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We consider a price-based network revenue management problem where a retailer aims to maximize rev-

enue from multiple products with limited inventory over a finite selling season. As common in practice, we

assume the demand function contains unknown parameters, which must be learned from sales data. In the

presence of these unknown demand parameters, the retailer faces a tradeoff commonly referred to as the

exploration-exploitation tradeoff. Towards the beginning of the selling season, the retailer may offer several

different prices to try to learn demand at each price (“exploration” objective). Over time, the retailer can

use this knowledge to set a price that maximizes revenue throughout the remainder of the selling season

(“exploitation” objective). We propose a class of dynamic pricing algorithms that builds upon the simple yet

powerful machine learning technique known as Thompson sampling to address the challenge of balancing the

exploration-exploitation tradeoff under the presence of inventory constraints. Our algorithms prove to have

both strong theoretical performance guarantees as well as promising numerical performance results when

compared to other algorithms developed for similar settings. Moreover, we show how our algorithms can

be extended for use in general multi-armed bandit problems with resource constraints, with applications in

other revenue management settings and beyond.

Key words : revenue management, dynamic pricing, demand learning, multi-armed bandit, Thompson

sampling, machine learning

1. Introduction

In this paper, we consider a price-based revenue management problem common to many retail

settings: given an initial inventory of products and finite selling season, a retailer must choose
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prices to maximize revenue over the course of the season. Inventory decisions are fixed prior to the

selling season, and inventory cannot be replenished throughout the season. The retailer has the

ability to observe consumer demand in real-time and can dynamically adjust the price at negligible

cost. We refer the readers to Talluri and van Ryzin (2005) and Özer and Phillips (2012) for many

applications of this revenue management problem. More generally, our work focuses on the network

revenue management problem (Gallego and Van Ryzin 1997), where the retailer must price several

unique products, each of which may consume common resources with limited inventory.

The price-based network revenue management problem has been well-studied in the academic

literature, often under the additional assumption that the mean demand rate (i.e., expected de-

mand per unit time) associated with each price is known to the retailer prior to the selling season.

In practice, many retailers do not know the mean demand rates for each price; thus, we focus on

the network revenue management problem with unknown demand. Given unknown mean demand

rates, the retailer faces a tradeoff commonly referred to as the exploration-exploitation tradeoff.

Towards the beginning of the selling season, the retailer may offer several different prices to try to

learn and estimate the mean demand rate at each price (“exploration” objective). Over time, the

retailer can use these mean demand rate estimates to set a price that maximizes revenue through-

out the remainder of the selling season (“exploitation” objective). In our setting, the retailer is

constrained by limited inventory and thus faces an additional tradeoff. Specifically, pursuing the

exploration objective comes at the cost of diminishing valuable inventory. Simply put, if inventory

is depleted while exploring different prices, there is no inventory left to exploit the knowledge

gained.

We will refer to the network revenue management setting with unknown mean demand rates

as the online network revenue management problem, where “online” refers to two characteristics.

First, “online” refers to the retailer’s ability to observe and learn demand as it occurs through-

out the selling season – in an online fashion – allowing the retailer to consider the exploration-

exploitation tradeoff. Second, “online” can also refer to the online retail industry, since many online

retailers face the challenge of pricing many products in the presence of demand uncertainty and

short product life cycles; furthermore, many online retailers are able to observe and learn demand

in real time and can easily adjust prices dynamically. The online retail industry has experienced ap-

proximately 10% annual growth over the last 5 years in the United States, reaching nearly $300B in

revenue in 2015 (excluding online sales of brick-and-mortar stores); see industry report by Lerman

(2014).

Motivated by this large and growing industry, we develop a class of algorithms for the online net-

work revenue management problem. Our algorithms adapt a simple yet powerful machine learning
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technique known as Thompson sampling to address the challenge of balancing the exploration-

exploitation tradeoff under the presence of inventory constraints. In the following section, we outline

the academic literature that has addressed similar revenue management challenges and describe

how our work fits in this space. Then in Section 1.2 we provide an overview of the main contribution

of our paper to this body of literature and to practice.

1.1. Literature Review

Due to the increased availability of real-time demand data, there is a vast literature on dynamic

pricing problems with a demand learning approach. Review papers by Aviv and Vulcano (2012)

and den Boer (2015) provide up-to-date surveys of this area. Our review below on dynamic pricing

with demand learning is mostly focused on existing literature that considers inventory constraints.

As described earlier, the key challenge in dynamic pricing with demand learning is to address the

exploration-exploitation tradeoff, where the retailer’s ability to learn demand is tied to the actions

the retailer takes (e.g., the prices the retailer offers). Several approaches have been proposed in the

literature to address the exploration-exploitation tradeoff in the constrained inventory setting.

One approach is to separate the selling season (T periods) into a disjoint exploration phase (say,

from period 1 to τ) and exploitation phase (from period τ + 1 to T ) (see, e.g., Besbes and Zeevi

(2009, 2012)). During the exploration phase, each price is offered for a pre-determined number of

times. At the end of period τ , the retailer uses purchasing data from the first τ periods to estimate

the mean demand rate for each price. These estimates are then used (“exploited”) to maximize

revenue during periods τ +1 to T . One drawback of this strategy is that it does not use purchasing

data after period τ to continuously refine its estimates of the mean demand rates for each price.

Furthermore, when there is very limited inventory, this approach is susceptible to running out of

inventory during the exploration phase, before any demand learning can be exploited. We note

that Besbes and Zeevi (2012) considers a similar online network revenue management setting as we

do, and in Section 3.2, we will compare the performance of their algorithm with ours via numerical

experiments.

A second approach is to model the online network revenue management problem as a multi-armed

bandit problem and use a popular method known as the upper confidence bound (UCB) algorithm

(Auer et al. 2002) to dictate pricing decisions in each period. The multi-armed bandit (MAB)

problem is often used to model the exploration-exploitation tradeoff in the dynamic learning and

pricing model without limited inventory constraints since it can be immediately applied to such a

setting; see Bubeck and Cesa-Bianchi (2012) for an overview of this problem. The UCB algorithm

creates a confidence interval for each unknown mean demand rate using purchase data and then

selects a price that maximizes revenue among all parameter values in the confidence set. For the
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purpose of exploration, the UCB algorithm favors prices that have not been offered many times

since they are associated with a larger confidence interval. The presence of operational constraints

such as limited inventory cannot be directly modeled in the standard MAB problem; Badanidiyuru

et al. (2013) thus builds upon the MAB problem and adapts the UCB algorithm to a setting with

inventory constraints. In Section 3.2, we will compare the performance of our algorithms to the

algorithm in Badanidiyuru et al. (2013) via numerical experiments.

There are several other methods developed for revenue management problems with unknown

demand in limited inventory settings; the models in the following papers are different than the

model in our setting and thus we only compare our algorithms to those presented in Besbes

and Zeevi (2012) and Badanidiyuru et al. (2013). Araman and Caldentey (2009) and Farias and

Van Roy (2010) use dynamic programming to study settings with unknown market size but with

known customer willingness-to-pay function. Chen et al. (2014) considers a strategy that separates

exploration and exploitation phases, while using self-adjusting heuristics in the exploitation phase.

Wang et al. (2014) proposes a continuously learning-and-optimization algorithm for a single product

and continuous price setting. Lastly, Jasin (2015) studies a quantity-based revenue management

model with unknown parameters; in a quantity-based model, the retailer observes all customer

arrivals and either accepts or rejects their purchase requests, so the retailer is not faced with the

same type of exploration-exploitation tradeoff as in the price-based model.

It is worth noting that several of the papers reviewed above consider only the continuous-price

setting (Araman and Caldentey (2009), Besbes and Zeevi (2009), Farias and Van Roy (2010), Wang

et al. (2014), and Chen et al. (2014)), whereas our work primarily considers the discrete-price

setting with an extension to the continuous-price, linear demand setting presented in Section 4.1.

We choose to focus primarily on the discrete-price setting because discrete price sets are widely used

in practice (Talluri and van Ryzin (2005)). A key distinction between discrete vs. continuous price

sets in demand learning and dynamic pricing arises from the structure of their respective revenue

optimization problems. If the price set is discrete and the retailer faces inventory constraints,

there may not exist any single price that maximizes revenue asymptotically as the number of

periods T increases; the retailer must maximize over distributions of prices. In contrast, if the

price set is continuous and the demand function satisfies certain regularity conditions (Gallego and

Van Ryzin 1994), there always exists a single price that is asymptotically optimal, regardless of the

presence of inventory constraints. Demand learning and dynamic pricing algorithms developed for

continuous price sets rely on the fact that a single optimal price exists, and therefore it is difficult

to immediately extend them to discrete price sets in the presence of inventory constraints; thus,

we cannot compare the performance of our algorithms to those developed for the continuous-price

setting.
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Our approach is most closely related to the second approach summarized above and used in

Badanidiyuru et al. (2013), in that we also model the online network revenue management problem

as a multi-armed bandit problem with inventory constraints. However, rather than using the UCB

algorithm as the backbone of our algorithms, we use the powerful machine learning algorithm

known as Thompson sampling as a key building block of the algorithms that we develop for the

online network revenue management problem.

Thompson sampling. In one of the earliest papers on the multi-armed bandit problem,

Thompson (1933) proposed a randomized Bayesian algorithm, which was later referred to as the

Thompson sampling algorithm. The basic idea of Thompson sampling is that at each time period,

random numbers are sampled according to the posterior distributions of the reward for each action,

and then the action with the highest sampled reward is chosen; a formal description of the algorithm

can be found in the Appendix. Note that in a revenue management setting, each “action” or “arm”

is a price, and “reward” refers to the revenue earned by offering that price. Thus in the original

Thompson sampling algorithm – in the absence of inventory constraints – random numbers are

sampled according to the posterior distributions of the mean demand rates for each price, and the

price with the highest sampled revenue (i.e., price times sampled demand) is offered. Thompson

sampling is also known as probability matching since the probability of an arm being chosen matches

the posterior probability that this arm has the highest expected reward.

This randomized Bayesian approach is in contrast to the more traditional Bayesian “greedy”

approach, where instead of sampling from the posterior probability distributions, the expected

value of each posterior distribution is used to evaluate the reward of each arm (expected revenue

for each price offered). Such a greedy approach makes decisions solely with the exploitation goal

in mind by choosing the price that is believed to be optimal in the current period; this approach

does not actively explore by deviating from greedy prices, and therefore might get stuck with a

suboptimal price forever. Harrison et al. (2012) illustrates the potential pitfalls of such a greedy

Bayesian approach, and shows the necessity to deviate from greedy prices in order to get sufficient

exploration. Thompson sampling satisfies the exploration objective by using random samples that

deviate from the greedy optimal solution.

Thompson sampling enjoys similar theoretical performance guarantees to those achieved by other

popular multi-armed bandit algorithms such as the UCB algorithm (Kaufmann et al. 2012, Agrawal

and Goyal 2013) and often better empirical performance (Chapelle and Li 2011). In addition, the

Thompson sampling algorithm has been adapted to various multi-armed bandit settings by Russo

and Van Roy (2014). In our work, we adapt Thompson sampling to the network revenue man-

agement setting where inventory is constrained, thus bridging the gap between a popular machine

learning technique for the exploration-exploitation tradeoff and a common revenue management

challenge.
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1.2. Overview of Main Contribution

The main contribution of our work is the design and development of a new class of algorithms

for the online network revenue management problem: this class of algorithms extends the powerful

machine learning technique known as Thompson sampling to address the challenge of balancing the

exploration-exploitation tradeoff under the presence of inventory constraints. We first consider a

model with discrete price sets in Section 2.1, as this is a common constraint that is self-imposed by

many retailers in practice. In Section 2.2, we present our first algorithm which adapts Thompson

sampling by adding a linear programming (LP) subroutine to incorporate inventory constraints.

In Section 2.3, we present our second algorithm that builds upon our first; specifically, in each

period, we modify the LP subroutine to further account for the purchases made to date. Both of

our algorithms contain two simple steps in each iteration: sampling from a posterior distribution

and solving a linear program. As a result, the algorithms are easy to implement in practice.

To highlight the importance of our main contribution, Section 3 provides both a theoretical and

numerical performance analysis of both of our algorithms. In Section 3.1, we show the proposed

algorithms have strong theoretical performance guarantees. We measure the algorithms’ perfor-

mance by regret, i.e., the difference in expected revenue obtained by our algorithms compared to

the expected revenue of the ideal case where the mean demand rates are known at the beginning

of the selling season. More specifically, since Thompson sampling is defined in a Bayesian setting,

our measurement is focused on Bayesian regret (defined in Section 3.1.1). We show that our pro-

posed algorithms have a Bayesian regret of O(
√
TK logK), where T is the length of the selling

season and K is the number of feasible price vectors. Since this bound depends on T by O(
√
T ),

our bound matches the best possible prior-free lower bound for Bayesian regret, Ω(
√
T ) (Bubeck

and Cesa-Bianchi 2012). Our proof heavily builds on the techniques of Bubeck and Liu (2013)

and Russo and Van Roy (2014) for analyzing Thompson sampling. As a technical contribution, we

show how the tools of Bubeck and Liu (2013) and Russo and Van Roy (2014) can be modified to

analyze lost sales, a quantity of nonlinear form; their tools were originally developed for analyzing

rewards in multi-armed bandit problems, which has a linear and additive form. In Section 3.2, we

present numerical experiments which show that our algorithms have significantly better empirical

performance than the algorithms developed for similar settings by Badanidiyuru et al. (2013) and

Besbes and Zeevi (2012).

Finally, in Section 4, we broaden our main contribution by showing how our algorithms can

be adapted to address various other revenue management and operations management challenges.

Specifically, we consider three extensions: 1) continuous price sets with a linear demand function;

2) dynamic pricing with contextual information; 3) multi-armed bandits with general resource
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constraints. Using the general recipe of combining Thompson sampling with an LP subroutine, we

show that our algorithms can be naturally extended to these problems and have an Õ(
√
T ) regret

bound (omitting log factors) in all three settings.

2. Discrete Price Thompson Sampling with Limited Inventory

We start by focusing on the case where the set of possible prices that the retailer can offer is discrete

and finite as this is a common constraint that is self-imposed by many retailers in practice (Talluri

and van Ryzin 2005). We first introduce our model formulation in Section 2.1, and then we propose

two dynamic pricing algorithms based on Thompson sampling for this model setting in Sections 2.2

and 2.3. Both algorithms incorporate inventory constraints into the original Thompson sampling

algorithm, which is included in the Appendix for reference. In Section 4 we provide extensions of

our algorithms to the continuous price setting as well as other operations management settings.

2.1. Discrete Price Model

We consider a retailer who sells N products, indexed by i ∈ [N ], over a finite selling season.

(Throughout the paper, we denote by [x] the set {1,2, . . . , x}.) These products consume M re-

sources, indexed by j ∈ [M ]. Specifically, we assume that one unit of product i consumes aij units

of resource j, where aij is a fixed constant. The selling season is divided into T periods. There are

Ij units of initial inventory for each resource j ∈ [M ], and there is no replenishment during the

selling season. We define Ij(t) as the inventory at the end of period t, and we denote Ij(0) = Ij. In

each period t∈ [T ], the following sequence of events occurs:

1. The retailer offers a price for each product from a finite set of admissible price vectors.

We denote this set by {p1, p2, . . . , pK}, where pk (∀k ∈ [K]) is a vector of length N specifying

the price of each product. More specifically, we have pk = (p1k, . . . , pNk), where pik is the price

of product i, for all i ∈ [N ]. Following the tradition in dynamic pricing literature, we also

assume that there is a “shut-off” price p∞ such that the demand for any product under this

price is zero with probability one. We denote by P (t) = (P1(t), . . . , PN(t)) the prices chosen by

the retailer in this period, and require that P (t)∈ {p1, p2, . . . , pK , p∞}.

