fc4	V^{5+}	5,3220	4,6787	4,7515	5,3333	[119]
4	tsc_fc2	Co ²⁺	5,3600	5,3545	5,3555	5,4215	[77]
5	tsc_fc2	Zn^{2+}	5,2300	9,6316	7,2876	5,3750	[77]
6	tsc_fc25	Co ²⁺	5,0990	4,5918	4,8184	5,2861	[152]
7	tsc_fc18	La ³⁺	7,6000	7,1490	7,1654	7,1797	[48]
8	tsc_fc18	Pr^{3+}	7,7600	7,9100	7,9063	7,3727	[48]
9	tsc_fc18	Nd ³⁺	7,9500	7,4943	7,5062	7,7821	[48]
10	tsc_fc18	Gd^{3+}	8,1600	7,6156	7,6295	7,8134	[48]
11	tsc_fc18	Sm ³⁺	8,2600	7,4549	7,4757	7,6657	[48]
12	tsc_fc18	Tb^{3+}	8,3400	8,0108	8,0194	7,9903	[48]
13	tsc_fc18	Dy ³⁺	8,4900	8,0139	8,0263	8,0058	[48]
14	tsc_fc18	Ho ³⁺	8,6400	8,2395	8,2504	7,9700	[48]
15	tsc_fc18	La ³⁺	6,8200	7,1784	7,1654	7,1797	[48]
16	tsc_fc18	Pr^{3+}	7,0500	7,9282	7,9063	7,3727	[48]
17	tsc_fc18	Nd^{3+}	7,3800	7,5096	7,5062	7,7821	[48]
18	tsc_fc18	Gd^{3+}	7,5100	7,6326	7,6295	7,8134	[48]
19	tsc_fc18	Sm ³⁺	7,6000	7,4724	7,4757	7,6657	[48]
20	tsc_fc18	Tb^{3+}	7,8600	8,0236	8,0194	7,9903	[48]
21	tsc_fc18	Dy ³⁺	7,8800	8,0303	8,0263	8,0058	[48]
22	tsc_fc18	Ho ³⁺	7,9500	8,2588	8,2504	7,9700	[48]
23	tsc_fc18	La ³⁺	6,9100	7,1750	7,1654	7,1797	[48]
24	tsc_fc18	Pr^{3+}	7,1200	7,9264	7,9063	7,3727	[48]
25	tsc_fc18	Nd^{3+}	7,5400	7,5053	7,5062	7,7821	[48]
26	tsc_fc18	Gd^{3+}	7,5700	7,6310	7,6295	7,8134	[48]
27	tsc_fc18	Sm ³⁺	7,6600	7,4708	7,4757	7,6657	[48]
28	tsc_fc18	Tb^{3+}	7,8100	8,0249	8,0194	7,9903	[48]

Bảng p5.4. Dữ liệu đầy đủ nhóm 4 - phức ML

STT Ligand		Ion	log		log $\beta_{11,cal}$		Tài liêu
511	Liganu	1011	10g <i>p</i> _{11,exp}	MLR	PLSR	ANN	1 ai nệu
29	tsc_fc18	Dy^{3+}	7,9300	8,0289	8,0263	8,0058	[48]
30	tsc_fc18	Ho ³⁺	8,0200	8,2568	8,2504	7,9700	[48]
31	tsc_fc18	La ³⁺	7,0200	7,1709	7,1654	7,1797	[48]
32	tsc_fc18	Pr^{3+}	7,3300	7,9210	7,9063	7,3727	[48]
33	tsc_fc18	Nd^{3+}	7,5900	7,5039	7,5062	7,7821	[48]
34	tsc_fc18	Gd^{3+}	7,6300	7,6295	7,6295	7,8134	[48]
35	tsc_fc18	Sm ³⁺	7,7900	7,4674	7,4757	7,6657	[48]
36	tsc_fc18	Tb^{3+}	8,0600	8,0183	8,0194	7,9903	[48]
37	tsc_fc18	Dy^{3+}	8,0800	8,0249	8,0263	8,0058	[48]
38	tsc_fc18	Ho ³⁺	8,1500	8,2532	8,2504	7,9700	[48]
39	tsc_fc18	La ³⁺	7,1400	7,1663	7,1654	7,1797	[48]
40	tsc_fc18	Pr^{3+}	7,4000	7,9192	7,9063	7,3727	[48]
41	tsc_fc18	Nd ³⁺	7,7400	7,4999	7,5062	7,7821	[48]
42	tsc_fc18	Gd^{3+}	7,8400	7,6240	7,6295	7,8134	[48]
43	tsc_fc18	Sm ³⁺	7,9500	7,4631	7,4757	7,6657	[48]
44	tsc_fc18	Tb^{3+}	8,0600	8,0183	8,0194	7,9903	[48]
45	tsc_fc18	Dy^{3+}	8,2400	8,0206	8,0263	8,0058	[48]
46	tsc_fc18	Ho ³⁺	8,2600	8,2501	8,2504	7,9700	[48]
47	tsc_fc47	Ag^+	15,5000	13,4544	14,0326	15,6368	[69]
48	tsc_fc30	Ag^+	14,0000	13,1427	13,2576	14,3916	[69]
49	tsc_fc47	Cu^{2+}	17,7000	19,0937	18,5162	20,0205	[20],[68]
50	tsc_fc30	Cu^{2+}	20,4000	16,2493	17,6064	20,0558	[20],[68]
51	tsc_fc51	Cu^{2+}	19,1000	22,1148	20,3323	19,3140	[20],[68]
52	tsc_fc53	Mg^{2+}	3,3000	4,4479	4,2553	3,1730	[49]
53	tsc_fc53	Mg^{2+}	3,0300	4,5024	4,2553	3,1730	[49]
54	tsc_fc53	Mg^{2+}	2,9200	4,5246	4,2553	3,1730	[49]
55	tsc_fc53	Cd^{2+}	5,5900	3,8303	4,0753	4,7850	[49]
56	tsc_fc53	Cd^{2+}	4,8300	3,9533	4,0753	4,7850	[49]
57	tsc_fc53	Cd^{2+}	4,7400	3,9678	4,0753	4,7850	[49]
58	tsc_fc53	Pb^{2+}	5,7400	5,0668	5,1625	5,1594	[49]

STT	Licond	Ion	log		log $\beta_{11,cal}$		— Tài liệu
511	Ligand	1011	10g <i>p</i> _{11,exp}	MLR	PLSR	ANN	1 al neu
59	tsc_fc53	Pb^{2+}	5,0100	5,1877	5,1625	5,1594	[49]
60	tsc_fc53	Pb^{2+}	4,9000	5,2059	5,1625	5,1594	[49]
61	tsc_fc57	Ni ²⁺	12,7100	13,3938	13,2425	12,7367	[132]
62	tsc_fc57	Ni ²⁺	11,2100	13,8200	13,2425	12,7367	[132]
63	tsc_fc57	Co ²⁺	9,8700	8,9084	9,1673	9,8382	[132]
64	tsc_fc57	Mn^{2+}	12,1400	11,4061	11,6473	12,0428	[132]
65	tsc_fc57	Mn^{2+}	9,9900	12,4587	11,6473	12,0428	[132]
66	tsc_fc57	Zn^{2+}	11,3200	8,7469	9,2731	10,0803	[132]
67	tsc_fc57	Zn^{2+}	8,7400	9,4101	9,2731	10,0803	[132]
Tập đ	tánh giá ng	goại mô	hình				
1	tsc_fc7	Fe ³⁺	19,4800	25,1680	20,8450	20,3600	[95]
2	tsc_fc4	Ag^+	15,7000	14,7260	14,6730	19,7850	[69]
3	tsc_fc48	Cu^{2+}	19,1000	17,0040	17,7360	20,3090	[20],[68]
4	tsc_fc4	Cu^{2+}	19,1000	19,9390	20,0030	19,2480	[20],[68]
5	tsc_fc49	Cu^{2+}	17,2000	18,2830	17,870	20,2720	[20],[68]
6	tsc_fc15	Cd^{2+}	6,7900	8,3980	9,0600	9,4090	[50]
7	tsc_fc15	Zn^{2+}	7,4700	9,5050	9,9850	8,1240	[50]
8	tsc_fc42	Zn^{2+}	7,1700	5,7200	5,5650	6,6830	[127]
9	tsc_fc56	Zn^{2+}	8,1600	6,8800	6,7230	9,8100	[128]
10	tsc_fc56	Cd^{2+}	7,8890	7,5170	7,7440	8,4880	[128]

STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
1	tsc_fc10	Ni ²⁺	6,4886	8,5	25	0	[63]
2	tsc_fc10	Co ²⁺	6,3820	4,0	25	0	[65]
3	tsc_fc12	Mo ⁶⁺	6,3365	4,0	25	0	[62]
4	tsc_fc12	Cu ²⁺	6,2355	9,0	25	0	[64]
5	tsc_fc17	Cu ²⁺	6,1790	7,0	20	0	[53]
6	tsc_fc17	Cu ²⁺	6,4683	7,0	25	0	[53]
7	tsc_fc17	Cu ²⁺	7,4183	7,0	30	0	[53]
8	tsc_fc17	Cu ²⁺	7,7559	7,0	35	0	[53]
9	tsc_fc28	Cu ²⁺	11,9500	5,0	25	0,10	[15]
10	tsc_fc28	Ni ²⁺	10,8900	5,0	25	0,10	[15]
11	tsc_fc28	Cu ²⁺	11,8400	8,0	15	0,10	[42]
12	tsc_fc28	Ni ²⁺	11,0800	8,0	15	0,10	[42]
13	tsc_fc28	Cu ²⁺	11,7000	8,0	25	0,10	[42]
14	tsc_fc28	Ni ²⁺	10,9400	8,0	25	0,10	[42]
15	tsc_fc28	Cu ²⁺	11,5300	8,0	35	0,10	[42]
16	tsc_fc28	Ni ²⁺	10,7900	8,0	35	0,10	[42]
17	tsc_fc41	Cu ²⁺	12,3000	8,0	15	0,10	[42]
18	tsc_fc41	Ni ²⁺	11,2100	8,0	15	0,10	[42]
19	tsc_fc41	Co ²⁺	10,5900	8,0	15	0,10	[42]
20	tsc_fc41	Mn^{2+}	10,0500	8,0	15	0,10	[42]
21	tsc_fc41	Cu ²⁺	12,1400	8,0	25	0,10	[42]
22	tsc_fc41	Ni ²⁺	11,0300	8,0	25	0,10	[42]
23	tsc_fc41	Co ²⁺	10,4700	8,0	25	0,10	[42]
24	tsc_fc41	Mn^{2+}	9,9100	8,0	25	0,10	[42]
25	tsc_fc41	Cu ²⁺	11,9800	8,0	35	0,10	[42]
26	tsc_fc41	Ni ²⁺	10,9100	8,0	35	0,10	[42]
27	tsc_fc41	Co ²⁺	10,3000	8,0	35	0,10	[42]
28	tsc_fc41	Mn ²⁺	9,7700	8,0	35	0,10	[42]
29	tsc_fc44	Cu ²⁺	14,5600	7,4	25	0	[121]
30	tsc_fc45	Zn ²⁺	6,1300	7,4	25	0	[121]

Bảng 5.5a. Dữ liệu tập luyện nhóm 5 - phức ML

31	tsc_fc50	Ag^+	17,200	5,0	20	0	[69]
32	tsc_fc15	Cu ²⁺	9,8300	2,7	15	0,10	[50]
33	tsc_fc15	Cu ²⁺	9,4400	2,7	25	0,10	[50]
34	tsc_fc15	Cu ²⁺	9,3600	2,7	35	0,10	[50]
35	tsc_fc15	Cu ²⁺	9,0300	2,7	45	0,10	[50]
36	tsc_fc42	Mn ²⁺	5,6700	10	20	0,10	[127]
37	tsc_fc42	Mn ²⁺	5,3600	10	30	0,10	[127]
38	tsc_fc42	Mn ²⁺	5,2000	10	40	0,10	[127]
39	tsc_fc42	Mn ²⁺	4,6600	10	50	0,10	[127]
40	tsc_fc42	Co ²⁺	9,0000	10	20	0,10	[127]
41	tsc_fc42	Co ²⁺	8,4300	10	30	0,10	[127]
42	tsc_fc42	Co ²⁺	8,1300	10	40	0,10	[127]
43	tsc_fc42	Co ²⁺	7,8900	10	50	0,10	[127]
44	tsc_fc42	Ni ²⁺	9,6000	10	20	0,10	[127]
45	tsc_fc42	Ni ²⁺	9,1300	10	30	0,10	[127]
46	tsc_fc42	Ni ²⁺	9,0700	10	40	0,10	[127]
47	tsc_fc42	Ni ²⁺	8,3700	10	50	0,10	[127]
48	tsc_fc42	Cu ²⁺	9,7800	10	20	0,10	[127]
49	tsc_fc42	Cu ²⁺	9,3400	10	30	0,10	[127]
50	tsc_fc42	Cu ²⁺	9,2900	10	40	0,10	[127]
51	tsc_fc42	Cu^{2+}	8,6800	10	50	0,10	[127]
52	tsc_fc56	Cu^{2+}	8,7140	10	30	0,02	[128]
53	tsc_fc56	Cu ²⁺	8,4190	10	30	0,05	[128]
54	tsc_fc56	Cu^{2+}	8,1780	10	30	0,10	[128]
55	tsc_fc56	Cu^{2+}	7,7960	10	30	0,20	[128]
56	tsc_fc56	Cu^{2+}	8,2890	10	40	0,10	[128]
57	tsc_fc56	Cu ²⁺	8,6340	10	45	0,10	[128]
58	tsc_fc56	Cu ²⁺	8,7410	10	50	0,10	[128]
59	tsc_fc56	Cu ²⁺	9,0600	10	30	0,00	[128]
60	tsc_fc56	Ni ²⁺	8,2210	10	30	0,02	[128]
61	tsc_fc56	Ni ²⁺	8,1240	10	30	0,05	[128]
62	tsc_fc56	Ni ²⁺	7,9100	10	30	0,10	[128]

63	tsc_fc56	Ni ²⁺	7,7090	10	30	0,20	[128]
64	tsc_fc56	Ni ²⁺	7,9980	10	40	0,10	[128]
65	tsc_fc56	Ni ²⁺	8,0910	10	45	0,10	[128]
66	tsc_fc56	Ni ²⁺	8,1630	10	50	0,10	[128]
67	tsc_fc56	Co^{2+}	8,0140	10	30	0,02	[128]
68	tsc_fc56	Co^{2+}	7,6680	10	30	0,05	[128]
69	tsc_fc56	Co^{2+}	7,5910	10	30	0,10	[128]
70	tsc_fc56	Co^{2+}	7,2510	10	30	0,20	[128]
71	tsc_fc56	Co^{2+}	7,8060	10	40	0,10	[128]
72	tsc_fc56	Co^{2+}	7,9140	10	45	0,10	[128]
73	tsc_fc56	Co ²⁺	7,9630	10	50	0,10	[128]
74	tsc_fc56	Co ²⁺	8,340	10	30	0,00	[128]

Bảng p5.5b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của nhóm 5 – phức ML

	STT Ligand				QSPR	MLR	QSPR	PCR	QSPR	QSPR _{ANN}	
STT	Ligand	ion	logβ _{11,exp}	Tài liệu	logβ _{11,cal}	ARE, %	logβ _{11,cal}	ARE, %	logβ _{11,cal}	ARE, %	
1	tsc_fc28	Co ²⁺	10,2200	[42]	11,7540	15,01	11,7290	14,76	11,5130	12,65	
2	tsc_fc28	Mn ²⁺	9,8700	[69]	9,4480	4,27	9,46200	4,13	10,8630	10,06	
3	tsc_fc47	Ag^+	15,5000	[20],[68]	17,2310	11,17	17,3550	11,97	15,7430	1,57	
4	tsc_fc47	Cu ²⁺	17,7000	[50]	16,9820	4,06	17,1080	3,34	16,5560	6,46	
5	tsc_fc15	Pb^{2+}	6,5300	[50]	7,1630	9,70	7,1590	9,63	6,0780	6,93	
6	tsc_fc15	Fe ²⁺	7,6900	[50]	7,8640	2,26	7,7900	1,30	7,0200	8,71	
7	tsc_fc15	Co ²⁺	8,0200	[50]	8,5510	6,62	8,4870	5,82	8,2280	2,60	
8	tsc_fc15	Ni ²⁺	8,6500	[127]	9,0450	4,56	8,9930	3,97	9,1090	5,31	
9	tsc_fc42	Pb^{2+}	6,5700	[127]	7,2340	10,10	7,1750	9,20	6,4420	1,95	
10	tsc_fc42	Zn ²⁺	7,1700	[42]	8,4670	18,09	8,4080	17,26	7,0450	1,74	
					MARE,%	8,58	MARE,%	8,14	MARE,%	5,80	

STT	Ligand	Ion	logβ ₁₁	pН	T, ⁰C	Lực ion	Tài liệu
1	tsc_fc4	Cu ²⁺	5,2800	7,0	25	0	[29]
2	tsc_fc4	Cu ²⁺	5,1400	7,0	25	0	[29]
3	tsc_fc4	Cu ²⁺	4,8900	7,0	45	0	[29]
4	tsc_fc4	Cu ²⁺	5,0000	7,0	45	0	[29]
5	tsc_fc17	Cu ²⁺	7,4183	7,0	30	0	[53]
6	tsc_fc17	Cu ²⁺	7,7559	7,0	35	0	[53]
7	tsc_fc41	Mn ²⁺	10,0500	8,0	15	0,10	[42]
8	tsc_fc41	Mn ²⁺	9,9100	8,0	25	0,10	[42]
9	tsc_fc41	Mn ²⁺	9,7700	8,0	35	0,10	[42]
10	tsc_fc44	Cu ²⁺	14,5600	7,4	25	0	[121]
11	tsc_fc45	Zn^{2+}	6,1300	7,4	25	0	[121]
12	tsc_fc48	Cu ²⁺	19,1000	4,5	25	0	[20],[68]
13	tsc_fc50	Cu^{2+}	15,3000	4,5	25	0	[20],[68]
14	tsc_fc15	Pb^{2+}	7,1000	2,7	15	0,10	[50]
15	tsc_fc15	Pb^{2+}	6,8300	2,7	25	0,10	[50]
16	tsc_fc15	Pb^{2+}	6,7200	2,7	35	0,10	[50]
17	tsc_fc15	Pb^{2+}	6,5300	2,7	45	0,10	[50]
18	tsc_fc15	Zn^{2+}	7,4700	2,7	15	0,10	[50]
19	tsc_fc15	Zn^{2+}	7,4200	2,7	25	0,10	[50]
20	tsc_fc15	Zn^{2+}	7,2800	2,7	35	0,10	[50]
21	tsc_fc15	Zn^{2+}	7,1100	2,7	45	0,10	[50]
22	tsc_fc53	Mn^{2+}	5,0000	2,7	15	0,10	[49]
23	tsc_fc53	Cu^{2+}	6,8400	2,7	15	0,10	[49]
24	tsc_fc53	Cu^{2+}	5,9100	2,7	30	0,10	[49]
25	tsc_fc53	Cu^{2+}	5,8100	2,7	50	0,10	[49]
26	tsc_fc42	Mg^{2+}	3,4000	10	20	0,10	[127]
27	tsc_fc42	Mg ²⁺	3,3400	10	30	0,10	[127]
28	tsc_fc42	Mg^{2+}	3,3100	10	40	0,10	[127]
29	tsc_fc42	Mn ²⁺	5,6700	10	20	0,10	[127]
30	tsc_fc42	Mn^{2+}	5,3600	10	30	0,10	[127]

Bảng p5.6a. Dữ liệu tập luyện nhóm 6 - phức ML

STT	Ligand	Ion	logβ ₁₁	pН	Т, °С	Lực ion	Tài liệu
31	tsc_fc42	Mn ²⁺	5,2000	10	40	0,10	[127]
32	tsc_fc42	Cd^{2+}	6,5600	10	20	0,10	[127]
33	tsc_fc42	Cd^{2+}	6,4700	10	30	0,10	[127]
34	tsc_fc42	Cd^{2+}	6,1200	10	40	0,10	[127]
35	tsc_fc42	Cd^{2+}	5,9300	10	50	0,10	[127]
36	tsc_fc42	Pb ²⁺	7,6400	10	20	0,10	[127]
37	tsc_fc42	Pb^{2+}	7,2300	10	30	0,10	[127]
38	tsc_fc56	Cu ²⁺	8,2890	10	40	0,10	[128]
39	tsc_fc56	Cu ²⁺	8,6340	10	45	0,10	[128]
40	tsc_fc56	Cu ²⁺	8,7410	10	50	0,10	[128]
41	tsc_fc56	Ni ²⁺	7,9980	10	40	0,10	[128]
42	tsc_fc56	Ni ²⁺	8,0910	10	45	0,10	[128]
43	tsc_fc56	Ni ²⁺	8,1630	10	50	0,10	[128]
44	tsc_fc56	Pb^{2+}	7,8520	10	40	0,10	[128]
45	tsc_fc56	Pb^{2+}	7,9920	10	45	0,10	[128]
46	tsc_fc56	Pb^{2+}	8,0650	10	50	0,10	[128]
47	tsc_fc56	Co^{2+}	7,8060	10	40	0,10	[128]
48	tsc_fc56	Co ²⁺	7,9140	10	45	0,10	[128]
49	tsc_fc56	Co^{2+}	7,9630	10	50	0,10	[128]
50	tsc_fc56	Zn^{2+}	7,6450	10	40	0,10	[128]
51	tsc_fc56	Zn^{2+}	7,6540	10	45	0,10	[128]
52	tsc_fc56	Zn^{2+}	7,9190	10	50	0,10	[128]
53	tsc_fc56	Cd^{2+}	7,5990	10	45	0,10	[128]
54	tsc_fc56	Cd^{2+}	7,8890	10	50	0,10	[128]
55	tsc_fc56	Mn ²⁺	6,0410	10	30	0,02	[128]
56	tsc_fc56	Mn ²⁺	5,8490	10	40	0,10	[128]
57	tsc_fc56	Mn ²⁺	5,9420	10	45	0,10	[128]
58	tsc_fc56	Mn ²⁺	5,9480	10	50	0,10	[128]
59	tsc_fc56	Mn ²⁺	6,2300	10	30	0,00	[128]
60	tsc_fc57	Cu ²⁺	11,6100	2,4	28	0,10	[132]
61	tsc_fc58	Cd^{2+}	10,6300	2,4	28	0,10	[131]

