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Abstract
The results of using machine learning via 

genetic programming (GP) to automatically 
generate novel effective length factor 

formula in accordance with AISC standard 
are presented in this article. The data points 

obtained from applying the numerical method 
equation solving for the transcendental 

equation for the effective length of the braced 
frame were fed into the machine learning 

algorithm. The the formula was compared to 
the AISC standard's numerical solution method 

for the equation. As a result, the error in the 
formula is negligible. Therefore, for greater 

convenience in practice, the the formula can 
completely replace the AISC standard's chart.
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1. Introduction
In stability analysis, the AISC standard [1] requires determining the effective 

length for columns in frames. The AISC standard included the concept of effective 
length factor for frame column design in 1961, and it is still used today.

When design for multi-storey frame columns, the effective length factor 
(K) greatly affects the critical buckling load. Intuitively, this concept is merely a 
mathematical method to alleviate the problem of calculating the critical stress 
for a column whose two ends are connected to the frame. The bending moment 
in the column due to the beam's gravity load does not significantly affect the 
overall stability of the frame in the elastic range, and only the axial force will have 
significant effect.

The AISC standard only has one method for calculating the effective length, 
which is depicted in Figure 2 [1]. The chart makes it possible to obtain the elastic 
solution of the K-factor without performing an actual stability analysis (which is 
rather complex). However, if engineers use software such as spreadsheets to 
automate calculations, charts are no longer valid. As a result, an analytic formula 
is required to facilitate practical application.

Many engineering problems require solutions to be derived from 
transcendental equations, experimental data, or numerical simulation data. 
But most experimental formulae are frequently derived from human experience 
and performed manually. This has the disadvantage of not providing an optimal 
formula and a good fit to the data.

A great difficulty is to find the analytic solution of a general equation that is 
impossible. Even polynomial equations with degrees greater than 5 do not have 
algebraic solutions (Abel–Ruffini theorem of 1813 [2]). Richardson's theorem [3], 
introduced in 1968, states that there is no general analytic solution  for algebraic 
or transcendental equations.

As a result, using machine learning to automatically generate approximate 
formulas from data collected by numerical or experimental methods is a 
feasible and effective method. The machine learning method based on genetic 
programming (GP, John Koza 1990[4]) is popular among the methods to find 
the formula, also known as symbolic regression (SR)[4]. It has been used in 
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Figure 1: Models for the K-factor of frame columns
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a variety of engineering disciplines, producing results that 
can be considered "inventions" that outperform humans[4]. 
However, the use of machine learning methods to create 
design formulas based on empirical data is still limited in the 
construction industry.

This paper presents a genetic programming-based 
machine learning method for determining the effective length 
of a braced frame column using data from numerical analysis. 
From there, a the formula is convenient in practice with high 
accuracy is proposed.

In published papers, the authors proposed the K-factor 
formula of frame columns that relate to the AISC’s alignment 
chart method as following: Newmark 1949 [10]; Julian and 
Lawrence, 1959 [11]; Kavanagh, 1962 [12]; Johnston, 1976 
[13]; LeMessurier, 1977 [14,15,16]; Lui, 1992 [17] ; Duan, 
King, Chen, 1993[18]; White and Hajjar, 1997 [19,20].  The 
Standards of steel structure involve formulas for K-factors 
including: European (prestandard-1992) [21], German, 2008 
[22], France, 1966 [23], Russia, 2011 [24].

The K-factor formulas for frame columns in the above 
material do not coincide with the formula (10) found by GP 
in the article. The interpolation method is used in all of the 
K-factor formulas above. Therefore, they differ from the 
method described in the article in that knowing the form of 
the formula in advance (based on the builder's experience 
and knowledge) is required before identifying the formula's 
coefficients. In this paper, on the other hand machine learning 
method does not know the formula form in advance, it will 
automatically determine the formula form and coefficients 
(symbolic regression).

2. Effective length factor based on theoretical of 
stability 

Frames are classified as braced or unbraced in AISC 
structural steel design standards[1]. When the stability of the 
structure is generally provided by walls, braces, or struts that 
are designed to carry all lateral forces in that direction, the 
column may be braced in that direction. When the resistance 
to lateral loads is caused by the bending of the columns, 
the column is not fully braced in that plane. There are no 
fully braced frames in practice, and there is no apparent 
distinction between braced and unbraced frames. 

In the AISC [1] steel structure design standard, the 
interaction between a compression member and an adjacent 
member or a part of the structure is modeled as shown below.

The elastic stiffness of joints A and B is given by[1]
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In which, the ∑ means the total stiffness of all elements 

connected to the joint on the instability plane of the column 
being considered. Ic is the moment of inertia, Lc is the length 
between the supports of the column. Ig is the moment of 
inertia, Lg is the length between the beam supports or other 
supporting members. Ic and Ig are in axis perpendicular to the 
buckling plane.

