
Stability analysis of solutions to
equilibrium problems and
applications in economics

Tran Ngoc Tam
Can Tho University, Can Tho,Vietnam

Nguyen Minh Hai
Banking University of Ho Chi Minh City, Ho Chi Minh,Vietnam, and

Bantaojai Thanatporn
Valaya Alongkorn Rajabhat University under the Royal Patronage,

Pathum Thani, Thailand

Abstract
Purpose – The purpose of this paper is to study the Hölder calmness of solutions to equilibrium problems
and apply it to economics.
Design/methodology/approach – The authors obtain the Hölder calmness by using an effective
approach. More precisely, under the key assumption of strong convexity, sufficient conditions for the Hölder
continuity of solutionmaps to equilibrium problems are established.
Findings – Anew result in stability analysis for equilibrium problems and applications in economics is archived.
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1. Introduction
Many important problems such as optimization problems, variational inequality problems,
complementarity problems, Nash equilibrium problems, minimax problems, fixed-point and
coincidence-point problems and traffic network problems are considered as special cases of
an equilibrium problem (Blum and Oettli, 1994). This implies possibility of a wide
application of results in the equilibrium problem theory to several important fields,
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including economics, physics (especially, mechanics), engineering, transportation, sociology,
chemistry, biology, etc. (Kassay and Radulescu, 2018).

Existence conditions of solutions for the equilibrium problem and its generalizations are
the first and most developed topic. There are a lot of works devoted to this topic in the
literature, see e.g. Ansari et al. (2001), Castellani et al. (2010), Hai and Khanh (2007), Jafari
et al. (2017), Hai et al. (2009), Sadeqi and Alizadeh (2011) and Alleche and R�adulescu (2016),
and the references therein. The second one is stability analysis of solutions. Stability
conditions, especially the lower semicontinuity and Hölder continuity of solution maps, for
such problems have been extensively studied and received increasing attention from many
researchers so far (Bianchi and Rita, 2006; Anh and Khanh, 2008; Anh and Khanh, 2010;
Kimura and Yao, 2008; Kimura and Yao, 2008; Li et al., 2013; Anh et al., 2018; and references
therein).

The paper aims at investigating the stability analysis in the sense of Hölder calmness of
the solution maps to equilibrium problems. To be more precise, sufficient conditions for the
solution maps to be Hölder calm are established. At the end of the paper, we present
applications of the main results in economics. Namely, the Hölder calmness of solution maps
to mean-variance portfolio and Nash equilibrium problems is derived.

The rest of the paper is organized as follows. Section 2 states the equilibrium problem
setting and recalls some definitions and their properties needed in what follows. Sufficient
conditions for the Hölder calmness of the solution maps are established in Section 3. In
Section 4, we discuss the Hölder calmness of solution maps to mean-variance portfolio and
Nash equilibrium problems.

2. Preliminaries
In this paper, we use d �; �ð Þ for the metric in metric spaces. For two subsetsA;B � X , we use
the following notations:

d a;Bð Þ :¼ inf
b2B

d a; bð Þ;

H* A;Bð Þ :¼ sup
a2A

d a;Bð Þ;

H A;Bð Þ :¼ maxfH* A;Bð Þ;H* B;Að Þg;

r A;Bð Þ :¼ sup
a2A;b2B

d a; bð Þ:

Denote Rþ is the set of the nonnegative real numbers andB x; rð Þ is the closed ball of radius
r� 0 and is centered at x. intA, conv(A) and diamA :¼ sup

x;z2A
d x; zð Þ stand for the interior, the

convex hull and the diameter, respectively, of a subset A. For a set-valued map G : X⇉Y ,
gphG :¼ f x; yð Þ 2 X � Y : y 2 G xð Þg is the graph of G. Recall that X is called a metric
linear space if and only if it is both a metric space and a linear space and the metric d of X is
translation invariant (i.e. d xþ z; yþ zð Þ ¼ d x; yð Þ;8x; y; z 2 X) and, for any convergent
sequences (lm) inR and (xm) inX, we have lim

m
lmxmð Þ ¼ lim

m
l m

� �
lim
m
xm

� �
.
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From now on, unless otherwise stated, let X be a metric linear space, K;M be metric
spaces and A � X be nonempty. Let K : K⇉A be nonempty-convex-valued and
w : A� A�M ! R. For l ; mð Þ 2 K�M , we consider the following parametric
equilibrium problem, i.e. the family of the corresponding problems when l ; mð Þ varies in
K�M ,