STT	Ligand	Ion	logβ₁1	pН	T, ⁰C	Lực ion	Tài liệu
62	tsc_fc58	Cd^{2+}	10,9500	2,4	38	0,10	[131]
63	tsc_fc59	Fe ³⁺	5,4960	3,4	25	1,0	[149]
64	tsc_fc18	Cu ²⁺	5,4910	9,0	25	0	[13]

Bảng p5.6b. Dữ liệu tập đánh giá ngoại và kết quả dự đoán từ các mô hình của nhóm 6 – phức ML

ТТ	Lizzard	Lon	1000	Tài	QSP	R _{MLR}	QSPF	RANN
11	Ligand	ION	10g/011,exp	liệu	log $\beta_{11,cal}$	ARE, %	logβ _{11,cal}	ARE, %
1	tsc_fc28	Ni ²⁺	11,0800	[42]	9,6290	13,100	14,0620	26,918
2	tsc_fc33	Cr ⁶⁺	4,8420	[139]	5,6110	15,882	3,4650	28,429
3	tsc_fc44	Zn ²⁺	6,6800	[121]	8,1370	21,808	6,8520	2,581
4	tsc_fc45	Cu ²⁺	14,6700	[121]	11,5480	21,284	16,9490	15,537
5	tsc_fc30	Ag^+	14,0000	[69]	14,3840	2,741	18,6100	32,931
6	tsc_fc15	Mn ²⁺	5,3600	[50]	7,4600	39,181	5,9190	10,434
7	tsc_fc15	Cu ²⁺	9,0300	[50]	8,6790	3,887	6,4920	28,103
8	tsc_fc53	Ni ²⁺	5,1400	[49]	4,1450	19,351	5,1880	0,945
9	tsc_fc57	Co ²⁺	9,8700	[132]	8,2260	16,654	9,0490	8,317
10	tsc_fc58	Fe ²⁺	11,1000	[131]	11,9630	7,772	10,9630	1,228
					MARE, %	16,17	MARE, %	15,54

CTT	I tanad	Terr	$\log \beta_{11,cal}$				T): I:A
511	Ligand	Ion	10g/ <i>j</i> 11,exp	MLR	PCR	ANN	I ai neu
Tập lư	yện và tập	đánh giá	chéo				
1	tsc_fc15	Co ²⁺	11,9700	12,5980	12,7840	11,9260	[136]
2	tsc_fc15	Mn ²⁺	10,5500	11,0420	11,3710	10,5550	[136]
3	tsc_fc22	Cu ²⁺	6,1140	6,6480	6,6080	6,0770	[118]
4	tsc_fc23	Cu ²⁺	5,6330	6,0750	6,0610	5,7780	[113]
5	tsc_fc28	Cu ²⁺	11,9500	10,35300	10,3880	11,6620	[15]
6	tsc_fc28	Co ²⁺	10,2200	11,4630	11,3200	10,2060	[15]
7	tsc_fc28	Ni ²⁺	10,8900	10,9140	11,0580	10,8730	[15]
8	tsc_fc33	Cr ⁶⁺	4,8420	5,1250	5,2020	4,8710	[139]
9	tsc_fc28	Mn ²⁺	9,8700	9,3240	9,4390	9,7160	[42]
10	tsc_fc28	Mn ²⁺	9,7200	9,3240	9,4390	9,7160	[42]
11	tsc_fc28	Mn ²⁺	9,6000	9,3240	9,4390	9,7160	[42]
12	tsc_fc44	Zn ²⁺	6,6800	6,7610	6,6710	6,7010	[121]
13	tsc_fc15	Mn ²⁺	4,1200	5,4320	5,4920	3,4360	[50]
14	tsc_fc15	Fe ²⁺	8,1500	7,4540	7,6190	7,9520	[50]
15	tsc_fc15	Fe ²⁺	7,9900	7,4540	7,6190	7,9520	[50]
16	tsc_fc15	Fe ²⁺	7,8400	7,4540	7,6190	7,9520	[50]
17	tsc_fc15	Fe ²⁺	7,6900	7,4540	7,6190	7,9520	[50]
18	tsc_fc15	Ni ²⁺	8,6500	8,2290	8,2280	8,4020	[50]
19	tsc_fc15	Ni ²⁺	8,4800	8,2290	8,2280	8,4020	[50]
20	tsc_fc15	Ni ²⁺	8,3700	8,2290	8,2280	8,4020	[50]
21	tsc_fc15	Ni ²⁺	8,1100	8,229	8,2280	8,4020	[50]
22	tsc_fc53	Ni ²⁺	5,9400	5,4920	5,4330	5,5580	[49]
23	tsc_fc53	Ni ²⁺	5,3100	5,4920	5,4330	5,5580	[49]
24	tsc_fc53	Ni ²⁺	5,1400	5,4920	5,4330	5,5580	[49]
25	tsc_fc42	Mg ²⁺	3,2500	3,9160	3,8580	4,0810	[127]
26	tsc_fc42	Mn ²⁺	4,6600	3,7090	3,7590	4,6650	[127]
27	tsc_fc42	Pb ²⁺	6,6800	7,0610	7,2350	6,6440	[127]
28	tsc_fc42	Pb ²⁺	6,5700	7,0610	7,2350	6,6440	[127]

Bảng p5.7. Dữ liệu đầy đủ nhóm 7 - phức ML

CTT	T in and	Ion			Tài liệu			
511	SII Ligand I		10g/ <i>p</i> _{11,exp}	MLR		MLR PCR		
29	tsc_fc56	Ni ²⁺	8,2210	7,9640	7,9130	8,0980	[128]	
30	tsc_fc56	Ni ²⁺	8,1240	7,9640	7,9130	8,0980	[128]	
31	tsc_fc56	Ni ²⁺	7,9100	7,9640	7,9130	8,0980	[128]	
32	tsc_fc56	Ni ²⁺	7,7090	7,9640	7,9130	8,0980	[128]	
33	tsc_fc56	Pb ²⁺	7,8610	7,3570	7,1760	7,5360	[128]	
34	tsc_fc56	Pb ²⁺	7,6530	7,3570	7,1760	7,5360	[128]	
35	tsc_fc56	Pb^{2+}	7,3070	7,3570	7,1760	7,5360	[128]	
36	tsc_fc56	Co ²⁺	7,6680	7,3880	7,2030	7,4630	[128]	
37	tsc_fc56	Co ²⁺	7,5910	7,3880	7,2030	7,4630	[128]	
38	tsc_fc56	Co ²⁺	7,2510	7,3880	7,2030	7,4630	[128]	
39	tsc_fc56	Zn ²⁺	7,8200	7,2690	7,2410	7,2720	[128]	
40	tsc_fc56	Zn ²⁺	7,5340	7,2690	7,2410	7,2720	[128]	
41	tsc_fc56	Zn ²⁺	7,4230	7,2690	7,2410	7,2720	[128]	
42	tsc_fc56	Zn ²⁺	7,0390	7,2690	7,2410	7,2720	[128]	
43	tsc_fc56	Cd^{2+}	7,0150	6,9240	6,9270	6,7740	[128]	
44	tsc_fc56	Cd^{2+}	6,8630	6,9240	6,9270	6,7740	[128]	
45	tsc_fc56	Cd^{2+}	6,6110	6,9240	6,9270	6,7740	[128]	
46	tsc_fc56	Mn ²⁺	5,8200	5,8600	5,9710	5,5290	[128]	
47	tsc_fc56	Mn ²⁺	5,6210	5,8600	5,9710	5,5290	[128]	
48	tsc_fc56	Mn ²⁺	5,4390	5,8600	5,9710	5,5290	[128]	
49	tsc_fc58	Cr ³⁺	10,1500	11,0070	10,9520	10,6960	[131]	
50	tsc_fc58	Cr ³⁺	11,2500	11,0070	10,9520	10,6960	[131]	
Tập đánh giá ngoại								
1	tsc_fc34	Cu ²⁺	7,0800	7,1140	7,0279	6,5600	[46]	
2	tsc_fc18	Ho ³⁺	8,6400	8,9132	8,6831	9,1980	[48]	
3	tsc_fc18	Dy ³⁺	8,2400	8,6043	8,3225	8,7650	[48]	
4	tsc_fc28	Cu ²⁺	11,7000	10,3534	10,3882	11,6620	[42]	
5	tsc_fc28	Co ²⁺	10,0200	11,4634	11,3203	10,2060	[42]	
6	tsc_fc41	Cu ²⁺	12,3000	12,2869	12,4456	11,9030	[42]	
7	tsc_fc45	Zn ²⁺	6,1300	7,0925	7,1365	6,6230	[121]	

STT	Ligand	Ion	logβ _{11,exp}		Tài liân		
511				MLR	PCR	ANN	1 ai neu
8	tsc_fc53	Mn^{2+}	5,0000	4,7429	4,8538	5,2800	[49]
9	tsc_fc57	Ni ²⁺	12,7100	12,1015	12,2011	11,5230	[132]
10	tsc_fc59	Fe ³⁺	5,4960	6,2633	6,3243	6,2510	[149]

STT	Ligand	Ion	logβ ₁₁	pН	Т, °С	Lực ion	Tài liệu
1	tsc_fc4	Cu^{2+}	5,2800	7,0	25	0	[29]
2	tsc_fc4	Cu^{2+}	5,1400	7,0	25	0	[29]
3	tsc_fc4	Cu^{2+}	4,9200	7,0	25	0	[29]
4	tsc_fc4	Cu^{2+}	4,9700	7,0	25	0	[29]
5	tsc_fc4	Cu^{2+}	4,9000	7,0	35	0	[29]
6	tsc_fc4	Cu^{2+}	4,8400	7,0	35	0	[29]
7	tsc_fc4	Cu^{2+}	4,7500	7,0	35	0	[29]
8	tsc_fc4	Cu ²⁺	4,8300	7,0	35	0	[29]
9	tsc_fc4	Cu ²⁺	4,8900	7,0	45	0	[29]
10	tsc_fc4	Cu^{2+}	4,7600	7,0	45	0	[29]
11	tsc_fc4	Cu^{2+}	4,8000	7,0	45	0	[29]
12	tsc_fc4	Cu^{2+}	5,0000	7,0	45	0	[29]
13	tsc_fc7	Cu^{2+}	17,5400	7,4	25	0,10	[95]
14	tsc_fc7	Fe ³⁺	19,4080	7,4	25	0,10	[95]
15	tsc_fc8	Cd^{2+}	5,5404	9,0	25	0	[81]
16	tsc_fc32	Mo^{6+}	6,5514	4,0	25	0	[82]
17	tsc_fc34	Fe ³⁺	7,0060	5,0	25	0,15	[46]
18	tsc_fc43	Cd^{2+}	5,8600	6,0	25	0	[78]
19	tsc_fc45	Cu^{2+}	14,6700	7,4	25	0	[121]
20	tsc_fc46	Cu^{2+}	15,6500	7,4	25	0	[121]
21	tsc_fc46	Zn^{2+}	7,3000	7,4	25	0	[121]
22	tsc_fc48	Ag^+	14,5000	5,0	20	0	[69]
23	tsc_fc4	Ag^+	15,7000	5,0	20	0	[69]
24	tsc_fc49	Cu^{2+}	17,2000	4,5	25	0	[20],[68]
25	tsc_fc15	Cd^{2+}	7,3400	2,7	15	0,10	[50]
26	tsc_fc15	Cd^{2+}	7,0700	2,7	25	0,10	[50]
27	tsc_fc15	Cd^{2+}	6,9900	2,7	35	0,10	[50]
28	tsc_fc15	Cd^{2+}	6,7900	2,7	45	0,10	[50]
29	tsc_fc15	Zn^{2+}	7,4700	2,7	15	0,10	[50]
30	tsc_fc15	Zn^{2+}	7,4200	2,7	25	0,10	[50]

Bảng p5.8a. Dữ liệu tập luyện nhóm 8 - phức ML

31	tsc_fc15	Zn^{2+}	7,2800	2,7	35	0,10	[50]
32	tsc_fc15	Zn^{2+}	7,1100	2,7	45	0,10	[50]
33	tsc_fc53	Mn^{2+}	5,0000	2,7	15	0,10	[49]
34	tsc_fc53	Mn ²⁺	4,5100	2,7	30	0,10	[49]
35	tsc_fc53	Mn^{2+}	4,3200	2,7	50	0,10	[49]
36	tsc_fc55	Cu^{2+}	5,7482	4,5	25	0	[115]
37	tsc_fc57	Cu^{2+}	11,6100	2,4	28	0,10	[132]
38	tsc_fc57	Cu^{2+}	10,5700	2,4	38	0,10	[132]
39	tsc_fc58	La ³⁺	10,8400	2,4	28	0,10	[133]
40	tsc_fc58	La ³⁺	9,4500	2,4	38	0,10	[133]
41	tsc_fc58	Pr ³⁺	11,0400	2,4	28	0,10	[133]
42	tsc_fc58	Pr ³⁺	10,4200	2,4	38	0,10	[133]
43	tsc_fc58	Nb ³⁺	9,0900	2,4	28	0,10	[133]
44	tsc_fc58	Nb ³⁺	8,4100	2,4	38	0,10	[133]
45	tsc_fc58	Cd^{2+}	10,6300	2,4	28	0,10	[131]
46	tsc_fc58	Cd^{2+}	10,9500	2,4	38	0,10	[131]
47	tsc_fc58	Al^{3+}	11,2400	2,4	28	0,10	[131]
48	tsc_fc58	Al ³⁺	10,9800	2,4	38	0,10	[131]
49	tsc_fc18	Cu^{2+}	5,4910	9,0	25	0	[13]
50	tsc_fc19	Cu^{2+}	5,9240	9,0	25	0	[13]

Bảng p5.8b. Dữ liệu tập đánh giá ngoại của mô hình nhóm 8 – phức ML

STT	Ligand	Ion	log $\beta_{11,exp}$	Tài liệu
1	tsc_fc4	V ⁵⁺	5,3222	[119]
2	tsc_fc15	Co ²⁺	11,9700	[136]
3	tsc_fc2	Co ²⁺	5,3600	[77]
4	tsc_fc25	Co ²⁺	5,0990	[152]
5	tsc_fc28	Co ²⁺	9,9000	[42]
6	tsc_fc28	Mn ²⁺	9,6000	[42]
7	tsc_fc41	Cu ²⁺	11,9800	[42]
8	tsc_fc48	Cu ²⁺	19,1000	[20],[68]
STT	Ligand	Ion	logβ _{11,exp}	Tài liệu
-----	----------	-----------	------------------------	----------
9	tsc_fc56	Zn^{2+}	7,6540	[128]
10	tsc_fc56	Cd^{2+}	6,6110	[128]

Bảng p5.8c. Kết quả dự đoán từ các mô hình của nhóm 8 – phức ML

ТТ	QSPR _{OLS}		QSPI	QSPR _{PLS}		QSPR _{PCR}		QSPR _{ANN}	
11	$\log \beta_{11,cal}$	ARE, %	$\log \beta_{11,cal}$	ARE, %	$\log \beta_{11,cal}$	ARE, %	logβ _{11,cal}	ARE, %	
1	4,3220	18,79	4,7180	11,35	3,8070	28,47	5,2960	0,49	
2	13,5370	13,09	13,2170	10,42	13,3090	11,19	12,1100	1,17	
3	3,8080	28,95	4,2260	21,16	3,9990	25,39	4,8310	9,87	
4	4,5590	10,58	5,0260	1,43	4,6990	7,85	5,4890	7,67	
5	8,8360	10,74	8,6420	12,71	9,3010	6,05	10,8010	9,10	
6	9,7790	1,86	9,3740	2,36	10,2110	6,37	8,0030	16,64	
7	10,6280	11,28	10,4380	12,88	11,0390	7,85	11,8970	0,69	
8	14,5910	23,61	14,7420	22,81	15,4820	18,94	15,9580	16,45	
9	6,1360	19,84	6,9110	9,71	6,3970	16,42	7,6960	0,55	
10	5,0660	23,36	5,6430	14,64	5,2090	21,21	5,2420	20,71	
Μ	IARE,%	16,21	MARE,%	11,95	MARE,%	14,98	MARE,%	8,33	

STT	Ligand	Ion	logβ11	pН	T, ⁰C	Lực ion	Tài liệu
1	tsc_fc23	Cu ²⁺	5,63300	4,5	25	0	[113]
2	tsc_fc28	Co ²⁺	10,2200	5,0	25	0,10	[15]
3	tsc_fc28	Co ²⁺	10,1800	8,0	15	0,10	[42]
4	tsc_fc33	Cr ⁶⁺	4,8420	6,0	25	0	[139]
5	tsc_fc28	Mn ²⁺	9,8700	8,0	15	0,10	[42]
6	tsc_fc28	Co ²⁺	10,0200	8,0	25	0,10	[42]
7	tsc_fc28	Mn ²⁺	9,7200	8,0	25	0,10	[42]
8	tsc_fc28	Co ²⁺	9,9000	8,0	35	0,10	[42]
9	tsc_fc28	Mn ²⁺	9,6000	8,0	35	0,10	[42]
10	tsc_fc44	Zn ²⁺	6,6800	7,4	25	0	[121]
11	tsc_fc15	Mn ²⁺	5,2800	2,7	25	0,10	[50]
12	tsc_fc15	Mn ²⁺	5,0600	2,7	35	0,10	[50]
13	tsc_fc15	Mn ²⁺	4,1200	2,7	45	0,10	[50]
14	tsc_fc15	Pb ²⁺	7,1000	2,7	15	0,10	[50]
15	tsc_fc15	Pb^{2+}	6,8300	2,7	25	0,10	[50]
16	tsc_fc15	Pb^{2+}	6,7200	2,7	35	0,10	[50]
17	tsc_fc15	Pb^{2+}	6,5300	2,7	45	0,10	[50]
18	tsc_fc15	Fe ²⁺	8,1500	2,7	15	0,10	[50]
19	tsc_fc15	Fe ²⁺	7,9900	2,7	25	0,10	[50]
20	tsc_fc15	Fe ²⁺	7,8400	2,7	35	0,10	[50]
21	tsc_fc15	Fe ²⁺	7,6900	2,7	45	0,10	[50]
22	tsc_fc15	Co ²⁺	8,4700	2,7	15	0,10	[50]
23	tsc_fc15	Co^{2+}	8,0200	2,7	25	0,10	[50]
24	tsc_fc15	Co^{2+}	7,9400	2,7	35	0,10	[50]
25	tsc_fc15	Co ²⁺	7,8600	2,7	45	0,10	[50]
26	tsc_fc15	Ni ²⁺	8,6500	2,7	15	0,10	[50]
27	tsc_fc15	Ni ²⁺	8,4800	2,7	25	0,10	[50]
28	tsc_fc15	Ni ²⁺	8,3700	2,7	35	0,10	[50]
29	tsc_fc15	Ni ²⁺	8,1100	2,7	45	0,10	[50]
30	tsc_fc53	Ni ²⁺	5,3100	2,7	30	0,10	[49]

Bảng p5.9a. Dữ liệu tập luyện nhóm 9 - phức ML

STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
31	tsc_fc53	Ni ²⁺	5,1400	2,7	50	0,10	[49]
32	tsc_fc53	Cu^{2+}	6,8400	2,7	15	0,10	[49]
33	tsc_fc53	Cu ²⁺	5,9100	2,7	30	0,10	[49]
34	tsc_fc53	Cu ²⁺	5,8100	2,7	50	0,10	[49]
35	tsc_fc42	Mg^{2+}	3,3100	10	40	0,10	[127]
36	tsc_fc42	Mg^{2+}	3,2500	10	50	0,10	[127]
37	tsc_fc42	Cd^{2+}	6,5600	10	20	0,10	[127]
38	tsc_fc42	Cd^{2+}	6,4700	10	30	0,10	[127]
39	tsc_fc42	Cd^{2+}	6,1200	10	40	0,10	[127]
40	tsc_fc42	Cd^{2+}	5,9300	10	50	0,10	[127]
41	tsc_fc42	Pb ²⁺	6,5700	10	50	0,10	[127]
42	tsc_fc42	Zn ²⁺	7,1700	10	50	0,10	[127]
43	tsc_fc56	Pb ²⁺	8,1090	10	30	0,02	[128]
44	tsc_fc56	Pb^{2+}	7,8610	10	30	0,05	[128]
45	tsc_fc56	Pb^{2+}	7,6530	10	30	0,10	[128]
46	tsc_fc56	Pb^{2+}	7,3070	10	30	0,20	[128]
47	tsc_fc56	Pb^{2+}	7,8520	10	40	0,10	[128]
48	tsc_fc56	Pb^{2+}	7,9920	10	45	0,10	[128]
49	tsc_fc56	Pb^{2+}	8,0650	10	50	0,10	[128]
50	tsc_fc56	Zn^{2+}	7,8200	10	30	0,02	[128]
51	tsc_fc56	Zn^{2+}	7,5340	10	30	0,05	[128]
52	tsc_fc56	Zn^{2+}	7,4230	10	30	0,10	[128]
53	tsc_fc56	Zn^{2+}	7,0390	10	30	0,20	[128]
54	tsc_fc56	Zn^{2+}	7,6450	10	40	0,10	[128]
55	tsc_fc56	Zn^{2+}	7,6540	10	45	0,10	[128]
56	tsc_fc56	Zn^{2+}	7,9190	10	50	0,10	[128]
57	tsc_fc56	Zn^{2+}	8,1600	10	30	0,00	[128]
58	tsc_fc56	Cd^{2+}	7,4090	10	30	0,02	[128]
59	tsc_fc56	Cd^{2+}	7,0150	10	30	0,05	[128]
60	tsc_fc56	Cd^{2+}	6,8630	10	30	0,10	[128]
61	tsc_fc56	Cd^{2+}	6,6110	10	30	0,20	[128]