2. Customers then observe the prices chosen by the retailer and make purchase decisions.

We denote by D(t) = (D1(t), . . . ,DN(t)) the demand of each product at period t. We as-

sume that given P (t) = pk, the demand D(t) is sampled from a probability distribution on

RN+ with joint cumulative distribution function (CDF) F (x1, . . . , xN ;pk, θ), indexed by a pa-

rameter (or a vector of parameters) θ that takes values in the parameter space Θ⊂ Rl. The

distribution is assumed to be subexponential; note that many commonly used demand dis-

tributions such as normal, Poisson, exponential and all bounded distributions belong to the
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family of subexponential distributions. We also assume that D(t) is independent of the history

Ht−1 = (P (1),D(1), . . . , P (t− 1),D(t− 1)) given P (t).

Depending on whether there is sufficient inventory, one of the following events happens:

(a) If there is enough inventory to satisfy all demand, the retailer receives an amount

of revenue equal to
∑N

i=1Di(t)Pi(t), and the inventory level of each resource j ∈ [M ]

diminishes by the amount of each resource used such that Ij(t) = Ij(t−1)−
∑N

i=1Di(t)aij.

(b) If there is not enough inventory to satisfy all demand, the demand is partially

satisfied and the rest of demand is lost. Let D̃i(t) be the demand satisfied for product i. We

require D̃i(t) to satisfy three conditions: 0≤ D̃i(t)≤Di(t),∀i∈ [N ]; the inventory level for

each resource at the end of this period is nonnegative: Ij(t) = Ij(t− 1)−
∑N

i=1 D̃i(t)aij ≥

0,∀j ∈ [M ]; there exists at least one resource j′ ∈ [M ] whose inventory level is zero at the

end of this period, i.e. Ij′(t) = 0. Besides these natural conditions, we do not require any

additional assumption on how demand is specifically fulfilled. The retailer then receives

an amount of revenue equal to
∑N

i=1 D̃i(t)Pi(t) in this period.

We assume that the demand parameter θ is fixed but unknown to the retailer at the beginning

of the season, and the retailer must learn the true value of θ from demand data. That is, in each

period t ∈ [T ], the price vector P (t) can only be chosen based on the observed history Ht−1, but

cannot depend on the unknown value θ or any event in the future. The retailer’s objective is to

maximize expected revenue over the course of the selling season given the prior distribution on θ.

We use a parametric Bayesian approach in our model, where the retailer has a known prior

distribution of θ ∈Θ at the beginning of the selling season. However, our model allows the retailer to

choose an arbitrary prior. In particular, the retailer can assume an arbitrary parametric form of the

demand CDF, given by F (x1, . . . , xN ;pk, θ). This joint CDF parametrized by θ can parsimoniously

model the correlation of demand among products. For example, the retailer may specify products’

joint demand distribution based on some discrete choice model such as the multinomial logit

model, where θ is the unknown parameter in the multinomial logit function. Another benefit of

the Bayesian approach is that the retailer may choose a prior distribution over θ such that demand

is correlated for different prices, enabling the retailer to learn demand for all prices, not just the

offered price. For example, with a single product, the retailer may assume that demand follows a

Poisson distribution in each period, and the mean demand is a linear function in price. The retailer

may assume there are two unknown parameters θ = (θ0, θ1) such that the mean demand under

price p is given by θ0− θ1p. Therefore, the Poisson CDF as a function of price pk ∈ {p1, p2, . . . , pK}

and θ is given by

F (x;pk, θ) =
x∑
i=0

(θ0− θ1pk)
i

i!
eθ1pk−θ0 .
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When the retailer observes a realized demand instance under the offered price pk ∈ {p1, p2, . . . , pK},

it obtains some information about parameters θ0 and θ1, which enables the retailer to learn demand

not only for the offered price, but also for prices that are not offered.

Relationship to the Multi-Armed Bandit Problem The model formulated above is a

generalization of the multi-armed bandit (MAB) problem that has been extensively studied in the

statistics and operations research literature – where each price is an “arm” and revenue is the

“reward” – except for two main deviations. First, our formulation allows for the network revenue

management setting (Gallego and Van Ryzin (1997)) where multiple products consuming common

resources are sold. Second, there are inventory constraints present in our setting, whereas there are

no such constraints in the MAB model.

We note that the presence of inventory constraints significantly complicates the problem, even for

the special case of a single product. In the MAB setting, if mean revenue associated with each price

vector is known, the optimal strategy is to choose a price vector with the highest mean revenue. But

in the presence of limited inventory, a mixed strategy that chooses multiple price vectors over the

selling season may achieve significantly higher revenue than any single price strategy. Therefore,

a good pricing strategy should converge not to a single price, but to a distribution of (possibly)

multiple prices. Another challenging task in the analysis is to estimate the time when the inventory

of each resource runs out, which is itself a random variable depending on the pricing policy used

by the retailer. Such estimation is necessary for computing the retailer’s expected revenue. This is

in contrast to classical MAB problems for which the process always ends at a fixed period.

Our model is also closely related to the models studied in Badanidiyuru et al. (2013) and Besbes

and Zeevi (2012). Badanidiyuru et al. (2013) considers a multi-armed bandit problem with global

resource constraints. We will discuss this problem and extend our algorithms to this setting in

Section 4.3. Besbes and Zeevi (2012) studies a similar network revenue management model with

continuous time and unknown demand, considering both discrete and continuous price sets. Our

model can incorporate their setting by discretizing time, and we will discuss the extension to

continuous price sets in Section 4.1.

2.2. Thompson Sampling with Fixed Inventory Constraints

In this section, we propose our first Thompson sampling based algorithm for the discrete price

model described in Section 2.1. For each resource j ∈ [M ], we define a fixed constant cj := Ij/T .

Given any demand parameter ρ ∈ Θ, we define the mean demand under ρ as the expectation

associated with CDF F (x1, . . . , xN ;pk, ρ) for each product i ∈ [N ] and price vector k ∈ [K]. We

denote by d= {dik}i∈[N ],k∈[K] the mean demand under the true model parameter θ.
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We present our Thompson Sampling with Fixed Inventory Constraints algorithm (TS-fixed for

short) in Algorithm 1. Here, “TS” stands for Thompson sampling, while “fixed” refers to the fact

that we use fixed constants cj for all time periods as opposed to updating cj over the selling season

as inventory is depleted; this latter idea is incorporated into the algorithm we present in Section

2.3.

Algorithm 1 Thompson Sampling with Fixed Inventory Constraints (TS-fixed)

Repeat the following steps for all periods t= 1, ..., T :

1. Sample Demand : Sample a random parameter θ(t)∈Θ according to the posterior distribution

of θ given history Ht−1. Let the mean demand under θ(t) be d(t) = {dik(t)}i∈[N ],k∈[K].

2. Optimize Prices given Sampled Demand : Solve the following linear program, denoted by

LP(d(t)):

LP(d(t)) : max
x

K∑
k=1

(
N∑
i=1

pikdik(t))xk

subject to
K∑
k=1

(
N∑
i=1

aijdik(t))xk ≤ cj, ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be the optimal solution to LP(d(t)).

3. Offer Price: Offer price vector P (t) = pk with probability xk(t), and choose P (t) = p∞ with

probability 1−
∑K

k=1 xk(t).

4. Update Estimate of Parameter : Observe demand D(t). Update the history Ht = Ht−1 ∪

{P (t),D(t)} and the posterior distribution of θ given Ht.

Steps 1 and 4 are based on the Thompson sampling algorithm for the classical multi-armed

bandit setting, whereas steps 2 and 3 are added to incorporate inventory constraints. In step 1 of the

algorithm, we randomly sample parameter θ(t) according to the posterior distribution of unknown

demand parameter θ. This step is motivated by the original Thompson sampling algorithm for the

classical multi-armed bandit problem. A novel idea of the Thompson sampling algorithm is to use

random sampling from the posterior distribution to balance the exploration-exploitation tradeoff.

To be more precise, let us consider an example when there is unlimited inventory. Without loss of

generality, let us assume that price vector p1 has the highest expected revenue under the posterior

distribution in the current period. If the retailer acts greedily (i.e. focusing only on the exploitation
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objective), it would maximize the expected revenue in this period by choosing p1 with probability

one. However, there is no guarantee that p1 is indeed the optimal price under the true demand. In

Thompson sampling, the retailer balances the exploration-exploitation tradeoff by using demand

values that are randomly sampled, which means that there is a positive probability that the retailer

will choose a price vector other than p1, thus achieving the exploration objective. Guaranteeing

positive probability to pursue each objective - exploration and exploitation - is essential to discover

the true demand parameter over time (cf. Harrison et al. 2012).

The algorithm differs from ordinary Thompson sampling in steps 2 and 3. In step 2, the retailer

solves a linear program, LP(d(t)), which identifies the optimal mixed price strategy that maximizes

expected revenue given the sampled parameters. The first constraint specifies that the average

resource consumption in this time period cannot exceed cj, the average inventory available per

period. The second constraint specifies that the sum of probabilities of choosing a price vector

cannot exceed one. In step 3, the retailer randomly offers one of the K price vectors (or p∞)

according to probabilities specified by the optimal solution of LP(d(t)). Finally, in step 4, the

algorithm updates the posterior distribution of θ given Ht. Such Bayesian updating is a simple and

powerful tool to update belief probabilities as more information – customer purchase decisions in

our case – becomes available. By employing Bayesian updating in step 4, we are ensured that as

any price vector pk is offered more and more times, the sampled mean demand associated with

pk for each product i becomes more and more centered around the true mean demand, dik (cf.

Freedman 1963).

We note that the LP defined in step 2 is closely related to the LP used by Gallego and Van Ryzin

(1997), where they consider a network revenue management problem in the case of known demand.

Their pricing algorithm is essentially a special case of Algorithm 1 where they solve LP(d), i.e,

LP(d(t)) with d(t) = d, in every time period. Moreover, they show that the optimal value of LP(d)

is an upper bound on the expected optimal revenue that can be achieved in such a network revenue

management setting; in Section 3.1.1 we present this upper bound and discuss the similarities

between the two linear programs.

Next we illustrate the application of our TS-fixed algorithm by providing two concrete examples.

For simplicity, in both examples we assume that the prior distribution of demand for different

prices are independent; however, the definition of TS-fixed and the theoretical results in Section 3.1

are quite general and allow the prior distribution to be arbitrarily correlated for different prices.

As mentioned earlier, this enables the retailer to learn the mean demand not only for the offered

price, but also for prices that are not offered.
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Example 1: Bernoulli Demand with Independent Uniform Prior We assume that

for all prices, the demand for each product is Bernoulli distributed. In this case, the unknown

parameter θ is just the mean demand of each product. We use a beta posterior distribution for

each θ because it is conjugate to the Bernoulli distribution. We assume that the prior distribution

of mean demand dik is uniform in [0,1] (which is equivalent to a Beta(1,1) distribution) and is

independent for all i∈ [N ] and k ∈ [K].

In this example, the posterior distribution is very simple to calculate. Let Nk(t−1) be the number

of time periods that the retailer has offered price pk in the first t−1 periods, and let Wik(t−1) be

the number of periods that product i is purchased under price pk during these periods. In step 1

of TS-fixed, the posterior distribution of dik is Beta(Wik(t− 1) + 1,Nk(t− 1)−Wik(t− 1) + 1), so

we sample dik(t) independently from a Beta(Wik(t− 1) + 1,Nk(t− 1)−Wik(t− 1) + 1) distribution

for each price k and each product i.

In steps 2 and 3, LP(d(t)) is solved and a price vector pk′ is chosen; then the customer demand

Di(t) is revealed to the retailer. In step 4, we then update Nk′(t)← Nk′(t − 1) + 1, Wik′(t)←

Wik′(t− 1) +Di(t) for all i ∈ [N ]. The posterior distributions associated with the K − 1 unchosen

price vectors (k 6= k′) are not changed.

Example 2: Poisson Demand with Independent Exponential Prior We now consider

another example where demand for each product follows a Poisson distribution. Like the previous

example, the unknown parameter θ is just the mean demand of each product. We use a gamma

posterior distribution for each θ because it is conjugate to the Poisson distribution. We assume that

the prior distribution of mean demand dik is exponential with CDF f(x) = e−x (which is equivalent

to a Gamma(1,1) distribution) and is independent for all i∈ [N ] and k ∈ [K].

The posterior distribution is also simple to calculate in this case. Let Nk(t− 1) be the number

of time periods that the retailer has offered price vector pk in the first t − 1 periods, and let

Wik(t−1) be the total demand for product i during these periods. In step 1 of TS-fixed, the posterior

distribution of dik is Gamma(Wik(t−1) + 1,Nk(t−1) + 1), so we sample dik(t) independently from

a Gamma(Wik(t− 1) + 1,Nk(t− 1) + 1) distribution for each price k and each product i.

In steps 2 and 3, LP(d(t)) is solved and the price vector P (t) = pk′ for some k′ ∈ [K] is chosen;

then the customer demand Di(t) is revealed to the retailer. In step 4, we then update Nk′(t)←

Nk′(t− 1) + 1, Wik′(t)←Wik′(t− 1) +Di(t) for all i ∈ [N ]. The posterior distributions associated

with the K − 1 unchosen price vectors (k 6= k′) are not changed.
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2.3. Thompson Sampling with Inventory Constraint Updating

In this section, we propose our second Thompson sampling based algorithm for the discrete price

model described in Section 2.1. In TS-fixed, we use fixed inventory constants cj in every period. Al-

ternatively, we can update cj over the selling season as inventory is depleted, thereby incorporating

real time inventory information into the algorithm.

In particular, we recall that Ij(t) is the inventory level of resource j at the end of period t. Define

cj(t) = Ij(t−1)/(T − t+1) as the average inventory for resource j available from period t to period

T . We then replace constants cj with cj(t) in LP(d(t)) in step 2 of TS-fixed, which gives us the

Thompson Sampling with Inventory Constraint Updating algorithm (TS-update for short) shown

in Algorithm 2. The term “update” refers to the fact that in every iteration, the algorithm updates

inventory constants cj(t) in LP(d(t)) to incorporate real time inventory information.

Algorithm 2 Thompson Sampling with Inventory Constraint Updating (TS-update)

Repeat the following steps for all periods t= 1, ..., T :

1. Sample Demand : Sample a random parameter θ(t)∈Θ according to the posterior distribution

of θ given history Ht−1. Let the mean demand under θ(t) be d(t) = {dik(t)}i∈[N ],k∈[K].

2. Optimize Prices given Sampled Demand : Solve the following linear program, denoted by

LP(d(t), c(t)):

LP(d(t), c(t)) : max
x

K∑
k=1

(
N∑
i=1

pikdik(t))xk

subject to
K∑
k=1

(
N∑
i=1

aijdik(t))xk ≤ cj(t), ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be the optimal solution to LP(d(t), c(t)).

3. Offer Price: Offer price vector P (t) = pk with probability xk(t), and choose P (t) = p∞ with

probability 1−
∑K

k=1 xk(t).

4. Update Estimate of Parameter : Observe demand D(t). Update the history Ht = Ht−1 ∪

{P (t),D(t)} and the posterior distribution of θ given Ht.

In the revenue management literature, the idea of using updated inventory rates like cj(t) has

been previously studied in various settings (Jasin and Kumar 2012, Chen and Farias 2013, Chen

et al. 2014, Jasin 2015). However, to the best of our knowledge, TS-update is the first algorithm
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that incorporates real time inventory updating when the retailer faces an exploration-exploitation

tradeoff with its pricing decisions.[1] Although intuitively incorporating updated inventory infor-

mation into the pricing algorithm should improve the performance of the algorithm, Cooper (2002)

provides a counterexample where the expected revenue is reduced after the updated inventory

information is included. Therefore, it is not immediately clear if TS-update would achieve higher

revenue than TS-fixed. We will rigorously analyze the performance of both TS-fixed and TS-update

using theoretical and numerical analysis in the next section; our numerical analysis shows that in

fact there are situations where TS-update outperforms TS-fixed and vice versa.