(EP) find x 2 K lð Þ such that w x; y; mð Þ � 0 for all y 2 K lð Þ.
For each l ; mð Þ 2 K�M , denote the solution set of (EP) by S l ; mð Þ, i.e.:

S l ; mð Þ :¼ fx 2 K lð Þ : w x; y; mð Þ � 0; 8y 2 K lð Þg:

As existence of solutions has been studied much in the literature, we do not include
existence investigations and always assume that S(l ,m ) is nonempty in the neighborhood
of the considered point.

We first recall some notions needed in the sequel.
Definition 2.1. Let n; g > 0 and u � 0. It is said that:
� a function g : X ! R is n:g -Hölder continuous at x 2 X if there is a neighborhood

U of x such that, for all x1; x2 2 U :

d g x1ð Þ; g x2ð Þð Þ#ndg x1; x2ð Þ;

� a function g : X ! R is n.g -Hölder calm at x 2 X if there is a neighborhood U of x
such that, for all x 2 U :

d g xð Þ; g xð Þ� �
#ndg x; xð Þ;

� a function g : X � X �M ! R is n:g -Hölder calm at m 2 M , u -uniformly over a
subset B � X if there is a neighborhood U of m such that, for all m 2 U and
x; y 2 B : x 6¼ y:

d g x; y; mð Þ; g x; y; mð Þ� �
#ndg m ; mð Þdu x; yð Þ;

if u = 0, we say that g x; y; �ð Þ is n.g -Hölder calm at m , uniformly over B; and
� a multifunction K : K⇉X is n.g -Hölder calm at l 2 K if there exists a

neighborhood N of l such that, for all l 2 N :

H K lð Þ;K lð Þ� �
#dg l ; l

� �
:

If g = 1, then Hölder continuity is called Lipschitz continuity.
We say that a certain property is satisfied in a subset B � X if and only if it is
satisfied at every point of B.

Definition 2.2. Let g : X ! R; B � X , and h,b be positive.

� g is called h.b -strongly convex on a convex subset B if and only if, for all x1; x2 2 B
and t 2 0; 1ð Þ:

g 1� tð Þx1 þ tx2
� �

# 1� tð Þg x1ð Þ þ tg x2ð Þ � ht 1� tð Þdb x1; x2ð Þ:
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� g is called h.b -strongly convex-like in B (B not necessarily convex) if and only if, for
all x1; x2 2 B and t 2 0; 1ð Þ, there is z 2 B such that:

g zð Þ# 1� tð Þg x1ð Þ þ tg x2ð Þ � ht 1� tð Þdb x1; x2ð Þ:
Recall that a function g : X � X ! R is called monotone onB � X if:

g x; yð Þ þ g y; xð Þ# 0;8 x; y 2 B:

In what follows, we use the following assumptions that play an important role in
investigating conditions for the Hölder calmness of solution maps to the equilibrium
problems:

H1. K is l:a-Hölder calm onK.

H2. The map y 7!w x; y; mð Þ is h.b -strongly convex as well asm.1-Hölder continuous in
conv K Kð Þð Þ:

H3. The map x; yð Þ7!w x; y; mð Þ is monotone onK Kð Þ � K Kð Þ for all m 2 M :

H4. The map m 7!w x; y; mð Þ is n.g -Hölder calm onM, u -uniformly overK(K).

3. Hölder calmness of solutions
In this section, we state the main results of the paper. Namely, we establish sufficient
conditions for the Hölder calmness of the solutionmaps to equilibrium problems.

Theorem 3.1. Assume that all assumptions (H1–H4) are satisfied with u < b . Then, the
solution map S is single-valued and Hölder calm onK�M.