STT	Ligand	Ion	logβ11	pН	Т, °С	Lực ion	Tài liệu
62	tsc_fc56	Cd^{2+}	7,1840	10	40	0,10	[128]
63	tsc_fc56	Cd^{2+}	7,5990	10	45	0,10	[128]
64	tsc_fc56	Cd^{2+}	7,8890	10	50	0,10	[128]
65	tsc_fc56	Mn^{2+}	6,0410	10	30	0,02	[128]
66	tsc_fc56	Mn^{2+}	5,8200	10	30	0,05	[128]
67	tsc_fc56	Mn^{2+}	5,6210	10	30	0,10	[128]
68	tsc_fc56	Mn ²⁺	5,4390	10	30	0,20	[128]
69	tsc_fc56	Mn ²⁺	5,8490	10	40	0,10	[128]
70	tsc_fc56	Mn ²⁺	5,9420	10	45	0,10	[128]
71	tsc_fc56	Mn^{2+}	5,9480	10	50	0,10	[128]
72	tsc_fc56	Mn ²⁺	6,2300	10	30	0,00	[128]
73	tsc_fc58	Cr ³⁺	10,1500	2,4	28	0,10	[131]
74	tsc_fc58	Cr^{3+}	11,2500	2,4	38	0,10	[131]
75	tsc_fc58	Fe ³⁺	11,6300	2,4	28	0,10	[131]
76	tsc_fc58	Fe ³⁺	11,1000	2,4	38	0,10	[131]

Bảng p5.9b. Dữ liệu tập đánh giá ngoại và kết quả dự báo từ các mô hình của nhóm 9 – phức ML

STT	Licond	Ion	log	log <i>β</i> ∶	11,cal	Tài liêu
511	Ligand	1011	10g <i>p</i> _{11,exp}	MLR	ANN	1 ai neu
1	tsc_fc2	Mn ²⁺	4,3200	3,6510	3,5120	[76]
2	tsc_fc4	Cu^{2+}	4,9200	4,9030	4,9240	[29]
3	tsc_fc7	Fe ²⁺	12,2400	14,3970	11,1070	[95]
4	tsc_fc25	Co ²⁺	5,0990	3,8320	3,7180	[152]
5	tsc_fc28	Ni ²⁺	10,7900	11,6840	9,9770	[42]
6	tsc_fc41	Co ²⁺	10,5900	8,4220	9,8910	[42]
7	tsc_fc41	Ni ²⁺	11,0300	12,1870	10,8210	[42]
8	tsc_fc43	Cd^{2+}	5,8600	5,8330	6,4500	[78]
9	tsc_fc15	Cd^{2+}	7,3400	8,6810	8,4800	[50]
10	tsc_fc15	Zn^{2+}	7,4700	7,9030	8,0370	[50]
11	tsc_fc15	Cu ²⁺	9,0300	8,0260	8,0830	[50]

STT	Ligand	Ion	logβ11,exp	logβ	Tài liêu	
511	Liganu			MLR	ANN	1 ai nệu
12	tsc_fc53	Mg^{2+}	3,3000	3,9170	3,6280	[49]
13	tsc_fc53	Mn^{2+}	4,3200	4,2920	4,0010	[49]
14	tsc_fc53	Cd^{2+}	5,5900	6,3550	6,0430	[49]
15	tsc_fc42	Mn^{2+}	4,6600	4,6650	4,5170	[127]
16	tsc_fc56	Co ²⁺	7,5910	7,2180	7,6510	[128]
17	tsc_fc58	Al^{3+}	11,2400	12,0150	11,4820	[131]
			MAPE, %	10,45	7,34	

T, °C STT Ligand Kim loai $\log \beta_{12}$ pН Luc ion Tài liêu Cu^{2+} 1 tsc_fc41 23,4400 8,0 15 0,10 [42] 0,10 [42] 2 8,0 Cu^{2+} tsc_fc41 23,1800 25 0,10 8,0 [42] 3 Cu^{2+} tsc_fc41 22,8200 35 0,10 8,0 [42] 4 Ni^{2+} tsc_fc41 21,4000 15 0,10 8,0 [42] 5 Ni^{2+} tsc_fc41 25 21,1200 0,10 8,0 [42] 6 Ni²⁺ tsc fc41 20,8200 35 0,10 [42] 7 8,0 Co^{2+} tsc_fc41 20,2100 15 0,10 [42] 8 Co^{2+} 8,0 tsc_fc41 19,9600 25 0,10 9 8,0 [42] Co^{2+} tsc_fc41 35 19.6500 0,10 8,0 [42] 10 tsc_fc41 Mn^{2+} 19,4500 15 0,10 8,0 [42] 11 Mn^{2+} tsc_fc41 19,2000 25 0,10 8,0 [42] 12 tsc fc41 Mn^{2+} 18,9000 35 Hg^{2+} 13 tsc fc52 10,3020 4,0 25 0 [20] Hg^{2+} 14 tsc_fc52 10.,4750 4,0 25 0,20 [20] Hg^{2+} 15 tsc_fc52 10,4190 4,0 25 0,13 [20] Hg^{2+} 4,0 25 16 tsc_fc52 10,3710 0,07 [20] Hg^{2+} 17 tsc_fc52 10,4100 4,0 30 0 [20] Hg^{2+} 18 tsc_fc52 10,5620 4,0 30 0,20 [20] Hg^{2+} 19 tsc_fc52 10,5140 4,0 30 0,13 [20] Hg^{2+} 20 tsc_fc52 10,4710 4,0 30 0,07 [20] Hg^{2+} 21 tsc_fc52 10,5230 4,0 35 0 [20] Hg^{2+} 0,20 22 tsc_fc52 10,6490 4,0 35 [20] Hg^{2+} 23 tsc_fc52 10.6100 4,0 35 0,13 [20] Hg^{2+} tsc_fc52 24 10,5750 4,0 35 0,07 [20] Hg^{2+} 25 tsc_fc52 10,6320 4,0 40 0 [20]

Phụ lục 6. Dữ liệu thực nghiệm phức ML₂

Bảng p6.1a. Dữ liêu tập luyên nhóm 1 - phức ML₂

26	tsc_fc52	Hg^{2+}	10,7400	4,0	40	0,20	[20]
27	tsc_fc52	Hg^{2+}	10,7050	4,0	40	0,13	[20]
28	tsc_fc52	Hg ²⁺	10,6750	4,0	40	0,07	[20]
29	tsc_fc52	Ni ²⁺	6,7229	9,6	25	0	[20]
30	tsc_fc52	Ni ²⁺	6,7576	9,6	25	0,20	[20]
31	tsc_fc52	Ni ²⁺	6,7446	9,6	25	0,13	[20]
32	tsc_fc52	Ni ²⁺	6,7359	9,6	25	0,07	[20]
33	tsc_fc52	Ni ²⁺	6,7620	9,6	30	0	[20]
34	tsc_fc52	Ni ²⁺	6,7967	9,6	30	0,20	[20]
35	tsc_fc52	Ni ²⁺	6,7793	9,6	30	0,13	[20]
36	tsc_fc52	Ni ²⁺	6,7750	9,6	30	0,07	[20]
37	tsc_fc52	Ni ²⁺	6,8228	9,6	35	0	[20]
38	tsc_fc52	Ni ²⁺	6,8575	9,6	35	0,20	[20]
39	tsc_fc52	Ni ²⁺	6,8445	9,6	35	0,13	[20]
40	tsc_fc52	Ni ²⁺	6,8401	9,6	35	0,07	[20]
41	tsc_fc52	Ni ²⁺	6,8879	9,6	40	0	[20]
42	tsc_fc52	Ni ²⁺	6,9270	9,6	40	0,20	[20]
43	tsc_fc52	Ni ²⁺	6,9096	9,6	40	0,13	[20]
44	tsc_fc52	Ni ²⁺	6,9009	9,6	40	0,07	[20]
45	tsc_fc56	Cu ²⁺	16,5830	10	30	0,02	[128]
46	tsc_fc56	Cu ²⁺	16,2850	10	30	0,05	[128]
47	tsc_fc56	Cu ²⁺	15,6200	10	30	0,10	[128]
48	tsc_fc56	Cu ²⁺	14,8530	10	30	0,20	[128]
49	tsc_fc56	Cu ²⁺	15,9720	10	40	0,10	[128]
50	tsc_fc56	Cu ²⁺	16,4230	10	45	0,10	[128]
51	tsc_fc56	Cu ²⁺	16,6390	10	50	0,10	[128]

STT	Ligand	Kim	logßizam		$\log \beta_{12,cal}$				
511	Liganu	loại	10gp12,exp	MLR7	MLR8	MLR9	ANN	liệu	
1	tsc_fc28	Cu^{2+}	22,3200	21,8610	18,7710	21,5720	22,1120	[42]	
2	tsc_fc28	Cu^{2+}	22,0200	21,8610	18,7710	21,5720	22,1120	[42]	
3	tsc_fc28	Ni ²⁺	20,9300	20,4440	16,8570	19,5120	21,0220	[42]	
4	tsc_fc28	Ni ²⁺	20,6300	20,4440	16,8570	19,5120	21,0220	[42]	
5	tsc_fc28	Co ²⁺	19,9500	20,3010	16,9940	18,3430	19,5780	[42]	
6	tsc_fc28	Co ²⁺	19,6600	20,3010	16,9940	18,3430	19,5780	[42]	
7	tsc_fc28	Mn^{2+}	19,1800	18,9770	14,7760	27,6370	19,3150	[42]	
8	tsc_fc52	Cu^{2+}	8,0518	6,5320	7,0050	6,9710	8,9730	[20]	
9	tsc_fc52	Ag^+	9,1984	8,6280	8,4760	8,5470	7,0820	[20]	
10	tsc_fc56	Zn^{2+}	15,0560	16,7920	16,1250	12,7170	14,6680	[128]	
11	tsc_fc56	Cd^{2+}	13,8370	18,2190	17,3680	17,4360	17,7710	[128]	
12	tsc_fc58	Cd^{2+}	18,3200	24,6030	13,1470	16,8200	22,6470	[131]	
			MARE, %	9,55	16,79	12,21	7,98		

Bảng p6.1b. Dữ liệu tập đánh giá ngoại và giá trị dự đoán từ các mô hình của $nhóm 1 - phức ML_2$

STT	Ligand	Kim loại	logβ ₁₂	pН	T, °C	Lực ion	tài liệu
1	tsc_fc1	Cu ²⁺	12,0730	4,0	30	0	[109]
2	tsc_fc17	Cu ²⁺	6,1732	7,0	20	0	[53]
3	tsc_fc17	Cu ²⁺	6,6345	7,0	25	0	[53]
4	tsc_fc17	Cu ²⁺	6,9469	7,0	30	0	[53]
5	tsc_fc17	Cu ²⁺	7,2878	7,0	35	0	[53]
6	tsc_fc1	Ni ²⁺	10,7440	5,0	25	0	[110]
7	tsc_fc29	Co ²⁺	10,1104	9,3	25	0	[19]
8	tsc_fc29	Co ²⁺	10,0365	9,3	30	0	[19]
9	tsc_fc29	Co ²⁺	9,9584	9,3	35	0	[19]
10	tsc_fc29	Co ²⁺	9,8715	9,3	40	0	[19]
11	tsc_fc29	Ni ²⁺	10,5056	9,3	25	0	[19]
12	tsc_fc29	Ni ²⁺	10,3753	9,3	30	0	[19]
13	tsc_fc29	Ni ²⁺	10,2624	9,3	35	0	[19]
14	tsc_fc29	Ni ²⁺	10,1408	9,3	40	0	[19]
15	tsc_fc29	Cu ²⁺	11,9952	9,3	25	0	[19]
16	tsc_fc29	Cu ²⁺	11,8823	9,3	30	0	[19]
17	tsc_fc29	Cu ²⁺	11,7781	9,3	35	0	[19]
18	tsc_fc29	Cu ²⁺	11,6434	9,3	40	0	[19]
19	tsc_fc29	Ag^+	9,9410	9,3	25	0	[19]
20	tsc_fc29	Ag^+	9,8802	9,3	30	0	[19]
21	tsc_fc29	Ag^+	9, 8151	9,3	35	0	[19]
22	tsc_fc29	Ag^+	9,7369	9,3	40	0	[19]
23	tsc_fc29	Cd^{2+}	11,1310	9,3	25	0	[19]
24	tsc_fc29	Cd^{2+}	11,0398	9,3	30	0	[19]
25	tsc_fc29	Cd^{2+}	10,9225	9,3	35	0	[19]
26	tsc_fc29	Cd^{2+}	10,8183	9,3	40	0	[19]
27	tsc_fc29	Hg^{2+}	11,6825	9,3	25	0	[19]
28	tsc_fc29	Hg^{2+}	11,5522	9,3	30	0	[19]
29	tsc_fc29	Hg ²⁺	11,4176	9,3	35	0	[19]
30	tsc_fc29	Hg ²⁺	11,2569	9,3	40	0	[19]

Bảng p6.2a. Dữ liệu tập luyện nhóm 2 - phức ML₂

STT	Ligand	Kim loại	logβ ₁₂	pН	Т, °С	Lực ion	tài liệu
31	tsc_fc52	Cu ²⁺	8,3211	4,0	25	0	[20]
32	tsc_fc52	Cu ²⁺	8,3558	4,0	25	0,20	[20]
33	tsc_fc52	Cu ²⁺	8,3428	4,0	25	0,13	[20]
34	tsc_fc52	Cu ²⁺	8,3341	4,0	25	0,07	[20]
35	tsc_fc52	Cu ²⁺	8,2342	4,0	30	0	[20]
36	tsc_fc52	Cu ²⁺	8,2646	4,0	30	0,20	[20]
37	tsc_fc52	Cu ²⁺	8,2559	4,0	30	0,13	[20]
38	tsc_fc52	Cu ²⁺	8,1995	4,0	30	0,07	[20]
39	tsc_fc52	Cu^{2+}	8,1474	4,0	35	0	[20]
40	tsc_fc52	Cu^{2+}	8,1734	4,0	35	0,20	[20]
41	tsc_fc52	Cu^{2+}	8,1647	4,0	35	0,13	[20]
42	tsc_fc52	Cu^{2+}	8,0692	4,0	35	0,07	[20]
43	tsc_fc52	Cu^{2+}	8,0518	4,0	40	0	[20]
44	tsc_fc52	Cu^{2+}	8,1995	4,0	40	0,20	[20]
45	tsc_fc52	Cu^{2+}	8,1387	4,0	40	0,13	[20]
46	tsc_fc52	Cu^{2+}	8,0692	4,0	40	0,07	[20]
47	tsc_fc52	Ag^+	9,1984	4,0	25	0	[20]
48	tsc_fc52	Ag^+	9,6457	4,0	25	0,20	[20]
49	tsc_fc52	$\mathrm{Ag}^{\scriptscriptstyle +}$	9,4893	4,0	25	0,13	[20]
50	tsc_fc52	$\mathrm{Ag}^{\scriptscriptstyle +}$	9,3547	4,0	25	0,07	[20]
51	tsc_fc52	$\mathrm{Ag}^{\scriptscriptstyle +}$	9,3460	4,0	30	0	[20]
52	tsc_fc52	Ag^+	9,8585	4,0	30	0,20	[20]
53	tsc_fc52	$\mathrm{Ag}^{\scriptscriptstyle +}$	9,6761	4,0	30	0,13	[20]
54	tsc_fc52	$\mathrm{Ag}^{\scriptscriptstyle +}$	9,4763	4,0	30	0,07	[20]
55	tsc_fc52	Ag^+	9,5197	4,0	35	0	[20]
56	tsc_fc52	Ag^+	10,1191	4,0	35	0,20	[20]
57	tsc_fc52	$\mathrm{Ag}^{\scriptscriptstyle +}$	9,8932	4,0	35	0,13	[20]
58	tsc_fc52	Ag^+	9,7282	4,0	35	0,07	[20]
59	tsc_fc52	Ag^+	9,6717	4,0	40	0	[20]
60	tsc_fc52	Ag^+	10,1929	4,0	40	0,20	[20]
61	tsc_fc52	Ag^+	10,0105	4,0	40	0,13	[20]

STT	Ligand	Kim loại	logβ ₁₂	pН	Т, °С	Lực ion	tài liệu
62	tsc_fc52	Ag^+	9,8541	4,0	40	0,07	[20]
63	tsc_fc52	Ni ²⁺	6,7229	9,6	25	0	[20]
64	tsc_fc52	Ni ²⁺	6,7576	9,6	25	0,20	[20]
65	tsc_fc52	Ni ²⁺	6,7446	9,6	25	0,13	[20]
66	tsc_fc52	Ni ²⁺	6,7359	9,6	25	0,07	[20]
67	tsc_fc52	Ni ²⁺	6,7620	9,6	30	0	[20]
68	tsc_fc52	Ni ²⁺	6,7967	9,6	30	0,20	[20]
69	tsc_fc52	Ni ²⁺	6,7793	9,6	30	0,13	[20]
70	tsc_fc52	Ni ²⁺	6,7750	9,6	30	0,07	[20]
71	tsc_fc52	Ni ²⁺	6,8228	9,6	35	0	[20]
72	tsc_fc52	Ni ²⁺	6,8575	9,6	35	0,20	[20]
73	tsc_fc52	Ni ²⁺	6,8445	9,6	35	0,13	[20]
74	tsc_fc52	Ni ²⁺	6,8401	9,6	35	0,07	[20]
75	tsc_fc52	Ni ²⁺	6,8879	9,6	40	0	[20]
76	tsc_fc52	Ni ²⁺	6,9270	9,6	40	0,20	[20]
77	tsc_fc52	Ni ²⁺	6,9096	9,6	40	0,13	[20]
78	tsc_fc52	Ni ²⁺	6,9009	9,6	40	0,07	[20]
79	tsc_fc60	Cu ²⁺	10,3630	6,5	25	0	[98]

Bảng p6.2b. Dữ liệu tập đánh giá ngoại và các giá trị dự đoán từ các mô hình của nhóm 2 – phức ML₂

STT	Licond	Vim looi	logle	log $\beta_{12,cal}$			Tà: 1:6
511	Ligano	KIIII IOại	10g <i>p</i> 12,exp	MLR5	MLR7	ANN	I al liệu
1	tsc_fc13	Cu^{2+}	7,9164	8,0164	6,4727	7,1743	[116]
2	tsc_fc13	Cu^{2+}	7,9165	8,0164	6,4727	7,1743	[115]
3	tsc_fc25	Cd^{2+}	5,5100	5,2902	5,6022	6,1737	[152]
4	tsc_fc26	Cu^{2+}	8,6946	8,1079	10,8749	9,5643	[21]
5	tsc_fc26	Ag^+	10,3362	8,8045	10,7698	9,5946	[21]
6	tsc_fc26	Ag^+	10,1625	8,8045	10,7698	9,5946	[21]
7	tsc_fc26	Hg^{2+}	10,1625	7,7851	10,6331	9,4932	[21]
8	tsc_fc26	Hg ²⁺	10,2493	7,7851	10,6331	9,4932	[21]

STT	Ligand	Kim looi	loge		logβ₁2,cal		Tài liên	
511	Liganu	KIIII IOại	10g $p_{12,exp}$	MLR5 MLR7		ANN	1 ai nçu	
9	tsc_fc42	Mg^{2+}	6,5200	6,2821	6,2132	6,1732	[127]	
10	tsc_fc42	Mg^{2+}	6,2100	6,2821	6,2132	6,1732	[127]	
			MAPE, %	9,3690	8,6526	7,3434		

Phụ lục 7. Thiết kế các dẫn xuất thiosemicarbazone mới

TT	Ký hiệu	Khung 10H-phenothiazine	Ký hiệu	Khung 9H-carbazole
1	PTSC1	Br S NH ₂	CTSC1	Br NH2
2	PTSC2	Br S S S S S S S S S S S S S S S S S S S	CTSC2	Br NaO NaO N N N N N N N N H ₂
3	PTSC3		CTSC3	H ₃ C-O H H O N H H N H ₂
4	PTSC4	S S S S S S S S S S S S S S S S S S S	CTSC4	
5	PTSC5		CTSC5	NH2
6	PTSC6	N N S N N N N N N N N N N N N N N N N N	CTSC6	HO NH2

Bảng p7. 44 dẫn xuất thiosemicarbazone thiết kế mới

TT	Ký hiệu	Khung 10H-phenothiazine	Ký hiệu	Khung 9H-carbazole
7	PTSC7	OH N S N N N N N N N N N N N N N N N N	CTSC7	HO N N NH2
8	PTSC8		CTSC8	HO HO NH ₂
9	PTSC9	N N N N N N N H N H _z	CTSC9	HO NH2
10	PTSC10		CTSC10	N NH2
11	PTSC11		CTSC11	S S S S S S S S S S S S S S S S S S S
12	PTSC12		CTSC12	H H H H H H H H H H H