3. Performance Analysis

To illustrate the value of incorporating inventory constraints in Thompson sampling, in Section

3.1 we prove finite-time (i.e. non-asymptotic) performance guarantees for TS-fixed and TS-update

that match the best possible guarantees that can be achieved by any algorithm. Then in Section

3.2, we show that our algorithms outperform previously proposed algorithms for similar settings

in numerical experiments.

3.1. Theoretical Results

3.1.1. Benchmark and Linear Programming Relaxation To evaluate the retailer’s strat-

egy, we compare the retailer’s revenue with a benchmark where the true demand distribution is

known a priori.

We define the retailer’s regret over the selling horizon as

Regret(T, θ) = E[Rev∗(T ) | θ]−E[Rev(T ) | θ],

where Rev∗(T ) is the revenue achieved by the optimal policy if the demand parameter θ is known

a priori, and Rev(T ) is the revenue achieved by an algorithm that may not know θ. The condi-

tional expectation is taken on random demand realizations given θ, and possibly on some external

randomization used by the algorithm (e.g. random samples in Thompson sampling). In words,

the regret is a non-negative quantity measuring the retailer’s revenue loss due to not knowing the

latent demand parameter.

We also define the Bayesian regret (also known as Bayes risk) by

BayesRegret(T ) =E[Regret(T, θ)],

where the expectation is taken over the prior distribution of θ. Bayesian regret is a standard metric

for the performance of online Bayesian algorithms; see, e.g., Rusmevichientong and Tsitsiklis (2010)

and Russo and Van Roy (2014).
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Because evaluating the expected optimal revenue with known demand requires solving a high

dimensional dynamic programming problem, it is difficult to compute the optimal revenue exactly

even for moderate problem sizes. Gallego and Van Ryzin (1997) show that the expected optimal

revenue with known demand can be approximated by an upper bound. The upper bound is given

by the following deterministic LP, denoted by LP(d):

LP(d) : max
x

K∑
k=1

(
N∑
i=1

pikdik)xk

subject to
K∑
k=1

(
N∑
i=1

aijdik)xk ≤ cj, ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, ∀k ∈ [K].

Problem LP(d) is almost identical to LP(d(t)) used in TS-fixed, except that it uses the true mean

demand d instead of sampled demand d(t) from the posterior distribution. We denote the optimal

value of LP(d) by OPT(d). Gallego and Van Ryzin (1997) show that

E[Rev∗(T ) | d]≤OPT(d) ·T.

Therefore, we have

Regret(T,d)≤OPT(d) ·T −E[Rev(T ) | d],

and

BayesRegret(T )≤E[OPT(d)] ·T −E[Rev(T )].

3.1.2. Analysis of TS-fixed and TS-update Algorithms We now prove regret bounds

for TS-fixed and TS-update under the realistic assumption of bounded demand. Specifically, in the

following analysis, we further assume that for each product i∈ [N ], the demand Di(t) is bounded

by Di(t)∈ [0, d̄i] under any price vector pk, ∀k ∈ [K]. However, our analysis can be generalized when

the demand is unbounded and follows a subexponential distribution.[2] We also define constants

pmax := max
k∈[K]

N∑
i=1

pikd̄i, pjmax := max
i∈[N ]:aij 6=0,k∈[K]

pik
aij
, ∀j ∈ [M ]

where pmax is the maximum revenue that can possibly be achieved in one period, and pjmax is the

maximum revenue that can possibly be achieved by adding one unit of resource j, ∀j ∈ [M ].

Theorem 1. The Bayesian regret of TS-fixed is bounded by

BayesRegret(T )≤

(
18pmax + 37

N∑
i=1

M∑
j=1

pjmaxaij d̄i

)√
TK logK.
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Theorem 2. The Bayesian regret of TS-update is bounded by

BayesRegret(T )≤

(
18pmax + 40

N∑
i=1

M∑
j=1

pjmaxaij d̄i

)√
TK logK + pmaxM.

The results above state that the Bayesian regrets of both TS-fixed and TS-update are bounded

by O(
√
TK logK), where K is the number of price vectors that the retailer is allowed to use and

T is the number of time periods. Moreover, the regret bounds are prior-free as they do not depend

on the prior distribution of parameter θ; the constants in the bounds can be computed explicitly

without knowing the demand distribution.

It has been shown that for a multi-armed bandit problem with reward in [0,1] – a special case

of our model with no inventory constraints – no algorithm can achieve a prior-free Bayesian regret

smaller than Ω(
√
KT ) (see Theorem 3.5, Bubeck and Cesa-Bianchi (2012)). In that sense, our

regret bounds are optimal with respect to T and cannot be improved by any other algorithm by

more than
√

logK.

The detailed proofs of Theorems 1 and 2 can be found in the E-companion. We briefly summarize

the intuition behind the proofs. For both Theorems 1 and 2, we first assume an “ideal” scenario

where the retailer is able to collect revenue even for the demand associated with lost sales. We

show that if prices are given according to the solutions of TS-fixed or TS-update, the expected

revenue achieved by the retailer is within O(
√
T ) compared to the LP benchmark defined in Section

3.1.1. Of course, this procedure overestimates the expected revenue. In order to compute the actual

revenue given constrained inventory, we should account for the amount of revenue that is associated

with lost sales. For Theorem 1 (TS-fixed), we prove that the amount associated with lost sales is

no more than O(
√
T ). For Theorem 2 (TS-update), we show that the amount associated with lost

sales is no more than O(1).

Remark 1. It is useful to compare the regret bounds in Theorems 1 and 2 to the regret bounds

in Besbes and Zeevi (2012) and Badanidiyuru et al. (2013), since the algorithms proposed in those

papers can be applied to our model as well. However, the algorithms proposed in Besbes and Zeevi

(2012) and Badanidiyuru et al. (2013) are non-Bayesian, and they both consider the worst case

regret, defined by

max
θ∈Θ

Regret(T, θ),

where Θ is the set of all possible demand parameters. Besbes and Zeevi (2012) propose an algorithm

with worst case regret O(K5/3T 2/3
√

logT ) (Theorem 1 in their paper), while Badanidiyuru et al.

(2013) provide an algorithm with worst case regret O(
√
KT logT ) (Theorem 4.1 in their paper).

Unlike their results, our regret bounds in Theorems 1 and 2 are in terms of Bayesian regret, as we

defined earlier in Section 3.1.1. We refer readers to Russo and Van Roy (2014) for further discussion
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on Bayesian regret, and in particular, on the connection between Bayesian regret bounds and a

high probability bound on Regret(T, θ).

Remark 2. Let us remark on how the performance of TS-fixed and TS-update depends on K,

the number of price vectors. Theorems 1 and 2 show that the regret bounds depend on K by

O(
√
K logK). Therefore, these bounds are meaningful only when K is small. Unfortunately, as the

number of products increases, K may increase exponentially fast.

In practice, there are several ways to improve our algorithms’ performance when K is large. First,

the Thompson sampling algorithm allows any prior distribution of demand to be specified. Thus,

the retailer may choose a prior distribution that is correlated for different prices. This enables the

retailer to learn demand not only for the offered price, but also for prices that are not offered. We

provide an example for linear demand in Section 4.1. In fact, allowing demand dependence on prices

provides a major advantage over the algorithms in Besbes and Zeevi (2012) and Badanidiyuru

et al. (2013), which must learn the mean demand for each price vector independently.

Second, the retailer may have practical business constraints that it wants to impose on the price

vectors. For example, many apparel retailers choose to offer the same price for different colors of the

same style; each color would be a unique product since it has its own inventory and demand, but

every price vector must have the same price for each of these products. Such business constraints

significantly reduce the number of feasible price vectors.

Remark 3. Note that the regret bound of TS-update is slightly worse than the regret bound of

TS-fixed. Although intuition would suggest that updating inventory information in TS-update will

lead to better performance than TS-fixed, this intuition is somewhat surprisingly not always true

– we can find counterexamples where updating inventory information actually deteriorates the

performance for any given horizon length T . Further discussion can be found in Secomandi (2008),

which shows that for a general class of network revenue management problems, re-solving does not

guarantee improvement (even when the exact demand model is known). In particular, Secomandi

(2008) finds that lack of sequential consistency (i.e. when a previous solution is no longer feasible

upon re-solving) may lead to poor re-solving behavior.

3.2. Numerical Results

In this section, we first numerically analyze the performance of the TS-fixed and TS-update algo-

rithms for the setting where a single product is sold throughout the course of the selling season,

and we compare these results to other proposed algorithms in the literature. Then we present a

numerical analysis for a multi-product example; for consistency, the example we chose to use is

identical to the one presented in Section 3.4 of Besbes and Zeevi (2012).
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3.2.1. Single Product Example

Consider a retailer who sells a single product (N = 1) throughout a finite selling season. Without

loss of generality, we can assume that the product is itself the resource (M = 1) which has limited

inventory. The set of feasible prices is {$29.90,$34.90,$39.90,$44.90}, and the mean demand is given

by d($29.90) = 0.8, d($34.90) = 0.6, d($39.90) = 0.3, and d($44.90) = 0.1. As common in revenue

management literature, we show numerical results in an asymptotic regime when inventory is scaled

linearly with time: initial inventory I = αT , for α= 0.25 and 0.5.

We evaluate and compare the performance of the following five dynamic pricing algorithms which

have been proposed for our setting:

• TS-fixed: defined in Algorithm 1. We use the independent Beta prior as in Example 1.

• TS-update: defined in Algorithm 2. We use the independent Beta prior as in Example 1.

• BZ: the algorithm proposed in Besbes and Zeevi (2012), which first explores all prices and

then exploits the best pricing strategy by solving a linear program once. In our implementation,

we divide the exploration and exploitation phases at period τ = T 2/3, as suggested in their

paper.

• PD-BwK: the algorithm proposed in Badanidiyuru et al. (2013) that is based on a primal-

dual algorithm to solve LP(d(t)) and uses the UCB algorithm to estimate demand. For each

period, it estimates upper bounds on revenue, lower bounds on resource consumption, and

the dual price of each resource, and then selects the price vector with the highest revenue-to-

resource-price ratio.

• TS: this is the original Thompson sampling algorithm described in Thompson (1933),

which has been proposed for use as a dynamic pricing algorithm but does not consider inven-

tory constraints; see Appendix.

We measure performance as the average percent of “optimal revenue” achieved over 500 simu-

lations. By “optimal revenue”, we are referring to the upper bound on optimal revenue where the

retailer knows the mean demand at each price prior to the selling season; this upper bound is the

optimal value of LP(d), described in Section 3.1.1. Thus, the percent of the true optimal revenue

achieved is at least as high as the numbers shown. Figure 1 shows performance results for the five

algorithms outlined above.

The first thing to notice is that all four algorithms that incorporate inventory constraints converge

to the optimal revenue as the length of the selling season increases. The TS algorithm, which does

not incorporate inventory constraints, does not converge to the optimal revenue. This is because

in each of the examples shown, the optimal pricing strategy of LP(d) is a mixed strategy where

two prices are offered throughout the selling season as opposed to a single price being offered to

all customers. The optimal strategy of LP(d) when I = 0.25T is to offer the product at $39.90 to
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Figure 1 Performance Comparison of Dynamic Pricing Algorithms: Single Product Example

3
4

of the customers and $44.90 to the remaining 1
4

of the customers. The optimal strategy when

I = 0.5T is to offer the product at $34.90 to 2
3

of the customers and $39.90 to the remaining 1
3

of the

customers. In both cases, TS converges to the suboptimal price $29.90 offered to all the customers

since this is the price that maximizes expected revenue given unlimited inventory. This really

highlights the necessity of incorporating inventory constraints when developing dynamic pricing

algorithms. More generally, this highlights the necessity of incorporating operational constraints

when adapting machine learning algorithms for operational use.

Second, we note that in this example, TS-update outperforms all of the other algorithms in

every scenario, while TS-fixed ranks second in most cases. Interestingly, when considering only

those algorithms that incorporate inventory constraints, the gap between TS-update and the others

generally increases when (i) the length of the selling season is short, and (ii) the ratio I/T is small.

This is consistent with many other examples that we have tested and suggests that TS-update is

particularly powerful (as compared to the other algorithms) when inventory is very limited and

the selling season is short. In other words, TS-update is able to more quickly learn mean demand

and identify the optimal pricing strategy, which is particularly useful for low inventory settings.

3.2.2. Multi-Product Example

Now we consider an example used by Besbes and Zeevi (2012) where a retailer sells two products

(N = 2) using three resources (M = 3). Selling one unit of product i= 1 consumes 1 unit of resource

j = 1, 3 units of resource j = 2, and no units of resource j = 3. Selling one unit of product i= 2

consumes 1 unit of resource 1, 1 unit of resource 2, and 5 units of resource 3. The set of feasible
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prices is (p1, p2) ∈ {(1,1.5), (1,2), (2,3), (4,4), (4,6.5)}. Besbes and Zeevi (2012) assume customers

arrive according to a multivariate Poisson process. They considered the following three possibilities

for mean demand of each product as a function of the price vector:

1. Linear: µ(p1, p2) = (8− 1.5p1,9− 3p2),

2. Exponential: µ(p1, p2) = (5e−0.5p1 ,9e−p2), and

3. Logit: µ(p1, p2) =
(

10e−p1
1+e−p1+e−p2

, 10e−p2
1+e−p1+e−p2

)
.

We compare BZ, TS-fixed and TS-update for this example. We use the independent Gamma prior

described in Example 2. Since the PD-BwK algorithm proposed in Badanidiyuru et al. (2013) does

not apply to the setting where customers arrive according to a Poisson process, we did not include

this algorithm in our comparison.

We again measure performance as the average percent of “optimal revenue” achieved, where

optimal revenue refers to the upper bound on optimal revenue when the retailer knows the mean

demand at each price prior to the selling season. Thus, the percent of optimal revenue achieved

is at least as high as the numbers shown. Figure 2 shows average performance results over 500

simulations for each of the three underlying demand functions; we show results when inventory is

scaled linearly with time, i.e. initial inventory I = αT , for α= (3,5,7) and α= (15,12,30).

As in the single product example, each algorithm converges to the optimal revenue as the length

of the selling season increases. In most cases, TS-update and TS-fixed outperform the BZ algorithm

proposed in Besbes and Zeevi (2012). TS-fixed has slightly worse performance than TS-update in

most cases, but in a few cases the difference between the two algorithms is almost indistinguish-

able. For each set of parameters and when T = 10,000, TS-update and TS-fixed achieve 99–100%

of the optimal revenue whereas the Besbes and Zeevi (2012) algorithm achieves 92–98% of the

optimal revenue. As we saw in the single product example, TS-update performs particularly well

when inventory is very limited (I = (3,5,7)T ); it is able to more quickly learn mean demand and

identify the optimal pricing strategy. TS-update and TS-fixed also seem to perform particularly

well when mean demand is linear. Finally, note that the algorithm’s performance appears to be

fairly consistent across the three demand models tested.

4. Extensions and Further Applications

Thus far, we have developed simple and effective algorithms that dynamically change prices to

learn demand and maximize revenue, which can be applied to a practical setting faced by many

retailers. The algorithms build directly from the popular machine learning algorithm known as

Thompson sampling by inserting an additional linear programming subroutine to incorporate in-

ventory constraints. In this section, we show the broader applicability of this approach, highlighting
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Figure 2 Performance Comparison of Dynamic Pricing Algorithms – Multi-Product Example

how Thompson sampling can be adapted to address a variety of additional revenue management

and operations management challenges.

For brevity, we only present algorithms that do not update inventory information, analogous to

TS-fixed. One can easily modify the algorithms below to include inventory updating analogous to

TS-update by replacing constant cj with cj(t).

4.1. Continuous Price Sets with Linear Demand

The algorithms proposed in Section 2 were designed specifically for the setting with a discrete set

of prices. In this section, we show how our algorithms can be adapted to a model setting where

the retailer can choose prices from a continuous price set.