Proof.
Let l ; m

� �
2 K�M be arbitrary, we need to prove that S is Hölder calm at l ; m

� �
. We

divide the proof into three steps.
Step 1. For all x11 2 S l ; m

� �
and x21 2 S l ; mð Þ, we claim that:

d1 :¼ d x11; x21ð Þ# 4ml
h

� � 1
b

d
a
b l ; l
� �

: (1)

By the definition of the solution set, we have, for all y 2 K lð Þ and z 2 K lð Þ:
minfw x11; y; mð Þ; w x21; z; mð Þg � 0: (2)

The Hölder calmness ofK leads to the existence of x1 2 K lð Þ and x2 2 K lð Þ such that:

maxfd x11; x2ð Þ; d x21; x1ð Þg# lda l ; l
� �

: (3)

Letting x̂ ¼ 1
2 x11 þ x21ð Þ, it follows from the strong convexity inH2 that:

w x11; x̂; mð Þ# 1
2
w x11; x11; mð Þ þ 1

2
w x11; x21; mð Þ � 1

4
hdb1 : (4)

By virtue of the monotonicity of w and x11 2 S l ; m
� �

, one gets:

f x11; x11; mð Þ ¼ 0
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f x11; x21; mð Þ# � f x21; x11; mð Þ:

Hence, equation (4) implies that:

1
4
hdb1 # � 1

2
w x21; x11; mð Þ � w x11;

x11 þ x21
2

; m

� �
: (5)

Letting z= x2 and y ¼ 1
2 x11 þ x1ð Þ in equation (2), one has:

minf1
2
w x21; x2; mð Þ; w x11;

x11 þ x1
2

; m

� �
g � 0 (6)

From equations (5) and (6), we arrive at:

1
4
hdb1 #

1
2
w x21; x2; mð Þ � w x21; x11; mð Þ½ �

þ w x11;
x11 þ x1

2
; m

� �
� w x11;

x11 þ x21
2

; m

� �� 	
:

Hence, using them.1-Hölder calmness inH2 and equation (3), we obtain:

1
4
hdb1 #

1
2
md x11; x2ð Þ þ 1

2
md x21; x1ð Þ

#
1
2
mlda l ; l

� �
þ 1
2
mlda l ; l

� �
;

that is:

1
4
hdb1 #mlda l ; l

� �
:

Hence, we obtain (1).
Step 2.Wewill show that, for all x21 2 S l ; mð Þ and x22 2 S l ; mð Þ:

d2 :¼ d x21; x22ð Þ# n
h

� � 1
b�u

d
g

b�u m ; mð Þ: (7)

By the definition of the solution, one has, for all y; z 2 K lð Þ,
minfw x21; y; mð Þ; w x22; z; mð Þg � 0: (8)

Putting y ¼ 1
2 x22 þ x21ð Þ in equation (8), we have:

w x21;
x22 þ x21

2
; m

� �
� 0:

By the strong convexity given inH2, we have:
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f x21; x22; mð Þ þ f x21; x21; mð Þ � 1
2
hdb2 � 0: (9)

Themonotonicity of w assumed inH3 and x21 2 S l ; mð Þ imply that:

w x21; x21; mð Þ ¼ 0

w x21; x22; mð Þ# � w x22; x21; mð Þ:

Hence, combining with equation (9), we have:

1
2
hdb2 # � w x22; x21; mð Þ: (10)

Now, letting z ¼ 1
2 x22 þ x21ð Þ in equation (8) derives:

w x22;
x22 þ x21

2
; m

� �
� 0:

Also by the strong convexity given inH2, we have:

w x22; x22; mð Þ þ w x22; x21; mð Þ � 1
2
hdb2 � 0:

As w x22; x22; mð Þ ¼ 0, this yields that:

1
2
hdb2 # w x22; x21; mð Þ:

Adding equation (10) and this inequality, and using assumptionH4, we get:

hdb2 # f x22; x21; mð Þ � f x22; x21; mð Þ

# ndg m ; mð Þdu2 ;

i.e. we obtain equation (7).
Step 3. We are now ready to complete the proof. For all x11 2 S l ; m