ТТ	Ký hiệu	Khung 10H-phenothiazine	Ký hiệu	Khung 9H-carbazole
13	PTSC13	O V N N N N N N H N H ₂	CTSC13	
14	PTSC14	Br N N N N N N N N N N N N N N N N N N N	CTSC14	
15	PTSC15	CN CN CN CN CN CN CN CN CN CN CN CN CN C	CTSC15	
16	PTSC16	O O O C N H N H ₂	CTSC16	HO NH2
17	PTSC17		CTSC17	HO NH2
18	PTSC18	N N N N N N N N N N N N N N N N N N N	CTSC18	O C H NH2

TT	Ký hiệu	Khung 10H-phenothiazine	Ký hiệu	Khung 9H-carbazole
19	PTSC19		CTSC19	O C H
20	PTSC20	HO N HO N HO N N N N N N N N N N N N N	CTSC20	S NH2 NH2
21	PTSC21		CTSC21	OH NH2
22	PTSC22		CTSC22	H H N NH2

Phụ lục 8. Thiết kế phức chất mới và kết quả dự báo

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
1	Ag-PTSC1		7,0589	7,2135	Nhóm 4
2	Ag-PTSC2		14,0811	13,9658	Nhóm 4
3	Ag-PTSC3		7,4741	7,4863	Nhóm 9
4	Ag-PTSC4		9,9575	9,1703	Nhóm 9
5	Ag-PTSC5		7,5545	9,2544	Nhóm 9
6	Ag-PTSC6		5,2506	6,2845	Nhóm 9
7	Ag-PTSC7	Loại bỏ	-	-	-
8	Ag-PTSC8	Loại bỏ	-	-	-
9	Ag-PTSC9		15,3173	15,654	Nhóm 9
10	Ag-PTSC10	Loại bỏ	-	-	-
11	Ag-PTSC11		11,4288	11,6874	Nhóm 9
12	Ag-PTSC12		16,5911	17,2351	Nhóm 9
13	Ag-PTSC13	Loại bỏ	-	-	-
14	Ag-PTSC14		9,8744	9,2879	Nhóm 9
15	Ag-PTSC15		10,6217	9,2910	Nhóm 9
16	Ag-PTSC16		13,5612	13,6351	Nhóm 9
17	Ag-PTSC17	Loại bỏ	-	-	-
18	Ag-PTSC18	Loại bỏ	-	-	-
19	Ag-PTSC19	Loại bỏ	-	-	-
20	Ag-PTSC20		16,3901	15,6348	Nhóm 9
21	Ag-PTSC21	Loại bỏ	-	-	-
22	Ag-PTSC22		15,7814	15,9541	Nhóm 9
23	Cd-PTSC1		29,4325	19,3283	Nhóm 1
24	Cd-PTSC2		16,7026	15,9487	Nhóm 9
25	Cd-PTSC3		8,2752	8,3651	Nhóm 4
26	Cd-PTSC4		9,2218	9,5426	Nhóm 4
27	Cd-PTSC5		11,0740	10,9687	Nhóm 4

Bảng p8.1. Thiết kế các phức chất mới và kết quả dự báo phức ML

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
28	Cd-PTSC6		4,7483	5,2822	Nhóm 9
29	Cd-PTSC7		17,2315	16,8749	Nhóm 9
30	Cd-PTSC8		21,5989	20,3251	Nhóm 9
31	Cd-PTSC9		9,3364	9,2880	Nhóm 9
32	Cd-PTSC10		-	-	-
33	Cd-PTSC11		-	-	-
34	Cd-PTSC12		16,0435	15,9845	Nhóm 9
35	Cd-PTSC13	Loại bỏ	-	-	-
36	Cd-PTSC14		8,9198	9,2876	Nhóm 9
37	Cd-PTSC15		7,3354	8,2868	Nhóm 9
38	Cd-PTSC16		8,7000	9,2852	Nhóm 9
39	Cd-PTSC17		-	-	-
40	Cd-PTSC18		12,7099	12,8651	Nhóm 9
41	Cd-PTSC19		16,6687	16,5411	Nhóm 9
42	Cd-PTSC20	Loại bỏ	-	-	-
43	Cd-PTSC21	Loại bỏ	-	-	-
44	Cd-PTSC22		5,3029	5,6235	Nhóm 4
45	Cu-PTSC1		12,1495	12,3251	Nhóm 4
46	Cu-PTSC2		16,5768	16,3241	Nhóm 4
47	Cu-PTSC3		10,1601	9,2732	Nhóm 9
48	Cu-PTSC4		7,9016	8,7918	Nhóm 9
49	Cu-PTSC5		7,0690	8,1585	Nhóm 9
50	Cu-PTSC6		5,1880	6,2709	Nhóm 9
51	Cu-PTSC7		17,5918	16,2354	Nhóm 9
52	Cu-PTSC8		20,0293	19,8425	Nhóm 9
53	Cu-PTSC9		7,5292	9,2874	Nhóm 9
54	Cu-PTSC10		-	-	-
55	Cu-PTSC11		10,9610	9,3018	Nhóm 9
56	Cu-PTSC12		13,8729	14,2365	Nhóm 9
57	Cu-PTSC13		-	-	-
58	Cu-PTSC14		8,6660	9,2874	Nhóm 9

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPR _{ANN}	Mô hình
59	Cu-PTSC15		8,8434	9,2886	Nhóm 9
60	Cu-PTSC16		12,6486	12,8742	Nhóm 9
61	Cu-PTSC17		-	-	-
62	Cu-PTSC18		12,6149	12,5684	Nhóm 9
63	Cu-PTSC19		14,7950	15,2341	Nhóm 9
64	Cu-PTSC20		12,3591	12,5461	Nhóm 9
65	Cu-PTSC21		-	-	-
66	Cu-PTSC22		17,0160	16,9856	Nhóm 4
67	Ni-PTSC1		28,9072	19,3169	Nhóm 1
68	Ni-PTSC2		4,7494	5,3057	Nhóm 9
69	Ni-PTSC3		10,4742	9,2753	Nhóm 9
70	Ni-PTSC4		8,5959	8,9287	Nhóm 9
71	Ni-PTSC5		4,8349	5,2310	Nhóm 9
72	Ni-PTSC6		4,2584	5,2813	Nhóm 9
73	Ni-PTSC7		6,2091	7,2876	Nhóm 9
74	Ni-PTSC8		14,4395	14,5684	Nhóm 9
75	Ni-PTSC9		6,9317	7,2871	Nhóm 9
76	Ni-PTSC10	Loại bỏ	-	-	-
77	Ni-PTSC11		12,2422	12,3546	Nhóm 9
78	Ni-PTSC12		16,6671	16,8746	Nhóm 9
79	Ni-PTSC13		-	-	-
80	Ni-PTSC14		8,6097	9,2875	Nhóm 9
81	Ni-PTSC15		10,1772	9,2907	Nhóm 9
82	Ni-PTSC16		9,8782	9,2888	Nhóm 9
83	Ni-PTSC17	Loại bỏ	-	-	-
84	Ni-PTSC18		14,2526	14,3562	Nhóm 9
85	Ni-PTSC19		15,4466	15,6584	Nhóm 9
86	Ni-PTSC20	Loại bỏ	-	-	-
87	Ni-PTSC21		6,9177	9,2874	Nhóm 9
88	Ni-PTSC22		14,5066	14,6853	Nhóm 9
89	Zn-PTSC1		9,9988	8,4929	Nhóm 9

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
90	Zn-PTSC2		15,8034	15,9635	Nhóm 9
91	Zn-PTSC3		12,1147	12,3521	Nhóm 4
92	Zn-PTSC4		7,6084	8,7115	Nhóm 9
93	Zn-PTSC5		3,9029	4,0960	Nhóm 9
94	Zn-PTSC6		3,1254	3,5624	Nhóm 9
95	Zn-PTSC7		16,6604	16,6857	Nhóm 9
96	Zn-PTSC8		20,6791	20,5346	Nhóm 9
97	Zn-PTSC9		11,9494	12,0213	Nhóm 9
98	Zn-PTSC10	Loại bỏ	-	-	-
99	Zn-PTSC11		10,7333	10,8965	Nhóm 9
100	Zn-PTSC12	Loại bỏ	-	-	-
101	Zn-PTSC13	Loại bỏ	-	-	-
102	Zn-PTSC14		8,9877	9,2874	Nhóm 9
103	Zn-PTSC15		8,7257	9,2883	Nhóm 9
104	Zn-PTSC16		8,5015	9,2764	Nhóm 9
105	Zn-PTSC17	Loại bỏ	-	-	-
106	Zn-PTSC18	Loại bỏ	-	-	-
107	Zn-PTSC19	Loại bỏ	-	-	-
108	Zn-PTSC20		13,4315	13,6754	Nhóm 9
109	Zn-PTSC21	Loại bỏ	-	-	-
110	Zn-PTSC22		13,5603	13,6235	Nhóm 4
111	Ag-CTSC1		10,7383	10,8652	Nhóm 4
112	Ag-CTSC2		10,0203	10,1254	Nhóm 4
113	Ag-CTSC3		14,8685	15,0231	Nhóm 9
114	Ag-CTSC4		17,1164	17,3251	Nhóm 9
115	Ag-CTSC5		18,2223	18,5423	Nhóm 9
116	Ag-CTSC6		15,1104	15,4231	Nhóm 9
117	Ag-CTSC7		15,9488	16,125	Nhóm 9
118	Ag-CTSC8		16,8278	17,2351	Nhóm 9
119	Ag-CTSC9		11,2916	11,3254	Nhóm 4
120	Ag-CTSC10		13,5526	13,7865	Nhóm 4

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
121	Ag-CTSC11		12,9966	13,0124	Nhóm 9
122	Ag-CTSC12		14,6347	14,7568	Nhóm 9
123	Ag-CTSC13		16,6718	17,0214	Nhóm 9
124	Ag-CTSC14		8,5437	9,5123	Nhóm 9
125	Ag-CTSC15		11,9471	12,5412	Nhóm 9
126	Ag-CTSC16		14,1945	14,6325	Nhóm 4
127	Ag-CTSC17		5,6291	6,3541	Nhóm 9
128	Ag-CTSC18		17,1816	18,2145	Nhóm 9
129	Ag-CTSC19		16,4927	17,3012	Nhóm 9
130	Ag-CTSC20		11,0090	11,2541	Nhóm 9
131	Ag-CTSC21		14,2204	15,3261	Nhóm 9
132	Ag-CTSC22		15,7792	16,2145	Nhóm 9
133	Cd-CTSC1		10,9887	11,2031	Nhóm 9
134	Cd-CTSC2		3,6485	5,3241	Nhóm 4
135	Cd-CTSC3		5,7713	6,2351	Nhóm 4
136	Cd-CTSC4		7,9671	8,2015	Nhóm 4
137	Cd-CTSC5		8,9171	6,2315	Nhóm 4
138	Cd-CTSC6		4,8454	5,3621	Nhóm 4
139	Cd-CTSC7		7,0564	7,5684	Nhóm 4
140	Cd-CTSC8		7,6515	8,2014	Nhóm 4
141	Cd-CTSC9		10,4652	10,3828	Nhóm 9
142	Cd-CTSC10		10,6412	10,5856	Nhóm 9
143	Cd-CTSC11		4,5778	5,1234	Nhóm 4
144	Cd-CTSC12		8,8992	9,2351	Nhóm 4
145	Cd-CTSC13		15,2715	16,2315	Nhóm 4
146	Cd-CTSC14		7,7389	9,30414	Nhóm 9
147	Cd-CTSC15		10,9209	9,36117	Nhóm 9
148	Cd-CTSC16	Loại bỏ	-	-	-
149	Cd-CTSC17		9,7482	10,1234	Nhóm 4
150	Cd-CTSC18		11,4592	12,0123	Nhóm 4
151	Cd-CTSC19		10,6597	11,6987	Nhóm 4

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPR _{ANN}	Mô hình
152	Cd-CTSC20		10,6091	10,7895	Nhóm 4
153	Cd-CTSC21		7,2853	8,2354	Nhóm 4
154	Cd-CTSC22		9,5398	9,6541	Nhóm 4
155	Cu-CTSC1		7,0367	8,8385	Nhóm 1
156	Cu-CTSC2		19,1729	18,3651	Nhóm 9
157	Cu-CTSC3		13,5620	14,0254	Nhóm 9
158	Cu-CTSC4		15,7388	16,2135	Nhóm 9
159	Cu-CTSC5		16,9167	17,2351	Nhóm 9
160	Cu-CTSC6		13,5499	14,2145	Nhóm 9
161	Cu-CTSC7		14,8363	15,0254	Nhóm 9
162	Cu-CTSC8		15,4058	15,6542	Nhóm 9
163	Cu-CTSC9		16,9710	17,0254	Nhóm 4
164	Cu-CTSC10		10,9106	6,4026	Nhóm 9
165	Cu-CTSC11		11,4190	9,9241	Nhóm 9
166	Cu-CTSC12		13,0423	13,2541	Nhóm 9
167	Cu-CTSC13		15,1064	15,3695	Nhóm 9
168	Cu-CTSC14		4,6200	5,2612	Nhóm 9
169	Cu-CTSC15		8,3245	9,3022	Nhóm 9
170	Cu-CTSC16		21,2049	20,1547	Nhóm 9
171	Cu-CTSC17		-	-	-
172	Cu-CTSC18		15,8127	16,2358	Nhóm 9
173	Cu-CTSC19	Loại bỏ	-	-	-
174	Cu-CTSC20		7,4245	7,6584	Nhóm 9
175	Cu-CTSC21		12,1390	12,3654	Nhóm 9
176	Cu-CTSC22		14,2564	15,2365	Nhóm 9
177	Ni-CTSC1		8,7520	9,0254	Nhóm 4
178	Ni-CTSC2		14,6930	15,2365	Nhóm 4
179	Ni-CTSC3		15,4943	15,6985	Nhóm 4
180	Ni-CTSC4		16,2135	16,3584	Nhóm 4
181	Ni-CTSC5		17,5882	18,0214	Nhóm 4
182	Ni-CTSC6		16,0579	16,2514	Nhóm 4

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
183	Ni-CTSC7		15,0132	14,9857	Nhóm 4
184	Ni-CTSC8		15,5087	15,2315	Nhóm 4
185	Ni-CTSC9		7,3959	7,9658	Nhóm 4
186	Ni-CTSC10		9,4067	9,5426	Nhóm 4
187	Ni-CTSC11		12,5603	12,6984	Nhóm 9
188	Ni-CTSC12		14,1722	14,3256	Nhóm 9
189	Ni-CTSC13		16,3343	16,3256	Nhóm 9
190	Ni-CTSC14		12,5840	12,5624	Nhóm 9
191	Ni-CTSC15		8,7107	9,3080	Nhóm 9
192	Ni-CTSC16		12,3348	12,6532	Nhóm 4
193	Ni-CTSC17		17,1157	17,2365	Nhóm 4
194	Ni-CTSC18		16,6289	17,0235	Nhóm 4
195	Ni-CTSC19		15,8514	16,2031	Nhóm 9
196	Ni-CTSC20		12,0210	12,3251	Nhóm 9
197	Ni-CTSC21		12,4688	12,6985	Nhóm 9
198	Ni-CTSC22		15,4304	15,6958	Nhóm 9
199	Zn-CTSC1		7,1104	8,7494	Nhóm 1
200	Zn-CTSC2		4,8006	5,6984	Nhóm 4
201	Zn-CTSC3		12,5038	12,6987	Nhóm 4
202	Zn-CTSC4		14,8369	15,0215	Nhóm 4
203	Zn-CTSC5		10,1205	10,3265	Nhóm 4
204	Zn-CTSC6		14,9288	15,3625	Nhóm 4
205	Zn-CTSC7		13,8722	14,0215	Nhóm 4
206	Zn-CTSC8		14,6278	15,3251	Nhóm 4
207	Zn-CTSC9		7,1954	8,2015	Nhóm 4
208	Zn-CTSC10		8,9699	9,5184	Nhóm 4
209	Zn-CTSC11		7,1219	6,9857	Nhóm 4
210	Zn-CTSC12		17,5116	15,6284	Nhóm 4
211	Zn-CTSC13		13,3942	14,2651	Nhóm 9
212	Zn-CTSC14		7,3950	9,3123	Nhóm 9
213	Zn-CTSC15		9,7639	9,3655	Nhóm 9

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
214	Zn-CTSC16		20,3400	19,2541	Nhóm 9
215	Zn-CTSC17		19,6732	18,9586	Nhóm 9
216	Zn-CTSC18		14,4126	15,2145	Nhóm 9
217	Zn-CTSC19		13,6672	14,2154	Nhóm 4
218	Zn-CTSC20		9,4431	8,6861	Nhóm 9
219	Zn-CTSC21		10,2918	10,3651	Nhóm 4
220	Zn-CTSC22		13,1102	12,9586	Nhóm 4

Bảng p8.2. Thiết kế các phức chất mới và kết quả dự báo phức ML₂

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
1	Ag-(PTSC1) ₂		8,9428	11,9376	Nhóm 2
2	Ag-(PTSC2) ₂		15,2683	16,0730	Nhóm 2
3	Ag-(PTSC3) ₂	Loại bỏ	-	-	-
4	Ag-(PTSC4) ₂		5,6516	6,5139	Nhóm 2
5	Ag-(PTSC5) ₂	Loại bỏ	-	-	-
6	Ag-(PTSC6) ₂	Loại bỏ	-	-	-
7	Ag-(PTSC7) ₂		18,8595	19,0730	Nhóm 2
8	Ag-(PTSC8) ₂	Loại bỏ	-	-	Nhóm 2
9	Ag-(PTSC9) ₂	Loại bỏ	-	-	-
10	Ag-(PTSC10) ₂		24,3845	22,0730	Nhóm 2
11	Ag-(PTSC11) ₂	Loại bỏ	-	-	-
12	Ag-(PTSC12) ₂	Loại bỏ	-	-	-
13	Ag-(PTSC13) ₂	Loại bỏ	-	-	-
14	Ag-(PTSC14) ₂	Loại bỏ	-	-	-
15	Ag-(PTSC15) ₂		22,0353	22,0728	Nhóm 2
16	Ag-(PTSC16) ₂		20,3856	19,1730	Nhóm 2
17	Ag-(PTSC17) ₂	Loại bỏ	-	-	-
18	Ag-(PTSC18) ₂	Loại bỏ	-	-	-
19	Ag-(PTSC19) ₂	Loại bỏ	-	-	-
20	Ag-(PTSC20) ₂	Loại bỏ	-	-	-
21	Ag-(PTSC21) ₂		19,8341	20,3730	Nhóm 2

STT	Phức chất Phức loại bỏ QSPR _{MLR} QSPR _{ANN}		Mô hình		
22	Ag-(PTSC22) ₂		14,9507	12,0730	Nhóm 2
23	Cd-(PTSC1) ₂		8,3473	11,8360	Nhóm 2
24	Cd-(PTSC2) ₂		15,6428	16,0730	Nhóm 2
25	Cd-(PTSC3) ₂		6,0387	8,2496	Nhóm 2
26	Cd-(PTSC4) ₂		6,2163	6,1850	Nhóm 2
27	Cd-(PTSC5) ₂		5,0109	6,8350	Nhóm 2
28	Cd-(PTSC6) ₂		12,3611	12,0730	Nhóm 2
29	Cd-(PTSC7) ₂		19,3876	19,9730	Nhóm 2
30	Cd-(PTSC8) ₂		14,5445	12,0730	Nhóm 2
31	Cd-(PTSC9) ₂		-	-	-
32	Cd-(PTSC10) ₂		24,1824	22,1630	Nhóm 2
33	Cd-(PTSC11) ₂		-	-	-
34	Cd-(PTSC12) ₂		-	-	-
35	Cd-(PTSC13) ₂		-	-	-
36	Cd-(PTSC14) ₂		-	-	-
37	Cd-(PTSC15) ₂		23,7371	22,5262	Nhóm 2
38	Cd-(PTSC16) ₂		-	-	-
39	Cd-(PTSC17) ₂		13,8688	12,0730	Nhóm 2
40	Cd-(PTSC18) ₂		-	-	-
41	Cd-(PTSC19) ₂		-	-	-
42	Cd-(PTSC20) ₂		-	-	-
43	Cd-(PTSC21) ₂		15,0433	16,1347	Nhóm 2
44	Cd-(PTSC22) ₂		16,8574	17,0729	Nhóm 2
45	Cu-(PTSC1) ₂		9,3428	12,0017	Nhóm 2
46	Cu-(PTSC2) ₂		16,7319	14,6241	Nhóm 2
47	Cu-(PTSC3) ₂		-	7,4252	Nhóm 2
48	Cu-(PTSC4) ₂		-	7,4023	Nhóm 2
49	Cu-(PTSC5) ₂		6,4243	6,1732	Nhóm 2
50	Cu-(PTSC6) ₂		8,5288	12,0583	Nhóm 2
51	Cu-(PTSC7) ₂		14,2355	14,2352	Nhóm 2
52	Cu-(PTSC8) ₂		15,5470	16,2133	Nhóm 2