Let P (t) = [Pi(t)]i∈[N ] be the price vector that the retailer offers in period t. We require P (t)∈P,

where P is a bounded polyhedral set (i.e., a polytope) representing all feasible prices. We consider
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linear demand functions as in Keskin and Zeevi (2014), and extend their model setting to include

inventory constraints. Let D(t) = [Di(t)]i∈N be the demand in period t. We assume that there is

a vector α ∈ RN and a parameter matrix B ∈ RN×N , such that D(t) = α+BP (t) + ε(t), where

ε(t) ∈ RN is demand noise. We assume ε(t) is sampled independently from a known multivariate

normal distribution with zero mean. The demand parameter θ= (α,B)∈Θ⊂RN×(N+1) is unknown,

while the retailer has a prior distribution of θ over Θ. We also assume that Θ is bounded; for any

θ′ = (α′,B′)∈Θ, −B′ is positive definite, and there exists p∈P such that α′+B′p≤ 0, where “≤”

holds element-wise.

As described in Section 1.1, a key distinction between discrete vs. continuous price sets arises

from the structure of their respective revenue optimization problems. If the price set is discrete and

the retailer faces inventory constraints, there may not exist any single price that maximizes revenue

asymptotically as the number of periods T increases; the retailer must maximize over distributions

of prices as in TS-fixed and TS-update. In contrast, if the price set is continuous and the demand

function satisfies certain regularity conditions (Gallego and Van Ryzin 1994), there always exists

a single price that is asymptotically optimal, regardless of the presence of inventory constraints.

We next present TS-linear (Algorithm 3) – a natural adaptation of our Thompson sampling based

algorithms in Section 2 to this new model setting.

Algorithm 3 Thompson Sampling with Inventory for Linear Demand (TS-linear)

Repeat the following steps for all periods t∈ [T ]:

1. Sample Demand : Sample a random parameter vector θ(t) = (α(t),B(t))∈Θ from the posterior

distribution of θ given history Ht−1.

2. Optimize Prices given Sampled Demand : Solve the following quadratic programing problem:

QP(θ(t)) : max
p

pT (α(t) +B(t)p)

subject to AT (α(t) +B(t)p)≤ c

p∈P.

3. Offer Price: Let P (t) be the optimal solution to QP(θ(t)); offer price vector P (t).

4. Update Estimate of Parameter : Observe demand D(t). Update the history Ht = Ht−1 ∪

{P (t),D(t)} and the posterior distribution of θ given Ht.

Step 1 of TS-linear is similar to step 1 in TS-fixed. In problem QP(θ(t)) of step 2, recall that

c = (Ij/T )j∈[M ] is a vector representing the average inventory per period over the entire selling

horizon. Matrix A= [aij]i∈[N ],j∈[M ] is the resource consumption matrix. Note that unlike LP(d(t))
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in TS-fixed, the decision variables of QP(θ(t)) are single prices rather than probability distributions

over prices, for the reason that we discussed earlier. By our model assumptions, QP(θ(t)) is always

feasible and has a concave objective function, so the optimization step is well defined and can be

performed efficiently. Finally, steps 3 and 4 are similar to those in TS-fixed.

Performance Analysis For TS-linear, we have the following performance guarantee.

Theorem 3. The Bayesian regret of TS-linear is bounded by

BayesRegret(T )≤O(N 2 logT
√
T ).

Unlike Theorems 1 and 2, the regret bound of TS-linear does not depend on the number of

price vectors (which is uncountable in this case). Instead, the regret bound in Theorem 3 depends

on the number of unknown parameters, which is equal to N 2 +N =O(N 2). The regret bound is

near optimal up to a logT factor, since for a linear bandit problem with Ω(N 2) parameters – a

special case of our linear demand model without inventory constraints – no algorithm can achieve a

Bayesian regret bound smaller than Ω(N 2
√
T ) (see Theorem 2.1, Rusmevichientong and Tsitsiklis

(2010)).

The proof outline of Theorem 3 follows the proof idea in Theorem 1 (TS-fixed). In the proof

for Theorem 1, we build a connection between the dynamic pricing problem and the multi-armed

bandit problem – a special case of the finite price model without inventory constraints. Similarly, in

the proof for Theorem 3, we build a connection between our problem and the linear bandit problem

(Rusmevichientong and Tsitsiklis 2010, Russo and Van Roy 2014), which as we mentioned earlier

is a special case of our linear demand model without inventory constraints. The detailed proof of

Theorem 3 can be found in the E-companion.

4.2. Contextual Network Revenue Management

In the model of Section 2.1, we assumed that demand is i.i.d. given any price vector. In practice, the

retailer often knows some exogenous information that may affect demand, e.g. including seasonality,

changes of competitors’ prices, and customer attributes. In this section, we extend our model and

algorithms to a setting that can incorporate such contextual information.

Model and Algorithm We extend the model setting in Section 2.1 based on the contextual

bandits model in Badanidiyuru et al. (2014). Suppose that at the beginning of each period t∈ [T ],

the retailer observes some context (or feature) ξ(t), where ξ(t) belongs to some discrete set X (i.e.,

the feature space). We assume that context ξ(t) is sampled i.i.d. from a known distribution. The

retailer then observes ξ(t) and selects a price vector P (t) ∈ {p1, p2, . . . , pK , p∞}, where p∞ forces

demand to be zero with probability one. We assume that for any ξ ∈X , the product demand under
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a given price vector is i.i.d., parameterized by an unknown vector θ ∈Θ. In particular, we denote

by dik(ξ | θ) the mean demand of product i ∈ [N ] under price vector pk (∀k ∈ [K]), given context

ξ and parameter θ. The retailer is given a prior distribution of θ at the beginning of the selling

season, and maximizes expected revenue over the course of the selling season.

Our assumption that the retailer knows the distribution of context is realistic in many practical

applications. For example, suppose Amazon wants to offer different prices to its Prime members

and non-members. We can then define context ξ(t) as a dummy variable indicating whether the tth

arriving customer is a Prime member. Amazon likely has a pretty good estimate of the percentage

of customers visiting its website who are Prime members based on historical data; thus we assume

they know this distribution of prime members in our model.

Algorithm 4 Thompson Sampling with Inventory and Contextual Information (TS-contextual)

Repeat the following steps for all periods t= 1, ..., T :

1. Sample Demand : Sample θ(t) from the posterior distribution of θ given history Ht−1.

2. Optimize Prices given Sampled Demand : Solve the following linear program, denoted by LP(ξ |

θ(t)):

LP(ξ | θ(t)) : max
x

Eξ

[
K∑
k=1

N∑
i=1

pikdik(ξ | θ(t))xξ,k

]

subject to Eξ

[
K∑
k=1

N∑
i=1

aijdik(ξ | θ(t))xξ,k

]
≤ cj, ∀j ∈ [M ]

K∑
k=1

xξ,k ≤ 1, ∀ξ ∈X

xξ,k ≥ 0, ∀ξ ∈X , k ∈ [K].

Let x(t) = (xξ,k(t))ξ∈X ,k∈[K] be the optimal solution to LP(ξ | θ(t)).

3. Offer Price: Observe the realized context ξ(t), and then offer price vector P (t) = pk with

probability xξ(t),k(t), and choose P (t) = p∞ with probability 1−
∑K

k=1 xξ(t),k(t).

4. Update Estimate of Parameter : Observe demand D(t). Update the history Ht = Ht−1 ∪

{ξ(t), P (t),D(t)} and the posterior distribution of θ.

For this model, we propose the TS-contextual algorithm which is an extension of TS-fixed that

incorporates the contextual information; TS-contextual is presented in Algorithm 4. In step 1,

the retailer samples an instance of the demand parameter from its posterior distribution, similar

to step 1 in TS-fixed. The linear program in step 2 has to be modified to include the context

information. We use Eξ[·] to denote the expectation operator where ξ is a random variable following
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the probability distribution of contexts. Thus, the objective and the constraints of the LP account

for the randomness of contexts appearing in future periods. The decision variable x is a family of

distributions over k ∈ [K] for each context ξ ∈ X . In step 3, the retailer observes the context and

then chooses price according to the probability distribution associated with this particular context.

Finally, step 4 is similar to that in TS-fixed.

Performance Analysis The following theorem provides a Bayesian regret bound for TS-

contextual.

Theorem 4. The Bayesian regret of TS-contextual is bounded by

BayesRegret(T )≤

(
18pmax + 38

M∑
j=1

N∑
i=1

pjmaxaij d̄i

)
·
√
|X |TK logK,

where constants pmax and pjmax are defined in Section 3.1.2.

The proof outline for Theorem 4 closely follows the proof for Theorem 1. In fact, Theorem 1 can

be viewed as a special case of Theorem 4 when |X |= 1. The detailed proof of Theorem 4 can be

found in the E-companion.

Remark 4. The regret bound depends on the size of the feature space by O(
√
|X |), and is mean-

ingful when |X | is small compared to T . Recently, for a similar problem, Agrawal et al. (2016)

shows that one can establish a regret bound of O(
√
KT log(T |Π|)), where Π is the set of admissable

policies that maps X to {p1, . . . , pK}. If Π includes all policies, then |Π|=K |X |, and we recover the

regret bound in Theorem 4 (up to log factors).

4.3. Bandits with Knapsacks Problem

Beyond pricing, our algorithms can be applied to other operations management challenges. Badani-

diyuru et al. (2013) propose a “bandits with knapsacks” problem, which can model various appli-

cations in pricing, crowdsourcing and advertising.

The “bandits with knapsacks” problem is the following: there are K arms representing different

“actions” that the decision maker can take, and M resources with limited budget. At each time

period t∈ [T ], the decision maker chooses to pull one of the arms. If an arm is pulled, the decision

maker receives a random reward in [0,1], and consumes a certain amount of resources, represented

by a random vector in [0,1]M . For any fixed arm, the reward and resource consumption vector is

sampled i.i.d. from a fixed but unknown distribution on [0,1]× [0,1]M . The process stops at the

first time when the total consumption of some resource exceeds its budget; otherwise, the process

stops at period T .

Next we give an example for applying the “bandits with knapsacks” model to display advertising.
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Example Application: Display Advertising Consider an online ad platform (e.g. Google).

For each user logging on to a third-party website (e.g. The New York Times), Google may display

a banner ad on that website. If the user clicks the ad, the advertiser sponsoring the ad pays a

fixed amount of money that is split between Google and the publisher (i.e., the New York Times).

If the user does not click the ad, no payment is made. Google then faces a problem of allocating

ads to publishers to maximize its revenue, while satisfying advertisers’ budgets. Assuming that

click rates for ads are unknown, this example fits into the bandits with knapsacks model where

each arm is an ad, and each resource corresponds to an advertiser’s budget. If an ad is clicked,

Google receives a reward and consumes some of the advertiser’s budget.

We propose TS-BwK, a Thompson sampling based algorithm for the Bandits with Knapsacks

problem. Let rk be the mean reward of arm k, and let bjk be the expected consumption of resource

j when arm k is pulled. (For the advertising example above, rk is the mean revenue when ad k is

displayed, and bjk is the expected payment from advertiser j when ad k is displayed.) We denote

by A(t) the arm that is pulled at time t, and denote by R(t) the observed reward and B(t)∈ [0,1]M

the observed resource consumption vector at time t. For each resource j ∈ [M ], we use cj := Ij/T

to denote the average units of resource per time period. Algorithm 5 outlines the steps of TS-BwK.

In step 1, for each arm, the firm samples mean reward and expected consumption of each resource;

this is analogous to the retailer sampling mean demand (equivalently, revenue) in step 1 of TS-

fixed. In step 2, the firm maximizes its reward subject to resource constraints, just as the retailer

maximizes revenue subject to inventory constraints in step 2 of TS-fixed. In step 3, the firm chooses

the arm to maximize its reward; this is analogous to the retailer offering the price to maximize its

revenue in step 3 of TS-fixed. Finally in step 4, the firm observes the reward and updates history,

just as the retailer observes demand and updates history in step 4 of TS-fixed.

Performance Analysis The following theorem shows that TS-BwK has a Bayesian regret

bounded by O(
√
T logT ).

Theorem 5. The Bayesian regret of TS-BwK is bounded by

BayesRegret(T )≤
(

37M

cmin

log(T ) + 20

)√
KT logK,

where cmin = minj∈[M ] cj.

The proof of Theorem 5 can be found in the E-companion.

Remark 5. Compared to the O(
√
KT logK) regret bound for TS-fixed, the regret bound for TS-

BwK has an extra log(T ) factor. This is due to a distinction in model assumptions: In the network
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Algorithm 5 Thompson Sampling for Bandits with Knapsacks (TS-BwK)

Repeat the following steps for all periods t= 1, ..., T :

1. Sample: Sample a vector (rk(t), bjk(t))k∈[K],j∈[M ] from the posterior distribution of

(rk, bjk)k∈[K],j∈[M ] given observed history Ht−1.

2. Optimize: Solve the following linear program:

max
x

K∑
k=1

rk(t)xk

subject to
K∑
k=1

bjk(t)xk ≤ cj, ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, k ∈ [K].

Let x(t) = (x1(t), . . . , xK(t)) be its optimal solution.

3. Take Action: Pull arm k with probability xk(t), and take no action with probability 1 −∑K

k=1 xk(t).

4. Update: If an arm is pulled, observe reward R(t) and consumption vector B(t). Update history

Ht =Ht−1 ∪{A(t),R(t),B(t)}.

revenue management model, if some resource is depleted, we allow the selling process to continue

and the retailer can still offer products that do not consume this particular resource. In the bandits

with knapsacks problem defined by Badanidiyuru et al. (2013), the process immediately stops when

the total consumption of any resource exceeds its budget. Due to this distinction, additional proof

steps are required for TS-BwK, which result in an extra log(T ) factor.

5. Conclusion

We focus on a finite-horizon, price-based network revenue management problem in which an online

retailer aims to maximize revenue from multiple products with limited inventory. As common in

practice, the retailer does not know the mean demand for each price, but can learn mean demand

by observing customer purchase decisions over time. The main contribution of our work is the

development of implementable, effective dynamic pricing algorithms which balance the exploration-

exploitation tradeoff to learn mean demand and maximize revenue over the course of the selling

season in the presence of limited inventory constraints. These algorithms show the power of extend-

ing a machine learning technique, Thompson sampling, for practical use in revenue management by

incorporating inventory constraints into the retailer’s pricing strategy using a linear programming

subroutine. Analogous to the classical Thompson sampling algorithm, in every time period, our
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algorithms update the posterior distribution of the unknown demand model parameter and then

use a randomly sampled parameter value from the posterior distribution to make pricing decisions.

We show that our O(
√
T ) Bayesian regret bound matches the best possible lower bound Ω(

√
T ).

Furthermore, our algorithms prove to have promising numerical performance results when com-

pared to other algorithms developed for the same setting. We also show how the algorithms can

be extended to model settings with continuous price sets or contextual information. More broadly,

our algorithms can be adapted to a general multi-armed bandit problem with resource constraints,

with applications to other operations management challenges beyond pricing, such as display ad-

vertising.

There are several directions for future work that we think would be valuable. A first direction

of future work is to extend our algorithms for assortment optimization, another class of important

revenue management problems. Second, one future direction is generalizing our TS-contextual algo-

rithm to avoid the regret’s dependence on the size of the feature space. A third direction involves

developing and conducting field experiments in partnership with a retailer(s) to understand the

effectiveness of our algorithms in practice.

Endnotes

1. Although Chen et al. (2014) also uses inventory update in a price-based revenue management

problem with unknown demand, their algorithm separates the selling season into exploration and

exploitation phases, and applies inventory update only in the exploitation phase; in contrast, TS-

update applies inventory updating throughout the entire selling horizon.