� �
and

x22 2 S l ; mð Þ, we have:
d x11; x22ð Þ# d1 þ d2:

Hence, from equations (1) and (7), we get, with k1 ¼ 4ml
h

� � 1
b

and k2 ¼ n
h

� � 1
b�u :

r S l ; m
� �

; S l ; mð Þ
� �

# k1d
a
b l ; l
� �

þ k2d
g

b�u m ; mð Þ:

Letting l ¼ l and m ¼ m in this inequality, we see that the diameter of S l ; m
� �

is 0 [for
arbitrary l ; m

� �
], i.e. the solution map of (EP) is single-valued in K � M. The proof is

complete.
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In the special case whereK lð Þ 	 K (K is a nonempty set), we have the following result.
Theorem 3.2. For (EP) with K lð Þ 	 K, assume that assumptions H3 and H4 are

satisfied andH2 is replaced by the following condition:
H02: The map y 7!w x; y; mð Þ is h.b -strongly convex-like onK.
Then, S is Hölder calm onK�M.
Proof. For any x1 2 S mð Þ; x2 2 S mð Þ and y; z 2 K, one has:

minfw x1; y; mð Þ; w x2; z; mð Þg � 0:

By the strong convex-likeness of f inK, there is z 2 K such that:

w x1; z; mð Þ# 1� tð Þw x1; x2; mð Þ þ tw x1; x1; mð Þ � ht 1� tð Þdb x1; x2ð Þ: (11)

This and the monotonicity of w imply that:

ht 1� tð Þdb x1; x2ð Þ# � 1� tð Þw x2; x1; mð Þ � w x1; z; mð Þ:

As w x1; z; mð Þ � 0; this inequality leads to:

htdb x1; x2ð Þ# � w x2; x1; mð Þ: (12)

With the same arguments but with x1 replaced by x2 and m by m in equation (11), we have:

h 1� tð Þdb x1; x2ð Þ# w x2; x1; mð Þ: (13)

Adding equations (12) and (13), and using assumptionH3, one gets:

hdb x1; x2ð Þ# w x2; x1; mð Þ � w x2; x1; mð Þ

#ndg m ; mð Þdu x1; x2ð Þ:

This means the required Hölder condition. From this, we obtain the uniqueness of the
solution.

4. Applications
4.1 Mean-variance portfolio
In this subsection, we present an application of our results to a practical situation. Namely,
we study Hölder properties of solution maps to parametric quadratic programing, a special
case of the equilibrium problem, which has well-known applications in the view of practice.
A good sample is the model of mean-variance portfolio based on investor’s utility
maximization. This problem can be formulated as parametric quadratic optimization
problems. Consider a universe of n assets with the known data is c ¼ c1; . . . ; cnð ÞT and
Q ¼ s ij½ �, where ci is the expected return for asset i and s ij is the covariance of returns for
assets i and j. So, c is the vector of expected returns and Q is the n � n variance–covariance
matrix of asset returns. Herein, Q is a positive definite matrix which follows from the
properties of variance–covariance matrices. Denote the vector of asset holdings by
x ¼ x1; . . . ; xnð ÞT . Then, the expected return of the portfolio x is cTx and its variance is
s 2 ¼ xTQx. A portfolio is said to be efficient if for some fixed level of expected return no
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other portfolio gives smaller variance (Markowitz, 1956). In other words, an efficient
portfolio can be considered as the one for which at some fixed level of variance no other
portfolio gives larger expected return. The determination of the efficient portfolio frontier in
this mean-variance model is equivalent to solving the following parametric problem because
of (Farrar, 1965):

MPð Þ minf x; mð Þ :¼ 1
2
xTQx� mcTx s:t: Ax ¼ b; x 2 Rn

þ;

where m � 0 is an investor’s variance aversion parameter. The linear constraintsAx = b can
represent budget constraints, bounds on asset holdings, etc. Nonnegativity constraints x� 0
are short-sale constraints (non-negative asset holdings).

Lemma 4.1. If u(x) is h.b -strongly convex and v(x) is convex on a convex set A 
 Rn,
then g xð Þ ¼ u xð Þ þ v xð Þ is h.b -strongly convex on A.