STT	Phức chất	Phức chất Phức loại bỏ QSPR _{MLR} QSPR _{ANN}		Mô hình	
53	Cu-(PTSC9) ₂		-	-	-
54	Cu-(PTSC10) ₂		19,6937	20,3202	Nhóm 2
55	Cu-(PTSC11) ₂		-	-	-
56	Cu-(PTSC12) ₂		-	-	-
57	Cu-(PTSC13) ₂		-	-	-
58	Cu-(PTSC14) ₂		-	-	-
59	Cu-(PTSC15) ₂		18,4685	17,9523	Nhóm 2
60	Cu-(PTSC16) ₂		-	-	-
61	Cu-(PTSC17) ₂		5,1770	8,8809	Nhóm 2
62	Cu-(PTSC18) ₂		-	-	-
63	Cu-(PTSC19) ₂		-	-	-
64	Cu-(PTSC20) ₂		-	-	-
65	Cu-(PTSC21) ₂		15,9489	14,3203	Nhóm 2
66	Cu-(PTSc22) ₂		17,8068	18,8730	Nhóm 2
67	Ni-(PTSC1) ₂		8,9813	11,9612	Nhóm 2
68	Ni-(PTSC2) ₂		11,1689	12,0730	Nhóm 2
69	Ni-(PTSC3) ₂		-	-	-
70	Ni-(PTSC4) ₂		-	-	-
71	Ni-(PTSC5) ₂		6,2954	6,1732	Nhóm 2
72	Ni-(PTSC6) ₂		9,8513	12,0712	Nhóm 2
73	Ni-(PTSC7) ₂		16,0871	16,5321	Nhóm 2
74	Ni-(PTSC8) ₂		16,3067	16,3030	Nhóm 2
75	Ni-(PTSC9) ₂		-	-	-
76	Ni-(PTSC10) ₂		17,0898	17,5327	Nhóm 2
77	Ni-(PTSC11) ₂		25,2771	22,9729	Nhóm 2
78	Ni-(PTSC12) ₂		-	-	-
79	Ni-(PTSC13) ₂		-	-	-
80	Ni-(PTSC14) ₂		-	-	-
81	Ni-(PTSC15) ₂		20,8971	21,0728	Nhóm 2
82	Ni-(PTSC16) ₂		16,7474	16,6330	Nhóm 2
83	Ni-(PTSC17) ₂		13,9330	12,0730 Nhóm 2	

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình	
84	Ni-(PTSC18) ₂		-	-	-	
85	Ni-(PTSC19) ₂		-	-	-	
86	Ni-(PTSC20) ₂		-	-	-	
87	Ni-(PTSC21) ₂		20,6785	12,0730	Nhóm 2	
88	Ni-(PTSc22) ₂		17,2083	17,1730	Nhóm 2	
89	Zn-(PTSC1) ₂		8,7167	11,9180	Nhóm 2	
90	Zn-(PTSC2) ₂		17,5496	17,0730	Nhóm 2	
91	Zn-(PTSC3) ₂		-	-	-	
92	Zn-(PTSC4) ₂		-	-	-	
93	Zn-(PTSC5) ₂		5,5737	6,2240	Nhóm 2	
94	Zn-(PTSC6) ₂		7,7864	12,0285	Nhóm 2	
95	Zn-(PTSC7) ₂		19,3413	12,0730	Nhóm 2	
96	Zn-(PTSC8) ₂		18,6403	12,0730	Nhóm 2	
97	Zn-(PTSC9) ₂		-	-	-	
98	Zn-(PTSC10) ₂		20,2935	12,0730	Nhóm 2	
99	Zn-(PTSC11) ₂		24,6183	12,0729	Nhóm 2	
100	Zn-(PTSC12) ₂		-	-	-	
101	Zn-(PTSC13) ₂		-	-	-	
102	Zn-(PTSC14) ₂		21,1355	12,0729	Nhóm 2	
103	Zn-(PTSC15) ₂		19,1446	12,0729	Nhóm 2	
104	Zn-(PTSC16) ₂		16,2669	12,0730	Nhóm 2	
105	Zn-(PTSC17) ₂		12,2913	12,0730	Nhóm 2	
106	Zn-(PTSC18) ₂		-	-	-	
107	Zn-(PTSC19) ₂		-	-	-	
108	Zn-(PTSC20) ₂		-	-	-	
109	Zn-(PTSC21) ₂		13,6918	12,0730	Nhóm 2	
110	$Zn-(PTSc22)_2$		17,1092	17,3460	Nhóm 2	
111	Ag-(CTSC1) ₂		11,1140	13,1331	Nhóm 1	
112	Ag-(CTSC2) ₂		16,1390	16,5315	Nhóm 1	
113	Ag-(CTSC3) ₂		18,9145	19,26354	Nhóm 1	
114	Ag-(CTSC4) ₂	Loại bỏ	-			

STT	Phức chất Phức loại bỏ		QSPR _{MLR}	QSPRANN	Mô hình
115	Ag-(CTSC5) ₂		20,2727	19,2151	Nhóm 1
116	Ag-(CTSC6) ₂		13,2491	14,6148	Nhóm 1
117	Ag-(CTSC7) ₂	Loại bỏ	-	-	-
118	Ag-(CTSC8) ₂	Loại bỏ	-	-	-
119	Ag-(CTSC9) ₂		7,5396	7,5540	Nhóm 1
120	Ag-(CTSC10) ₂	Loại bỏ	-	-	-
121	Ag-(CTSC11) ₂	Loại bỏ	-	-	-
122	Ag-(CTSC12) ₂	Loại bỏ	-	-	-
123	Ag-(CTSC13) ₂	Loại bỏ	-	-	-
124	Ag-(CTSC14) ₂		13,7478	14,8075	Nhóm 1
125	Ag-(CTSC15) ₂		17,6412	17,5943	Nhóm 1
126	Ag-(CTSC16) ₂		-	-	-
127	Ag-(CTSC17) ₂		12,1050	12,5320	Nhóm 1
128	Ag-(CTSC18) ₂		13,5824	14,8909	Nhóm 1
129	Ag-(CTSC19) ₂		12,7639	13,6861	Nhóm 1
130	Ag-(CTSC20) ₂	Loại bỏ	-	-	-
131	Ag-(CTSC21) ₂	Loại bỏ	-	-	-
132	Ag-(CTSC22) ₂		14,6761	15,2301	Nhóm 1
133	Cd-(CTSC1) ₂		11,2731	11,3658	Nhóm 1
134	Cd-(CTSC2) ₂		-	-	-
135	Cd-(CTSC3) ₂		-	-	-
136	Cd-(CTSC4) ₂		21,1527	23,0199	Nhóm 1
137	Cd-(CTSC5) ₂		16,6327	18,0918	Nhóm 1
138	Cd-(CTSC6) ₂		9,8638	8,4457	Nhóm 1
139	Cd-(CTSC7) ₂		-	-	-
140	Cd-(CTSC8) ₂		-	-	-
141	Cd-(CTSC9) ₂		13,2554	15,1931	Nhóm 1
142	Cd-(CTSC10) ₂		-	-	-
143	Cd-(CTSC11) ₂		-	-	-
144	Cd-(CTSC12) ₂		15,6406	16,2614	Nhóm 1
145	$Cd-(CTSC13)_2$		16,2351	17,6903	Nhóm 1

STT	Phức chất Phức loại bỏ QSPR _{MLR} QSPR		QSPRANN	Mô hình	
146	Cd-(CTSC14) ₂		23,7368	22,3012	Nhóm 1
147	Cd-(CTSC15) ₂		17,0675	17,6903	Nhóm 1
148	Cd-(CTSC16) ₂		17,6903	17,6903	Nhóm 1
149	Cd-(CTSC17) ₂		13,0030	14,3920	Nhóm 1
150	Cd-(CTSC18) ₂		21,1375	20,3201	Nhóm 1
151	Cd-(CTSC19) ₂		22,3431	21,6512	Nhóm 1
152	Cd-(CTSC20) ₂		-	-	-
153	Cd-(CTSC21) ₂		-	-	-
154	Cd-(CTSC22) ₂		-	-	-
155	Cu-(CTSC1) ₂		10,0415	11,5213	Nhóm 1
156	Cu-(CTSC2) ₂		-	-	-
157	Cu-(CTSC3) ₂		19,9003	20,1304	Nhóm 1
158	Cu-(CTSC4) ₂		14,7635	15,2103	Nhóm 1
159	Cu-(CTSC5) ₂		9,9452	11,6446	Nhóm 1
160	Cu-(CTSC6) ₂		7,9858	9,6903	Nhóm 1
161	Cu-(CTSC7) ₂		27,3712	23,3266	Nhóm 1
162	Cu-(CTSC8) ₂		21,9403	23,2802	Nhóm 1
163	Cu-(CTSC9) ₂		11,3827	11,6524	Nhóm 1
164	Cu-(CTSC10) ₂		-	-	-
165	Cu-(CTSC11) ₂		-	-	-
166	Cu-(CTSC12) ₂		6,2145	6,8974	Nhóm 1
167	Cu-(CTSC13) ₂		-	-	-
168	Cu-(CTSC14) ₂		14,6280	15,3102	Nhóm 1
169	Cu-(CTSC15) ₂		10,7115	12,8748	Nhóm 1
170	Cu-(CTSC16) ₂		-	-	-
171	Cu-(CTSC17) ₂		5,7493	6,3201	Nhóm 1
172	Cu-(CTSC18) ₂		11,9641	12,4562	Nhóm 1
173	Cu-(CTSC19) ₂		17,7599	18,321	Nhóm 1
174	Cu-(CTSC20) ₂		-	-	-
175	Cu-(CTSC21) ₂		-	-	-
176	Cu-(CTSC22) ₂		17,2913	17,6154	Nhóm 1

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
177	Ni-(CTSC1) ₂		6,3177	6,8951	Nhóm 1
178	Ni-(CTSC2) ₂		-	-	-
179	Ni-(CTSC3) ₂		14,9472	15,3258	Nhóm 1
180	Ni-(CTSC4) ₂		15,0390	15,6325	Nhóm 1
181	Ni-(CTSC5) ₂		10,2114	11,0245	Nhóm 1
182	Ni-(CTSC6) ₂		-	-	-
183	Ni-(CTSC7) ₂		27,6257	25,0325	Nhóm 1
184	Ni-(CTSC8) ₂		22,2149	21,0985	Nhóm 1
185	Ni-(CTSC9) ₂		6,1256	6,9851	Nhóm 1
186	Ni-(CTSC10) ₂		-	-	-
187	Ni-(CTSC11) ₂		-	-	-
188	Ni-(CTSC12) ₂		6,3208	6,8157	Nhóm 1
189	Ni-(CTSC13) ₂		-	-	-
190	Ni-(CTSC14) ₂		14,7768	14,8751	Nhóm 1
191	Ni-(CTSC15) ₂		10,9912	11,3213	Nhóm 1
192	Ni-(CTSC16) ₂		-	-	-
193	Ni-(CTSC17) ₂		6,0296	6,3512	Nhóm 1
194	Ni-(CTSC18) ₂		12,0755	12,6951	Nhóm 1
195	Ni-(CTSC19) ₂		13,4273	14,235	Nhóm 1
196	Ni-(CTSC20) ₂		-	-	-
197	Ni-(CTSC21) ₂		-	-	-
198	Ni-(CTSC22) ₂		17,3814	18,3215	Nhóm 1
199	Zn-(CTSC1) ₂		10,1578	11,8751	Nhóm 1
200	Zn-(CTSC2) ₂		8,3483	8,4201	Nhóm 1
201	Zn-(CTSC3) ₂		15,1035	15,2351	Nhóm 1
202	Zn-(CTSC4) ₂		14,8325	14,9563	Nhóm 1
203	Zn-(CTSC5) ₂		10,0470	12,1474	Nhóm 1
204	Zn-(CTSC6) ₂		-	-	-
205	Zn-(CTSC7) ₂		27,4786	26,5123	Nhóm 1
206	Zn-(CTSC8) ₂		22,0550	23,2907	Nhóm 1
207	Zn-(CTSC9) ₂		5,9194	6,2354	Nhóm 1

STT	Phức chất	Phức loại bỏ	QSPR _{MLR}	QSPRANN	Mô hình
208	Zn-(CTSC10) ₂		-	-	-
209	Zn-(CTSC11) ₂		-	-	-
210	Zn-(CTSC12) ₂		6,4332	6,5241	Nhóm 1
211	Zn-(CTSC13)2		-	-	
212	Zn-(CTSC14) ₂		14,9163	15,3201	Nhóm 1
213	Zn-(CTSC15) ₂		10,8350	12,6544	Nhóm 1
214	Zn-(CTSC16) ₂		-	-	-
215	Zn-(CTSC17) ₂		5,7743	6,1032	Nhóm 1
216	Zn-(CTSC18) ₂		12,2288	12,3541	Nhóm 1
217	Zn-(CTSC19) ₂		13,6639	13,7514	Nhóm 1
218	Zn-(CTSC20) ₂		-	-	-
219	Zn-(CTSC21) ₂		-	-	-
220	Zn-(CTSC22) ₂		17,5047	17,8652	Nhóm 1

Bảng p8.3. Kết quả dự đoán hằng số bền logβ₁₁ sử dụng phương trình tương quan

Phức		Phương trình tương quan	logβ _{11exp}	logβ₁₁cal	ARE%
35p		$1_{0} = 0$ $-2.1428 \pm 0.7562 \times 1_{0} = 0$	8,5000	8,5713	0,8386
33p	NE(II)I	$10gp_{11-SVR} = 2,1438 \pm 0,7302 \times 10gp_{11exp}$	12,7100	11,7548	7,5157
35p	NI(II)L	N1(II)L	8,5000	8,0831	4,9045
33p		$10gp_{11-ANN} = -0,4903 + 1,0093 \times 10gp_{11exp}$	12,7100	12,3324	2,9706
19p		Cd(II)L $\frac{\log\beta_{11-SVR} = 2,7148 + 0,6934 \times \log\beta_{11exp}}{\log\beta_{11-SVR} = 1,2026 + 0.8442 \times \log\beta_{11exp}}$	5,5440	6,5592	18,3119
10p	C4(II)I		10,6300	10,0860	5,1171
19p			5,5440	5,9736	7,7495
10p		$10gp_{11-ANN} = 1,2920 + 0.8443 \times 10gp_{11exp}$	10,6300	10,2679	3,4060
85p		$1_{0} = 0$ = 1.7142 + 0.9254 \(1_{0} = 0	6,1140	6,8217	11,5751
67p		$\log p_{11-SVR} = 1,7142 \pm 0,8534 \times \log p_{11exp}$	5,9240	6,6630	12,4744
85p	Cu(II)L	$1_{0} = 0 = 0 = 11(2 + 0.0822)(1_{0} = 0.0822)$	6,1140	6,1219	0,1285
67p		$\log \beta_{11-ANN} = 0,1163 + 0,9823 \times \log \beta_{11exp}$	5,9240	5,9352	0,1895
49p	Zn(II)L	$log\beta_{11-SVR} = 2,0424 + 0,7888 \times log\beta_{11exp}$	12,4000	11,8229	4,6538

48p			7,3000	7,8003	6,8535
49p		$1_{0} = 0.6056 + 1.1002 \times 1_{0} = 0.6056$	12,4000	13,0384	5,1480
48p		$\log p_{11-ANN} = -0,0050 + 1,1003 \times \log p_{11exp}$	7,3000	7,4267	1,7360
109n	Ni(II)L	$\log \beta_{11-SVR} = 2.1438 + 0.7562 \times \log \beta_{11exp}$	23,3149	19,7739	15,1877
110n	Cd(II)L	$\log \beta_{11-SVR} = 2,7148 + 0,6934 \times \log \beta_{11exp}$	23,0463	18,6960	18,8763
111n	Cu(II)L	$log\beta_{11-SVR} = 1,7142 + 0,8354 \times log\beta_{11exp}$	19,4148	17,9329	7,6328
112n	Zn(II)L	$\log \beta_{11-SVR} = 2,0424 + 0,7888 \times \log \beta_{11exp}$	16,4712	15,0341	8,7249
109n	Ni(II)L	$\log \beta_{11-ANN} = -0.4963 + 1.0093 \times \log \beta_{11exp}$	19,6298	19,3169	1,5940
110n	Cd(II)L	$\log \beta_{11-ANN} = 1,2926 + 0,8443 \times \log \beta_{11exp}$	21,3607	19,3283	9,5147
111n	Cu(II)L	$\log \beta_{11-ANN} = 0,1163 + 0,9823 \times \log \beta_{11exp}$	19,0603	18,8385	1,1637
112n	Zn(II)L	$\log \beta_{11-ANN} = -0,6056 + 1,1003 \times \log \beta_{11exp}$	17,5903	18,7494	6,5894

Phụ lục 9. Quy trình tổng hợp BEPT và phức chất Ni(II)-BEPT, Cd(II)-BEPT qua các giai đoạn

Giai đoạn 1. Giai đoạn ethyl hóa phenothiazine

Phương trình phản ứng:

Hình p9.1. Quy trình tổng hợp giai đoạn 1 của BEPT

Hình ảnh thực nghiệm ở giai đoạn này:

Hệ thống phản ứng giai đoạn 1

Sắc ký bản mỏng phản ứng ethyl hóa Vết (a) phenothiazine, (b) hệ phản ứng

Sản phẩm trung gian giai đoạn 1

Làm sạch chất rắn bằng dung môi Sắc ký bản mỏng sau xử lý qua metanol ng. Vết metanol ng (a) phenothiazine, (b) chất rắn sau xử lý

Hình p9.2. Hình ảnh trong tổng hợp giai đoạn 1 của BEPT

Giai đoạn 2. Giai đoạn Carbonyl hóa ethyl phenothiazin

Phương trình phản ứng:

Hình p9.3. Quy trình tổng hợp giai đoạn 2 của BEPT

Hình ảnh thực nghiệm ở giai đoạn này:

Hệ thống phản ứng giai đoạn 2

Hình sắc ký bản mỏng giai đoạn carbonyl hó Vết (a) phenothiazine, (b) hệ phản ứng

Hình ảnh xử lý giai đoạn carbonyl hóa (1) Làm nguội; (2) Chiết rửa (3) Cô quay dung dịch

Sắc ký bản mỏng khi rửa qua etanol Vết (a) trước khi xử lý, (b) sau khi xử lý

Hình p9.4. Hình ảnh trong tổng hợp giai đoạn 2 của BEPT
Giai đoạn 3. Giai đoạn Brom hóa phenothiazine carbonyl

c 10-ethyl-10*H*-phenothiazine-3-carbaldehyde

7-bromo-10-ethyl-10H-phenothiazine-3-carbaldehyde

Hình p9.5. Quy trình tổng hợp giai đoạn 2 của BEPT

Hệ thống phản ứng giai đoạn 3

Sắc ký bản mỏng phản ứng brom hóa Vết (a) chất rắn (3), (b) NBS, (c) bình phản ứng

Chiết rửa hỗn hợp phản ứng

Sắc ký bản mỏng sau tinh chế giai đoạn brom hóa

Hình p9.6. Hình ảnh trong tổng hợp giai đoạn 3 của BEPT

Giai đoạn 4. Giai đoạn Phản ứng tạo BEPT

Phương trình phản ứng

 $\label{eq:2.1} 7-bromo-10-ethyl-10 \ensuremath{\textit{H}}\xspace-phase \ensuremath{\textit{h}}\xspace \ensuremath{\{h}}\xspace \en$

2-((7-bromo-10-ethyl-10*H*-phenothiazin-3-yl)methylene)--hydrazinecarbothioamide

Hình p9.7. Quy trình tổng hợp giai đoạn 2 của BEPT

Hệ phản ứng giai đoạn 4

BEPT sau khi thu hồi giai đoạn 4

Sắc ký bản mỏng của phản ứng giai đoạn 4 sau 8 giờ. Vết (1) thiosemicarbazone, (2) tác chất đầu, (3) phản ứng

Hình p9.8. Hình ảnh trong tổng hợp giai đoạn BEPT

Giai đoạn tạo phức: xây dựng quy trình tạo phức tối ưu

Hình p9.9. Quy trình tổng hợp phức Cd(II)-BEPT và Ni(II)-BEPT

Hình ảnh thực nghiệm ở giai đoạn này:

Hệ phản ứng giai đoạn tạo phức

Phức Ni(II)-BEPT

Phức Cd(II)-BEPT

Hình p9.10. Hình ảnh tổng hợp phức Cd(II)-BEPT và Ni(II)-BEPT

Phụ lục 10. Quy trình tổng hợp BECT và phức chất Cu(II)-BECT, Zn(II)-BECT qua các giai đoạn

Giai đoạn 1. Giai đoạn ethyl hóa phenothiazine

Phương trình phản ứng:

Hình p10.1. Quy trình tổng hợp giai đoạn 1 của BECT

Hệ thống phản ứng giai đoạn 1

Sắc ký bản mỏng phản ứng ethyl hóa Vết (a) phenothiazine, (b) hệ phản ứng

Đèn UV kiểm tra bản mỏng

Sản phẩm giai đoạn 1

Sắc ký bản mỏng sau xử lý qua metanol ng. Vết (1) phenothiazine, (2) chất rắn sau xử lý

Hình p10.2. Hình ảnh trong tổng hợp giai đoạn 1 của BECT

Giai doan 2. Giai doạn Carbonyl hóa ethyl phenothiazin

Phương trình phản ứng:

Hình p10.3. Quy trình tổng hợp giai đoạn 2 của BECT

Hệ thống phản ứng giai đoạn 2

Sắc ký bản mỏng giai đoạn carbonyl hóa Vết (a) phenothiazine, (b) hệ phản ứng

Sản phẩm giai đoạn 2

Hình p10.4. Hình ảnh trong tổng hợp giai đoạn 2 của BECT

Giai đoạn 3. Giai đoạn Brom hóa phenothiazine carbonyl

Hình p10.5. Quy trình tổng hợp giai đoạn 3 của BECT

Hệ thống phản ứng giai đoạn 3

Sắc ký bản mỏng sau 2, 4, 6 h Vết (1) chất rắn (3), (2) NBS, (3) bình phản ứng

Sắc ký cột làm sạch hợp chất trung gian

Sắc ký bảng mỏng khi xử lý bằng sắc ký cột: đầu cột (a)-cuối cột (b)
1: Vết HCTG (3) trước khi sắc ký cột
2: Vết HCTG (3) sạch
3a: Vết HCTG (3) - đầu cột
3b: Vết HCTG (3) - cuối cột