2. The boundedness of demand is required since our proof applies a large deviation bound and

analysis technique by Audibert and Bubeck (2009) and Bubeck and Liu (2013) that is specific to

bounded probability distributions. In general, if demand is unbounded and follows a subexponential

distribution, one can replace the large deviation bound in the proof by subexponential tail bounds,

and replace the demand upper bound d̄i by an upper bound on the mean demand. The same proof

in the appendix works and would lead to O(
√
TK logT ) regret bounds in both Theorems 1 and 2.
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Appendix. Multi-Armed Bandit Problem and Thompson Sampling with Unlimited

Inventory

The original Thompson sampling algorithm was proposed by Thompson (1933) for the multi-

armed bandit problem without inventory constraints. The problem is the following: Suppose there

are K arms. At each time period t ∈ [T ], the decision maker chooses to pull one of the arms, and

receives a random reward R(t) ∈ [0,1]. We assume that if arm k ∈ [K] is pulled, the reward is

sampled i.i.d. from a fixed distribution with mean rk. The true value of r= (rk)k∈[K] is unknown,

while the decision maker only knows a prior distribution of r on [0,1]K . For this problem, Thompson

(1933) proposed the following algorithm (Algorithm 6).

Algorithm 6 Thompson Sampling with Unlimited Inventory

Repeat the following steps for each period t= 1, ..., T :

1. Sample: Sample a vector (θk(t))k∈[K] from the posterior distribution of r given Ht−1.

2. Take Action: Select an arm A(t)∈ arg maxk∈[K] θk(t).

3. Update: Observe reward R(t) and update history Ht =Ht−1 ∪{A(t),R(t)}.
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E-companion: Theoretical Analysis for “Online Network
Revenue Management using Thompson Sampling”

EC.1. Proof for TS-fixed

Theorem 1. The Bayesian regret of TS-fixed is bounded by

BayesRegret(T )≤

(
18pmax + 37

N∑
i=1

M∑
j=1

pjmaxaij d̄i

)
·
√
TK logK.

Proof. Let d= {dik}i∈[N],k∈[K] be the mean demand under the true parameter θ. For each price k ∈ [K],

we denote by rk =
∑N

i=1 pikdik the mean revenue, and denote by bjk =
∑N

i=1 aijdik the expected consumption

of resource j. Recall that x∗ is the optimal solution of the following LP:

LP(d) : max
x

K∑
k=1

rkxk

subject to

K∑
k=1

bjkxk ≤ cj , ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, ∀k ∈ [K].

Similarly, let the mean demand under θ(t), the sampled parameter at period t, be d(t) = {dik(t)}i∈[N],k∈[K].

We denote by rk(t) =
∑N

i=1 pikdik(t) and bjk(t) =
∑N

i=1 aijdik(t) the revenue and resource consumption under

the demand sampled at period t. Recall that x(t) is the optimal solution of the following LP:

LP(d(t)) : max
x

K∑
k=1

rk(t)xk

subject to

K∑
k=1

bjk(t)xk ≤ cj , ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, ∀k ∈ [K].

If we assume unlimited inventory, the expected revenue of TS-fixed over the selling horizon is given by

E[

T∑
t=1

K∑
k=1

rk1{P (t)=pk}] = E[

T∑
t=1

K∑
k=1

rkE[1{P (t)=pk} | θ, θ(t)]] = E[

T∑
t=1

K∑
k=1

rkxk(t)]. (EC.1)

Of course, to calculate the actual revenue, we should subtract from Eq (EC.1) the amount of revenue

associated with lost sales. We claim that this amount is no more than

M∑
j=1

pjmaxE

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+
 , (EC.2)

where (x)+ = max{x,0} and pjmax = maxi:aij 6=0,k∈[K](pik/aij). To see this, recall that Di(t) is the realized

demand of product i at time t, so
(∑N

i=1

∑T

t=1 aijDi(t)− Ij
)+

is the amount of resource j consumed beyond



ec2 e-companion to Ferreira, Simchi-Levi, and Wang: Online Network Revenue Management using Thompson Sampling

the inventory budget Ij . The coefficient maxi:aij 6=0,k∈[K](pik/aij) is the maximum revenue that can be achieved

by adding one unit of resource j. Therefore, Eq (EC.2) is an upper bound of the revenue that should be

subtracted from (EC.1).

In Section 3.1.1, we have shown that

BayesRegret(T )≤ T ·E[

K∑
k=1

rkx
∗
k]−E[Rev(T )].

Therefore, by Eq (EC.1) and (EC.2), we have

BayesRegret(T )

≤T ·E[

K∑
k=1

rkx
∗
k]−E[

T∑
t=1

K∑
k=1

rkxk(t)] +

M∑
j=1

pjmaxE

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+


= E

[
T∑
t=1

K∑
k=1

rk(x
∗
k−xk(t))

]
︸ ︷︷ ︸

(I)

+

M∑
j=1

pjmaxE

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+


︸ ︷︷ ︸
(II)

.

To complete the proof, we show that both (I) and (II) are bounded by O(
√
T ).

Part (I): Revenue Bound. We first show that

E

[
T∑
t=1

K∑
k=1

rk(x
∗
k−xk(t))

]
≤ pmax · 18

√
KT log(K), (EC.3)

where pmax = maxk∈[K]{
∑N

i=1 pikd̄i} is the maximum revenue that can be achieved in a single period.

Let Ht−1 = (P (1),D(1), . . . , P (t−1),D(t−1)) be the history available at the beginning of period t. In the

TS-fixed algorithm, note that the values of θ(t) are sampled from the posterior distribution of θ conditional

on history Ht−1, i.e. P(θ | Ht−1) = P(θ(t) | Ht−1). In order to see this equality more clearly, note that since

Thompson sampling is defined in a Bayesian setting, the value of the unknown parameter (or parameters) θ

is a random variable. Nature draws θ at the beginning of the horizon, but the value is not revealed to the

retailer, so the retailer keeps updating its estimation using a posterior distribution P (θ|Ht−1). Then, in each

period, the retailer draws a random parameter θ(t) according to the posterior distribution. So, although θ

does not necessarily equal θ(t), by definition, the two random variables have the same probability distribution

and thus P (θ|Ht−1) = P (θ(t)|Ht−1). This important equality is also used in Russo and Van Roy (2014).

We denote by d the mean demand under θ and d(t) the mean demand under θ(t). Given P (θ|Ht−1) =

P (θ(t)|Ht−1) and because x∗ is the optimal solution of LP(d) and x(t) is the optimal solution of LP(d(t)),

the solutions x∗ and x(t) are also identically distributed conditional on Ht−1 (although again, this does not

imply x∗ = x(t)), namely

P(x∗ | Ht−1) = P(x(t) | Ht−1).

(If there are multiple optimal solutions to either LP(d) or LP(d(t)), we assume the same tie-breaking rule is

used.)

Therefore, the left-hand side of Eq (EC.3) can be decomposed using the law of iterated expectation as

E

[
T∑
t=1

K∑
k=1

rk(x
∗
k−xk(t))

]
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=

T∑
t=1

K∑
k=1

E[E[rkx
∗
k− rkxk(t) | Ht−1]]

=

T∑
t=1

K∑
k=1

E[E[rkx
∗
k−Uk(t)x∗k +Uk(t)xk(t)− rkxk(t) | Ht−1]]

=

T∑
t=1

K∑
k=1

E[E[rkx
∗
k−Uk(t)x∗k | Ht−1]] +

T∑
t=1

K∑
k=1

E[E[Uk(t)xk(t)− rkxk(t) | Ht−1]]

=

T∑
t=1

K∑
k=1

E[rkx
∗
k−Uk(t)x∗k] +

T∑
t=1

K∑
k=1

E[Uk(t)xk(t)− rkxk(t)]. (EC.4)

This decomposition is proposed by Russo and Van Roy (2014). Here, Uk(t) is a deterministic function given

Ht−1, defined as follows. Let Nk(t− 1) be the number of times when price vector pk is offered over the first

t−1 periods, and let d̂ik(t−1) = (
∑t−1

s=1 1{P (s)=pk}Di(s))/Nk(t−1) be the average demand of product i when

price pk is offered in the first t− 1 periods. The function Uk(t) is defined by

Uk(t) =

N∑
i=1

pik min

d̂ik(t− 1) + d̄i

√√√√ log
(

TK
Nk(t−1)

)
Nk(t− 1)

, d̄i

 . (EC.5)

In the multi-armed bandit literature, Uk(t) is known as an upper confidence bound (UCB), since it is an

upper bound of rk with high probability. Intuitively, if Uk(t) is an upper bound of rk, the first term of Eq

(EC.4) (rkx
∗
k − Uk(t)x∗k) is non-positive, while the second term (Uk(t)xk(t)− rkxk(t)) converges to zero as

Nk(t− 1) increases. So both terms of Eq (EC.4) will eventually vanish.

More precisely, by Lemma EC.1 and EC.2, we have

T∑
t=1

K∑
k=1

E[rkx
∗
k−Uk(t)x∗k]≤ pmax · 6

√
KT ;

T∑
t=1

K∑
k=1

E[Uk(t)xk(t)− rkxk(t)]≤ pmax · 12
√
KT log(K).

This gives us the bound in Eq (EC.3).

Part II: Inventory Bound. Next, we show that

E

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+
≤ (

N∑
i=1

aij d̄i) · 37
√
KT logK, ∀j ∈ [M ]. (EC.6)

We decompose the left hand side of Eq (EC.6) as

E

( T∑
t=1

N∑
i=1

aijDi(t)− Ij

)+


=E

( T∑
t=1

N∑
i=1

(
aijDi(t)−

K∑
k=1

aijdikxk(t) +

K∑
k=1

aijdikxk(t)

)
− Ij

)+


≤E

[∣∣∣∣∣
T∑
t=1

N∑
i=1

(
aijDi(t)−

K∑
k=1

aijdikxk(t)

)∣∣∣∣∣
]

+ E

( T∑
t=1

N∑
i=1

K∑
k=1

aijdikxk(t)− Ij

)+


≤
N∑
i=1

aijE

[∣∣∣∣∣
T∑
t=1

(
Di(t)−

K∑
k=1

dikxk(t)

)∣∣∣∣∣
]

︸ ︷︷ ︸
(†)

+ E

( T∑
t=1

K∑
k=1

bjkxk(t)− Ij

)+


︸ ︷︷ ︸
(‡)

.
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In the last inequality, we use the definition bjk =
∑N

i=1 aijdik.

We first consider term (†). For any i ∈ [N ], using the fact that E[|X|]2 ≤ E[X2] for any random variable

X, we have

E

[∣∣∣∣∣
T∑
t=1

(
Di(t)−

K∑
k=1

dikxk(t)

)∣∣∣∣∣
]2

≤E

( T∑
t=1

(
Di(t)−

K∑
k=1

dikxk(t)

))2


=E

 T∑
t=1

(
Di(t)−

K∑
k=1

dikxk(t)

)2
+ E

[
2
∑

1≤s<t≤T

(
Di(s)−

K∑
k=1

dikxk(s)

)(
Di(t)−

K∑
k=1

dikxk(t)

)]
.

The second term in the last equation is equal to zero, because conditional on (Ht−1, d, θ(s), θ(t)), the demand

Di(t) has conditional expectation
∑K

k=1 dikxk(t), while Di(s)−
∑K

k=1 dikxk(s) is a constant. Thus, we have

E

[(
Di(s)−

K∑
k=1

dikxk(s)

)(
Di(t)−

K∑
k=1

dikxk(t)

)]

=E

[(
Di(s)−

K∑
k=1

dikxk(s)

)
E

[(
Di(t)−

K∑
k=1

dikxk(t)

)
| Ht−1, d, θ(s), θ(t)

]]

=E

[(
Di(s)−

K∑
k=1

dikxk(s)

)
· 0

]
= 0.

Therefore, we have

(†)≤
N∑
i=1

aijE

 T∑
t=1

(
Di(t)−

K∑
k=1

dikxk(t)

)2
 1

2

≤ (

N∑
i=1

aij d̄i) ·
√
T , (EC.7)

where we use the assumption that Di(t) is upper bounded by d̄i almost surely.

We now consider the term (‡). For the optimal solution of LP(d(t)), it holds almost surely that

K∑
k=1

bjk(t)xk(t)≤ cj = Ij/T.

Therefore, we have

(‡) =E

( T∑
t=1

K∑
k=1

bjkxk(t)−
T∑
t=1

cj

)+


≤E

( T∑
t=1

K∑
k=1

bjkxk(t)−
T∑
t=1

K∑
k=1

bjk(t)xk(t)

)+


=E

( T∑
t=1

K∑
k=1

(bjk− bjk(t))xk(t)

)+


≤
T∑
t=1

K∑
k=1

E
[
(bjk− bjk(t))+xk(t)

]
. (EC.8)

In the last step, we use the fact that (α+β)+ ≤ α+ +β+ for any α,β ∈R.
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Similar to Eq (EC.5) in Part (I), we define the upper confidence bound (UCB) function

Ujk(t) =

N∑
i=1

aij min

d̂ik(t− 1) + d̄i

√√√√ log
(

TK
Nk(t−1)

)
Nk(t− 1)

, d̄i

 ,

and the lower confidence bound (LCB) function

Ljk(t) =

N∑
i=1

aij max

d̂ik(t− 1)− d̄i

√√√√ log
(

TK
Nk(t−1)

)
Nk(t− 1)

,0

 .

Since Ujk(t)≥Ljk(t), by Eq (EC.8) we have

(‡)≤
T∑
t=1

K∑
k=1

E
[
(bjk−Ujk(t) +Ujk(t)−Ljk(t) +Ljk(t)− bjk(t))+xk(t)

]
≤

T∑
t=1

K∑
k=1

E
[
(bjk−Ujk(t))+xk(t)

]
+

T∑
t=1

K∑
k=1

E [(Ujk(t)−Ljk(t))xk(t)]

+

T∑
t=1

K∑
k=1

E
[
(Ljk(t)− bjk(t))+xk(t)

]
≤

T∑
t=1

K∑
k=1

E
[
(bjk−Ujk(t))+

]
+

T∑
t=1

K∑
k=1

E [(Ujk(t)−Ljk(t))xk(t)]

+

T∑
t=1

K∑
k=1

E
[
(Ljk(t)− bjk(t))+

]
.

In the second step, we again use the fact that (α+ β + γ)+ ≤ α+ + β+ + γ+ for any α,β, γ ∈R. In the last

step, we use the fact that 0≤ xk(t)≤ 1.

By Lemma EC.1, we have

K∑
k=1

T∑
t=1

E
[
(bjk−Ujk(t))+

]
≤ (

N∑
i=1

aij d̄i) · 6
√
KT,

K∑
k=1

T∑
t=1

E
[
(Ljk(t)− bjk)+

]
≤ (

N∑
i=1

aij d̄i) · 6
√
KT.

Because θ and θ(t) are identically distributed given Ht−1, i.e., P(θ | Ht−1) = P(θ(t) | Ht−1), we have P(bjk |

Ht−1) = P(bjk(t) | Ht−1). Since Ljk(t) is deterministic given Ht−1, by the law of iterated expectation, we have

K∑
k=1

T∑
t=1

E
[
(Ljk(t)− bjk(t))+

]
=

K∑
k=1

T∑
t=1

E
[
E[(Ljk(t)− bjk(t))+ | Ht−1]

]
=

K∑
k=1

T∑
t=1

E
[
E[(Ljk(t)− bjk)+ | Ht−1]

]
=

K∑
k=1

T∑
t=1

E
[
(Ljk(t)− bjk)+

]
≤(

N∑
i=1

aij d̄i) · 6
√
KT.

In addition, by Lemma EC.2, we have

T∑
t=1

K∑
k=1

E [(Ujk(t)−Ljk(t))xk(t)]≤ (

N∑
i=1

aij d̄i) · 24
√
KT logK.
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Combining the above results, we have

(‡)≤ (

N∑
i=1

aij d̄i) · (6 + 6 + 24
√

logK)
√
KT ≤ (

N∑
i=1

aij d̄i) · 36
√
KT logK. (EC.9)

Adding both Eq (EC.7) and (EC.9), we complete the proof of Eq (EC.6). In the final step, combining Eq

(EC.3) and (EC.6), we establish an upper bound of the Bayesian regret of TS-fixed as

BayesRegret(T )≤

(
18pmax + 37

(
M∑
j=1

pjmax

N∑
i=1

aij d̄i

))
·
√
TK logK.