Galambos[5], 1968 solved this problem and gave the 
following transcendental equation to determine the effective 
length of the column in the frame.

Unbraced frame[1]:
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3. Method of calculating effective length factor 
according to AISC

The AISC standard [1] relies on (3a) and (3b) to provide 
charts for convenient apply in practice. However, this leads to 
difficulties for applying in spreadsheet software

Where GA, GB is the relative stiffness ratio between the 
column and the beam at the ends A and B as shown in Figure 
2 and is taken from (1) and (2).
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(a) Braced frame                                    (b) Unbraced frame

Figure 2: Design chart for determining the effective length of the column in the frame
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4. Application of Machine learning based on genetic 
programming to solve the problem of finding K-factor 
formulas for brace frames from numerical analysis data 
4.1. Overview of machine learning by genetic programming

Machine learning has long been used in research [8], 
but it has exploded in popularity in recent years, thanks to 
researchers Yoshua Bengio, Geoffrey Hinton, Yann LeCun 
who won the Turing Award (Nobel Prize in IT) in 2018 [9] for 
developing a deep learning method. Deep learning, on the 
other hand, does not allow for the solution of the symbolic 
regression problem because it relies on an artificial neural 
network (ANN) and the learning process is just modifying 
the network's weights. As a result, in the domain of symbolic 
regression, the genetic programming method remains the 
most advantageous method.

In 1975, John Holland [6] published a genetic algorithm 
(GA) that approximates solving the combinatorial global 
optimization problem. This is an NP-hard problem [7], which 
is the most difficult class of problems for which there is 
currently no general solution for all problem instances. GA 
is used in a variety of fields, including machine learning. 
However, it does not allow for the solution of the symbolic 
regression problem. The symbolic regression problem could 
not be solved until the advent of genetic programming (in 
1988, John Koza [4]). Genetic programming is based on 
genetic algorithms, but instead of data encoded in the form 
of string genome, it works on tree data structures genome.
4.2. Application of machine learning algorithms to learn the 
K-factor formula

The application of GP to learn the K-factor formula is 
described in this section as following.

Let
●● KN:{GA,GB}→K, K∈ℛ+ where KN is K-factor value from 

the numerical solution to equation (3b). 
●● P is a sample (data point) for learning, 
●● P={GA,GB,KN(GA,GB)}, GA,GB ∈ ℛ+.
●● T is the data set (data table) which is the set of samples 

T={Pi}, i=1,…,n; n – number of samples.
●● TL is a data set for learning TL ={Pj} ⊂ T , j=1,…,l, l- the 

number of samples to be learned.
●● TT is the data set for evaluation (testing) TT ={Pk} ⊂ T, 

k=1,…,t, t- the number of samples to be tested. 
Two sets TL and TT satisfy the following constraint: 
T= TL ∪ TT, TL ∩ TT = ∅, from T=TL ∪ TT → n=l+t. Typically, 

there is 80% learning data and 20% testing data i.e. l=0.8n 
and t=0.2n.

●● Kf
i,j:{GA,GB}→K, K∈ℛ+; where Kf

i,j  is i-th individual 
K-factor formula of j-th generation. 

●● KGP:{TL,B,Pr}→Kf
best, where KGP is a Genetic Programming 

learner that outputs as an explicit expression of K-factor 
formula; B – set of basic functions; Pr – set of parameters 
of a GP learner.

●● Kf
best:{GA,GB}→K, K∈ℛ+, where Kf

best is the best outputting 
K-factor formula, 

●● ϵk
i,j is the error in percentage between Ki,j

f (Gk
A,Gk

B) and 
KN(Gk

A,Gk
B), 

ϵk
i,j= 100×( Ki,j

f (Gk
A,Gk

B) - KN(Gk
A,Gk

B))/KN(Gk
A,Gk

B);	 (4)
where i=1,…,m; m- the cardinality of the set { ϵki,j}, i is i-th 

individual, j is j-th generation.
●● ϵ is a member of the set of ϵk, ϵ ∈ { ϵk }, i=1,…,m,k=1,…,N,
●● Var[ϵ] is the variance of ϵ, Var[ϵ]=E[(ϵ-µ)], where µ is 

expected value of ϵ, µ=E[ϵ], E is mean of ϵ 
●● ϵmax, ϵmin is the maximum and minimum absolute errors 

between the value calculated by the learned formula and 

		  (a)					     (b)

Figure 3 : (a) Plot of the data set obtained from the numerical method for the equation (b) for learning 
and (b) Plot of learned K-factor formula (10)

Figure 4: Graphs of maximum and average fitness values in evolution generations.

 i-th generation

Fitness value F(Ki,j
f (GA,GB)) 
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the numerical solution are given by ϵmax, ϵmin as following: 
ϵmax=max{|ϵi|} , i=1,…,m; ϵmin=min{|ϵi|} , i=1,…,m

●● ϵk
L,i,j, ϵk

T is learn and test error, i=1,…,m,k=1,…,N, k is 
k-th sample in TL.

●● ϵL,i,j, ϵT is a member of the set of { ϵk
L,i,j },{ ϵkT }.

●● ϵL
max, ϵL

min and ϵT
max, ϵT

min is the maximum and minimum 
absolute errors for learn and test sets.
From above definitions, the fitness function F is 

implemented as follows:
F(Ki,j

f (GA,GB))=(100-Var[ϵL,i,j])				    (5)
Where i is i-th individual, j is j-th generation.
Convergence condition[4]:
Max(F(Kf

i,j (GA,GB)) - F(Kf
i,j-1 (GA,GB)))→0			   (6)

The GP learning stage with fitness function F, by input 
TL,B and output KGP:{TL,B,Pr}→Kf

best; 
Kf

best =arg(i) max(F(Ki,j
f (GA,GB))).			   (7)

The GP evaluation stage is to score the learned model 
based on statistics variables: Var[ϵT], ϵT

max, ϵT
min, the lower 

the values, the higher the quality of the learned model.
4.3. Data set for training and evaluation

The data set for the machine learning algorithm to learn 
the bracing effective length formula is based on the numerical 
method of solving equations (3b). After extensive testing, it is 
clear that the function of calculated length increases rapidly 
when the stiffness GA,GB is low and slowly as the stiffness 
increases (figure 3a). As a result, the final learning data 
set contains 2500 data points with increasing distances, as 
determined by the square rule. This achieves the required 
accuracy without necessitating the use of an excessive 
number of data points to learn.

Gi+1
A= Gi

A +Δ2 
, Gi+1

B= Gi
B +Δ2, i=1..n			   (8)

Where: Δ is the basic step size Δ = 0.1, n- number of data 
points of variable GA, GB, n=50.

The data used to train machine learning is divided into 
two sets: learning data set (80%) and testing data set (20%). 
Overfitting can be avoided by dividing the data set into 
two parts. Overfitting causes the learned model to be less 
generalizable, lowering prediction accuracy. This means that 
some range the the accurary of will be high while others will 
be low, which should always be avoided when using machine 
learning.
4.4. Parameters of the genetic programming algorithm

Viewing the plot, one can see that the shape of the data 
obtained from the numerical method is a monotonically 

increasing function that is not quite rapidly increasing, as 
shown in the figure 3, indicating that exponential functions 
are unnecessary. On the other hand, because the plot is 
not acyclic, trigonometric functions are unnecessary. The 
following operators are used from there:

B={+(Plus),-(Minus),×(Times),/(Divide),
^(Power),√ (Square Root), tan-1 (Arctan)}   			  (9)
The following are the ideal parameter values for the 

problem under examination, as determined by a series of 
trials with various parameters:
Table 1: Parameters for the algorithm GP

Parameters Values
Population size 1000
Generations 200
Crossover 0.9
Mutation 0.05
Reproduction 0.2
Maximum initial level 5
Maximum operation level 6

The algorithm starts to converge with number of 
generations > 100, then the objective function value cannot 
be improved further. After a number of different runs, the best 
fitness K-factor formula of braced frame column formula was 
obtained (Fig. 3b):
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(10)

4.5. Result evaluation
The statistical parameters of the machine-learning-

discovered formula are listed in the table below:

Table 2: Statistical parameters of the learned 
formula

Parameters Values
Var[ϵT] 0.15%
ϵT

max 2 %
ϵT

min 2.83×10-7%

Figure 5: Graph of K(exact),KGP(10),KDuan (11) [18] with GA=1, GB∈ [0…50]
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According to table 2, the maximum absolute error value 
is only 2%, showing that the given formula is not overfit. The 
variance throughout the range is 0.15 %, which is a tiny error. 
The current best formula by Duan (11) [18] has a maximum 
absolute error value of 5%. A comparison of exact solutions 
obtained by numerical approach (K), machine learning 
formula (10) (KGP), and Duan (KDuan) is shown in the graph 
below:

Where, the KDuan [18] is	  

1 1 11  
5 9 5 9 10Duan

A A A B

K
G G G G

= − − −
+ + +                               (11)

5. Conclusion
The research findings demonstrate the advantages of 

using machine learning to find practical formulas based on 
data from experiments or numerical methods. It enables 
formulas with tiny errors across the entire data domain and 
differs from other methods for its automability. Furthermore, 
machine learning enables the successful learning of a wide 
variety of data types and problems./.
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