Sản phẩm giai đoạn 3

Hình p10.6. Hình ảnh trong tổng hợp giai đoạn 3 của BECT

Giai đoạn 4. Giai đoạn Phản ứng tạo BEPT

Phương trình phản ứng

Hình p10.7. Quy trình tổng hợp BECT

Hình ảnh thực nghiệm ở giai đoạn này:

Hệ phản ứng giai đoạn

Sắc ký sau phản ứng

BECT

Sắc ký bản mỏng của phản ứng giai đoạn 4 sau rửa. Vết (1) tác chất đầu; (2) thiosemicarbazine, (3) BECT

Hình p10.8. Hình ảnh trong tổng hợp BECT

Giai đoạn tạo phức: xây dựng quy trình tạo phức tối ưu

Hình p10.9. Quy trình tổng hợp phức Cd(II)-BECT

Hình p10.10. Quy trình tổng hợp phức Zn(II)-BECT

Phức Zn(II)-BECT

Hình p10.11. Hình ảnh phức Cu(II)-BECT và Zn(II)-BECT

Phụ lục 11. Phổ FT-IR của BEPT và tiền chất trước đó

Hình p11.1. Phổ FT-IR của hợp chất (4) trong giai đoạn tổng hợp BEPT

Hinh p11.2. Phổ FT-IR của BEPT

Phụ lục 12. Phổ ¹H-NMR và kết quả phân tích của BEPT

Hình p12.1. Phổ ¹H-NMR đầy đủ của BEPT

Hình p12.2. Phổ ¹H-NMR mở rộng (6,8-8,3ppm) của BEPT

Hình p12.3. Phổ ¹H-NMR mở rộng (1,0-4,5ppm) của BEPT

STT	δ, (ppm)	Đặc tính mũi	J (Hz)	Số H	Kiểu H	
1	1,27	t	7,0	3	CH ₃	
2	3,89	q	6,5	2	CH ₂	
3	6,92	d	8,5	1	CH vòng thơm	
4	6,97	d	9	1	CH vòng thơm	
5	7,31	S	-	1	CH vòng thơm	
6	7,33	m	-	1	CH vòng thơm	
7	7,47	d	8,8; 1,5	1	CH vòng thơm	
8	7,71	d	1,5	1	CH vòng thơm	
9	7,92	т	-	1	CH=N	
10	8,0	S	-	1	NH ₂	
11	8,1	S	-	1	NH ₂	
12	11,301	S	-	1	NH	

Bảng p12. Tổng hợp kết quả phân tích phổ ¹H-NMR của BEPT

Phụ lục 13. Phổ ¹³C-NMR, DEPT và kết quả phân tích của BEPT

Hình p13.1. Phổ ¹C-NMR đầy đủ của BEPT

Hình p13.2. Phổ ¹C-NMR mở rộng (10-180ppm) của BEPT

Hình p13.3. Phổ ¹C-NMR mở rộng (110-150ppm) của BEPT

Hình p13.4. Phổ ¹C-NMR: DEPT và CPD đầy đủ của BEPT

Hình p13.5. Phổ ¹C-NMR: DEPT và CPD mở rộng (110-150ppm) của BEPT

STT	δ, (ppm)	Kiểu carbon	Đặc tính mũi	Ghi chú
1	12,3	CH ₃	+	
2	41,4	CH ₂	-	
3	113,5	СН	+	
4	113,9	C bậc 4		
5	115,2	СН	+	
6	117,1	СН	+	
7	122,5	C bậc 4		
8	124,7	СН	+	
9	124,8	C bậc 4		
10	127,9	C bậc 4		
11	128,8	СН	+	
12	130,2	СН	+	
13	141,0	СН	+	
14	142,8	C bậc 4		
15	144,9	C bậc 4		CH=N
16	177,7	C bậc 4		C=S

Bảng p13. Tổng hợp kết quả phân tích phổ ¹³C-NMR kết hợp với phổ DEPT của BEPT

Phụ lục 14. Phổ HR-MS của BEPT

Hình p14. Phổ HR-MS của BEPT

Phụ lục 15. Phổ FT-IR của Cd(II)-BEPT

Hình p15. Phổ FT-IR của Cd(II)-BEPT

Phụ lục 16. Phổ ¹H-NMR và kết quả phân tích của Cd(II)-BEPT

Hình p16.1. Phổ ¹H-NMR đầy đủ của Cd(II)-BEPT

Hình p16.2. Phổ ¹H-NMR mở rộng (6,85-8,25ppm) của Cd(II)-BEPT

Hình p16.3. Phổ ¹H-NMR lắc D₂O đầy đủ của Cd(II)-BEPT

Hình p16.4. Phổ ¹H-NMR lắc D₂O mở rộng (6,8-8,0ppm) của Cd(II)-BEPT

Hình p16.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹H-NMR của Cd(II)-BEPT

STT	Vị trí các đỉnh nguyên tử	δ, (ppm)		Đặc tính		Số U	Viễn U
		Phổ lý thuyết	Phổ nghiệm	mũi	J, (II <i>L)</i>	50 11	IXICU II
1	17	1,14	1,27	t	6,8	3	CH ₃
2	16	3,10	3,90	q	5,8	2	CH ₂
3			6,93	d	8,5	1	CH vòng thơm
4			6,98	d	9,0	1	CH vòng thơm
5	5, 8, 10, 11, 14,	7,55; 7,08; 7,16;	7,32	S	-	1	CH vòng thơm
6	15	7,09; 7,44; 7,63	7,34	S	-	1	CH vòng thơm
7			7,48	d	8,0	1	CH vòng thơm
8			7,72	S	-	1	CH vòng thơm
9	3	8,49	7,92	S	-	1	CH=N
10	1	9,14	8,1	S	-	1	NH ₂
11	1	9,14	8,15	S	-	1	NH ₂

Bảng p16. So sánh kết quả phân tích phổ lý thuyết và phổ nghiệm ¹H-NMR của Cd(II)-BEPT

Phụ lục 17. Phổ ¹C-NMR, DEPT và kết quả phân tích của Cd(II)-BEPT

Hình p17.1. Phổ ¹C-NMR đầy đủ của Cd(II)-BEPT

Hình p17.2. Phổ ¹C-NMR mở rộng (113-147ppm) của Cd(II)-BEPT

Hình p17.3. Phổ ¹C-NMR: DEPT đầy đủ của Cd(II)-BEPT

Hình p17.4. Phổ ¹C-NMR: DEPT mở rộng (117-146ppm) của Cd(II)-BEPT

Hình p17.5. Phổ ¹C-NMR: DEPT mở rộng (120-132ppm) của Cd(II)-BEPT

Hình p17.6. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³C-NMR của Cd(II)-BEPT

STT	Vị trí các đỉnh	δ, (ppm) –	125, (Hz)	Kiểu corbor	Đặc tính mũi
	nguyên tử	Phổ lý thuyết	Phổ nghiệm	Kieu carboli	
1	17	12,5	12,3	CH ₃	+
2	16	44,4	41,5	CH ₂	-
3			115,2	СН	+
4			117,2	СН	+
5	5, 8, 10, 11, 14,	130,6; 130,2; 131,0;	124,8	СН	+
6	15	116,2; 134,3; 126,8	128,1	СН	+
7			128,8	СН	+
8			130,2	СН	+
9	3	149,4	141,4	CH, CH=N	+
10			114,0	C bậc 4	
11			122,5	C bậc 4	
12	4 6 7 9 12 13	123,8; 124,2; 114,7;	124,85	C bậc 4	
13	1, 0, 7, 9, 12, 13	122,9; 143,9; 147,2	128,7	C bậc 4	
14			142,8	C bậc 4	
15			145,0	C bậc 4	
16	2	157,9	177,3	C bậc 4, C-S	

Bảng p17. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹³C-NMR kết hợp với phổ DEPT 90, DEPT 135 và CPD của phức Cd(II)-BEPT

Phụ lục 18. Phổ HSQC và HMBC và kết quả phân tích của Cd(II)-BEPT

Hình p18.1. Phổ HSQC đầy đủ của Cd(II)-BEPT

Hình p18.2. Phổ HSQC mở rộng 1,0-4,5/5-45 (ppm)của Cd(II)-BEPT

Hình p18.3. Phổ HSQC mở rộng 7,0-8,2/110-145 (ppm)của Cd(II)-BEPT

Hình p18.4. Phổ HSQC mở rộng 6,85-7,10/112-119 (ppm)của Cd(II)-BEPT

Hình p18.5. Phổ HSQC mở rộng 7,2-7,8/123-131 (ppm)của Cd(II)-BEPT

Hình p18.6. Phổ HMBC đầy đủ của Cd(II)-BEPT

Hình p18.7. *Phổ HMBC mở rộng 0,5-4,5/5-50 (ppm) của Cd(II)-BEPT*

Hình p18.8. Phổ HMBC mở rộng 3,75-4,1/138-149 (ppm) của Cd(II)-BEPT

Hình p18.9. Phổ HMBC mở rộng 7,6-8,6/173-181 (ppm) của Cd(II)-BEPT

Hình p18.10. Phổ HMBC mở rộng 6,8-8,4/110-150 (ppm) của Cd(II)-BEPT

FCd-DMSO-HMBC

Hình p18.11. Phổ HMBC mở rộng 6,85-7,05/110-133 (ppm) của Cd(II)-BEPT

Hình p18.12. Phổ HMBC mở rộng 7,3-8,2/121-134 (ppm) của Cd(II)-BEPT

Hình p18.13. Phổ HMBC mở rộng 7,0-8,0/138-148 (ppm) của Cd(II)-BEPT

Vị trí các	Lý thuyết		Đặc tính	HSQC		HMBC	
nguyên tử	бн, (ppm)	δc, (ppm)	mũi	δн, (ppm)	δc, (ppm)	$H \rightarrow C$	
1	9,14	-	NH ₂	8,1	-	C ₂	
1	9,14	-	NH ₂	8,15	-	C_2	
2	-	157,9	C bậc bốn	-	177,3	-	
3	8,49	149,4	CH, CH=N	7,92	141,4	C4; C15	
4	-	123,8	C bậc bốn	-	128,7	-	
5	7,55	130,6	СН	7,48	128,1	C ₃ ; C ₁₃ ; C ₁₃	
6	-	124,2	C bậc bốn	-	122,5	-	
7	-	114,7	C bậc bốn	-	114,0	-	
8	7,08	130,2	СН	7,34	130,2	C ₉ ; C ₁₂	
9	-	122,9	C bậc bốn	-	128,85	-	
10	7,16	131,0	СН	7,32	128,8	$C; C_{10}$	
11	7,09	116,2	СН	6,93	117,2	C9; C12; C7	
12	-	143,9	C bậc bốn	-	142,8	-	
13	-	147,2	C bậc bốn	-	145,0	-	
14	7,44	134,3	СН	6,98	115,2	$C_{13}; C_4; C_6$	
15	7,63	126,8	СН	7,72	124,8	C4; C3; C14	
16	3,1	44,4	CH ₂	3,9	41,5	C ₁₂ ; C ₁₃ , C ₁₇	
17	1,14	12,5	CH ₃	1,27	12,3	C ₁₆	

Bảng p18. Tổng hợp kết quả phổ HSQC và HMBC của phức Cd(II)-BEPT

Phụ lục 19. Phổ HR-MS của Cd(II)-BEPT

Hình 19. Phổ HS-MR của Cd(II)-BEPT

Phụ lục 20. Phổ EDX và SEM của Cd(II)-BEPT

Hình p20.1. Phổ EDX của Cd(II)-BEPT

Hình 20.2. Phổ SEM của Cd(II)-BEPT

Phụ lục 21. Phổ FT-IR của Ni(II)-BEPT

Hình 21. Phổ FT-IR của Ni(II)-BEPT

Phụ lục 22. Phổ ¹H-NMR và kết quả phân tích của Ni(II)-BEPT

Hình p22.1. Phổ ¹H-NMR đầy đủ của Ni(II)-BEPT

Hình p22.2. *Phổ ¹H-NMR mở rộng (6,75-8,25ppm) của Ni(II)-BEPT*

Hình p22.3. Phổ ¹H-NMR lắc D₂O đầy đủ của phức Ni(II)-BEPT

Hình p22.4. Phổ ¹H-NMR lắc D₂O mở rộng (6,5-8,2) của phức Ni(II)-BEPT

Hình p22.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹H-NMR của Ni(II)-BEPT

STT	Vị trí các đỉnh nguyên tử	δ, (p	Đặc tính	I (Uz)	cá u	V: ể., U	
		Phổ lý thuyết	Phổ nghiệm	mũi	J, (112)	50 11	Kicu II
1	17	1,14	1,25	t	6,5	3	CH ₃
2	16	3,10	3,90	q	6,5	2	CH ₂
3			6,91	d	8,5	1	CH vòng thơm
4			6,96	d	8.5	1	CH vòng thơm
5	5; 8; 10; 11;	7,55; 7,08; 7,16; 7,09;	7,29	S	-	1	CH vòng thơm
6	14; 15	7,44; 7,63	7,31	d	8,0	1	CH vòng thơm
7			7,45	S	-	1	CH vòng thơm
8			7,67	S	-	1	CH vòng thơm
9	3	8,49	7,90	S	-	1	CH=N
10	1	9,14	7,99	S	-	1	NH ₂
11	1	9,14	8,05	S	-	1	NH ₂

Bảng p22. Tổng hợp kết quả phân tích phổ ¹H-NMR của phức Ni(II)-BEPT

Phụ lục 23. Phổ ¹³C-NMR phức chất Ni(II)-BEPT

Hình p23.1. Phổ ¹C-NMR đầy đủ của Ni(II)-BEPT

Hình p23.2. Phổ ¹C-NMR mở rộng (118-146ppm) của Ni(II)-BEPT

Hình p23.3. Phổ ¹C-NMR: DEPT đầy đủ của Ni(II)-BEPT

Hình p23.4. Phổ ¹C-NMR: DEPT mở rộng (110-150ppm) của Ni(II)-BEPT

Hình p23.5. Phổ ¹C-NMR: DEPT mở rộng (120-132ppm) của Ni(II)-BEPT

Hình p23.6. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³C-NMR của Ni(II)-BEPT

Bảng p23. Tổng hợp phân tích kết quả phổ lý thuyết và phổ nghiệm ¹³C kết hợp với phổ DEPT 90, DEPT 135 và CPD của Ni(II)-BEPT

STT	Vị trí các đỉnh	δ, (ppn	n)	Kiểu corbon	Đặc tính mũi
	nguyên tử	Phổ lý thuyết	Phổ nghiệm	Kicu cai boli	
1	17	12,5	11,9	CH ₃	+
2	16	44,4	41,1	CH ₂	-
3			114,8	СН	+
4			116,7	СН	+
5	5, 8, 10, 11, 14,	130,6; 130,2; 131,0;	124,3	СН	+
6	15	116,2; 134,3; 126,8	127,5	СН	+
7			128,3	СН	+
8			129,8	СН	+
9	3	149,4	140,7	CH, CH=N	+
10			122,1	C bậc bốn	
11			124,4	C bậc bốn	
12	4 6 7 9 12 13	123,8; 124,2; 114,7;	128,7	C bậc bốn	
13	1, 0, 7, 9, 12, 13	122,9; 143,9; 147,2	113,5	C bậc bốn	
14			142,4	C bậc bốn	
15			144,5	C bậc bốn	
16	2	157,9	177,1	C bậc bốn, C-S	

Phụ lục 24. Phổ HSQC và HMBC và kết quả phân tích của Ni(II)-BEPT

Hình 24.1. Phổ HSQC đầy đủ của Ni(II)-BEPT

Hình 24.2. Phổ HSQC mở rộng 1,0-4,0/10-55 (ppm) của Ni(II)-BEPT

Hình 24.3. Phổ HSQC mở rộng 6,8-4,0/114-142 (ppm) của Ni(II)-BEPT

FNi-DMSO-HSQC

Hình 24.4. Phổ HSQC mở rộng 6,85-7,05/112-118 (ppm) của Ni(II)-BEPT

Hình 24.5. Phổ HSQC mở rộng 7,2-7,7/123-131 (ppm) của Ni(II)-BEPT

Hình 24.6. Phổ HMBC đầy đủ của Ni(II)-BEPT

Hình 24.7. Phổ HMBC mở rộng 0,0-4,5/5-60 (ppm) của Ni(II)-BEPT

FNi-DMSO-HMBC

Hình 24.8. Phổ HMBC mở rộng 10,5-4,5/135-185 (ppm) của Ni(II)-BEPT

Hình 24.9. Phổ HMBC mở rộng 3,6-4,1/138-148 (ppm) của Ni(II)-BEPT

175

Hình 24.10. Phổ HMBC mở rộng 6,6-8,4/110-150 (ppm) của Ni(II)-BEPT

FNi-DMSO-HMBC

Hình 24.11. Phổ HMBC mở rộng 6,80-7,05/119-133 (ppm) của Ni(II)-BEPT

Hình 24.12. Phổ HMBC mở rộng 7,2-8,0/121-133 (ppm) của Ni(II)-BEPT

FNi-DMSO-HMBC

Hình 24.13. Phổ HMBC mở rộng 7,2-7,7/137-147 (ppm) của Ni(II)-BEPT

Vị trí các	Phổ lý t	huyết	Đặc tính mũi	HSQC		HMBC
nguyên tử	δ _H , (ppm)	δ _C , (ppm)	Dạc thìn mui	δ _H , (ppm)	δ _C , (ppm)	$\mathrm{H} \to \mathrm{C}$
1	9,14	-	NH ₂	7,99	-	C_2
1	9,14	-	NH ₂	8,05	-	C_2
2	-	157,9	-	-	177,1	-
3	8,49	149,4	CH, CH=N	7,90	140,7	$C_9; C_4; C_{15}; C_6; C_{10}$
4	-	123,8	C bậc bốn	-	128,7	-
5	7,55	130,6	СН	7,45	127,5	$C_4; C_{15}; C_3; C_{13}$
6	-	124,2	C bậc bốn	-	122,1	-
7	-	114,7	C bậc bốn	-	113,5	-
8	7,08	130,2	СН	7,31	129,8	C7; C9; C15; C4; C12
9	-	122,9	C bậc bốn	-	124,4	-
10	7,16	131,0	СН	7,29	128,3	$C_3; C_2; C_1; C_{11}; C_6; C_4; C_{14}$
11	7,09	116,2	СН	6,91	116,7	C9; C6; C5; C10; C13
12	-	143,9	C bậc bốn	-	142,4	-
13	-	147,2	C bậc bốn	-	144,5	-
14	7,44	134,3	СН	6,96	114,8	$C_{15}; C_4; C_5; C_{10}; C_{12}$
15	7,63	126,8	СН	7,67	124,3	C ₅ ; C ₃ ; C ₁₃
16	3,10	44,4	CH ₂	3,90	41,1	C ₁₆ ; C ₁₇
17	1,14	12,5	CH ₃	1,25	11,9	C ₁₆

Bảng p24. Tổng hợp kết quả phổ HSQC và HMBC của phức Ni(II)-BEPT

Phụ lục 25. Phổ HR-MS của Ni(II)-BEPT

Hình 25. Phổ HS-MR của Ni(II)-BEPT

Phụ lục 26. Phổ EDX và SEM của Ni(II)-BEPT

Hình p26.1. Phổ EDX của Ni(II)-BEPT

Hình p26.2. Phổ SEM của Ni(II)-BEPT

Phụ lục 27. Phổ FT-IR của BECT và tiền chất trước đó

Hình p27.1. Phổ FT-IR của hợp chất (4) trong giai đoạn tổng hợp BECT

Page 1/1

Hình p27.2. Phổ FT-IR của BECT

Phụ lục 28. Phổ ¹H-NMR và kết quả phân tích của BECT

Hình p28.1. Phổ ¹H-NMR đầy đủ của BECT

Hình p28.2. *Phổ ¹H-NMR mở rộng (7,35-8,85ppm) của BECT*

Hình p28.3. Phổ ¹H-NMR mở rộng (1,00-5,0ppm) của BECT

STT	δ _H , (ppm)	Đặc tính mũi	J , (Hz)	Số H	Kiểu H
1	1,29	t	-	3	CH ₃
2	4,43	q	7,0	2	CH ₂
3	7,58 – 7,59	т	-	1	CH vòng thơm
4	7,58	S	-	1	CH vòng thơm
5	7,63	d	8,5	1	CH vòng thơm
6	7,96	d	8,8	2	CH vòng thơm
7	8,17	S	-	1	CH vòng thơm
8	8,22	S	-	1	CH=N
9	8,42	S	-	1	NH của NH ₂
10	8,65	S	-	1	NH của NH ₂
11	11,39	S	-	1	N-H