EC.2. Proof for TS-update

Theorem 2. The Bayesian regret of TS-update is bounded by

BayesRegret(T )≤

(
18pmax + 40

N∑
i=1

M∑
j=1

pjmaxaij d̄i

)√
KT logK + pmaxM.

Proof. Let the mean demand under θ(t), the sampled parameter at period t, be d(t) = {dik(t)}i∈[N],k∈[K].

We denote by rk(t) =
∑N

i=1 pikdik(t) and bjk(t) =
∑N

i=1 aijdik(t) the revenue and resource consumption under

the demand sampled at period t, and denote by cj(t) = Ij(t− 1)/(T − t+ 1) the inventory rate for resource

j at the beginning of period t. Recall that x(t) is the optimal solution of the following LP:

LP(d(t), c(t)) : max
x

K∑
k=1

rk(t)xk

subject to

K∑
k=1

bjk(t)xk ≤ cj(t), ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, ∀k ∈ [K].

If we assume unlimited inventory, the expected revenue of TS-update over the selling horizon is given by

E[

T∑
t=1

K∑
k=1

rk1{P (t)=pk}] = E[

T∑
t=1

K∑
k=1

rkE[1{P (t)=pk} | θ, θ(t)]] = E[

T∑
t=1

K∑
k=1

rkxk(t)]. (EC.10)

To calculate the actual revenue, we should subtract from Eq (EC.10) the amount of revenue associ-

ated with lost sales. For TS-update, we claim that this amount is no more than pmaxM , where pmax =

maxk∈[K]{
∑N

i=1 pikd̄i} is the maximum revenue that can possibly be achieved in a single period and M is

the number of resources. To show this, for any resource j = 1, . . . ,M , we define Tj = max{t | cj(t) > 0, t =

1, . . . , T}. When t < Tj , the inventory level of resource j at the end of period t is positive. When t > Tj , we

have cj(t) = 0, so the optimal solution of TS-update, x(t), will not use resource j in this period. Therefore,

the case when TS-update consumes resource j over its inventory limit can only happen at period t = Tj .

Since there are M resources in total, there can be at most M such periods where TS-update uses resources

over the limit and incurs lost sales. The maximum revenue that can be achieved in these periods is pmaxM .

Therefore, the actual revenue after accounting for lost sales is bounded by

E[Revenue(T )]≥E[

T∑
t=1

K∑
k=1

rkxk(t)]− pmaxM. (EC.11)
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In Section 3.1.1, we have shown that

BayesRegret(T )≤ T ·E[

K∑
k=1

rkx
∗
k]−E[Revenue(T )].

By Eq (EC.11), we have

BayesRegret(T )≤ T ·E[

K∑
k=1

rkx
∗
k]−E[

T∑
t=1

K∑
k=1

rkxk(t)] + pmaxM. (EC.12)

We consider another linear program where the sampled demands are replaced by true demands, while the

inventory rate at the beginning of period t is still given by cj(t). For each price k = 1, . . . ,K, we denote by

rk =
∑N

i=1 pikdik the mean revenue, and denote by bjk =
∑N

i=1 aijdik the expected consumption of resource

j. We define the following linear program LP(d, c(t)) as:

LP(d, c(t)) : max
x

K∑
k=1

rkxk

subject to

K∑
k=1

bjkxk ≤ cj(t), ∀j ∈ [M ]

K∑
k=1

xk ≤ 1

xk ≥ 0, ∀k ∈ [K].

We denote the optimal solution of LP(d, c(t)) by x∗(t).

By Eq (EC.12), we have

BayesRegret(T )≤E[

T∑
t=1

K∑
k=1

(rkx
∗
k− rkxk(t))] + pmaxM

=E[

T∑
t=1

K∑
k=1

(rkx
∗
k− rkx∗k(t) + rkx

∗
k(t)− rkxk(t))] + pmaxM

= E[

T∑
t=1

K∑
k=1

(rkx
∗
k(t)− rkxk(t))]︸ ︷︷ ︸
(I)

+ E[

T∑
t=1

K∑
k=1

(rkx
∗
k− rkx∗k(t))]︸ ︷︷ ︸

(II)

+pmaxM.

To complete the proof, we show that both (I) and (II) are bounded by O(
√
T ).

Part (I). First, we show that

E

[
T∑
t=1

K∑
k=1

(rkx
∗
k(t)− rkxk(t))

]
≤ pmax · 18

√
KT logK, (EC.13)

The proof for Eq (EC.15) is almost identical to the proof for Eq (EC.3) for TS-fixed. Let Ht−1 =

(P (1),D(1), . . . , θ(t− 1), P (t− 1),D(t− 1)) be the history available at the beginning of period t. In the TS-

update algorithm, note that the values of θ(t) are sampled from the posterior distribution of θ conditional

on history Ht−1, i.e. P(θ | Ht−1) = P(θ(t) | Ht−1); see the explanation in EC.1. Because x∗(t) is the optimal

solution of LP(d, c(t)) and x(t) is the optimal solution of LP(d(t), c(t)), and because c(t) is deterministic

given Ht−1, the solutions x∗ and x(t) are identically distributed conditional on Ht−1, namely

P(x∗(t) | Ht−1) = P(x(t) | Ht−1).
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Therefore, using the law of iterated expectation, the left hand side of Eq (EC.15) can be decomposed as

E

[
T∑
t=1

K∑
k=1

(rkx
∗
k(t)− rkxk(t))

]

=

T∑
t=1

K∑
k=1

E[E[rkx
∗
k(t)− rkxk(t) | Ht−1]]

=

T∑
t=1

K∑
k=1

E[E[rkx
∗
k(t)−Uk(t)x∗k(t) +Uk(t)xk(t)− rkxk(t) | Ht−1]]

=

T∑
t=1

K∑
k=1

E[E[rkx
∗
k(t)−Uk(t)x∗k(t) | Ht−1]] +

T∑
t=1

K∑
k=1

E[E[Uk(t)xk(t)− rkxk(t) | Ht−1]]

=

T∑
t=1

K∑
k=1

E[rkx
∗
k(t)−Uk(t)x∗k(t)] +

T∑
t=1

K∑
k=1

E[Uk(t)xk(t)− rkxk(t)]. (EC.14)

Here, Uk(t) is a deterministic function given Ht−1, defined by

Uk(t) =

N∑
i=1

pik min

d̂ik(t− 1) + d̄i

√√√√ log
(

TK
Nk(t−1)

)
Nk(t− 1)

, d̄i

 .

We denote by Nk(t− 1) the number of times when price (vector) pk is offered over the first t− 1 periods,

and denote by d̂ik(t−1) = (
∑t−1

s=1 1{P (s)=pk}Di(s))/Nk(t−1) the average demand of product i when price pk

is offered in the first t− 1 periods.

By Lemma EC.1, we have

T∑
t=1

K∑
k=1

E[rkx
∗
k(t)−Uk(t)x∗k(t)]≤

T∑
t=1

K∑
k=1

E[(rk−Uk(t))+]≤ pmax · 6
√
KT.

In addition, Lemma EC.2 shows that

T∑
t=1

K∑
k=1

E [(Uk(t)xk(t)− rkxk(t))]≤ pmax · 12
√
KT logK.

Substituting the above bounds in Eq (EC.14), we get Eq (EC.13).

Part (II). Next, we prove that

E

[
T∑
t=1

K∑
k=1

(rkx
∗
k− rkx∗k(t))

]
≤

M∑
j=1

(
pjmax

N∑
i=1

aij d̄i

)
· 40
√
KT logK. (EC.15)

Recall that by the definition of LP(d),
∑K

k=1(rkx
∗
k) is the optimal revenue per time period, assuming

that the demand is deterministic and the quantity of resource j available at this period is cj . Likewise,

by the definition of LP(d, c(t)),
∑K

k=1(rkx
∗
k(t)) is the optimal revenue per time period, assuming the same

deterministic demand, while the quantity of resource j is replaced by cj(t).

By definition, increasing resource j by one unit would increase the optimal value of LP(d, c(t)) by at most

pjmax. Therefore, for any t= 1, . . . ,K, we have

K∑
k=1

(rkx
∗
k− rkx∗k(t))≤

M∑
j=1

pjmax(cj − cj(t))+. (EC.16)
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It holds that cj =
Ij

T
and cj(t) =

Ij(t−1)

T−t+1
. In addition, we have

Ij(s− 1)− Ij(s)≤
N∑
i=1

aijDi(s), ∀1≤ s≤ t. (EC.17)

Eq (EC.17) holds as an inequality, not as an equality, because there may be lost sales in period s. By Eq

(EC.17), we have

E [cj − cj(t)] =E

[
t−1∑
s=1

(cj(s)− cj(s+ 1))

]

=E

[
t−1∑
s=1

(
Ij(s− 1)

T − s+ 1
− Ij(s)

T − s

)]

=E

[
t−1∑
s=1

(
Ij(s− 1)

T − s
− Ij(s)

T − s
− Ij(s− 1)

(T − s+ 1)(T − s)

)]

≤E

[
t−1∑
s=1

(∑N

i=1 aijDi(s)

T − s
− cj(s)

T − s

)]

=E

[
t−1∑
s=1

(∑N

i=1 aijDi(s)

T − s
−
∑K

k=1 bjkxk(s)

T − s

)]

+ E

[
t−1∑
s=1

(∑K

k=1 bjkxk(s)

T − s
− cj(s)

T − s

)]
.

Applying function (x)+ to both sides and using the fact that (α+ β)+ ≤ α+ + β+ for any α,β ∈ R, we

have

E
[
(cj − cj(t))+

]
≤E

( t−1∑
s=1

∑N

i=1 aijDi(s)−
∑K

k=1 bjkxk(s)

T − s

)+
 (EC.18)

+ E

( t−1∑
s=1

∑K

k=1 bjkxk(s)− cj(s)
T − s

)+


≤E

 N∑
i=1

aij

(
t−1∑
s=1

Di(s)−
∑K

k=1 dikxk(s)

T − s

)+


︸ ︷︷ ︸
(†)

(EC.19)

+ E

( t−1∑
s=1

∑K

k=1 bjkxk(s)−
∑K

k=1 bjk(s)xk(s)

T − s

)+
 , (EC.20)

where the last step uses the definition bjk =
∑N

i=1 aijdik and the fact
∑K

k=1 bjk(s)xk(s)≤ cj(s),∀1≤ s≤ t−1.

We first focus on the term (†). For any i= 1, . . . ,N , using the fact that E[|X|]2 ≤ E[X2] for any random

variable X, we have

E

[∣∣∣∣∣
t−1∑
s=1

Di(s)−
∑K

k=1 dikxk(s)

T − s

∣∣∣∣∣
]2

≤E

( t−1∑
s=1

Di(s)−
∑K

k=1 dikxk(s)

T − s

)2
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=E

 t−1∑
s=1

(
Di(s)−

∑K

k=1 dikxk(s)

T − s

)2


+ E

[
2

∑
1≤s<s′≤t−1

(
Di(s)−

∑K

k=1 dikxk(s)

T − s

)(
Di(s

′)−
∑K

k=1 dikxk(s
′)

T − s′

)]
.

The second term in the last equation is equal to zero, because conditional on (Hs′−1, d, θ(s), θ(s
′)), the

demand Di(s
′−1) has conditional mean

∑K

k=1 dikxk(s
′−1), while Di(s)−

∑K

k=1 dikxk(s) is a constant. Thus,

we have

E

[(
Di(s)−

∑K

k=1 dikxk(s)

T − s

)(
Di(s

′)−
∑K

k=1 dikxk(s
′)

T − s′

)]

=E

[(
Di(s)−

∑K

k=1 dikxk(s)

T − s

)
E

[(
Di(s

′)−
∑K

k=1 dikxk(s
′)

T − s′

)
| Hs′−1, d, θ(s), θ(s

′)

]]

=E

[(
Di(s)−

∑K

k=1 dikxk(s)

T − s

)
· 0

]
= 0.

Therefore, we have

(†)≤
N∑
i=1

aijE

 t−1∑
s=1

(
Di(s)−

∑K

k=1 dikxk(s)

T − s

)2
 1

2

≤ (

N∑
i=1

aij d̄i) ·

(
t−1∑
s=1

1

(T − s)2

) 1
2

. (EC.21)

In sum, by Eq (EC.16), Eq (EC.20) and (EC.21), we have

E

[
T∑
t=1

K∑
k=1

(rkx
∗
k− rkx∗k(t))

]
≤E

[
T∑
t=1

M∑
j=1

pjmax(cj − cj(t))+

]

≤
M∑
j=1

(
pjmax

N∑
i=1

aij d̄i

)
·
T∑
t=1

(
t−1∑
s=1

1

(T − s)2

) 1
2

+

M∑
j=1

pjmax

T∑
t=1

t−1∑
s=1

1

T − s
E

( K∑
k=1

bjkxk(s)−
K∑
k=1

bjk(s)xk(s)

)+


≤
M∑
j=1

(
pjmax

N∑
i=1

aij d̄i

)
· (2
√
T +
√

2) (EC.22)

+

M∑
j=1

pjmax

T∑
s=1

T∑
t=s+1

1

T − s
E

( K∑
k=1

bjkxk(s)−
K∑
k=1

bjk(s)xk(s)

)+
 (EC.23)

≤
M∑
j=1

(
pjmax

N∑
i=1

aij d̄i

)
· (2
√
T +
√

2)

+

M∑
j=1

pjmax

T∑
s=1

E

( K∑
k=1

bjkxk(s)−
K∑
k=1

bjk(s)xk(s)

)+
 .

In step (EC.23), we changed the order of sums. In step (EC.22), we use the fact that

T∑
t=1

(
t−1∑
s=1

1

(T − s)2

) 1
2

≤
T−1∑
t=1

(∫ t

1

1

(T − s)2
ds

) 1
2

+

(∫ T−1

1

1

(T − s)2
ds+ 1

) 1
2
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≤
T−1∑
t=1

(
1

T − t

) 1
2

+

(
1− 1

T − 1
+ 1

) 1
2

≤2
√
T +
√

2.

Using the same proof for Eq (EC.8) and Eq (EC.9) for TS-fixed, we have

T∑
s=1

E

( K∑
k=1

bjkxk(s)−
K∑
k=1

bjk(s)xk(s)

)+
≤ (

N∑
i=1

aij d̄i) · 36
√
KT logK,

and therefore

E

[
T∑
t=1

K∑
k=1

(rkx
∗
k− rkx∗k(t))

]
≤

M∑
j=1

(
pjmax

N∑
i=1

aij d̄i

)
· (
√

2 + 2
√
T + 36

√
KT logK)

which completes the proof for Eq (EC.15).

In the final step, combining Eq (EC.13) and (EC.15), we establish an upper bound of the Bayesian regret

of TS-update:

BayesRegret(T )≤

(
18pmax + 40

(
M∑
j=1

pjmax

N∑
i=1

aij d̄i

))
·
√
TK logK + pmaxM.

EC.3. Proof for TS-linear

Theorem 3. The Bayesian regret of TS-linear is bounded by

BayesRegret(T )≤O(N2 logT
√
T ).

Proof. First, for any price vector p ∈ P and parameter θ′ = (α′,B′) ∈ Θ, we define the mean demand

function d :P ×Θ→RN as d(p, θ′) := α′+B′p. We use di(p, θ
′) to denote the i-th element of d(p, θ′).

Let p∗ be the optimal solution of the following QP:

QP(θ) : max
p

pTd(p, θ)

subject to ATd(p, θ)≤ c

p∈P.

Similar to the discrete price case, the optimal value of QP(θ) is an upper bound for the expected revenue

of the full information case (see, e.g., Chen et al. (2014)). Therefore, similar to the proof of TS-fixed, the

Bayesian regret of TS-linear is bounded by

BayesRegret(T )≤E

[
T∑
t=1

(p∗ · d(p∗, θ)−Pt · d(Pt, θ))

]
︸ ︷︷ ︸

(I)

+

M∑
j=1

pjmaxE

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+


︸ ︷︷ ︸
(II)

. (EC.24)

(To simplify notation, we replace P (t) and θ(t) with Pt and θt throughout this proof.)