Proof. For all x1; x2 2 A and t 2 0; 1½ �, we have:

g tx1 þ 1� tð Þx2
� �

¼ u tx1 þ 1� tð Þx2
� �

þ v tx1 þ 1� tð Þx2
� �

# tu x1ð Þ þ 1� tð Þu x2ð Þ � ht 1� tð Þdb x1; x2ð Þ þ tv x1ð Þ

þ 1� tð Þv x2ð Þ

# t u x1ð Þ þ v x1ð Þð Þ þ 1� tð Þ u x2ð Þ þ v x2ð Þð Þ

�ht 1� tð Þdb x1; x2ð Þ

# tg x1ð Þ þ 1� tð Þg x2ð Þ � ht 1� tð Þdb x1; x2ð Þ:

Hence, g is a strongly convex function.
Lemma 4.2. The function g xð Þ ¼ xTQx is strongly convex with respect to the Euclidean

norm inRn, where Q is a positive definite matrix.
Proof. As Q is a positive definite matrix, we can consider the norm defined by

jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffi
xTQx

p
onRn. We first prove that the function g xð Þ ¼ xTQx is strongly convex with

respect to this norm. Indeed, for all x1; x2 2 Rn and t 2 0; 1½ �, one has:

g tx1 þ 1� tð Þx2
� �

¼ tx1 þ 1� tð Þx2
� �T

Q tx1 þ 1� tð Þx2
� �

¼ t2xT1 Qx1 þ t 1� tð ÞxT1 Qx2 þ t 1� tð ÞxT2 Qx1

þ 1� tð Þ2xT2 Qx2

¼ t2xT1 Qx1 þ 1� tð Þ2xT2 Qx2 þ 2t 1� tð ÞxT1 Qx2
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¼ txT1 Qx1 þ 1� tð ÞxT2 Qx2

�t 1� tð Þ xT1 Qx1 þ xT2 Qx2 � 2xT1 Qx2
� �

¼ txT1 Qx1 þ 1� tð ÞxT2 Qx2 � t 1� tð Þjjx1 � x2jj2

¼ tg x1ð Þ þ 1� tð Þg x2ð Þ � t 1� tð Þjjx1 � x2jj2:

We now show that g xð Þ ¼ xTQx is strongly convex with respect to the Euclidean norm
jj � jjE . As any two norms on a finite dimensional normed space are equivalent, there are a,
b> 0 such that ajj � jjE # jj � jj# bjj � jjE . Therefore, for all x1; x2 2 Rn and t 2 0; 1½ �, we get:

g tx1 þ 1� tð Þx2
� �

# tg x1ð Þ þ 1� tð Þg x2ð Þ � a2t 1� tð Þjjx1 � x2jj2E :

The proof is complete.
If we set w x; y; mð Þ :¼ f y; mð Þ � f x; mð Þ, then (MP) becomes the parametric

equilibrium problem. For m � 0, we denote the solution set of (MP) by S1(m ).
Lemma 4.3. If the function y 7! g yð Þ is strongly convex, then the function

y 7! w x; yð Þ :¼ f yð Þ � f xð Þ is also strongly convex.
Proof. We omit the proof as it is trivial.
We have the result for the Hölder calmness of the solution map S1(m ) as follows:
Corollary 4.1. IfQ is a positive definite matrix then the solution map S1 is Hölder calm on

(0,þ1).
Proof. We prove this corollary by checking all assumptions of Theorem 3.1. We see that

assumptions H1, H3 and H4 are obviously fulfilled. The strong convexity and Hölder
calmness inH2 is derived from Lemmas 4.1, 4.2 and 4.3.

4.2 Nash equilibrium problem
In this subsection, we discuss an application of the main results to a Nash equilibrium
problem (Debreu, 1952; Facchinei and Kanzow, 2007). Let us state the model of the problem
as follows. Let I 
 N be an index set, and K;M ;Xi i 2 Ið Þ be linear metric vector spaces.
We use the notations X ¼

Y
i2I

Xi and X�i ¼
Y

j2I ;j 6¼i

Xj. For each x 2 X , we denote its ith

coordinate and its projection on X-i by xi and x-i, respectively. We also denote an element ofX
by xi; x�ið Þ. For i 2 I , let fi be extended real-valued functions defined on X �M and Ki be
set-valued mappings from K into Xi. For any fixed l ; mð Þ 2 K�M , an abstract economy,
introduced by Debreu (1952), is the set of data:

C l ; mð Þ ¼ fXi;Ki lð Þ; fi �; mð Þ : i 2 Ig:

A profile of strategies x* 2 X is said to be a social Nash equilibrium of C l ; mð Þ if for any
i 2 I ; x* 2 K lð Þ and:

fi x*; m
� �

¼ max
yi2K lð Þ

fi yi; x*�i

� �
; m

� �
: (14)
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For each l ; mð Þ 2 K�M , the set of all social Nash equilibria of the parametric abstract
economy C l ; mð Þ is denoted by N l ; mð Þ. The set-valued mapping N : K�M⇉X is
called a social Nash equilibria set-valued mapping. The following lemma gives us the
equivalence between the social Nash equilibrium problem and (EP).

Lemma 4.4. For given l ; m
� �

2 K�M ; x* is a Nash equilibrium of abstract economy
C l ; m
� �

if and only if x* 2 K lð Þ and:

w x*; y; m
� �

� 0; 8y 2 K lð Þ; (15)

i.e. x* is a solution to (EP), where:

K lð Þ :¼
Y
i2I

Ki lð Þ and w x; y; mð Þ ¼
X
i2I

fi xi; x�ið Þ; mð Þ � fi yi; x�ið Þ; mð Þ� �
:

Proof. If equation (14) holds for l 2 K, then it is obvious that x* is a solution to (EP).
Conversely, let x* 2 X be such that x* 2 K lð Þ and equation (15) holds. For each i 2 I , we
choose ŷ 2 X in such a way satisfying ŷi ¼ yi 2 Ki lð Þ and ŷj ¼ x*j for all j 2 Infig. Then,
ŷ 2 K lð Þ and:

w x*; ŷ; m
� �

¼
X
i2I

fi x*i ; x
*
�i

� �
; m

� �
� fi ŷi; x

*
�i

� �
; m

� �h i

¼
Xj 6¼i

j2I
fj x*j ; x

*
�j

� �
; m

� �
� fj ŷj; x

*
�j

� �
; l

� �h i
þ fi x*i ; x

*
�i

� �
; m

� �
� fi ŷi; x

*
�i

� �
; m

� �

¼ fi x*i ; x
*
�i

� �
; m

� �
� fi ŷi; x

*
�i

� �
; m

� �
:

Combining this with equation (15), we derive fi x*i ; x
*
�i

� �
; m

� �
� fi yi; x*�i

� �
; m

� �
for all

yi 2 Ki lð Þ and i 2 I . Consequently, we conclude that for each i 2 I ; x* 2 K lð Þ and

fi x*; m
� �

¼ maxyi2Ki lð Þfi yi; x*�i

� �
; m

� �
, i.e. x* is a social Nash equilibrium of abstract

economyC l ; m
� �

.
Lemma 4.4 allows us to apply Theorem 3.1 to the mapping N , obtaining the following

result.
Theorem 4.1. Assume that the set-valued map K : K⇉X; and the function

w : X � X � K ! R [ f1g defined by:

K lð Þ :¼
Y
i2I

Ki lð Þ;

and:

w x; y; lð Þ :¼
X
i2I

fi xi; x�ið Þ; mð Þ � fi yi; x�ið Þ; mð Þ� �
;

respectively, satisfy conditions (i)-(iv) of Theorem 3.1 on K � M. Then, the set-valued
mappingN is Hölder calm onK�M.

AJEB
4,3

130



5. Conclusions
In this paper, we are successful in establishing the Hölder calmness of solution maps to
equilibrium problems where both objective functions and constraints are perturbed. Our
results are new. These main results are applied to some special cases including mean-
variance portfolio and Nash equilibrium problem. Tools used in this paper can be used for
investigating more generalized settings.
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