Bảng p28. Tổng hợp kết quả phân tích phổ ¹H-NMR của BECT

Phụ lục 29. Phổ ¹³C-NMR và kết quả phân tích của BECT

Hình p29.1. Phổ ¹³C-NMR đầy đủ của BECT

Hình p29.2. *Phổ* ¹³*C*-*NMR mở rộng (10-180,5ppm) của BECT*

Hình p29.3. *Phổ* ¹³*C-NMR mở rộng (107,5-146ppm) của BECT*

Hình p29.4. Phổ ¹³C-NMR: DEPT, CPD đầy đủ của BECT

Hình p29.5. Phổ ¹³C-NMR: DEPT, CPD mở rộng (108-145ppm) của BECT

STT	δ, (ppm) – 125 (MHz)	Kiểu Carbon	Đặc tính mũi hấp thụ cộng hưởng
1	13,7	CH ₃	+
2	37,3	CH ₂	-
3	109,6	СН	+
4	111,4	СН	+
5	111,5	C bậc bốn	
6	120,6	СН	+
7	121,4	C bậc bốn	
8	123,1	СН	+
9	124,2	C bậc bốn	
10	125,6	СН	+
11	125,9	C bậc bốn	
12	128,4	СН	+
13	138,7	C bậc bốn	
14	140,8	C bậc bốn	
15	143,2	CH, CH=N	+
16	177,6	C bậc bốn, C=S	

Bảng p29. Tổng hợp kết quả phân tích phổ ¹³C-NMR của BECT

Phụ lục 30. Phổ HR-MS của BECT

Hình 30. Phổ HR-MS của BECT

Phụ lục 31. Phổ FT-IR của Cu(II)-BECT

Page 1/1

Hình 31. Phổ FT-IR của Cu(II)-BECT

Phụ lục 32. Phổ ¹H-NMR và kết quả phân tích của Cu(II)-BECT

Hình p32.1. Phổ ¹H-NMR đầy đủ của Cu(II)-BECT

Hình p32.2. Phổ ¹H-NMR mở rộng (7,25-8,95ppm) của Cu(II)-BECT

Hình p32.3. $Ph \delta^{i} H$ -NMR mở rộng (0,7-5,1ppm) của Cu(II)-BECT

Hình p32.4. Phổ ¹H-NMR lắc D₂O đầy đủ của Cu(II)-BECT

Hình p32.5. Phổ ¹H-NMR lắc D₂O mở rộng (0,8 – 5,0ppm) của Cu(II)-BECT

Hình p32.6. Phổ ¹H-NMR lắc D₂O mở rộng (7,1-9,1ppm) của Cu(II)-BECT

Hình p32.7. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹H-NMR của Cu(II)-BECT
STT	Vị trí các đỉnh	δ _H , (ppm)		Đặc tính	I (Hz)	cá II	V:Å., H	
	nguyên tử	Phổ lý thuyết	Phổ nghiệm	mũi	J , (HZ)	50 П	IXICU II	
1	14	1,37	1,31	t	7,0	3	CH ₃	
2	13	4,53	4,47	q	6,5	2	CH ₂	
3			7,60 - 7,65	m	-	1	CH vòng thơm	
4		8,69 7,65 7,79	8,69 7.65	7,63	S	-	1	CH vòng thơm
5	124569		7,7	d	8,5	1	CH vòng thơm	
6	- 1, 3, 4, 5, 6, 8	8,05	8,03	d	8,5	1	CH vòng thơm	
7		7,42 7,36	8,29	S	-	1	CH vòng thom	
8			8,41	S	-	1	CH vòng thơm	
9	15	8,49	8,68	S	-	1	H của CH=N	
10	17	9,14	8,52	S	-	1	NH của NH ₂	
11	17	9,14	8,7	S		1	NH của NH ₂	

Bảng p32. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹H-NMR của phức Cu(II)-BECT

Phụ lục 33. Phổ ¹C-NMR và kết quả phân tích của Cu(II)-BECT

Hình p33.1. Phổ ¹C-NMR đầy đủ của Cu(II)-BECT

Hình p33.2. Phổ ¹C-NMR mở rộng (108-148ppm) của Cu(II)-BECT

Hình p33.3. Phổ ¹C-NMR: DEPT đầy đủ của Cu(II)-BECT

Hình p33.4. Phổ ¹C-NMR: DEPT mở rộng (105-150ppm) của Cu(II)-BECT

Hình p33.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³C-NMR của Cu(II)-BECT

Bảng p33. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹³C-NMR kết hợp với phổ DEPT 90, DEPT 135 và CPD của phức Cu(II)-BECT

STT	Vị trí các đỉnh	δ _C , (ppm) -	- 125, (MHz)	Viểu Carbon	Đặc tính mũi hấp thụ	
511	nguyên tử	Phổ lý thuyết	Phổ nghiệm	Kieu Cardon	cộng hưởng	
1	14	14,6	13,5	CH ₃	+	
2	13	40,3	37,2	CH ₂	-	
3			109,6	СН	+	
4			111,3	СН	+	
5	1. 3. 4. 5. 6. 8	121,1; 112,8; 126,1;	121,2	СН	+	
6	, , , , , , , ,	110,2; 124,7; 126,0	122,9	СН		
7			125,8	СН		
8			128,3	СН		
9			111,4	C bậc bốn		
10			123,9	C bậc bốn	+	
11	2, 7, 9, 10, 11,	124,4; 122,5; 103,3;	124,7	C bậc bốn		
12	12	128,4; 151,8; 154,2	128,9	C bậc bốn		
13			138,6	C bậc bốn		
14			141,0	C bậc bốn		
15	15	149,4	146,4	CH, CH=N	+	
16	16	157,9	191,5	C bậc bốn, C-S		

Phụ lục 34. Phổ HSQC và HMBC và kết quả phân tích của Cu(II)-BECT

Hình p34.1. Phổ HSQC đầy đủ của Cu(II)-BECT

Hình p34.2. Phổ HSQC mở rộng 1,0-5,5/1,0-50 (ppm) của Cu(II)-BECT

Hình p34.3. Phổ HSQC mở rộng 7,3-8,8/100-150 (ppm) của Cu(II)-BECT

Hình p34.4. Phổ HSQC mở rộng 7,50-7,90/107-132 (ppm) của Cu(II)-BECT

Hình p34.5. Phổ HSQC mở rộng 8,0-8,8/119-130 (ppm) của Cu(II)-BECT

Hình p34.6. Phổ HMBC đầy đủ của Cu(II)-BECT

Hình p34.7. Phổ HMBC mở rộng 1,0-3,0/10-55 (ppm) của Cu(II)-BECT

Hình p34.8. Phổ HMBC mở rộng 7,5-8,8/105-150 (ppm) của Cu(II)-BECT

Hình p34.9. Phổ HMBC mở rộng 7,4-7,7/100-150 (ppm) của Cu(II)-BECT

Cu-Thiosemicarbazone-DMSO-HMBC

Hình p34.10. Phổ HMBC mở rộng 7,9-8,2/100-150 (ppm) của Cu(II)-BECT

Hình p34.11. Phổ HMBC mở rộng 8,3-8,9/100-150 (ppm) của Cu(II)-BECT

Hình p34.12. Phổ HMBC mở rộng 8,4-8,85/117-131 (ppm) của Cu(II)-BECT

Vị trí của các	Lý thuyết		Đặc tính	HSQC		HMBC	
nguyên tử	бн, (ppm)	δc, (ppm)	mũi	δ H, (ppm); <i>J</i> , (Hz)	δc, (ppm); 125, (MHz)	$(H \rightarrow C)$	
1	8,69	121,1	СН	8,29; s; 1H	121,2	C ₂ , C ₃ , C ₁₁ , C ₁₂	
2	-	124,4	C bậc bốn	-	124,7	-	
3	7,65	112,8	СН	7,63; m; 1H	111,3	C_2 , C_4 , C_{15}	
4	7,79	126,1	СН	8,03; d; 8,5 Hz; 1H	125,8	C_3 , C_{11} C_{12}	
5	7,36	110,2	СН	7,7; d; 8,5 Hz; 1H	109,6	C_6, C_9, C_7	
6	7,42	124,7	СН	7,62; m; 1H	128,3	C_7 , C_5 , C_{10}	
7	-	122,5	C bậc bốn	-	123,9	-	
8	8,05	126,0	СН	8,41; s; 1H	122,9	C9, C7 , C11	
9	-	103,3	C bậc bốn	-	111,4	-	
10	-	128,4	C bậc bốn	-	128,9	-	
11	-	151,8	C bậc bốn	-	138,6	-	
12	-	154,2	C bậc bốn	-	141,00	-	
13	4,53	40,3	CH ₂	4,47; q; 6,5 Hz; 2H	37,2	C_{14}, C_{10}, C_{12}	
14	1,37	14,6	CH ₃	1,31; t, 7,0 Hz; 3H	13,5	C ₁₃	
15	8,49	149,4	CH=N	8,68; s; 1H	146,4	C_1, C_2, C_3	
16		157,9	C bậc bốn	-	191,5	-	
17	9,14	-	NH ₂	8,52; s; 1H	-	C ₁₆	
17	9,14	-	NH ₂	8,70; s; 1H	-	C16	

Bảng p34. Tổng hợp kết quả phổ HSQC và HMBC của phức Cu(II)-BECT

Phụ lục 35. Phổ HR-MS của Cu(II)-BECT

Hình 35. Phổ HS-MR của Cu(II)-BECT

Phụ lục 36. Phổ FT-IR của Zn(II)-BECT

Page 1/1

Hình 36. Phổ FT-IR của Zn(II)-BECT

Phụ lục 37. Phổ ¹H-NMR và kết quả phân tích của Zn(II)-BECT

Hình p37.1. Phổ ¹H-NMR đầy đủ của Zn(II)-BECT

Hình p37.2. Phổ ¹H-NMR mở rộng (7,5-8,9ppm) của Zn(II)-BECT

Hình p37.3. Phổ ¹H-NMR mở rộng (0,9-4,6ppm) của Zn(II)-BECT

Hình p37.4. Phổ ¹H-NMR lắc D₂O đầy đủ của Zn(II)-BECT

Hình p37.5. Phổ ¹H-NMR lắc D₂O mở rộng (7,3-9,1ppm) của Zn(II)-BECT

Hình p37.6. Phổ ¹H-NMR lắc D₂O mở rộng (0,5-4,8ppm) của Zn(II)-BECT

Hình p37.7. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹H-NMR của Zn(II)-BECT

STT	Vị trí các	δ _H , (ppm)		Đặc tính		,	?	
	đỉnh nguyên tử	Phổ lý thuyết	Phổ nghiệm	mũi	J , (Hz)	Sô H	Kiêu H	
1	14	1,37	1,30	t	7,3	3	CH ₃	
2	13	4,53	4,44	q	6,7	2	CH ₂	
3				m	-	3	CH của vòng thơm	
4		8,69; 7,65; , 8 7,79; 8,05; 7,42; 7,36	7,58-7,67				CH của vòng thơm	
5	1, 3, 4, 5, 6, 8						CH của vòng thơm	
6			7,96	d	8,5	1	CH của vòng thơm	
7			, , ,	8,45	S	-	1	CH của vòng thơm
8			8,65	S	-	1	CH của vòng thơm	
9	15	8,49	8,23	S	-	1	H của CH=N	
10	17	9,14	7,99	S	-	1	NH Của NH ₂	
11	17	9,14	8,23	S	-	1	NH Của NH ₂	

Bảng p37. Tổng hợp kết quả phân tích phổ ¹H-NMR của Zn(II)-BECT

Phụ lục 38. Phổ ¹C-NMR và kết quả phân tích của Zn(II)-BECT

Hình p38.1. Phổ ¹C-NMR đầy đủ của Zn(II)-BECT

Zn-Thiosemicarbazone-DMSO-13C

897.940	(11.55)	140.91	138.94	131.41	128,60	125.53 125.65 125.65 65.65 65.65 124.43 124.43 124.43 124.43 124.43 124.43 124.43 123.46	121.47	111.17 111.17	11.601
1	1	17	V	Ĩ	V	W W277	V/T	NZ.	ÎÎ

Hình p38.2. Phổ ¹C-NMR mở rộng (107-148ppm) của Zn(II)-BECT

Hình p38.3. Phổ ¹C-NMR: DEPT đầy đủ của Zn(II)-BECT

Hình p38.4. Phổ ¹C-NMR: DEPT mở rộng (105-150ppm) của Zn(II)-BECT

Hình p38.5. Sơ đồ vị trí các đỉnh nguyên tử và phổ lý thuyết ¹³C-NMR của Zn(II)-BECT

Bảng p38. Tổng hợp kết quả phân tích phổ lý thuyết và phổ nghiệm ¹³C-NMR kết hợp với phổ DEPT 90, DEPT 135 và CPD của phức Zn(II)-BECT

STT	Vị trí các đỉnh	δc, (ppm) -	- 125, (MHz)	Kiểu Carbon	Đặc tính mũi hấp thụ cộng hưởng	
511	nguyên tử	Phổ lý thuyết	Phổ nghiệm	Kieu Carbon		
1	14	14,6	13,7	CH ₃	+	
2	13	40,3	37,4	CH ₂	-	
3			109,7	СН	+	
4			111,6	СН	+	
5	1. 3. 4. 5. 6. 8	8 121,1; 112,8; 126,1; 110,2; 124,7; 126,0	120,7	СН	+	
6	9 - 9 9 - 9 - 9 -		123,2	СН		
7			125,7	СН		
8			128,5	СН		
9			111,4	C bậc bốn		
10			121,5	C bậc bốn		
11	2. 7. 9. 10. 11. 12	124,4; 122,5; 103,3;	124,2	C bậc bốn		
12	,,,,,,,,,	128,4; 151,8; 154,2	124,4	C bậc bốn		
13			138,0	C bậc bốn		
14			140,9	C bậc bốn		
15	15	149,4	143,8	CH, CH=N	+	
16	16	157,9	177,0	C bậc bốn, C-S		
Phụ lục 39. Phổ HSQC và HMBC và kết quả phân tích của Zn(II)-BECT

Hình p39.1 Phổ HSQC đầy đủ của Zn(II)-BECT

Hình p39.2. Phổ HSQC mở rộng 7,5-9,5/105-150 (ppm) của Zn(II)-BECT

Hình p39.3. Phổ HSQC mở rộng 7,5-7,75/107-130 (ppm) của Zn(II)-BECT

Hình p39.4. Phổ HSQC mở rộng 7,55-7,70/107-115 (ppm) của Zn(II)-BECT

Hình p39.5. Phổ HSQC mở rộng 7,5-7,66/125-130 (ppm) của Zn(II)-BECT

Hình p39.6. Phổ HSQC mở rộng 7,54-7,70/145-147 (ppm) của Zn(II)-BECT

Zn-Thiosemicarbazone-DMSO-HSQC

Hình p39.7. Phổ HSQC mở rộng 9,60-9,85/123-130 (ppm) của Zn(II)-BECT

Hình p39.8. Phổ HSQC mở rộng 7,90-8,80/119-132 (ppm) của Zn(II)-BECT

Hình p39.9. Phổ HSQC mở rộng 1,0-5,0/10-50 (ppm) của Zn(II)-BECT

Hình p39.10. Phổ HMBC đầy đủ của Zn(II)-BECT

Hình p39.11. Phổ HMBC mở rộng 5,0-10,0/100-155 (ppm) của Zn(II)-BECT

Zn-Thiosemicarbazone-DMSO-HMBC

Hình p39.12. Phổ HMBC mở rộng 4,0-4,7/135-144 (ppm) của Zn(II)-BECT

Hình p39.13. Phổ HMBC mở rộng 7,2-9,0/107-114 (ppm) của Zn(II)-BECT

Zn-Thiosemicarbazone-DMSO-HMBC

Hình p39.14. Phổ HMBC mở rộng 7,4-7,9/109-113 (ppm) của Zn(II)-BECT

Hình p39.15. Phổ HMBC mở rộng 7,5-10/118-133 (ppm) của Zn(II)-BECT

Zn-Thiosemicarbazone-DMSO-HMBC

Hình p39.16. Phổ HMBC mở rộng 7,5-8,8/119-129 (ppm) của Zn(II)-BECT

Hình p39.17. Phổ HMBC mở rộng 7,50-7,80/119-127 (ppm) của Zn(II)-BECT

Hình p39.18. Phổ HMBC mở rộng 7,5-8,80/136-147 (ppm) của Zn(II)-BECT

Hình p39.19. Phổ HMBC mở rộng 1,0-4,5/5,0-60 (ppm) của Zn(II)-BECT

Vị trí các	Lý thuyết		Đặc tính	HSQC		HMBC	
nguyên tử	δн, (ppm)	δc, (ppm)	mũi	δ н, (ppm), <i>J</i> , (H z)	δc, (ppm)	$H \rightarrow C$	
1	8,69	121,1	СН	8,65; s; 1H	120,7	C ₈ , C ₂ , C ₃ , C ₁₁ , C ₁₂	
2	-	124,4	C bậc bốn	-	124,2	-	
3	7,65	112,8	СН	7,67; m; 1H	128,5	C_2 , C_4 , C_{15}	
4	7,79	126,1	СН	7,96; d; J = 8,5; 1H	125,7	C ₃ , C ₁₁ C ₁₂	
5	7,36	110,2	СН	7,58; m; 1H	109,7	C_6, C_9, C_7	
6	7,42	124,7	СН	7,60; m; 1H	111,6	C_7 , C_5 , C_{10}	
7	-	122,5	C bậc bốn	bậc bốn -			
8	8,05	126,0	СН	8,45; s; 1H	123,2	C_9, C_7, C_{11}	
9	-	103,3	C bậc bốn	-	111,4	-	
10	-	128,4	C bậc bốn	-	124,4	-	
11	-	151,8	C bậc bốn	-	138,8	-	
12	-	154,2	C bậc bốn	-	140,9	-	
13	4,53	40,3	CH ₂	4,44; q; J = 6,9 Hz; 2H	37,4	C_{14}, C_{10}, C_{12}	
14	1,29	14,6	CH ₃	1,30; t; 7,0 Hz; 3H	13,7	C ₁₃	
15	8,49	149,4	CH=N	8,23; s	143,8	C_1, C_2, C_4, C_3	
16	-	157,9	C bậc bốn	-	177,0	-	
17	9,14	-	NH ₂	7,99; s; 1H	-	C ₁₆	
17	9,14	-	NH ₂	8,23; s; 1H	_	C ₁₆	

Bảng p39. Tổng hợp kết quả phổ HSQC và HMBC của phức Zn(II)-BECT

Phụ lục 40. Phổ HR-MS của Zn(II)-BECT

Hình 40. Phổ HR-MS của Zn(II)-BECT

Phụ lục 41. Kết quả khảo sát công thức phức chất Cd(II)/Ni(II)-BEPT

Quy trình thực hiện (hình 2.17)

Phần 1. Khảo sát thăm dò sự tạo thành phức

Tiến hành thăm dò phản ứng tạo phức của ion kim loại Ni²⁺ và Cd²⁺ với ligand (BEPT) bằng cách cho cùng thể tích (10ml) và nồng độ cả hai bằng nhau (10ppm), ligand được hòa tan trong DMSO/H₂O (80/20). Theo dõi sự tạo thành phức thông qua màu sắc của hệ phản ứng.

Hình p41.1. Màu của phức vẫn giữ sau 120 phút

Phần 2. Khảo sát λ_{max}

Bảng p41.1. Số liệu thực nghiệm khảo sát bước sóng BEPT và phức tương ứng

Bình số	1, blank	2	3				
Chuẩn Cd ²⁺ /Ni ²⁺ 50ppm (mL)	0	3	5				
KNO ₃ 0,1M (mL)	2	2	2				
рН	9 (KOH 0,1M)						
BEPT 50ppm (mL)		10					
Định mức đến vạch 25mL bằng dung dịch DMSO/H ₂ O. Lắc đều, để yên 10 phút sau đó đem đi quét bước sóng từ 200 – 600 nm							

Hình p41.2. Khảo sát bước sóng; a) Phức Ni(II)-BEPT; b) Phức Cd(II)-BEPT

Phần 3. Khảo sát pH

Bảng n41.2 . Sơ	ิ์ว liêu	thurc	nohiêm	khảo	sát	nН	_C น้อ	REPT
Dang p=1.2. De	νuęu	тųс	ngniệm	книо	sui	$p\mathbf{n}$	сии	

Bình số	1, blank	2	3				
Chuẩn Cd ²⁺ /Ni ²⁺ 50ppm (mL)	0	3	5				
KNO ₃ 0,1M (mL)	2 2 2						
рН	6 -11 (HCl/KOH 0,1M)						
BEPT 50ppm (mL)		10					
Định mức đến vạch 25mL bằng dung dịch DMSO/H2O. Lắc đều, để yên 10 phút							
sau đó đem đi quét bước sóng từ 200 – 600 nm							

Hình p41.3. Khảo sát thăm dò pH của phức Ni(II)-BEPT

Hình p41.4. Khảo sát pH của phức Cd(II)-BEPT (a) và Ni(II)-BEPT (b)

pН	6	7	8	9	10	11
A- 3ml	0,34199	0,40568	0,48943	0,50595	0,50588	0,50523
A-5ml	0,41339	0,41039	0,587314	0,60714	0,60706	0,60628

Bảng p41.3. Kết quả khảo sát pH của phức Cd(II)-BEPT

Bảng p41.4. Kết quả khảo sát pH của phức Ni(II)-BEPT

pН	6 7		8	8 9		11
A- 3ml	0,57093	0,59836	0,62728	0,63089	0,63078	0,63047
A-5ml	0,67138	0,72035	0,75273	0,75708	0,75706	0,75693

Phần 4. Khảo sát lực ion

Bảng p41.5. Số liệu thực nghiệm khảo sát lực ion của BEPT

Bình số	1, blank	2	3				
Chuẩn Cd ²⁺ /Ni ²⁺ 50ppm (mL)	0 3 5						
KNO ₃ 1M (mL)	0,001-0,50M						
рН	9 (KOH 0,1M)						
BEPT 50ppm (mL)		10					
Định mức đến vạch 25mL bằng dung dịch DMSO/H ₂ O. Lắc đều, để yên 10 phút sau đó đem đị quét bước sóng từ 200 – 600 nm							

Hình p41.5. Khảo sát lực ion của Ni(II)-BEPT

Bảng p41.6. Kết quả khảo sát lực ion của phức Cd(II)-BEPT và Ni(II)-BEPT

STT	Nồng độ	A, Cd(II)	-BEPT	A, Ni(II)-BEPT		
	KNO ₃ (M)	3mL	5mL	3mL	5mL	
1	0,001	0,34236	0,58731	0,59439	0,60439	
2	0,005	0,46516	0,60628	0,62154	0,71154	

3	0,010	0,506025	0,60747	0,63019	0,75839
4	0,025	0,48365	0,55848	0,58440	0,71440
5	0,050	0,43362	0,50314	0,52182	0,63496
6	0,075	0,35854	0,45905	0,47555	0,61555
7	0,100	0,35762	0,42352	0,44408	0,60407
8	0,250	0,35879	0,41033	0,43368	0,59368
9	0,50	0,34236	0,39568	0,41217	0,57754

Phần 5. Khảo sát nồng độ BEPT

Bảng p41.7. Số liệu thực nghiệm khảo sát nồng độ BEPT

	Bình	1, blank	1	2	3	4	5	6	7	8	9	10	11	12	13
Ch 50p	uẩn Cd ²⁺ /Ni ²⁺ opm(mL)	0		3mL (thực hiện tương tự với 5mL)											
KN (m)	103 0,1M L)		2												
pН							9 (I	KOF	H 0,1	M)					
BE (m)	PT 50ppm L)	5 3 4 5 6 7 8 9 10 11 12 13 14 15													
	Đinh mức đến vach 25mL bằng dụng dịch DMSO/H ₂ O. Lắc đều, để yên 10														

phút sau đó quét bước sóng ở bước sóng tối ưu.