Part (I) is the contribution to regret assuming unlimited inventory, and part (II) is the contribution to

regret by accounting for lost sales. Here, pjmax is the maximum revenue that can be achieved by adding one

unit of resource j, defined by pjmax := maxi:aij 6=0,p∈P(pi/aij).

To complete the proof, we show that both (I) and (II) are bounded.
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For part (I), since price set P and parameter Θ are bounded and the demand noise is sub-Gaussian, we

can immediately apply the result of Russo and Van Roy (2014), Proposition 3, to get

E

[
T∑
t=1

(p∗ · d(p∗, θ)−Pt · d(Pt, θ))

]
≤O(N2 logT

√
T ). (EC.25)

For part (II), since
∑N

i=1 aijdi(Pt, θt)≤ cj for all j, using the fact that (α+β)+ ≤ α+ +β+ for any α,β ∈R,

we have

E

( T∑
t=1

N∑
i=1

aijDi(t)− Ij

)+


≤E

( T∑
t=1

N∑
i=1

aij (Di(t)− di(Pt, θ))

)+
+ E

( T∑
t=1

N∑
i=1

aijdi(Pt, θ)− cjT

)+


≤E

( T∑
t=1

N∑
i=1

aij (Di(t)− di(Pt, θ))

)+
+ E

( T∑
t=1

N∑
i=1

aij(di(Pt, θ)− di(Pt, θt))

)+


≤
N∑
i=1

aijE

[∣∣∣∣∣
T∑
t=1

(Di(t)− di(Pt, θ))

∣∣∣∣∣
]

︸ ︷︷ ︸
(†)

+

N∑
i=1

aijE

[
T∑
t=1

(di(Pt, θ)− di(Pt, θt))+

]
︸ ︷︷ ︸

(‡)

.

By the same proof for Eq (EC.7) for TS-fixed, we have

(†)≤
N∑
i=1

aijE

[
T∑
t=1

(Di(t)− di(Pt, θ))2

] 1
2

=O(
√
T ).

To bound (‡), we follow the steps in Russo and Van Roy (2014) to define upper confidence bound (UCB)

and lower confidence bound (LCB) functions for the linear demand model. Let θ̂LSt be the least squares

estimator of θ given Ht−1. We define an ellipsoidal confidence set

Θt := {θ′ ∈RN ×RN2

:

t−1∑
s=1

(
di(Ps, θ

′)− di(Ps, θ̂LSt )
)2

≤ βt},

where βt is a parameter defined in Russo and Van Roy (2014), Eq (8), where β =O(N2 log(t/T )). We then

define the UCB and LCB functions for all i∈ [N ] as

Ui(p, t) := max
θ′∈Θt

di(p, θ
′), Li(p, t) := min

θ′∈Θt
di(p, θ

′).

We decompose part (‡) as

T∑
t=1

E
[
(di(Pt, θ)− di(Pt, θt))+

]
≤

T∑
t=1

E
[
(di(Pt, θ)−Ui(Pt, t))+

]
+

T∑
t=1

E [Ui(Pt, t)−Li(Pt, t)] +

T∑
t=1

E
[
(Li(Pt, t)− di(Pt, θt))+

]
Russo and Van Roy (2014), Proposition 6, shows that

P (Li(p, t)≤ di(p, θ)≤Ui(p, t),∀t∈ [T ],∀p∈P)≥ 1− 1

T
.
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Conditional on Ht−1, parameters θ and θt are identically distributed, while Ui(p, t) and Li(p, t) are deter-

ministic. Therefore, by the law of iterated expectation, we have

P (Li(p, t)≤ di(p, θt)≤Ui(p, t),∀t∈ [T ],∀p∈P)

=E [1 (Li(p, t)≤ di(p, θt)≤Ui(p, t),∀t∈ [T ],∀p∈P)]

=E [E [1 (Li(p, t)≤ di(p, θt)≤Ui(p, t),∀t∈ [T ],∀p∈P) | Ht−1]]

=E [E [1 (Li(p, t)≤ di(p, θ)≤Ui(p, t),∀t∈ [T ],∀p∈P) | Ht−1]]

=E [1 (Li(p, t)≤ di(p, θ)≤Ui(p, t),∀t∈ [T ],∀p∈P)]

≥1− 1

T
.

This implies that

T∑
t=1

E
[
(di(Pt, θ)−Ui(Pt, t))+

]
=O(1),

T∑
t=1

E
[
(Li(Pt, t)− di(Pt, θt))+

]
=O(1). (EC.26)

Moreover, Russo and Van Roy (2014), Lemma 5, shows that

T∑
t=1

E [Ui(Pt, t)−Li(Pt, t)] =O(N2 logT
√
T ). (EC.27)

Adding Eq (EC.26) and (EC.27), we get

E

( T∑
t=1

N∑
i=1

aijDi(t)− Ij

)+
≤ (†) + (‡) =O(

√
T ) +O(N2 logT

√
T ) +O(1) =O(N2 logT

√
T ).

Combining this result with Eq (EC.24) and (EC.25), we have

BayesRegret(T )≤O(N2 logT
√
T ) +O(N2 logT

√
T ) =O(N2 logT

√
T ).

EC.4. Proof for TS-contextual

Theorem 4. The Bayesian regret of TS-contextual is bounded by

BayesRegret(T )≤

(
18pmax + 38

(
M∑
j=1

pjmax

N∑
i=1

aij d̄i

))
·
√
|X |TK logK.

Proof. For each price k ∈ [K] and each context ξ ∈ X , we denote by rξ,k =
∑N

i=1 pikdik(ξ | θ) the mean

revenue. Let x∗ be the optimal solution of LP(ξ | θ). It has been shown that the optimal value of LP(ξ | θ)

multiplied by T , or

E

[
T∑
t=1

K∑
k=1

rξ(t),kx
∗
ξ(t),k

]
,

is an upper bound of the expected revenue with known demand information (Badanidiyuru et al. 2014).

Recall that x(t) is the optimal solution of LP(ξ | θ(t)). The Bayesian regret is bounded by

BayesRegret(T )≤E

[
T∑
t=1

K∑
k=1

rξ(t),k(x
∗
ξ(t),k−xξ(t),k(t))

]
︸ ︷︷ ︸

(I)

+

M∑
j=1

pjmaxE

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+


︸ ︷︷ ︸
(II)

.

We will bound parts (I) and (II) separately.
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Part (I). Let Ht−1 = (ξ(1), P (1),D(1), . . . , ξ(t− 1), P (t− 1),D(t− 1)) be the history available at the

beginning of period t. In the TS-contextual algorithm, the parameter θ(t) is sampled from the posterior

distribution given history Ht−1, i.e. P(θ | Ht−1) = P(θ(t) | Ht−1). Since we assume ξ(t) is sampled i.i.d. from

a known distribution, it is independent of θ, θ(t), and Ht−1, so P(θ | Ht−1, ξ(t)) = P(θ(t) | Ht−1, ξ(t)).

Because x∗ is the optimal solution of LP(ξ | θ) and x(t) is the optimal solution of LP(ξ | θ(t)), the solutions

x∗ and x(t) are also identically distributed conditional on Ht−1, ξ(t), namely

P(x∗ | Ht−1, ξ(t)) = P(x(t) | Ht−1, ξ(t)).

Therefore, by the law of iterated expectation, the left hand side of Eq (EC.28) can be decomposed as

E

[
T∑
t=1

K∑
k=1

rξ(t),k(x
∗
ξ(t),k−xξ(t),k(t))

]

=

T∑
t=1

K∑
k=1

E
[
E[rξ(t),kx

∗
ξ(t),k− rξ(t),kxξ(t),k(t) | Ht−1, ξ(t)]

]
=

T∑
t=1

K∑
k=1

E
[
E[rξ(t),kx

∗
ξ(t),k−Uξ(t),k(t)x∗ξ(t),k +Uξ(t),k(t)xξ(t),k(t)− rξ(t),kxξ(t),k(t) | Ht−1, ξ(t)]

]
=

T∑
t=1

K∑
k=1

E
[
E[rξ(t),kx

∗
ξ(t),k−Uξ(t),k(t)x∗ξ(t),k | Ht−1, ξ(t)]

]
+

T∑
t=1

K∑
k=1

E
[
E[Uξ(t),k(t)xξ(t),k(t)− rξ(t),kxξ(t),k(t) | Ht−1, ξ(t)]

]
=

T∑
t=1

K∑
k=1

E
[
rξ(t),kx

∗
ξ(t),k−Uξ(t),k(t)x∗ξ(t),k

]
+

T∑
t=1

K∑
k=1

E
[
Uξ(t),k(t)xξ(t),k(t)− rξ(t),kxξ(t),k(t)

]
=

T∑
t=1

K∑
k=1

E

[∑
ξ∈X

E[rξ,kx
∗
ξ,k−Uξ,k(t)x∗ξ,k | ξ(t) = ξ]P(ξ(t) = ξ)

]
+

T∑
t=1

K∑
k=1

E
[
Uξ(t),k(t)xξ(t),k(t)− rξ(t),kxξ(t),k(t)

]
Here, Uξ,k(t) is a deterministic function given Ht−1, defined as

Uξ,k(t) =

N∑
i=1

pik min

d̂ikξ(t− 1) + d̄i

√√√√ log+

(
TK

Nξ,k(t−1)|X|

)
Nξ,k(t− 1)

, d̄i

 ,

where log+(x) = log(x)1{x≥1}. Nξ,k(t−1) denotes the number of times when price (vector) pk is offered with

context ξ over the first t− 1 periods, and d̂ikξ(t− 1) is the average demand of product i when price pk is

offered with context ξ in the first t− 1 periods.

By Lemma EC.3, for all t∈ [T ], k ∈ [K] and ξ ∈X , since 0≤ x∗ξ,k ≤ 1, we have

E[rξ,kx
∗
ξ,k−Uξ,k(t)x∗ξ,k]≤E[(rξ,k−Uξ,k(t))+]≤ pmax ·

6
√
|X |√
KT

,

where pmax = maxk∈[K]{
∑N

i=1 pikd̄i} is the maximum revenue that can be achieved in a single period. Since

ξ(t) is independent of θ and Ht−1, we have

E[rξ,kx
∗
ξ,k−Uξ,k(t)x∗ξ,k | ξ(t)] = E[rξ,kx

∗
ξ,k−Uξ,k(t)x∗ξ,k]≤ pmax ·

6
√
|X |√
KT

.
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Therefore,
T∑
t=1

K∑
k=1

E

[∑
ξ∈X

E[rξ,kx
∗
ξ,k−Uξ,k(t)x∗ξ,k | ξ(t) = ξ]P(ξ(t) = ξ)

]
≤ pmax · 6

√
|X |KT.

By Lemma EC.4, we have
T∑
t=1

K∑
k=1

E
[
Uξ(t),k(t)xξ(t),k(t)− rξ(t),kxξ(t),k(t)

]
≤ pmax · 12

√
|X |KT logK.

This proves that

E

[
T∑
t=1

K∑
k=1

rξ(t),k(x
∗
ξ(t),k−xξ(t),k(t))

]
≤ pmax · 18

√
|X |KT log(K). (EC.28)

Part II. We now consider part (II) in the regret bound. According to the definition of LP(ξ | θ(t)), it

holds almost surely that
N∑
i=1

K∑
k=1

Eξ[aijdik(ξ | θ(t))xξ,k(t)]≤ cj = Ij/T,

where Eξ[·] is the expectation operator assuming ξ follows the distribution of features. Therefore,

(II) = E

( T∑
t=1

N∑
i=1

aijDi(t)− Ij

)+
≤E

( T∑
t=1

N∑
i=1

aij

(
Di(t)−

K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

))+


We use the following decomposition:

E

( T∑
t=1

N∑
i=1

aij

(
Di(t)−

K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

))+


=E

( T∑
t=1

N∑
i=1

aij

(
Di(t)−

K∑
k=1

dik(ξ(t) | θ)xξ,k(t)

))+
 (†)

+ E

( T∑
t=1

N∑
i=1

aij

(
K∑
k=1

dik(ξ(t) | θ)xξ(t),k(t)−
K∑
k=1

dik(ξ(t) | θ(t))xξ(t),k(t)

))+
 (‡)

+ E

( T∑
t=1

N∑
i=1

aij

(
K∑
k=1

dik(ξ(t) | θ(t))xξ(t),k(t)−
K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

))+
 . (†′)

We first consider term (†). For any i = 1, . . . ,N , using the fact that E[|X|]2 ≤ E[X2] for any random

variable X, we have

E

[∣∣∣∣∣
T∑
t=1

(
Di(t)−

K∑
k=1

dik(ξ(t) | θ)xξ,k(t)

)∣∣∣∣∣
]2

≤E

( T∑
t=1

(
Di(t)−

K∑
k=1

dik(ξ(t) | θ)xξ,k(t)

))2


=E

 T∑
t=1

(
Di(t)−

K∑
k=1

dik(ξ(t) | θ)xξ,k(t)

)2
≤ (d̄i)

2T.

The equality in the last line holds because conditional on (θ, ξ(t), x(t)), demand Di(t) has mean∑K

k=1 dik(ξ(t) | θ)xξ,k(t) and is uncorrelated with history Ht−1. Therefore, we have

(†)≤
N∑
i=1

aijE

 T∑
t=1

(
Di(t)−

K∑
k=1

dik(ξ(t) | θ)xξ,k(t)

)2
 1

2

≤ (

N∑
i=1

aij d̄i) ·
√
T . (EC.29)
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We then consider term (†′). Again using the fact that E[|X|]2 ≤E[X2] for any random variable X, for any

i= 1, . . . ,N , we have

E

[∣∣∣∣∣
T∑
t=1

(
K∑
k=1

dik(ξ(t) | θ(t))xξ(t),k(t)−
K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

)∣∣∣∣∣
]2

≤E

( T∑
t=1

(
K∑
k=1

dik(ξ(t) | θ(t))xξ(t),k(t)−
K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

))2


=E

 T∑
t=1

(
K∑
k=1

dik(ξ(t) | θ(t))xξ(t),k(t)−
K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

)2
≤ (d̄i)

2T.

The equality in the last line holds because conditional on (θ(t), x(t)),
∑K

k=1 dik(ξ(t) | θ(t))xξ(t),k(t) has mean∑K

k=1 Eξ[dik(ξ | θ(t))xξ,k(t)] and is uncorrelated with Ht−1. Therefore, we have

(†′)≤
N∑
i=1

aijE

 T∑
t=1

(
K∑
k=1

dik(ξ(t) | θ(t))xξ(t),k(t)−
K∑
k=1

Eξ[dik(ξ | θ(t))xξ,k(t)]

)2
 1

2

≤ (

N∑
i=1

aij d̄i) ·
√
T .

(EC.30)

We finally consider term (‡). We denote by bjkξ =
∑N

i=1 aijdik(ξ | θ) and bjkξ(t) =
∑N

i=1 aijdik(ξ | θ(t)).

Using the fact that (α+β)+ ≤ α+ +β+ for any α,β ∈R, we have

(‡) =E

( T∑
t=1

K∑
k=1

bjkξ(t)xξ(t),k(t)−
T∑
t=1

K∑
k=1

bjkξ(t)(t)xξ(t),k(t)

)+


≤
T∑
t=1

K∑
k=1

E
[
(bjkξ(t)− bjkξ(t)(t))+xξ(t),k(t)

]
. (EC.31)

For all k ∈ [K], ξ ∈X , let Nξ,k(t−1) be the number of times that price vector pk is offered with context ξ over

the first t− 1 periods, and let d̂ikξ(t− 1) = (
∑t−1

s=1 1{P (s)=pk,ξ(s)=ξ}Di(s))/Nξ,k(t− 1) be the average demand

of product i when price pk is offered with context ξ in the first t− 1 periods. Define the upper confidence

bound (UCB) function as

Ujkξ(t) =

N∑
i=1

aij min

d̂ikξ(t− 1) + d̄i

√√√√ log+

(
TK

Nξ,k(t−1)|X|

)
Nξ,k(t− 1)

, d̄i

 ,

and the lower confidence bound (LCB) function as

Ljkξ(t) =

N∑
i=1

aij max

d̂ikξ(t− 1)− d̄i

√√√√ log+

(
TK

Nξ,k(t−1)|X|

)
Nξ,k(t− 1)

,0

 ,

where log+(x) = log(x)1{x≥1}.