Hình p41.6. Khảo sát nồng độ thuốc thử cho phức Ni(II)-BEPT

	,	``			
Dång n/11 (Vôt au å	khảo cát nôn	~ オネ DEDT	' ana nhina	CJ(H)/NG(H) DEDT
Dally D41.0	5. <i>Aei aua</i>	knao sai nons	2 u 0 D E F I	aua Dhuc	$Cu(\Pi)/IV((\Pi)) - DEFI$
	1			1 1	

STT	BEPT, ppm	Cd(II)-	BEPT	Ni(II)-BEPT		
		A, 3mL (6ppm)	A, 5mL (10ppm)	A, 3mL (6ppm)	A, 5mL (10ppm)	
1	6	0,21570	0,25884	0,37981	0,459662	

2	8	0,31253	0,37504	0,409652	0,50880
3	10	0,36610	0,43932	0,470558	0,57091
4	12	0,39818	0,47781	0,518303	0,62703
5	14	0,43195	0,51834	0,577033	0,68665
6	16	0,44993	0,53991	0,607744	0,70844
7	18	0,45586	0,54703	0,629775	0,75294
8	20	0,50656	0,60688	0,63249	0,75788
9	22	0,50701	0,60801	0,638508	0,75787
10	24	0,50641	0,60999	0,63799	0,75888
11	26	0,50764	0,60775	0,63779	0,75799
12	28	0,50832	0,60691	0,63807	0,75793
13	30	0,50836	0,60689	0,63911	0,75799

Phần 6. Khảo sát thời gian bền của phức

Tiến hành phản ứng tạo phức của ion kim loại Cd^{2+}/Ni^{2+} với BEPT theo các thông số tối ưu trên và lượng chất tương tự như trên. Đo độ hấp thụ quang ở bước sóng λ_{max} sau khoảng thời gian: 0, 10, ..., 150 phút. Dựa vào kết quả thực nghiệm vẽ đồ thị biểu diễn sự phụ thuộc của độ hấp thụ quang vào thời gian.

Bảng p41.9. Số liệu thực nghiệm khảo sát thời gian bền màu của phức Cd(II)-BEPT và Ni(II)-BEPT

Bình số	1, blank	2	3		
Chuẩn Cd ²⁺ /Ni ²⁺ 50ppm (mL)	0 3 5				
KNO ₃ 0,1M (mL)		2			
pH 9 (KOH 0,1M)					
Thời gian (phút) 5 - 90					
BEPT 50ppm (mL) 10 10 10					
Định mức đến vạch 25mL bằng dung dịch DMSO/H ₂ O. Lắc đều, để yên 10 phút sau đó đem đi quét bước sóng từ 200 – 600 nm					

Hình p41.7. Khảo sát thời gian bền màu; a) BEPT; b) Ni(II)-BEPT; c) Cd(II)-BEPT

	,		,		
Rảng n41 10	Kết anả l	zhảo sát thời	oian hồn	พลุ่น เน่น	Cd(II)/Ni(II)-RFPT
Dang P 11.10	nei qua i	mao sui moi	Sum ben	man cua	

		Cd(II)-BEPT		Ni(II)-BEPT		
STT	t (phút)	A, 3mL	A, 5mL	A, 3mL	A, 5mL	
		(6ppm)	(10ppm)	(6ppm)	(10ppm)	
1	5	0,45204	0,51179	0,598037	0,698237	
2	10	0,50482	0,55985	0,613875	0,73665	
3	15	0,50659	0,60590	0,638572	0,766286	
4	20	0,50691	0,60607	0,638581	0,766098	
5	25	0,50699	0,60759	0,638479	0,766174	
6	30	0,50791	0,60909	0,630399	0,763872	
7	35	0,50860	0,60920	0,637993	0,765209	
8	40	0,50761	0,60865	0,638056	0,758767	
9	45	0,50959	0,60911	0,638274	0,766803	
10	50	0,50958	0,60899	0,637293	0,765711	
11	55	0,50864	0,60947	0,638296	0,765148	
12	60	0,50659	0,60911	0,637906	0,765287	
13	65	0,50450	0,58024	0,637898	0,764882	
14	70	0,50390	0,54709	0,633092	0,758021	
15	80	0,50219	0,54910	0,606352	0,733028	
16	90	0,50025	0,53998	0,563675	0,689056	

Phần 7. Khảo sát công thức phức

Phương pháp Job

BEPT	V mL, 50ppm;
Ion kim loại	V' mL, 50ppm;
λ_{max}	Kết quả khảo sát;
рН	9 (KOH 0,1M);
Lực ion	KNO ₃ 0,1M;
Hệ dung môi	DMSO/H ₂ O = $80/20$ (V).

Hình p41.8. Khảo sát phương pháp Job phức Ni(II)-BEPT

Bảng p41.11. Kết quả khảo sát công thức phức Cd(II)-BEPT và Ni(II)-BEPT theo phương pháp Job

STT	Thể tích BEPT (mL)	Thể tích Cd ²⁺ /Ni ²⁺ (mL)	Tỷ lệ mol M/(M+L)	A, Cd(II)- BEPT	A, Ni(II)- BEPT
1	20	0	0	0,098371	0,065836
2	18	2	0,1	0,301125	0,255421
3	16	4	0,2	0,560863	0,614767
4	14	6	0,3	0,623447	0,874032
5	12	8	0,4	0,541668	0,584735
6	10	10	0,5	0,464515	0,470868
7	8	12	0,6	0,372896	0,322764
8	6	14	0,7	0,209671	0,254077
9	4	16	0,8	0,129455	0,136798
10	2	18	0,9	0,059942	0,07545
11	0	20	1,0	0,000326	0,000211

Phương pháp tỷ lệ mol

BEPT	V mL, 50ppm;
Ion kim loại	5mL, 50ppm;
λ_{max}	Kết quả khảo sát;
pН	KOH 0,1M;
Lực ion	KNO ₃ 0,1M;
Hệ dung môi	$DMSO/H_2O = 80/20$ (V).

Hình p41.9. Khảo sát phương pháp tỷ lệ mol phức Ni(II)-BEPT

Bång p41.12. <i>K</i>	ết quả khảo sát công thức phức Cd(II)-BEPT và Ni(II)-BEPT
	theo phương pháp tỷ lệ mol

STT	Thể tích BEPT, mL	Tỷ lệ mol L/M	A, Cd(II)- BEPT	A, Ni(II)- BEPT
1	0,25	0,05	0,000427	0,000583
2	0,75	0,15	0,001862	0,059228
3	1,25	0,25	0,007323	0,105936
4	2,0	0,4	0,095622	0,177802
5	2,5	0,5	0,119801	0,248056
6	5,0	1,0	0,189304	0,415077
7	7,5	1,5	0,276452	0,581831
8	10	2,0	0,558926	0,756203
9	12,5	2,5	0,557931	0,755887
10	15	3,0	0,557108	0,756115
11	17,5	3,5	0,558353	0,755904

Phụ lục 42. Kết quả khảo sát công thức phức chất Cu(II)/Zn(II)-BECT

Quy trình thực hiện (hình 2.17)

Phần 1. Khảo sát thăm dò sự tạo thành phức

Tiến hành thăm dò phản ứng tạo phức của ion kim loại Cu^{2+} và Zn^{2+} với BECT bằng cách cho cùng thể tích (10ml) và nồng độ cả hai bằng nhau (10ppm), ligand được hòa tan trong DMF/H₂O (80/20). Theo dõi sự tạo thành phức thông qua màu sắc của hệ phản ứng.

Hình p42.1. Màu của phức vẫn giữ sau 120 phút

Phần 2. Khảo sát λ_{max}

Bảng p42.1. Số liệu thực nghiệm khảo sát bước sóng BECT và phức tương ứng

Bình số	1, blank	2	3			
Chuẩn Cu ²⁺ /Zn ²⁺ 50ppm (mL)	0 2/1,5 3/2,5					
KNO ₃ 0,1M (mL)	2,5 2,5 2,5					
6H 8 (KOH 0,1M)						
BECT 50ppm (mL)	8 8 8					
Định mức đến vạch 25mL bằng dung dịch DMF/H2O. Lắc đều, để yên 10 phút sau đó đem đi quét bước sóng từ 200 – 600 nm						

Hình p42.2. Khảo sát bước sóng; a) Phức Cu(II)-BECT; b) Phức Zn(II)-BECT

Phần 3. Khảo sát pH

	Bång p42.2.	Số liệu	thực	nghiệm	khảo	sát	pН	сủа	BECT
--	-------------	---------	------	--------	------	-----	----	-----	------

1, blank 2 3					
0	2/1,5	3/2,5			
2,5	2,5				
6 -11 (KOH 0,1M)					
8 8 8					
	1, blank 0 2,5 6 8	1, blank 2 0 2/1,5 2,5 2,5 6 -11 (KOH 0,1) 8 8			

Định mức đến vạch 25mL bằng dung dịch DMF/H₂O. Lắc đều, để yên 10 phút sau đó đem đi quét bước sóng từ 200 – 600 nm

Hình p42.3. Khảo sát pH của phức Cu(II)-BECT (a) và Zn(II)-BECT (b)

Dalig p42.5. Ket qua knuo sai pri cua pruc $Cu(1)$ -BE	Bång p42.3.	Kết quả	khảo	sát pH	của phức	Cu(II)-BEC
---	-------------	---------	------	--------	----------	------------

pH	6	7	8	9	10	11
A- 2ml	0,51113	0,65318	0,72109	0,70712	0,70671	0,68762
A-3ml	0,58673	0,67901	0,841134	0,78892	0,76562	0,68902

pН	6	7	8	9	10	11
A- 1,5ml	0,39574	0,45631	0,50223	0,49695	0,49142	0,47812
A-2,5ml	0,51309	0,59823	0,61827	0,61224	0,60918	0,59811

Bảng p42.4. Kết quả khảo sát pH của phức Zn(II)-BECT

Phần 4. Khảo sát lực ion

Bảng p42.5. Số liệu thực nghiệm khảo sát lực ion của BECT

Bình số	1, blank 2 3					
Chuẩn Cu ²⁺ /Zn ²⁺ 50ppm (mL)	0 2/1,5 3/2,5					
KNO ₃ 1M (mL)	0,001-0,250M					
рН	8 (KOH 0,1M)					
BECT 50ppm (mL)	8	8	8			
Định mức đến vạch 25mL bằng dung dịch DMF/H ₂ O. Lắc đều, để yên 10 phút sau đó đem đi quét bước sóng từ 200 – 600 nm						

Bảng p42.6. Kết quả khảo sát lực ion của phức Cu(II)-BECT

STT	Nồng độ KNO2 (M)	A, Cu(II	I)-BECT	A, Zn(II)-BECT		
	KINU3 (IVI)	4ppm	6ppm	3ppm	5ppm	
1	0,001	0,563383	0,652869	0,365132	0,460827	
2	0,005	0,680533	0,760019	0,482282	0,567977	
3	0,010	0,721383	0,841869	0,502313	0,619827	
4	0,025	0,703393	0,762879	0,505142	0,570837	
5	0,050	0,650813	0,663439	0,452562	0,471397	
6	0,075	0,574543	0,664029	0,376292	0,471987	
7	0,100	0,573073	0,662549	0,374822	0,470507	
8	0,250	0,572673	0,662159	0,374422	0,470117	
9	0,500	0,561163	0,626019	0,362912	0,433977	

Phần 5. Khảo sát nồng độ BECT

0	-	•		-	U	-			U	-				
Bình	1, blank	1	2	3	4	5	6	7	8	9	10	11	12	13
Chuẩn Cu ²⁺ /Zn ²⁺ 50ppm(mL)	0	0 2/1,5mL (thực hiện tương tự với 3/2,5mL)												
KNO ₃ 0,1M (mL)							2	,5						
pН						8 (]	KOF	H 0,1	M)					
BECT 50ppm (mL)	5 3 4 5 6 7 8 9 10 11 12 13 14 15													
Định mức đến vạch 25mL bằng dung dịch DMF/H ₂ O. Lắc đều, để yên 10 phút sau đó quét bước sóng ở bước sóng tối ưu.														

Bảng p42.7. Số liệu thực nghiệm khảo sát nồng độ BECT

Bảng p42.8. Kết quả khảo sát nồng độ BECT qua phức Cd(II)/Ni(II)-BECT

		Cu(II)-	BECT	Zn(II)	BECT
STT	BECT, mL	A, 2mL	A, 3mL	A, 1,5mL	A, 2,5mL
		(4ppm)	(6ppm)	(3ppm)	(5ppm)
1	3	0,267935	0,378675	0,302834	0,432464
2	4	0,398735	0,539866	0,356864	0,487742
3	5	0,518265	0,655746	0,408264	0,518345
4	6	0,597255	0,77554	0,445627	0,578274
5	7	0,677256	0,818434	0,500234	0,608234
6	8	0,723245	0,842645	0,50183	0,621245
7	9	0,724835	0,849876	0,501084	0,620234
8	10	0,725032	0,845245	0,51009	0,630001
9	11	0,722243	0,847656	0,520873	0,638922
10	12	0,721243	0,840008	0,511283	0,638734
11	13	0,726278	0,84576	0,507243	0,639847

Phần 6. Khảo sát thời gian bền của phức

Tiến hành phản ứng tạo phức của ion kim loại Cu^{2+}/Zn^{2+} với BECT theo các thông số tối ưu trên và lượng chất tương tự như trên. Đo độ hấp thụ quang ở bước

sóng λ_{max} sau khoảng thời gian: 0, 10, ..., 150 phút. Dựa vào kết quả thực nghiệm vẽ đồ thị biểu diễn sự phụ thuộc của độ hấp thụ quang vào thời gian.

Bảng p42.9. Số liệu thực nghiệm khảo sát thời gian bền màu của phức Cu(II)-BECT và Zn(II)-BECT

Bình số	1, blank	2	3		
Chuẩn Cu ²⁺ /Zn ²⁺ 50ppm (mL)	0 2/1,5 3/2,5				
KNO ₃ 0,1M (mL)	2,5				
рН	8 (KOH 0,1M)				
Thời gian (phút)		5 - 90			
BECT 50ppm (mL)	8 8 8				
Định mức đến vạch 25mL bằng dung dịch DMF/H ₂ O. Lắc đều, để yên 10 sau đó đem đi quét bước sóng từ 200 – 600 nm					

		Cu(II)-BECT		Zn(II))-BECT
STT	t (phút)	A, 2mL	A, 3mL	A, 1,5mL	A, 2,5mL
		(4ppm)	(6ppm)	(3ppm)	(5ppm)
1	5	0,68786	0,78775	0,46274	0,55553
2	10	0,71872	0,83807	0,47545	0,58191
3	15	0,72152	0,84126	0,50808	0,62347
4	20	0,72106	0,84257	0,50743	0,63235
5	25	0,72609	0,84500	0,50645	0,63012
6	30	0,72963	0,8500	0,51007	0,63196
7	35	0,72985	0,84990	0,51064	0,63040
8	40	0,72898	0,84965	0,50164	0,62642
9	45	0,72889	0,84798	0,48713	0,60264
10	50	0,724662	0,84813	0,46843	0,58845
11	55	0,71382	0,83753	0,45872	0,56104
12	60	0,71718	0,83872	0,42688	0,54532

Bång p42.10. Kết quả khảo sát thời gian bền màu Cu(II)-BECT và Zn(II)-BECT

Phần 7. Khảo sát công thức phức

Phương pháp Job

BECT	V mL, 50ppm;
Ion kim loại	V' mL, 50ppm;
λ_{max}	Kết quả khảo sát;
рН	8 (KOH 0,1M);
Lực ion	KNO ₃ 0,01M;
Hệ dung môi	$DMF/H_2O = 80/20$ (V).

Hình p42.4. Khảo sát phương pháp Job phức Cu(II)-BECT

Hình p42.5. Khảo sát phương pháp Job phức Zn(II)-BECT

Bảng p42.11. Kết quả khảo sát công thức phức Cu(II)-BEPT và Zn(II)-BECT theo phương pháp Job

STT	Thể tích BECT (mL)	Thể tích Cu ²⁺ /Zn ²⁺ (mL)	Tỷ lệ mol M/(M+L)	A, Cu(II)- BECT	A, Zn(II)- BECT
1	20	0	0	0,140132	0,053863
2	18	2	0,1	0,501235	0,376411
3	16	4	0,2	0,732413	0,509754

4	14	6	0,3	0,843641	0,780987
5	12	8	0,4	0,698068	0,612448
6	10	10	0,5	0,512607	0,507413
7	8	12	0,6	0,40997	0,401335
8	6	14	0,7	0,380863	0,209731
9	4	16	0,8	0,246554	0,123207
10	2	18	0,9	0,121209	0,097645
11	0	20	1,0	0,007543	0,008642

Phương pháp tỷ lệ mol

BECT	VmL, 50ppm;
Ion kim loại	5mL, 50ppm;
λ_{max}	Kết quả khảo sát;
рН	8 (KOH 0,1M);
Lực ion	KNO ₃ 0,01M;
Hệ dung môi	$DMF/H_2O = 80/20 (V)$

Hình p42.6. Khảo sát phương pháp tỷ lệ mol phức Cu(II)-BECT

Hình p42.7. Khảo sát phương pháp tỷ lệ mol phức Zn(II)-BECT
STT	Thể tích BECT, mL	Tỷ lệ mol L/M	A, Cu(II)- BECT	A, Zn(II)- BECT
1	0,25	0,05	0,01223	0,079753
2	0,75	0,15	0,045352	0,095464
3	1,25	0,25	0,099273	0,100213
4	2,0	0,4	0,110293	0,156087
5	2,5	0,5	0,20103	0,210871
6	5,0	1,0	0,30214	0,30986
7	7,5	1,5	0,509245	0,412432
8	10	2,0	0,659242	0,589608
9	12,5	2,5	0,640663	0,573325
10	15	3,0	0,639245	0,580778
11	17,5	3,5	0,640425	0,579864

Bảng p42.12. Kết quả khảo sát công thức phức Cu(II)-BECT và Zn(II)-BECT theo phương pháp tỷ lệ mol

Phụ lục 43. Kết quả tính toán hằng số bền

Hình p43.1. Hiển thị các kết quả tính phức của Cd(II)-BEPT

Hình p43.2. Hiển thị các kết quả tính phức của Ni(II)-BEPT

Hình p43.3. Hiển thị các kết quả tính phức của Cu(II)-BECT

Hình p43.4. Hiển thị các kết quả tính phức của Zn(II)-BECT

Bảng p43. So sánh giá trị logβ₁₂ thực nghiệm của một số phức với kết quả các phức từ nghiên cứu trong luận án

STT	Ligand	R4	Kim loại	logβ ₁₂	Tài liệu
1	tsc_fc2		Ni(II)	8,980	[77]
2	tsc_fc3	HO	Ni(II)	11,441	[27]
3	tsc_fc15	ОН	Ni(II)	15,700	[50]
4	tsc_fc42	ON	Ni(II)	14,370	[127]
5	tsc_fc56		Ni(II)	14,304	[128]
6	BEPT	Br	Ni(II)	11,140	Luận án
7	tsc_fc25	o O	Cd(II)	5,510	[152]
8	tsc_fc56		Cd(II)	11,384	[128]
9	tsc_fc58		Cd(II)	17,550	[131]
10	BEPT	Br	Cd(II)	11,890	Luận án

11	tsc_fc3	HO	Cu(II)	10,773	[115]
12	tsc_fc26	ZT ZT	Cu(II)	8,5773	[21]
13	tsc_fc15		Cu(II)	17,050	[50]
14	tsc_fc42	HO	Cu(II)	15,310	[127]
15	tsc_fc56	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cu(II)	14,853	[128]
16	BECT	Br	Cu(II)	11,730	Luận án
17	tsc_fc2		Zn(II)	8,890	[107]
18	tsc_fc42	ОН	Zn(II)	12,700	[127]
19	tsc_fc56		Zn(II)	12,591	[128]
20	BECT	Br	Zn(II)	10,390	Luận án