Since Ujkξ(t)≥Ljkξ(t), by Eq (EC.31) we have

(‡)≤
T∑
t=1

K∑
k=1

E
[
(bjkξ(t)−Ujkξ(t)(t) +Ujkξ(t)(t)−Ljkξ(t)(t) +Ljkξ(t)(t)− bjkξ(t)(t))+xξ(t),k(t)

]
≤

T∑
t=1

K∑
k=1

E
[
(bjkξ(t)−Ujkξ(t)(t))+xξ(t),k(t)

]
+

T∑
t=1

K∑
k=1

E
[
(Ujkξ(t)(t)−Ljkξ(t)(t))xξ(t),k(t)

]
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+

T∑
t=1

K∑
k=1

E
[
(Ljkξ(t)(t)− bjkξ(t)(t))+xξ(t),k(t)

]
≤

T∑
t=1

K∑
k=1

E
[
(bjkξ(t)−Ujkξ(t)(t))+

]
+

T∑
t=1

K∑
k=1

E
[
(Ujkξ(t)(t)−Ljkξ(t)(t))xξ(t),k(t)

]
+

T∑
t=1

K∑
k=1

E
[
(Ljkξ(t)(t)− bjkξ(t)(t))+

]
.

In the second step, we again use the fact that (α+ β + γ)+ ≤ α+ + β+ + γ+ for any α,β, γ ∈R. In the last

step, we use the fact that 0≤ xξ(t),k(t)≤ 1.

By Lemma EC.3, for any ξ ∈X , we have

K∑
k=1

T∑
t=1

E
[
(bjkξ−Ujkξ(t))+

]
≤ (

N∑
i=1

aij d̄i) · 6
√
KT |X |.

Since ξ(t) is independent of θ and Ht−1, we have

E[(bjkξ−Ujkξ(t))+ | ξ(t) = ξ] = E[(bjkξ−Ujkξ(t))+].

Therefore,
T∑
t=1

K∑
k=1

E
[
(bjkξ(t)−Ujkξ(t)(t))+

]
≤ (

N∑
i=1

aij d̄i) · 6
√
KT |X |.

Similarly, we have
K∑
k=1

T∑
t=1

E
[
(Ljkξ(t)(t)− bjkξ(t))+

]
≤ (

N∑
i=1

aij d̄i) · 6
√
KT |X |.

Because θ and θ(t) are identically distributed given Ht−1 and are independent of ξ(t), we have P(θ |

Ht−1, ξ(t)) = P(θ(t) | Ht−1, ξ(t)), and thus P(bjkξ(t) | Ht−1, ξ(t)) = P(bjkξ(t)(t) | Ht−1, ξ(t)). Since Ljkξ(t) is

deterministic given Ht−1, using the law of iterated expectation, we have

K∑
k=1

T∑
t=1

E
[
(Ljkξ(t)(t)− bjkξ(t)(t))+

]
=

K∑
k=1

T∑
t=1

E
[
E[(Ljkξ(t)(t)− bjkξ(t)(t))+ | Ht−1, ξ(t)]

]
=

K∑
k=1

T∑
t=1

E
[
E[(Ljkξ(t)(t)− bjkξ(t))+ | Ht−1, ξ(t)]

]
=

K∑
k=1

T∑
t=1

E
[
(Ljkξ(t)(t)− bjkξ(t))+

]
≤(

N∑
i=1

aij d̄i) · 6
√
KT |X |.

In addition, by Lemma EC.4, we have

T∑
t=1

K∑
k=1

E
[
(Ujkξ(t)(t)−Ljkξ(t)(t))xξ(t),k(t)

]
≤ (

N∑
i=1

aij d̄i) · 24
√
|X |KT logK.

Combining the above results, we have

(‡)≤ (

N∑
i=1

aij d̄i) · (6 + 6 + 24
√

logK)
√
|X |KT ≤ (

N∑
i=1

aij d̄i) · 36
√
|X |KT logK. (EC.32)
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Adding Eq (EC.29), (EC.30) and (EC.32), we complete the proof of the following inequality:

E

( N∑
i=1

T∑
t=1

aijDi(t)− Ij

)+
≤ (

N∑
i=1

aij d̄i) · 38
√
KT logK, ∀j = 1, . . . ,M. (EC.33)

In the final step, combining Eq (EC.28) and (EC.33), we establish an upper bound of the Bayesian regret

of TS-contextual as

BayesRegret(T )≤

(
18pmax + 38

(
M∑
j=1

pjmax

N∑
i=1

aij d̄i

))
·
√
|X |TK logK.

EC.5. Proof for TS-BwK

Theorem 5. The Bayesian regret of TS-BwK is bounded by

BayesRegret(T )≤
(

37M

cmin

log(T ) + 20

)√
KT logK,

where cmin = minj∈[M] cj.

Proof. The total expected reward of TS-BwK is bounded by

E[Reward(T )]≥E

[
T∑
t=1

K∑
k=1

rkxk(t)

]
−

T∑
t=1

P

(
t∑

s=1

Bj(t)> Ij ,∀j ∈ [M ]

)
. (EC.34)

Note that E
[∑T

t=1

∑K

k=1 rkxk(t)
]

is the total expected reward if we assume the process ends at period T ,

while P
(∑t

s=1Bj(t)> Ij ,∀j ∈ [M ]
)

is the probability that some resource is depleted and the process has

ended before period t. Since we assume that reward in each period is in [0,1], we obtain Eq (EC.34).

Let x∗ be the optimal solution of the LP defined in TS-BwK if rk(t) = rk, bjk(t) = bjk,∀k ∈ [K], j ∈ [M ]. In

Section 3.1.1, we have shown that

BayesRegret(T )≤ T ·E[

K∑
k=1

rkx
∗
k]−E[Reward(T )].

Therefore, by Eq (EC.34), we have

BayesRegret(T )≤E

[
T∑
t=1

K∑
k=1

rk(x
∗
k−xk(t))

]
︸ ︷︷ ︸

(I)

+

T∑
t=1

P

(
t∑

s=1

Bj(t)> Ij ,∀j ∈ [M ]

)
︸ ︷︷ ︸

(II)

. (EC.35)

To complete the proof, we show that both (I) and (II) are bounded. For term (I), we have

E

[
T∑
t=1

K∑
k=1

rk(x
∗
k−xk(t))

]
≤ 18

√
TK logK. (EC.36)

This is an immediate result from part (I) of the proof for TS-fixed.

To bound term (II), we use Markov’s inequality. By definition, Ij = cjT , so for any t∈ [T ]

P

(
t∑

s=1

Bj(s)> Ij

)
≤ P

((
t∑

s=1

Bj(s)− cjt

)
> (T − t)cj

)
≤

E
[(∑t

s=1Bj(s)− cjt
)+]

(T − t)cj
.

Using part (II) of the proof for TS-fixed by replacing T with any integer t∈ [T ], we get

E

( t∑
s=1

Bj(s)− cjt

)+
≤ 37

√
tK logK.
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Therefore,

P

(
t∑

s=1

Bj(s)> Ij

)
≤ 37

√
tK logK

(T − t)cj
. (EC.37)

Let cmin = minj∈[M] cj . By Eq (EC.37), we get

(II)≤
T∑
t=1

P

(
t∑

s=1

Bj(t)> Ij ,∀j ∈ [M ]

)

=

T−b
√
Tc−1∑

t=1

P

(
t∑

s=1

Bj(t)> Ij ,∀j ∈ [M ]

)
+

T∑
t=T−b

√
Tc

P

(
t∑

s=1

Bj(t)> Ij ,∀j ∈ [M ]

)

≤
T−b
√
Tc−1∑

t=1

M∑
j=1

P

(
t∑

s=1

Bj(t)> Ij

)
+ b
√
T c+ 1

≤
T−b
√
Tc−1∑

t=1

M∑
j=1

37
√
tK logK

(T − t)cj
+
√
T + 1

≤
M∑
j=1

∫ T−b
√
Tc

0

37
√
tK logK

(T − t)cj
+
√
T + 1

≤37M

cmin

√
TK logK · log(T ) +

√
T + 1.

In the last step, we use the fact that for T ≥ 1,∫ T−
√
T

0

√
t

T − t
dt= 2

√
T log

(
T 1/4 +

√√
T − 1

)
− 2

√
T −
√
T ≤
√
T log(T ).

In sum, combining the bounds for both terms in Eq (EC.35), we have

BayesRegret(T )≤ 18
√
KT logK +

37M

cmin

√
KT logK log(T ) +

√
T + 1≤

(
37M

cmin

log(T ) + 20

)√
KT logK.

EC.6. Lemmas

We prove a few lemmas based on the result of Bubeck and Liu (2013), Theorem 1. To simplify notation, we

assume Di(t) ∈ [0,1] for all i ∈ [N ]. In the general case where Di(t) ∈ [0, d̄i], all the bounds in the lemmas

are scaled by a constant factor of d̄i.

EC.6.1. Discrete Price Setting

We first consider the model setting in Section 2.1. Let dik be the mean demand of product i under price

vector pk. Let Nk(t− 1) be the number of times that price vector pk is offered over the first t− 1 periods,

and let d̂ik(t− 1) = (
∑t−1

s=1 1{P (s)=pk}Di(s))/Nk(t− 1) be the average demand of product i when price vector

pk is offered in the first t− 1 periods. Define the following upper confidence bound (UCB) function

Uik(t) = min{1, d̂ik(t− 1) +

√√√√ log
(

TK
Nk(t−1)

)
Nk(t− 1)

},

and the lower confidence bound (LCB) function

Lik(t) = max{0, d̂ik(t− 1)−

√√√√ log
(

TK
Nk(t−1)

)
Nk(t− 1)

}.
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Lemma EC.1. For any k ∈ [K] and t∈ [T ], we have

E
[
(dik−Uik(t))+

]
≤ 6

1√
KT

, and E
[
(Lik(t)− dik)+

]
≤ 6

1√
KT

.

Proof. This is a special case of Lemma EC.3 when |X |= 1. �

Lemma EC.2. It holds that

T∑
t=1

K∑
k=1

E [(Uik(t)− dik)xk(t)]≤ 12
√
KT logK,

T∑
t=1

K∑
k=1

E [(dik−Lik(t))xk(t)]≤ 12
√
KT logK.

Proof. This is a special case of Lemma EC.4 when |X |= 1. �

EC.6.2. Contextual Setting

We then consider the contextual setting in Section 4.2. Let dikξ := dik(ξ | θ) be the mean demand of product

i under price vector pk and context ξ. Let Nξ,k(t− 1) be the number of times that price vector pk is offered

with context ξ over the first t− 1 periods, and let d̂ikξ(t− 1) = (
∑t−1

s=1 1{P (s)=pk,ξ(s)=ξ}Di(s))/Nξ,k(t− 1) be

the average demand of product i when price vector pk is offered with context ξ in the first t− 1 periods.

Define the following upper confidence bound (UCB) function

Uikξ(t) = min{1, d̂ikξ(t− 1) +

√√√√ log+

(
TK

Nξ,k(t−1)|X|

)
Nξ,k(t− 1)

},

and the lower confidence bound (LCB) function

Lik(t) = max{0, d̂ik(t− 1)−

√√√√ log+

(
TK

Nξ,k(t−1)|X|

)
Nξ,k(t− 1)

},

where log+(x) = log(x)1{x≥1}.

Lemma EC.3. For any k ∈ [K], t∈ [T ] and ξ ∈X , we have

E
[
(dikξ−Uikξ(t))+

]
≤ 6

√
|X |
KT

, and E
[
(Likξ(t)− dikξ)+

]
≤ 6

√
|X |
KT

.

Proof. We consider a multi-armed bandit problem with |X |×K arms. The mean reward of arm (ξ, k) is

dikξ. Bubeck and Liu (2013) (Theorem 1, Step 2) shows that if we choose an UCB function as

Ũikξ(t) = d̂ikξ(t− 1) +

√√√√ log+

(
n

Nξ,k(t−1)K|X|

)
Nξ,k(t− 1)

,

where log+(x) = log(x)1{x≥1}, then

E
[
(dikξ− Ũikξ(t))+

]
≤ 6

√
K|X |
n

, ∀(ξ, k)∈X × [K], t≥ 1.

The first inequality in the lemma immediately follows by choosing n= TK2. A similar proof can be used to

show that E [(Likξ(t)− dikξ)+]≤ 6
√
|X |/
√
KT. �
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Lemma EC.4. Let ξ(t) be the context in period t. It holds that

T∑
t=1

K∑
k=1

E
[
(Uikξ(t)(t)− dikξ(t))xξ(t),k(t)

]
≤ 12

√
|X |KT log(K),

and
T∑
t=1

K∑
k=1

E
[
(dikξ(t)−Likξ(t)(t))xξ(t),k(t)

]
≤ 12

√
|X |KT log(K).

Proof. Let k(t) ∈ [K] be the index of the price vector chosen at period t. Since k(t) = k is chosen

independently with probability xξ(t),k(t), we have

T∑
t=1

K∑
k=1

E
[
(Uikξ(t)(t)− dikξ(t))xξ(t),k(t)

]
=

T∑
t=1

K∑
k=1

E
[
(Uikξ(t)(t)− dikξ(t))1{k(t)=k}

]
=

T∑
t=1

E
[
(Uik(t)ξ(t)(t)− dik(t)ξ(t))

]
.

Let K ′ = |X |K. If K ′ ≥ T , the result holds trivially since

T∑
t=1

E
[
Uik(t)ξ(t)(t)− dik(t)ξ(t)

]
≤ T · 1≤

√
K ′T .

If K ′ ≤ T , we consider a multi-armed bandit problem with |X |×K arms. The mean reward of arm (ξ, k)

is dikξ. Bubeck and Liu (2013) (Theorem 1, Step 3) shows that if we choose an UCB function as

Ũikξ(t) = d̂ikξ(t− 1) +

√√√√ log+

(
n

Nξ,k(t−1)K|X|

)
Nξ,k(t− 1)

,

where log+(x) = log(x)1{x≥1}, then

n∑
t=1

E
[
Ũik(t)ξ(t)(t)− dik(t)ξ(t)

]
≤ 8
√
nK ′.

We select n= T . Note that

Uikξ(t)≤min

d̂ikξ(t− 1) +

√√√√ log+

(
T

Nξ,k(t−1)K|X|

)
+ log(K2)

Nξ,k(t− 1)
,1

≤ Ũikξ(t) + min

(√
2 log(K)

Nξ,k(t− 1)
,1

)
,

so
T∑
t=1

E
[
Uik(t)ξ(t)(t)− dik(t)ξ(t)

]
≤ 8
√
TK ′+

T∑
t=1

K∑
k=1

∑
ξ∈X

E

[
min

(√
2 log(K)

Nξ,k(t− 1)
,1

)
1{k(t)=k,ξ(t)=ξ}

]
.

Russo and Van Roy (2014) (Proposition 1) shows that

T∑
t=1

K∑
k=1

∑
ξ∈X

E

[
min

(√
2 log(K)

Nξ,k(t− 1)
,1

)
1{k(t)=k,ξ(t)=ξ}

]
≤K ′+ 2

√
2 log(K)K ′T ≤ 4

√
log(K)K ′T .

In sum, we have

T∑
t=1

E
[
Uik(t)ξ(t)(t)− dik(t)ξ(t)

]
≤ 12

√
K ′T log(K) = 12

√
|X |KT log(K).

Similarly, one can show that

T∑
t=1

K∑
k=1

E
[
(dikξ(t)−Likξ(t)(t))xξ(t),k(t)

]
=

T∑
t=1

E
[
dik(t)ξ(t)−Lik(t)ξ(t)(t)

]
≤ 12

√
|X |KT logK. �


