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ABSTRACT 
Objective: The goal of this project was to determine the impact of local 

inflammation on changes in the subgingival biofilm composition in ligature-induced 

periodontitis in rats using the specialized pro-resolving mediator (SPM), resolvin E1 

(RvE1). 

Materials and Methods: The impact of RvE1 on the microbiota of ligature-

induced periodontitis was assessed in two separate experiments; treatment of established 

periodontitis and prevention of ligature-induced periodontitis. In the treatment study, 

eighteen rats were separated into four groups comprising no ligature, ligature alone (no 

treatment), ligature with topical RvE1 treatment (ligature+RvE1) and, ligature with 

topical vehicle treatment (ligature + Vehicle). 3-0 silk ligatures were tied around 

maxillary second molars bilaterally for three weeks to induce disease. After three weeks, 

the treatment phase began with the application of RvE1 or vehicle (ethanol) every other 

day for an additional three weeks. Subgingival plaque samples were collected every four 

days throughout the experiment. The composition of the subgingival microbiota was 

initially screened by checkerboard DNA-DNA hybridization using probes on 40 

subgingival species.  Definitive, unbiased characterization of the subgingival microbiota 

was accomplished with next-generation sequencing using the Illumina MiSeq® platform. 

Six rats were sacrificed on Days 1, 21 and 42 and maxillae were dissected to collect 

samples for gingival RNA extraction, bone morphometric measurements, and 

histomorphometric analysis. Local tissue gene expression (Cxcl1, Ptgs2, Nos2) was 

detected using qRT-PCR. Tissue specimens were prepared for histology and stained with 
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H&E and tartrate resistant acid phosphatase (TRAP). In the prevention study, sixteen rats 

were separated into four groups (no ligature, ligature + RvE1 (0.1µg/µl), ligature + RvE1 

(0.5 µg/µl), ligature + Vehicle). 5-0 silk ligatures were placed around maxillary second 

molars bilaterally to induce disease. At the time of ligature placement, animals received 

assigned treatment thrice weekly (M, W, F) for four weeks.  Subgingival plaque samples 

were collected every four days (M and F).  Four rats were sacrificed at baseline (Day 1) 

and the vehicle and two treatment groups (four each) were sacrificed at day 28 and 

samples processed as described above.  The two-group comparisons were assessed by 

Student’s t-test. The multiple-group comparison was assessed by one-way ANOVA and 

post hoc tests. 

Results: In the first study (treatment), topical application of RvE1 significantly 

reversed the bone loss associated with periodontitis compared to the vehicle. RvE1 

application significantly reduced the expression of Cxcl1 and osteoclast density compared 

to the vehicle application. In the prevention study, RvE1 treatment significantly 

prevented the bone loss during the disease progression. RvE1 application significantly 

reduced the expression of Ptgs2, Nos2 compared to the vehicle application. Osteoclast 

density and inflammatory cell infiltration in the RvE1 groups were significantly lower 

than these in the Vehicle group.  

The cell counts of bacterial species gradually increased and the subgingival 

microbiota shifted during the disease progression. In the treatment study, RvE1 treatment 

significantly reduced cell counts compared to the vehicle application at the end of 

treatment phase. The shift of subgingival microbiota was limited by the RvE1 treatment. 
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In the prevention study, the taxonomic composition and diversity of subgingival 

microbiota was controlled by the RvE1 application. The change of subgingival 

microbiota appeared to be associated with the state of inflammation in the periodontal 

environment.  

Conclusion: Resolvin E1 treatment of existing ligature-induced periodontitis 

significantly regenerates lost alveolar bone and prevents alveolar bone loss. Resolvin E1 

treatment limits microbial shifts and reduces total bacterial load by inhibiting 

inflammation of local environment in experimental periodontitis.  
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CHAPTER ONE: BACKGROUND  
Periodontitis   

Chronic periodontitis is a multifactorial inflammatory disease with high 

prevalence in different populations. In the US, around 64 million over 30 year-old adults 

have chronic periodontitis (47.2%). The prevalence of chronic periodontitis is higher than 

the prevalence of diabetes (Eke et al., 2012). Chronic periodontitis has been associated 

with several systemic inflammatory diseases, including rheumatoid arthritis, Type 2 

diabetes and cardiovascular diseases (Demmer and Papapanou, 2010, Kebschull et al., 

2010, Lalla and Papapanou, 2011). These inflammatory diseases share similar 

pathological mechanisms, such as an accumulation of immune cells and production of 

excessive pro-inflammatory cytokines that lead to unresolved inflammation. Infection 

with (putative) bacterial pathogens in a susceptible host has been considered the primary 

etiological factor of periodontal disease. Although some periodontal pathogens produce 

enzymes damaging periodontal tissues directly, the immune responses, including 

production of pro-inflammatory cytokines, reactive oxygen species (ROS) and collagen-

dissolving enzymes, induced by these bacterial species are the major causes of 

periodontitis (Hausmann et al., 1972, Stashenko et al., 1987, Cekici et al., 2014, Jiao et 

al., 2014). Several cultivable bacterial species, such as Porphyromonas gingivalis 

(P.gingivalis), Tannerella forsythia (T. forsythia) and Treponema denticola (T. denticola), 

have been shown to induce alveolar bone loss around teeth in animal models (Lalla et al., 

1998, Schreiner et al., 2003, Hasturk et al., 2006), and are correlated with severity of 

periodontitis clinically (Socransky et al., 2004, Paster et al., 2006).  The composition of 
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the microbiota in health and periodontitis is quite different (Teles et al., 2006). With the 

advent of molecular methodologies to identify yet uncultured bacteria, it was realized that 

the number and diversity of microorganisms in the subgingival microbiota were greater 

than previously appreciated.  Likewise, the complexity of the host immune response to 

the biofilm was also under appreciated.  It is now known that different species induce 

distinct immune responses in animal models of periodontitis (Gemmell et al., 2004, 

Kopitar et al., 2006).  There is no specific bacterial profile or specific bacteria generally 

associated with periodontitis in every patient (Pihlstrom et al., 2005). Although it is 

debatable whether specific pathogens initiate periodontal diseases, the effect of reducing 

bacteria on controlling periodontal disease is undeniable (Socransky and Haffajee, 2005). 

Adjunctive use of antibiotics with periodontal scaling and root planing improves clinical 

outcomes of periodontal treatment (Goodson et al., 2012, Feres et al., 2012). The change 

in the subgingival microbiota accompanying the improvement of the clinical outcomes 

with antibiotic use has also been demonstrated (Soares et al., 2014).  

The periodontium comprises gingiva, cementum, periodontal ligament, and 

alveolar bone.  Histologically, the pathogenesis of periodontitis is characterized by stages, 

including the initial lesion, the early lesion, the established lesion, and the advanced 

lesion (Page and Schroeder, 1976). The initial lesion starts within 24 hours after dental 

plaque is deposited on the tooth’s surface. Dilation of the arterioles, capillaries and 

venules of the dentogingival plexus is evident underneath the junctional epithelium. 

Exudate forms in the gingival tissue, because the permeability of the microvascular bed 

increases. As intercellular gaps in the epithelium become larger with increased 
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inflammation, the exudate, which is called gingival crevicular fluid, seeps into the 

gingival sulcus. Unattached bacteria are flushed away and plasma proteins, such as 

antibodies, complement, and proteinase inhibitors in gingival crevicular fluid can have an 

impact of the composition of the biofilm. Neutrophils consistently appear adjacent to the 

epithelium of gingival sulcus, which is essentially an open environment routinely 

challenged by bacteria and food debris. Eventually neutrophils migrate out of the 

junctional epithelium into the sulcus following a chemoattractant gradient of bacterial 

peptides.  These activated neutrophils express selectins and intracellular adhesion 

molecules on their surfaces that bind to upregulated adhesion molecules on junctional 

epithelial cells (Moughal et al., 1992).  

In the next stage, the early lesion, the vessels underneath the junctional epithelium 

remain dilated, and the number of vessels increases. The increased size and quantity of 

microvasculature units are reflected in the clinical redness of the gingival margin (Lindhe 

and Rylander, 1975). Gingiva tends to bleed easily when a periodontal probe is placed 

into the sulcus. Gingival redness and bleeding on probing are the first clinical signs of 

gingivitis. Lymphocytes and neutrophils are the predominant cells infiltrating in the 

connective tissue and very few plasma cells are observed within the lesion at this stage 

(Seymour et al., 1983, Brecx et al., 1987). Fibroblasts in the lesion degenerate and 

collagen fibers are damaged with cell apoptosis and production of matrix 

metalloproteinases by inflammatory leukocytes and resident stromal cells. The loss of 

collagen fibers permit additional leukocyte infiltration (Page and Schroeder, 1976, 

Takahashi et al., 1995). The basal cells of the junctional and sulcular epithelium start to 
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proliferate rapidly. The proliferation of these cells represents an attempt to enhance the 

mechanical barrier to block bacteria and bacterial products. Epithelial rete pegs become 

elongated and invade the coronal portion of the lesion (Schroeder, 1970). The start of 

early lesion was seen as early as one week after plaque accumulation and could persist 

for weeks. The required time for the early lesion to convert to the next stage, the 

established lesion, was hypothesized to depend on host susceptibility and virulence of 

bacteria.  

The established lesion is an enhanced inflammatory lesion compared to the early 

lesion. Increased fluid exudation and leukocyte migration into the tissues and the gingival 

sulcus are observed. The tissues are more swollen clinically compared to the early lesion. 

The loss of collagen and the proliferation of epithelium continue and even more 

leukocytes infiltrate the connective tissue. The diseased epithelium is more permeable 

and bacterial products can pass into the connective tissue more easily. The established 

lesion is dominated by plasma cells (Page and Schroeder, 1976). In the gingival biopsies 

of adults younger than 30, (Brecx et al., 1988, Fransson et al., 1996), lymphocytes 

occupy a larger area in the lesion than plasma cells. However, plasma cells are dominant 

in the established lesion of gingival biopsies from subjects who are over 65 years old 

(Fransson et al., 1996).  The established lesion may persist for months or years and never 

progress to a more advanced lesion.  

The final stage of progression is known as the advanced lesion. The first three 

stages are considered gingivitis, but the advanced lesion is periodontitis.  In the advanced 

lesion, the elongation of junctional epithelium, the destruction of collagen, and the 
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infiltration of leukocytes continue. The changes in the tissues, including a deepening of 

the pocket, excessive inflammation and anaerobiosis, establish a habitat for the growth of 

periodontitis associated Gram-negative anaerobic bacteria considered pathogens 

(Socransky and Haffajee, 2005). The most distinct characteristic of the advanced lesion is 

the loss of connective tissue attachment to the tooth and the destruction of alveolar bone. 

Periodontitis is clinically distinct from gingivitis. Generally, it is accepted that plasma 

cells are the dominant cell type in the advanced lesion (Grant and Mulvihill, 1972, 

Berglundh and Donati, 2005).   

In summary, the dynamics of periodontitis pathogenesis is well established from a 

myriad of observations. However, the timing of transition from one lesion to another 

really depends on the individual and is affected by many factors, such as systemic health, 

oral hygiene habits, smoking, and other factors, both modifiable and non-modifiable. 

Severe gingivitis characterized by the established lesion increases risk for periodontitis, 

but it may never progress to an advanced lesion. 

Treatment of Periodontitis 

Mechanical debridement has been the standard treatment of periodontitis for 

decades (Heitz-Mayfield and Lang, 2013, Jan Lindhe, 2008). Mechanical debridement 

usually starts with scaling and root planing, which is a procedure designed to clean 

calculus from crown and root surfaces using special instruments without surgically 

elevating gingival tissues. A surgical approach is sometimes required when scaling and 

root planing alone does not generate positive outcomes usually due to inadequate access. 

Elimination of bacterial plaque and calculus is the goal of mechanical debridement. It is 
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believed that removal of subgingival plaque is sufficient to reduce the immune response 

stimulated by bacteria and stop tissue destruction.  However, subgingival debridement 

has efficiency limitations and cleansing of diseased areas is often incomplete (Slots, 

2002).  Regardless, of completeness of debridement, bacteria grow back gradually after 

the mechanical therapy in the absence of further treatment or maintenance (Haffajee et al., 

2006). Adjunctive use of antibiotics improves clinical outcomes, but antibiotic resistance 

and other side effect are always a concern. In refractory periodontitis patients, severe 

periodontal tissue destruction is seen often despite relatively low bacterial challenge, 

appropriate periodontal maintenance and treatment (Teles et al., 2010).   

In recent years, it has become apparent the pathogenesis of periodontal diseases is 

mediated by the host and that susceptibility to disease is a function of the inflammatory 

response (Van Dyke, 2011, Van Dyke, 2014).  Subjects with severe periodontitis exhibit 

measurable excess inflammation that includes excess cytokine production (Graves, 2008) 

and oxidative stress (Kantarci et al., 2003, Chapple and Matthews, 2007).  It is also now 

realized that there is little if any tissue destruction that is the direct result of bacterial 

enzymes or toxins.  The presence of, or number of, specific bacteria do not predict 

disease, but inflammation does (Tanner et al., 2007). Efforts to control the host 

inflammatory response have shown that disease can be arrested with COX inhibitors 

without modifying bacteria (Williams et al., 1989, Howell, 1993, Jeffcoat et al., 1995), 

but these treatments are not safe long term.  Hence now, considerable effort is now being 

devoted to the development of rational and safe host modulation therapies to prevent and 

treat periodontitis. 
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Resolution of Inflammation and Specialized Pro-Resolving Mediators (SPMs) 

In addition to the acute pro-inflammatory phase, “resolution” is an active phase of 

the inflammatory process first described and extensively characterized by Charles N. 

Serhan (Serhan, 2014). Failure to resolve inflammation leads to chronic inflammation, 

which causes tissue damage and induces disease.  It is now realized that inflammatory 

disease may be a failure of resolution rather than overproduction of pro-inflammatory 

mediators (Serhan et al., 2008). The resolution response reduces tissue damage, removes 

cell debris and helps tissues return to homeostasis (Serhan and Savill, 2005). Specialized 

pro-resolving mediators (SPMs) play an important role in the resolution phase of acute 

inflammation.  

These SPMs, including lipoxins (LXA4, LXB4), resolvins (RvE, RvD), protectins 

(PD), and maresins (MaR), are derived from ω-6 [arachidonic acid], and ω-3 

[eicosapentaenoic acid (EPA); docosahexaenoic acid (DHA)] polyunsaturated fatty acids, 

respectively (Serhan, 2010) (Fig. 1.1). The ω-3 fatty acids are found in marine oils and 

have been recognized having anti-inflammation properties (Albert et al., 2002, Calder 

and Yaqoob, 2009). However, the molecular mechanism behind the anti-inflammation 

properties was not clear until the metabolic products of ω-3 fatty acids, resolvins, 

protectins and maresins, were described.  These molecules were first found in the 

exudates of the acute inflammation phase in a murine model (Serhan et al., 2000). In the 

process of acute inflammation, lipids in the cells and tissues are either transformed to 

pro-inflammatory lipid mediators, such as prostaglandins (PGD2, PGE2) and 

leukotrienes (LTC4, LTB4), or SPMs (Serhan et al., 2009, Serhan, 2014). The pathway of 
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lipid mediators changing from pro-inflammatory molecules to pro-resolution molecules is 

called “class switch” (Levy et al., 2001, Serhan et al., 2007). The process of class switch 

is triggered by lipoxygenases (LO) and other enzymes, such as aspirin acetylated 

cyclooxygenase-2 (COX2), which becomes a 15R-lipoxygenase, or cytochrome P450, 

during cell-cell interactions. The importance of these enzymes to initiate the production 

of SPMs and activate resolution of inflammation has been demonstrated in many studies. 

For example, the overexpression of 15-lipooxygenase in the transgenic rabbit model 

increased available arachidonic acid derived substrate (15-HETE) for 5-LO leading to 

increased circulating LXA4 and increased resolution of  inflammation (Shen et al., 1996, 

Serhan et al., 2003). Moreover, aspirin acetylated COX-2 produces similar products from 

EPA and DHA, and these intermediates can be transformed by human neutrophils in vitro.  

This class of compound is collectively known as aspirin-triggered lipoxins or aspirin-

triggered resolvins (Serhan et al., 2000, Serhan et al., 2002).  

In the process of class switch, different cell-cell interactions, such as leukocytes 

and leukocytes, leukocytes and platelets, leukocytes and epithelial cells, produce SPMs 

through different pathways of transcellular biosynthesis (Romano and Serhan, 1992, 

Gronert et al., 1998, Wallace and Fiorucci, 2003, Tian et al., 2009). Lipid mediator class 

switching is induced significantly during inflammation and this process has been 

observed in humans doing resistance exercise (Markworth et al., 2013). 
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Figure 1.1 Biosynthetic cascades and actions of specialized pro-resolving mediators 
(from Serhan & Petasis 2011) 

In the resolution phase, the SPMs can reduce neutrophil infiltration, promote 

neutrophil apoptosis (El Kebir et al., 2012), and recruit non-phlogistic macrophages (Oh 

et al., 2011, Oh et al., 2012, Stables et al., 2011) which perform efferocytosis (Serhan et 

al., 2008). These activities can clean up the “battlefields” of inflammation to restore the 

original biologic-architecture following acute inflammation. In addition to the impact of 

SPMs on innate immunity, adaptive immunity is also regulated by SPMs, including 

inhibiting Th17 cell response, activating natural killer (NK) cell homing, activating NK 

cell mediated clearance of antigen specific T cells and eosinophils in allergic 

inflammation (Levy, 2012), reducing T cell migration and production of interferon-γ, 

tumor necrosis factor-α (TNF-α) (Ariel et al., 2005), stimulating chemokine scavenging 

from apoptotic T-cells in peritonitis model (Ariel et al., 2006), and stimulating human B 

cell differentiation (Ramon et al., 2012).  

SPMs bind to G-protein-coupled receptors (GPCRs) on cells to activate the 

functions. Several SPM receptors, including leukotriene B4 receptor 1 (BLT1), 

Chemokine like receptor 1 (ChemR23), formyl peptide receptor 2 (ALX/FPR2), G 

protein-coupled receptor 32 (GPR32), have been identified on a variety of cell types. For 

example, resolvin E1 (RvE1) specifically binds to receptors BLT1 on the neutrophils and 
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ChemR23 on macrophages to evoke pro-resolving responses (Arita et al., 2005a). The 

binding of RvE1-BLT1 also blocks the LTB4-BLT1 binding which activates the survival 

signaling in neutrophils. RvE1 activation of ChemR23 can enhance macrophage 

phagocytosis by phosphoprotein-mediated signaling (Ohira et al., 2010). 

In addition to regulating the immune response, SPMs also actively play the role in 

the wound healing and tissue regeneration. Resolvin D1 (RvD1) and D2 (RvD2) are able 

to stimulate wound healing in diabetic mice by inducing resolution of inflammation 

(Tang et al., 2013). RvE1 and Maresin 1 (MaR1) both can reduce time required for 

regeneration of head segment in the flatworm (Dugesia tigrina) model (Serhan et al., 

2012). In a rabbit periodontitis model, RvE1 showed the ability of regenerating lost 

alveolar bone following three weeks of treatment (Hasturk et al., 2007). Further 

experiments explain the possible mechanisms of alveolar bone regeneration induced by 

SPMs. In vitro, RvE1 inhibits osteoclast differentiation and fusion, and restores 

osteoprotegerin (OPG) production of bone cells in the inflammatory condition (Herrera et 

al., 2008, Gao et al., 2013, Zhu et al., 2013). SPMs not only have an impact on bone cells, 

but also on cells of gingival tissue. RvD1 significantly enhances proliferation, wound 

closure, and fibroblast growth factor (FGF) release of human periodontal ligament (PDL) 

cells. Also, RvD1 reduces cytokine-induced prostaglandin E2 production and increases 

lipoxin production of human PDL cells (Mustafa et al., 2013).  

In addition to previously mentioned disadvantages, taking NSAIDs impedes the 

resolution phase because they block the production of prostaglandins, which enhance the 

synthesis of SPMs (Levy et al., 2001, Serhan et al., 2007, Chan and Moore, 2010). 
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Therefore, SPMs, which are endogenous autacoids, can replace NSAIDs in treating 

inflammation by not only inhibiting inflammation but also actively inducing and 

enhancing the resolution phase. Given periodontitis is a multispecies biofilm-induced 

inflammatory disease, SPMs application could be a promising approach to treat 

periodontitis. The ability of SPMs (e.g. RvE1) in preserving and regenerating periodontal 

tissue in experimental periodontitis has been demonstrated (Hasturk et al., 2006, Hasturk 

et al., 2007). In addition to animal and in vitro studies, clinical evidence also supports the 

effect of SPMs on treating periodontitis. The ratios of precursors of pro-resolution/ pro-

inflammatory lipid mediators were higher in healthy subjects than  the ratios in 

aggressive periodontitis subjects (Elabdeen et al., 2013), suggesting that the lack of SPMs 

might be associated with periodontitis. In one clinical trial, adjunctive daily omega-3 

fatty acid dietary supplement (900mg EPA+ DHA) with aspirin 81mg improved the 

clinical outcomes of scaling and root planing significantly three and six months after 

therapy. The percentage of probing depth >4mm significantly changed from 59.6% to 

20.5% in the experimental group compared to the change in the control group (from 

55.4% to 45.3%). Moreover, the salivary receptor activator of nuclear factor kappa-β 

ligand (RANKL) and matrix metalloproteinase-8 (MMP-8) levels showed significant 

reductions compared to the levels in subjects having scaling and root planing alone (El-

Sharkawy et al., 2010). All these results support the possibility of applying SPMs for 

treating periodontitis, and RvE1 (Fig. 1.2) seems to have the strongest potential based on 

the available evidence.   
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Figure 1.2 Structure of resolvin E1 (RvE1, C20H30O5, molecular weight: 350.5)  

RvE1 derived from EPA is one of the specialized pro-resolving mediators. It has 

been used to treat periodontitis (Hasturk et al., 2006, Hasturk et al., 2007), peritonitis 

(Arita et al., 2005b, Arita et al., 2005a, Bannenberg et al., 2005, Schwab et al., 2007), 

allergic airway inflammation (Haworth et al., 2008), heart reperfusion injury (Keyes et al., 

2010), and retinopathy (Connor et al., 2007) in different animal models. The function of 

RvE1 in promoting inflammation resolution have been demonstrated from various 

perspectives, including stopping transepithelial and transendothelial migration of 

neutrophils, stimulating macrophages perform non-phlogistic phagocytosis of apoptotic 

neutrophils, blocking interlukin-12 (IL-12) production of dentritic cells, upregulating C-C 

chemokine receptor type 5 (CCR5) expression of apoptotic neutrophils and T cells 

(Serhan et al., 2008), inhibiting production of interleukin-4 (IL-4) and interferon-gamma 

(IFN-γ) of activated CD4 T cells in skin lesion model (Kim et al., 2012), enhancing 

phagocytosis and ROS production of neutrophils (El Kebir et al., 2012), rescuing 

phagocytosis of macrophages of localized aggressive periodontitis patients (Fredman et 

al., 2011), and inhibiting myeloperoxidase suppressed neutrophil apoptosis (El Kebir and 

Filep, 2013). These reactions induce the resolution phase and help tissue environment 
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reach homeostasis. Moreover, as previously mentioned, RvE1 regulates bone remodeling 

and improves bone regeneration (Gao et al., 2013, Zhu et al., 2013). RvE1 serves to 

regenerate destructive tissues following activating inflammation resolution.   

The Temporal Relationship Between Biofilm Dysbiosis and Inflammation 

As for the application of SPMs in treating periodontitis or other bacteria-induced 

inflammatory diseases, the impact of SPMs on the microbiota has to be discussed. In the 

rabbit P.gingivalis-induced periodontitis model, P.gingivalis (109 CFU) was inoculated 

around the ligated teeth in the first six weeks of disease induction phase. The inoculation 

was discontinued in the subsequent six-week treatment phase. At the end of six-week 

RvE1 application during the treatment phase, regeneration of lost alveolar bone was 

accompanied by elimination of P.gingivalis. Cell counts of some bacterial species, 

including Prevotella intermedia, Fusobacterium nucleatum, Streptococcus intermedius, 

significantly increased from baseline to the end of treatment (Hasturk et al., 2007). The 

detailed dynamics of microbial changes and the mechanism resulting in these changes 

were not determined. Two hypotheses have been proposed to explain these findings : (i) 

resolvins might have promoted the release of antimicrobial peptides, such as defensins 

and other bactericidal ⁄ permeability-increasing proteins, increased phagocytosis activity, 

stimulated nitric oxide synthase (NOS), or production of  ROS in immune cells; or (ii) the 

resolution of the inflammation “starved” P. gingivalis because this species depends on 

peptides derived from host-tissue degradation as a source of nutrients, such as hemin 

(Van Dyke, 2008, Van Dyke, 2011). Several studies have shown increased killing ability 

of immune cells stimulated by SPMs. RvD2 increased neutrophil phagocytosis and ROS 
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production in E.coli phagocytosis assay and also reduced colony-forming units (CFU) by 

stimulating macrophage phagocytosis in a caecal ligation model (Spite et al., 2009). 

RvD1, RvD5 and PD1 enhanced phagocytosis of neutrophil and macrophage, and 

stimulated ROS production by neutrophils. Combination of SPMs (e.g. RvD1,RvD5, or 

PD1) and antibiotics reduced the bacterial load in the mice peritonitis model and the mice 

skin pouch model (Chiang et al., 2012). RvE1 enhanced phagocytosis of human PMN in 

vitro. Neutrophil phagocytosis evoked a rapid, robust ROS production and increased 

caspase-3,8 activity in murine acute lung injury model following RvE1 application (El 

Kebir et al., 2012, El Kebir and Filep, 2013). In summary, resolvins regulate 

phagocytosis and ROS production in the neutrophils and macrophages to kill bacteria. No 

appreciable direct antimicrobial effect of SPMs has been observed. These mechanisms 

could actively cause a change in the composition of the subgingival microbiota. However, 

the shift in microbial composition might still be indirectly caused by the resolution of the 

inflammatory environment. Further experiments need to be conducted to elucidate these 

mechanisms. 

Animal Models of Experimental Periodontitis 

To select an appropriate animal model to study the question of interest is a crucial 

part of the research project. There are several animal models that have been used to study 

the microbiota, immune response, and treatment effect in periodontal diseases. Different 

animal models have advantages and disadvantages, and no single animal model is perfect.  

The first thing to consider when selecting the animal model is which animal 

species should be used. Non-human primates, dogs, miniature pigs, rabbits, ferrets, 
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hamsters, mice, rats and others have been used to study periodontal disease. Non-human 

primates, such as monkeys, are assumed to be the best species used to study human 

disease since their anatomic structures and physiological systems are much closer to 

humans than are other species. Some of the non-human primates, including rhesus 

monkeys (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis), and baboons 

(Papio anubis), have naturally occurring dental plaque, calculus, human oral bacterial 

species (e.g., Prevotella, Porphyromonas species), and periodontal disease (Schou et al., 

1993). Non-primate model established the fundamental knowledge of pathogenesis of 

periodontitis decades ago (Page and Schroeder, 1976).  In order to expedite the induction 

of periodontal disease, ligatures or orthodontic wires can be placed around teeth 

(Kennedy and Polson, 1973, Kantor, 1980). These ligatures or wires serve as plaque traps 

and stimulants to induce immune responses resulting in periodontal disease. Nowadays, it 

is very difficult to obtain approval for using non-human primates in research if there is no 

undeniable reason. Due to stricter ethical rules and the necessary expense and special 

facility, non-primates models rarely have been used to study periodontal disease. 

Miniature pigs have naturally occurring periodontal disease and human oral 

pathogens, such as P. gingivalis (Wang et al., 2007). Periodontal disease can also be 

induced or progressed by placing bands or wires between teeth (Lang et al., 1998, Van 

Dyke et al., 2015). Miniature pigs are relatively more expensive than rodents which are 

widely used in scientific research, and not many studies of periodontal disease using 

miniature pigs are available (Oz and Puleo, 2011).  
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The pathogenesis of periodontal disease in dogs has been studied for decades 

(Lindhe et al., 1973).  Canine models are frequently used in the studies of periodontology 

and implantology because it is relatively easy to conduct periodontal or implant surgery 

in dogs compared to smaller animals (Berglundh et al., 1991, Wikesjo et al., 2003). Also, 

periodontitis can be induced in several weeks by placing the ligature around the tooth or 

changing diet to allow plaque accumulation (Lindhe et al., 1992). Periodontitis does 

occur naturally (Haney et al., 1995) and progresses with age in dogs. Several periodontal 

pathogens in humans were detected in dogs (Rober et al., 2008). However, the relatively 

high costs limit the popularity of dog models.      

The rabbit model is usually used to perform surgery. The tibia or fibular of rabbits 

is usually used to place implants or regeneration materials (Johnson et al., 1997, Schmitt 

et al., 1997). In the periodontal abscesses of rabbits, several human periodontal bacteria, 

such as Fusobacterium nucleatum, Peptostreptococcus micra, Actinomyces israelii, can 

be isolated (Tyrrell et al., 2002). Periodontitis can be induced by P. gingivalis on the 

ligatures placed around teeth (Hasturk et al., 2007). The roots of teeth in rabbits 

continually grow and rabbits’ teeth have different shapes from human teeth. Not many 

studies of experimental periodontitis in rabbits are available. 

Compared to other larger animals, rodents are more cost-effective for scientific 

research. The expense of purchasing and raising rodents is much less than is the expense 

of purchasing and raising larger animals. It is also relatively easy to handle rodents 

because of the small body size. Mice and rats are the most frequently used rodents as an 

animal model in periodontal disease and other scientific projects. The immune systems 
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and anatomic structures in mice and rats are well-studied. In general, mice and rats have 

very similar physiological systems and genomes (Gibbs et al., 2004, Brudno et al., 2004). 

In the past 20 years, the application of transgenic murines, especially mice, makes murine 

models even more widely used.  

Given periodontitis is induced by an imbalanced immune response, it is important 

to know the characteristics of immune systems in mice and rats. Mice are the mainstay of 

in vivo immunological experimentation because many biological mechanism in humans 

can be observed in mice (Mestas and Hughes, 2004). More than 90% of the mouse and 

human genomes can be partitioned into corresponding regions of conserved synteny and 

only about 300 genes appear to be unique to one species, reflecting the conservation of 

function in both species. (Mouse Genome Sequencing et al., 2002). However, there are 

still several key differences of the immunological systems in humans and mice (Shay et 

al., 2013). The proportions of leukocytes are quite different in the two species. Human 

blood is neutrophil rich (50–70% neutrophils, 30–50% lymphocytes) whereas mouse 

blood has a preponderance of lymphocytes (75–90% lymphocytes,10–25% neutrophils) 

(Doeing et al., 2003). Some featured characteristics of leukocytes and immunity are also 

different.  In humans, neutrophils are a rich source of leukocyte defensins, but defensins 

are not expressed by neutrophils in mice (Risso, 2000). IFN-α promotes Th1 cell 

differentiation in humans, but not in mice (Farrar et al., 2000). Some cytokines and 

receptors, such as interleukin-8 (IL-8), neutrophil-activating protein-2 (NAP-2 or 

CXCL7), interferon-inducible T-cell alpha chemoattractant (ITAC or CXCL11), 

chemokine receptor 1 (CXCR1), are missing in mice (Olson and Ley, 2002, Zlotnik and 
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Yoshie, 2000). Although the murine model is the most popular animal model, the distinct 

physiological systems between murines and humans should always be kept in mind. 

Regarding the periodontitis model, the complexities of the subgingival microbiota 

and immune response in humans cannot be closely duplicated in any in vitro environment 

(Graves et al., 2008). However, it is known that the pathogenesis of experimental 

periodontitis in mice and rats is close to humans (Roy C. Page, 1982, Klausen, 1991, Fine, 

2009). Oral bacteria induce immune response starting with the infiltration of neutrophils 

and recruitment of macrophages, and then the lymphocytes invade the inflamed 

periodontium. The disease progresses with epithelium elongation, degradation of tissue 

fibers, and resorption of alveolar bone. Various models have been utilized to study 

periodontitis in mice and rats, such as the air pouch model, (Gilroy et al., 1998), the 

chamber model (Genco et al., 1991, Gyurko et al., 2003), the calvaria model (Zubery et 

al., 1998), the ligature model (Rovin et al., 1966), the gavage model (Baker et al., 1994), 

the feeding model (Fine et al., 2001), and the lipopolysaccharide injection model 

(Dumitrescu et al., 2004). The air pouch is produced by injecting sterile air 

subcutaneously into the back of a rat or a mouse. The chamber model is produced by 

surgically implanting a chamber made of stainless-steel wire in the tissue of the 

dorsolumbar region. The bacterial or inflammatory stimulants, such as lipopolysaccharide, 

can be injected into the pouch or chamber, and the fluid or tissue samples can be 

collected following a specific period of inflammation. The air pouch model and chamber 

model are designed to investigate the interaction between periodontal pathogen(s) or 

inflammatory irritant(s) and immune cells in a localized environment. The calvarial 
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model has been adapted to study the effect of bacteria on bone resorption or the host–

bacteria interactions on connective tissues (Graves et al., 2008). A stimulus is injected 

directly into the connective tissue overlying the calvarial bone to induce an inflammatory 

reaction. The production of pro-inflammatory cytokines and the recruitment of 

neutrophils can be observed in hours (Graves et al., 2005), and bone resorption can be 

induced within five days (Li et al., 2002). In the air pouch model, chamber model, and 

calvaria model, no infection or inflammation is established in periodontal tissues. The 

goal of these models is to study the inflammatory reaction in a well-controlled 

environment by injecting a known stimulus.  

In order to observe the clinical changes, such as alveolar bone resorption, collage 

fiber degeneration and epithelium migration, it is necessary to induce periodontal disease 

around teeth. Moreover, the interaction between host and microbiota around the 

periodontium is still much more realistic than the interaction happening in other tissues. 

Periodontitis does occur naturally in mice and rats, but it takes more than one year to be 

observed (Liang et al., 2010). Therefore, injection of lipopolysaccharide, ligature 

placement, and inoculation of human oral pathogen are often used to accelerate disease 

progression. 

Lipopolysaccharide injection model 

Lipopolysaccharide (LPS), which is a component of the cell wall of the gram 

negative bacteria, is a strong inflammatory stimulus triggering innate immunity. The aim 

of LPS injection model is to examine the innate immune response and the change of 

periodontal tissue following the stimulation of LPS. This model produces a 
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histopathological change similar to that observed in human periodontitis, characterized 

by increased infiltration of leukocytes, enhanced levels of pro-inflammatory cytokines, 

collagen degradation and alveolar bone resorption. Significant destruction of periodontal 

tissue can be observed within three to eight weeks in mice (Sartori et al., 2009) or rats 

(Rogers et al., 2007). Compared to the gavage model and ligature model, the 

inflammation in periodontal tissue is more controllable by injecting definite amount of 

LPS.  

Oral gavage model  

Several bacterial species associated with periodontitis in humans have been used 

in the oral gavage model, including P. gingivalis (Lalla et al., 1998), A. 

actinomycetemcomitans (Garlet et al., 2006), T. forsythia (Sharma et al., 2005) and 

Treponema denticola (Lee et al., 2009). Inoculation of these species can induce alveolar 

bone loss both in mice and rats. Different strains of animals have different degrees of 

reactions due to genetic variation (Breivik et al., 2001, Nakamura et al., 2008, Hiyari et 

al., 2015). 

Typically, a specific amount of bacteria (109 CFU) mixed in the suspension (2% 

carboxymethylcellulose) is inoculated in the oral cavity of the animal. Bacteria usually 

only stay in the oral cavity transiently, and do not colonize permanently. Different 

bacterial species persist for different periods following the inoculation. In a rat model, P. 

gingivalis has been detected in the oral cavity for up to 11 weeks (Bainbridge et al., 2010).  

The periodontitis associated bacteria, including P. gingivalis, T. denticola or T. forsythia, 

can be inoculated separately or together to induce disease, and are detected four to six 
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weeks following the inoculation. These bacteria exhibit synergistic virulence resulting in 

significant inflammation-induced bone resorption (Kesavalu et al., 2007). In addition to 

the direct stimulation by the exogenous bacteria, the inoculation of periodontal pathogens, 

such as P.gingivalis, can cause a change of the original oral microbiota by manipulating 

the immune response to induce disease (Hajishengallis et al., 2011).   

In the gavage model, the inoculation of bacteria usually continues for one to two 

weeks and significant alveolar bone loss can be observed from two weeks (Okada et al., 

2010) to four weeks (Baker et al., 2000, Yu et al., 2007) following the last inoculation. 

This model induces an inflammatory reaction similar to periodontitis in humans, such as 

the infiltration of neutrophils and monocytes in the gingival connective tissue, increased 

inflammatory cytokines (TNF- α, IL- 12 and IFN- γ) and decreased anti-inflammatory 

cytokines (IL-10), proliferation of the junctional epithelium, and increased levels of 

serum antibody (IgG1 and IgG2) against the periodontal pathogens (Bainbridge et al., 

2010, Lee et al., 2009, Garlet et al., 2005). The advantage of this model is having human 

oral pathogens to induce periodontitis. However, the oral gavage model usually takes at 

least four weeks to observe the initial alveolar bone loss. 

Feeding model 

The idea of inoculating human periodontal disease related bacteria in animal is to 

investigate the specific species simulating the periodontal infection. However, many of 

the human oral pathogens are not able to colonize in animal’s oral cavity for long periods 

of time since the animals do not harbor these bacteria naturally. The species, A. 

actinomycetemcomitans, is a periodontal pathogen observed in different types of animals, 
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including humans, monkeys, and rats (Fine et al., 2005). A. actinomycemcomitans is 

highly associated with localized aggressive periodontitis (Fine et al., 2007). In the 

feeding model, rats are pretreated with antibiotics and fed A.actinomycetemcomitans in 

their diets for four days. The pathogen, A.actinomycetemcomitans, could be observed in 

the mucosa or saliva weeks or months after the last feeding (Fine et al., 2001). However, 

only a specific strain of A.actinomycetemcomitans (CU1010) can induce periodontitis 

successfully in animals (Fine et al., 2001). Rats usually are used in the feeding model 

because it is difficult to colonize the oral cavity of mice with A.actinomycetemcomitans 

(Graves et al., 2012). 

In addition to innate immunity, adaptive immunity is also induced in the feeding 

model. B cells and CD4 T cells are activated and their numbers increase, resulting in 

enhanced isotype-switched serum IgG, increased level of several cytokines and proteins, 

including IL- 1, IL- 2, TNF, CD40 ligand, Fas ligand (FasL), RANKL and 

osteoprotegerin in the lymph nodes (Li et al., 2010). 

The exclusive use of A.actinomycetemcomitans in the feeding model limits the 

popularity of this model given that A.actinomycetemcomitans is generally recognized as a 

putative pathogen for localized aggressive periodontitis, but not necessarily highly related 

to chronic periodontitis.  

Ligature Model 

Ligature placement around teeth to induce periodontal disease is widely used in 

different species of animals, such as monkeys, dogs, mice, and rats (Struillou et al., 2010, 
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Oz and Puleo, 2011). The amount of bacteria increases significantly around the area of 

ligature placement given that the ligature traps plaque (Duarte et al., 2010). Presence of 

bacteria is required to induce periodontitis in this model. Germ-free rats do not have 

alveolar bone loss after ligature placement (Rovin et al., 1966). Treatment of 

chlorhexidine or antibiotics significantly inhibits the loss of alveolar bone in the ligature 

model (Weiner et al., 1979, Kenworthy and Baverel, 1981). In addition to accumulating 

bacteria, ligature causes traumatic wound which establishes an inflammatory 

environment for oral pathogens to grow. For example, the pathogen, Eikenella corrodens, 

does not cause alveolar bone loss in rats without ligature placement (Samejima et al., 

1990). The commensal bacteria become primed to induce periodontal disease in mice 

following ligature placement (Jiao et al., 2013).   

The ligature model can induce alveolar bone loss in one to two weeks which is a 

shorter period of time compared to other models (Bezerra et al., 2000, de Lima et al., 

2000, Benatti et al., 2003). Some studies report the period of disease induction of up to 

two months (Kenworthy and Baverel, 1981, Holzhausen et al., 2002, Kuhr et al., 2004, 

Nakamura-Kiyama et al., 2014). The varied period of disease induction depends on the 

study design and characteristics of the ligature (e.g. diameter of ligature). Generally, in 

ligature models, the most significant alveolar bone loss happens within two weeks and 

then bone destruction starts to slow down (Kuhr et al., 2004). 

Similar to the initial phase of periodontitis in humans, increased vascular 

permeability and leukocytes infiltration are observed following one week of ligature 

placement (Gyorfi et al., 1994). Some studies show inhibition of inflammatory cytokine 
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(Bezerra et al., 2000) or matrix metalloproteinase (Bezerra et al., 2002, Cesar Neto et al., 

2004) controls the progress of periodontitis in the ligature model. These results mean the 

disease progression is accompanied with locally or systematically increased levels of 

inflammatory cytokines, such as IL-1, IL-6, and TNF-α (Endo et al., 2010, Gaspersic et 

al., 2003). The periodontitis related risk factors, such as smoking (Cesar Neto et al., 2004) 

and diabetes (Liu et al., 2006), also affect the loss of alveolar bone in the ligature model. 

This experimental periodontitis model simulates the progression of periodontitis in 

humans to a certain extent.  

Compared to the oral gavage model, which initiates experimental periodontitis by 

inoculating high doses of human periodontal pathogens around animal teeth, the ligature 

model has the advantage of representing the natural process of biofilm-induced 

inflammation. The reasons are that periodontal pathogens usually only have relatively 

low abundance in human periodontal microbiota and these pathogens are present in the 

oral cavity even before the subjects have periodontal disease (Teles et al., 2013). In the 

ligature model, excess bacteria accumulate around the ligature to initiate the experimental 

periodontitis (Abe and Hajishengallis, 2013). For humans, total cell counts of bacteria 

and total mass of plaque are usually positively related to the severity of chronic 

periodontitis. Moreover, mice and rats do have some oral pathogens, which are similar to 

human periodontal pathogens, detected in the ligature model (Duarte et al., 2010, Jiao et 

al., 2013). Taken together, the ligature-induced periodontitis model might be a relatively 

more appropriate model to study microbiota in experimental periodontitis than the oral 

gavage model. Also, it is practical to collect plaque samples from the ligatures. However, 
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it is still debatable if the periodontal tissue inflammation initiated by the trauma of 

ligature placement does completely represent the inflammation environment of 

periodontitis in humans. 

Subgingival Microbiota in Periodontitis: Biased vs. Unbiased Analytical Approaches  

Bacteria-mediated inflammation is the main etiology of periodontitis. Oral biofilm 

attached on the root surface is the habitat for the periodontal microbiota. Different 

microbiotas form in oral mucosa, tongue, gingiva, and the tooth surface. The composition 

of the microbiota reflects its specific habitat in the oral cavity as well as changes in the 

local environment that is induced by intrinsic metabolism of the microbiota (Mager et al., 

2003, Kolenbrander et al., 2010). In the microbial community, each species is colonized 

sequentially and has reciprocal interaction with others. A spatiotemporal model of 

periodontal microbiota colonization has been proposed (Kolenbrander and London, 1993).  

The initial colonizers, such as Streptococcus gordonii, Streptococcus mitis, 

Streptococcus oralis, Streptococcus sanguinis, bind to complementary salivary receptors, 

including sialylated mucins, proline-rich protein, α-amylase, salivary agglutinin and 

bacterial cell fragments, in the pellicle coating the crown or root surface. Then the early 

colonizers, such as Actinomyces naeslundii, Capnocytophaga gingivalis, 

Capnocytophaga ochracea, and late colonizers, such as Aggregatibacter 

actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, bind 

previously bound bacteria sequentially. In the microbial complex, many species 

coaggregate with each other to stabilize the network. For example, Fusobacterium spp. 

plays an important role in bridging early and late colonizers. Different species also 
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change genetic information or provide nutrients to each other to survive in the 

community.  

In 1998, Dr. Sigmund Socransky proposed the concept of periodontal microbial 

complexes based on the results of multiple cluster and community ordination analyses 

from more than 13,000 plaque samples. The complexes are named by different colors, 

and the species in the same complex are associated with each other temporally and 

spatially (Socransky et al., 1998). Moreover, increased total cell counts of species in 

specific complexes (e.g. orange or red complexes) and increased relative proportions of 

specific complexes are associated with the status of the periodontal tissues. The concept 

of periodontal microbial complexes has been widely used while analyzing human plaque 

sample.  

Tooth-associated oral biofilms can be roughly divided into supragingival biofilms 

(on exposed tooth surface or above the gingival margin) and subgingival biofilms (below 

the gingival margin and within the periodontal pocket or sulcus) (Kolenbrander et al., 

2010). The microbial community living in the biofilm is categorized into supragingival 

microbiota or subgingival microbiota. The supragingival microbiota not only plays an 

important role in caries formation, but also initiates the formation of subgingival 

microbiota.  The surpragingival microbiota, as detected by checkerboard DNA-DNA 

hybridization, is reestablished within two days following the cleaning of supragingival 

plaque (Haffajee et al., 2008). The species in the purple (e.g. Veillonella parvula), green 

(e.g. C. gingivalis, E. corrodens), and orange complexes (e.g. F. nucleatum) flourish 

during seven days of new biofilm formation. The sequences of bacterial colonization are 
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similar to the sequences proposed in the spatiotemporal model of periodontal bacterial 

colonization. The composition of supragingival microbiota and total cell counts of 

bacterial species between the healthy subjects and the periodontitis subjects are slightly 

different during the reformation of oral biofilms (Haffajee et al., 2008).  

Having a similar design to Haffajee et al. (2008), another study investigates the 

change of subgingival microbiota during one week of biofilm reformation (Uzel et al., 

2011). Unlike the supragingival microbiota, the pattern of subgingival microbiota 

reformation between the healthy subjects and the periodontitis subjects is significantly 

different. The cell counts of bacterial species detected by checkerboard DNA-DNA 

hybridization in the periodontitis subjects increase more rapidly than do these in the 

healthy subjects. The difference might be explained by a larger source of nutrients 

provided by the elevated flow of gingival crevicular fluid and many residual cells in the 

diseased periodontal pockets that contribute to the repopulation of the microbiota. The 

results of these two studies (Haffajee et al., 2008, Uzel et al., 2011) indicate distinct 

environments affecting the composition of the local microbiota. Although the microbial 

composition of supragingival plaque is associated with subgingival microbiota and 

periodontal status clinically to a certain degree (Mayanagi et al., 2004, Haffajee et al., 

2008), the supragingival microbiota cannot completely represent the subgingival 

microbiota, especially in a diseased site with deep probing depth (Teles et al., 2006). 

Therefore, most studies collect subgingival plaque to evaluate the association between 

microbial composition and clinical status in periodontitis patients. 
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The interaction between the microbial and non-microbial components (e.g. 

immune cells, nutrients) of an ecosystem ultimately leads to homeostasis in which 

microbial and non-microbial forms exist in harmony and equilibrium with their 

environment. This is the climax community (Socransky and Haffajee, 2005). Specific 

climax communities exist in distinct environments. Therefore, the subgingival microbiota 

in healthy subjects and periodontitis subjects are very different given that the periodontal 

environment is distinct. When a tooth has periodontitis, the depth of the gingival sulcus 

increases due to the loss of periodontal attachment and alveolar bone. The inflammation 

happening in the periodontal tissue and the deepened gingival sulcus causes the changes 

of metabolism resulting in increased pH, increased variety of nutrients, elevated flow of 

gingival crevicular fluid, elevated temperature, decreased oxygen level, and low 

reduction potential. The changed environmental conditions favor the growth of 

periodontal pathogens, such as P. intermedia, P.gingivlais, T.denticola, which have 

generally low numbers in the healthy periodontal environment (Marsh and Devine, 2011). 

Moreover, the gene expressions of the species also change in the periodontitis 

environment. The upregulation of putative virulence factor could enhance inflammation 

(Duran-Pinedo et al., 2014). The change of environment affects the microbiota, and 

changes in the microbiota also affect the environment. 

There are many methods to investigate the subgingival microbiota. Culture 

method is the traditional way to identify bacteria, but this method cannot identify large 

numbers of bacterial species at the same time. Moreover, the inability of identifying 

uncultivable bacteria is a major issue to analyze complex microbiotas (e.g. microbiota in 
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the gut and the oral cavity). Therefore, the use of molecular approaches became the 

preferred method for studying the microbiota of different habitats nowadays. In 

periodontal research, several culture independent techniques have been frequently 

utilized: quantitative real-time PCR (qPCR), checkerboard DNA-DNA hybridization, and 

microarray hybridization (16S ribosomal RNA-based) (Teles et al., 2013). qPCR gives 

the relative amount of bacterial species after amplification, but the number of species 

analyzed in each sample at the same time is limited (Sakamoto et al., 2001). 

Checkerboard DNA-DNA hybridization can detect multiple species simultaneously and 

gives the absolute counts of bacterial species, but each membrane only quantifies a 

maximum of forty-five cultivable species in a specified range (the DNA amount of a 

single species in a given sample should range between 104 to 107) (Socransky et al., 1994, 

Socransky et al., 2004). Microarray hybridization gives the relative detected frequencies 

of multiple species simultaneously (over 300 species), but the frequency of each species 

can be biased by the 16S rRNA gene PCR amplification process (Paster et al., 2006). 

Next-generation sequencing (NGS) is an open-ended molecular technique, which is 

different from the other closed-ended methods mentioned above. The detection of 

bacteria in the microbiota is not restricted by the specificity of the probes or primers as in 

other techniques (Griffen et al., 2012). Large numbers of known and unknown bacterial 

species can be detected in an environmental or clinical sample by next-generation 

sequencing through “metagenomics” (Thomas et al., 2012). Metagenomic studies are 

commonly performed by analyzing the specific regions of prokaryotic 16S ribosomal 

RNA gene (16S rRNA) to conduct phylogenetic classifications such as genus or species 
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in diverse microbiota. 16s rRNA is approximately 1,500 bp long and contains nine 

variable regions interspersed between conserved regions. The difference of copy numbers 

of 16s rRNA in species may cause bias in the relative abundance results of NGS 

(Vetrovsky and Baldrian, 2013). More importantly, NGS can analyze the functions of 

species efficiently by RNA sequencing (RNA-Seq), exome sequencing, and chromatin 

immunoprecipitation sequencing (ChIP-Seq). Large numbers of gene sequences can be 

analyzed in a short period of time.  

However, while conducting phylogenetic classifications, NGS can only generate 

relative abundance of different taxa, and the detected frequencies are biased during the 

PCR amplification step. Since different techniques have advantages and disadvantages, 

the technique which can best answer the experimental question should be utilized. 
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CHAPTER TWO: SUBGINGIVAL MICROBIOTA SHIFTS IN PERIODONTITIS 

FOLLOWING RESOLVIN E1 APPLICAITON   

Introduction 

Periodontitis is a biofilm-induced inflammatory disease. The initiation and 

progression of periodontal disease requires the simultaneous occurrence of a number of 

factors, including the virulent periodontal pathogen, host susceptibility, and the local 

environment favoring expression of virulence factors (Haffajee and Socransky, 1994). 

Although it is still debatable whether bacteria or immune response or both are the 

primary initiators of periodontal disease progression, it is clear that the inflammatory 

response followed by the acquired immune response drives the pathogenesis of 

periodontitis after the initial bacteria challenge. Therefore, regulating the immune 

response appears to be a promising approach to treat periodontitis. Several years ago, the 

discovery of the active resolution phase of inflammation provided a missing link in our 

understanding of chronic inflammatory diseases. Chronic inflammation may be due to a 

failure of resolution, rather than too much inflammatory stimulation. If the resolution 

phase can be activated, the inflamed tissue will return to homeostasis and regeneration of 

tissue will occur (Serhan et al., 2008, Van Dyke, 2014). Specialized pro-resolving 

mediators (SPMs), including lipoxins, resolvins, protectins, maresins, are molecules 

which initiate the resolution phase. As discussed above, resolvins have already been used 

to treat periodontitis in animal models. 

Previous studies demonstrated that the local application of RvE1 in a P. 

gingivalis-induced periodontitis model in rabbits prevented the onset of periodontitis and 
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promoted the regeneration of the periodontium destroyed by the disease (Hasturk et al., 

2006, Hasturk et al., 2007). An interesting outcome of one of these studies in rabbits was 

the apparent spontaneous disappearance of P. gingivalis following the regeneration of 

periodontal tissue treated by resolvin E1 application (Hasturk et al., 2007). No 

mechanical or antimicrobial therapies were used. The rabbit ligature model experiment 

was initiated with a six-week disease induction phase (P. gingivalis inoculation) followed 

by subsequent six-week treatment phase (RvE1 application) after P. gingivalis 

inoculation was stopped. Microbial dental plaque (pooled supragingival and subgingival 

biofilm) was sampled at baseline, at six and twelve weeks. The authors reported that 

infection with P. gingivalis altered the composition of the existing oral microbiota of the 

rabbits, resulting in the detection of previously undetected species, such as A. 

actinomycetemcomitans and F. nucleatum, and in the disappearance of Camphylobacter 

curvus and Campylobacter rectus, among other changes at the end of the disease 

induction. Application of RvE1 resulted in a return of the microbiota to its baseline 

composition and the apparent elimination of P. gingivalis, whereas placebo treated 

animals maintained the complex pathogenic microbiota. Two potential mechanisms were 

proposed to explain these findings: (i) RvE1 might have stimulated the antibacterial 

activities of immune cells; or (ii) the resolution of the inflammation “starved” P. 

gingivalis reducing nutrients which were derived from host-tissue degradation (Van Dyke, 

2008).  The dynamics of microbiota shift after inflammation resolution and tissue 

regeneration following RvE1 application is still not clear.   
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The goal of our studies was to characterize the kinetics of changes in the 

subgingival microbiota in an experimental periodontitis model after treatment of the 

disease with resolvin E1, and to start to explore the mechanisms leading to these changes. 

A ligature-induced periodontitis model in the rat was utilized because, unlike the rabbit 

model, which requires exogenous addition of P. gingivalis to induce disease, rats develop 

disease presumably induced by their own microbiota. The goal was to fill a gap in 

knowledge regarding the impact of specialized pro-resolving lipid mediators (SPMs) on 

the composition of the subgingival microbiota during periodontitis progression. 

The hypothesis was that resolvin E1 would result in the resolution of periodontal 

inflammation leading to changes in the local environment that would lead in a shift in the 

composition of the adjacent subgingival biofilm. To test this hypothesis, we proposed two 

specific aims: 

Specific Aim 1 – To examine the changes in the rat subgingival microbiota during 

the induction and treatment phases of ligature-induced periodontitis using 

checkerboard DNA-DNA hybridization and next-generation sequencing.  

We hypothesized that after ligature placement, the total mass of the subgingival 

biofilm would increase, and the microbiota would shift towards a higher proportion of 

periodontal disease associated pathogens during disease progression. Conversely, 

resolution of the periodontitis following RvE1 application would reverse those changes 

and reestablish a health-associated microbiota.  
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In pilot studies, checkerboard DNA-DNA hybridization was used to determine 

whether shifts could be detected after RvE1 treatment.  This relatively inexpensive 

screening tool employed probes to human pathogens, so the applicability to rat associated 

microbiota is relative. Next-generation sequencing is a powerful tool to perform 

metagenomics for the characterization of the rat microbiota associated with health and 

disease. Once the potential impact of RvE1 was established, this technique was used to 

characterize microbial dysbiosis caused by ligature placement and the impact of RvE1 in 

reversing this dysbiosis.  

Specific Aim 2 – To characterize the clinical and local inflammatory response 

changes in the periodontium of rats.  

We hypothesized that in the presence of RvE1, bone regeneration would be 

observed with a reduction of the inflammatory infiltrate in the tissues at the histological 

level.  Tissue expression of specific inflammatory gene pathways should also be inhibited. 

Materials and Methods 

Animals and experimental periodontitis model  

This experiment was approved by Institutional Animal Care and Use Committee 

(IACUC) of the Forsyth Institute. Eighteen six-week old male Wistar rats (weight 180-

200 g, Charles River Laboratories, New York, NY) were used. All animals were 

maintained in a controlled temperature (220 C to 250 C) and dark/light cycle (12/12 hours) 

facility. Rats received a standard laboratory chow diet and water ad libitum. Rats were 

sedated by isoflurane 2-3% before being anesthetized with ketamine (80mg/kg, 
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intraperitoneally) and xylazine (16 mg/kg, intraperitoneally). It was necessary to 

anesthetize the rats before performing all experimental procedures, including placing the 

ligature, checking the ligature position, collecting subgingival plaques, or applying RvE1. 

Eighteen rats were divided into four groups (no ligature: n=6, ligature alone: n=6, ligature 

+ Vehicle: n=3, ligature + RvE1: n=3).  3–0 silk ligatures were placed subgingivally on 

the maxillary right and left second molars of each ligated rat on the first day of the 

experiment to induce periodontitis. The knots were tightened on the buccal side of the 

maxillary second molars to prevent being disturbed by the tongue. The experimental 

period lasted six weeks, including a three-week disease induction phase and the 

subsequent three-week treatment phase. The stability of the ligatures was checked every 

other day for every rat. RvE1 (C20H30O5, molecular weight: 350.5, purity>97%, λmax: 272 

nm) was obtained from Cayman Chemical (Ann Arbor, MI). The RvE1 provided by 

Cayman was prepared by stereospecific total synthesis guided by the published structure 

described in the published reference (Arita et al., 2005a). Analytical and biological 

comparisons with endogenously derived RvE1 have confirmed its identity as matching 

the natural product. 

Six rats in the non-ligature (healthy) group were sacrificed on the first day of the 

experiment to collect baseline tissue samples. At the end of the disease induction phase 

(21st day), the six rats in the ligature alone group were sacrificed to quantify the amount 

of disease induced. During the treatment phase, 1 µg RvE1 (Cayman Chemical Co. Inc., 

Ann Arbor, MI) dissolved in 4 µl of ethanol was applied to the ligated teeth of the rats in 

the RvE1 group (2 µl on buccal or palatal side respectively), and 4 µl of ethanol (vehicle 
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alone) was applied on the ligated teeth of the rats in the Vehicle group with a Hamilton 

syringe (25G needle, 5µl syringe). RvE1 (0.7mM) and vehicle were applied every other 

day during the treatment phase (weeks four to six). At the end of six weeks, the rats from 

both remaining groups were sacrificed. All rats were euthanized by CO2 inhalation. The 

timeline of the experiment is summarized in Fig. 2.1. 

The following samples were collected: subgingival plaque, gingival tissue, 

maxillary bone block, and serum. Subgingival plaque samples were collected on day 0, 8, 

12, 16, 20, 24, 28, 32, 36, and 40. Other samples were collected immediately after 

sacrifice. The maxillae were split into two halves: one half was taken for the analyses of 

bone morphometry and gene expression. The palatal gingiva of the ligated tooth was 

incised and stored in 200µl of RNAlater (Sigma-Aldrich, St. Louis, MO) for the qRT-

PCR assay. Then the remaining specimen was defleshed by beetles to obtain a clean bone 

block. The other half was processed for histomorphometric analysis. Blood was obtained 

using heart aspiration and centrifuged to collect serum. Serum was aliquoted and stored at 

-80 0C (eight aliquots of 100µl each) for future analysis.  

Bacterial DNA extraction and amplification 

Subgingival plaque samples were collected using the tip of a 2-Whiteside scaler 

(Hu-Friedy, Chicago, IL) from the palatal site of the maxillary second molars. Before 

placing the ligature on the maxillary second molars, a plaque sample was collected from 

four teeth (two maxillary second molars and two mandibular second molars) of each rat 

at baseline and then the samples were pooled in one collection tube. The sample was 

collected from one ligated tooth of each rat each time after the ligature placement. The 
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DNA of subgingival plaque was extracted using the MolYsis Basic (CaerusBio Inc., 

Dowingtown, PA) and QIAamp® mini kit (QIAGEN Inc., Valencia, CA).  The MolYsis 

Basic kit was used to isolate the bacterial DNA from the sample to exclude DNA of 

mammalian cells. Mammalian cells were lysed under chaotropic conditions to release 

DNA. The released mammalian DNA was enzymatically degraded, and then the bacterial 

cells were lysed (Horz et al., 2008, Horz et al., 2010). After selectively removing 

mammalian DNA, the bacterial DNA was extracted with QIAamp® mini kit (QIAGEN 

Inc., Valencia, CA). Briefly, the isolated bacterial cells were mixed with lysozyme (20 

mg/ml) and Proteinase K, and incubated at 56 0C for two hours to lyse the cell wall to 

release DNA. DNA was then isolated and eluted following the manufacturer’s 

instructions. 

The extracted bacterial DNA was amplified with the multiple displacement 

amplification kit (GenomiPhiTM V3 DNA amplification kit, GE Healthcare Bio-Sciences, 

Pittsburgh, PA). Multiple displacement amplification (MDA) enables the whole genomic 

amplification of DNA targets (Dean et al., 2002, Brito et al., 2007).  The unique Φ29 

DNA polymerase used in this technique is able to amplify DNA isothermally at 30 o C 

and gives the most complete coverage, avoid sequence effects, and results in unbiased 

amplification. The MDA technique can increase the bacterial DNA amount up to one 

thousand fold. In brief, 3 µl of each of the DNA templates was added to 7µl pure water in 

200 µl microcentrifuge tubes, and then was mixed with 10µl 2X Denaturation Buffer. 

Templates in denaturing buffer were heat denatured at 95 o C for 3 minutes in the thermal 

cycler and cooled to 4 oC.  Then the 20 μl of denatured DNA template was added to each 
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Ready-To-Go GenomiPhi V3 cake in the well.  The wells were sealed with the domed 

caps provided. The mixtures were kept on ice prior to incubation. The samples were 

incubated at 30 ºC for 1.5 hours for DNA amplification, and then the samples were heated 

to 65 ºC for 10 minutes to inactivate the Φ 29 DNA polymerase enzyme. The 

amplification reactions were stored at -20°C for future use.  The concentration of 

amplified DNA samples was measured with fluorescent nucleic acid stain (Quant-iT™ 

PicoGreen® dsDNA Assay, Life Technologies, Grand Island, NY).  

Checkerboard DNA-DNA hybridization 

Forty human periodontal disease associated bacterial probes (Socransky et al., 

2004) (Table 2.1) were selected to detect the bacterial DNA of rat subgingival plaque 

after multiple displacement amplification using checkerboard DNA-DNA hybridization.  

In brief, 8 µl amplified bacterial DNA was added in 1ml Tris EDTA buffer (10 mm Tris–

HCl, 1 mm ethylenediaminetetraacetic acid, pH 7.6). Immediately after, the solution with 

DNA was placed in lanes on a nylon membrane using a Minislot device (Immunetics, 

Cambridge, MA). After fixation of the DNA to the membrane, the membrane was placed 

in Miniblotter 45 (Immunetics, Cambridge, MA), with the lanes of DNA at 90o to the 

lanes of the device. Digoxigenin-labeled whole genomic DNA probes to forty 

subgingival species were hybridized in individual lanes of the Miniblotter. After 

hybridization, the membranes were washed at high stringency. The DNA probes were 

detected using antibody to digoxigenin, and conjugated with alkaline phosphatase and 

chemifluorescence detection. Signals were detected using AttoPhos substrate (Amersham 

Life Sciences, Arlington Heights, IL) and were read using a Typhoon Trio Variable Mode 
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Imager (GE Healthcare Bio-Sciences, Pittsburgh, PA), a computer-linked instrument that 

reads the intensity of the fluorescence signals resulting from the probe-target 

hybridization. Two lanes in each run contained standards at the concentration of 105 and 

106 cells of each species. The sensitivity of the assay was adjusted to permit the detection 

of 104 cells of a given species by adjusting the concentration of each DNA probe. Signals 

were evaluated using the Phoretix Array (TotalLab Ltd, UK) and converted to absolute 

counts by comparison with the regression line determined from data from the standards 

on the same membrane. Failure to detect a signal was recorded as zero.  

Next-generation sequencing 

The microbial composition of the plaque samples (50ng DNA/10µl) were 

characterized by sequencing the hyper-variable V3 and V4 regions of the 16S rRNA gene 

using the Illumina MiSeq® platform. Paired-end sequencing allows the capture of the 

entire V3-V4 region by overlapping and merging the read pairs.  Successfully merged 

reads were processed through the QIIME pipeline (Caporaso et al., 2010) filtering out 

low quality sequences using a quality score threshold of 20.  Operation Taxonomic Units 

(OTUs) were created by clustering the merged quality filtered reads at a 97% identity 

threshold using sequences from a reference database (SILVA/Greengenes) (DeSantis et 

al., 2006, Quast et al., 2013) as a guide.  All remaining sequences entered a de novo 

clustering step where they were clustered at the same 97% identity threshold without 

guidance from the reference database.  Potential chimeric OTUs were removed through 

the use of UCHIME (Edgar et al., 2011) and the gold 16 database (Public domain version 

of UCHIME, version 4.1, http://drive5.com/uchime/uchime_download.html).  Taxonomic 
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assignments to OTUs from phylum to genus level were completed through QIIME’s use 

of the given reference database (SILVA/Greengenes) and the UCLUST algorithm (Edgar, 

2010).  Further analysis included alpha diversity (e.g. Shannon evenness), beta diversity 

(weighted UniFrac) (Lozupone et al., 2006), principal coordinate analysis (PCoA) and 

relative abundance profiles of the microbial community in the samples. 

Relative abundance of taxa in each sample was defined as dividing the hit of each 

taxon by the total hits of all taxa in the sample. In ecology, diversity is usually thought of 

as being composed of richness (the number of species) and evenness (the relative 

abundance of species). Alpha diversity is defined as the richness and evenness within a 

habitat unit (a sample). Beta diversity is defined as the expression of diversity between 

habitats (samples). 

In this study, richness was evaluated by the number of observed OTUs, and 

evenness was measured as Shannon evenness or non-parametric Shannon Index (Anne 

Chao, 2003). A higher value of the number of observed OTUs means more species 

existing within a sample. A high value of Shannon index or non-parametric Shannon 

evenness is representative of a diverse and equally distributed community and a lower 

value represents a less diverse community. Beta diversity was represented by weighted 

UniFrac distance. UniFrac distance is used to measure the phylogenetic distance between 

sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree. UniFrac 

distance can determine whether communities are significantly different. Weighted 

UniFrac distance accounts for the relative abundance of each taxon within the 
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communities. The data in this distance matrix was visualized with principal coordinates 

analysis (PCoA). 

Morphometric analysis 

The dissected maxilla bones were defleshed and stored in 0.3% hydrogen 

peroxide for 24 hours. Then the bones were dried completely before being stained. The 

alveolar bone loss of three maxillary molars was analyzed using a dissecting microscope. 

The dissected maxilla bones were stained with methylene blue and the images (at 

0.63X10 times magnification) were taken under the dissecting microscope (Axio 

observer A1, ZEISS) using AxioVision 4.8 software. The area of exposed root surface 

was measured at the buccal and palatal sites of three maxillary molars. The distance 

between the alveolar bone margin and the cementoenamel junction (CEJ) was measured 

at nine sites (mesial, middle, and distal sites of the first molar; interproximal site between 

the first molar and the second molar; mesial and distal sites of the second molar; 

interproximal site between the second molar and the third molar; mesial and distal sites of 

the third molar) of three maxillary molars at the buccal site and the palatal site. The 

direction of the distance line was parallel with the axis of the root (Fig. 2.2). All 

measurements were performed using computer software (ImageJ). The measurements of 

buccal and palatal sites were added for statistical analysis.   

Histomorphometry  

Half of the maxilla was immersed in 20 volumes of 10% formalin for 48 hours 

and rinsed with water for four hours. Then the tissue specimen was immersed in 20 
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volumes of 10% EDTA, which was replaced every 48 hours for two to three weeks. The 

completion of decalcification was confirmed by the chemical reaction of calcium oxalate 

precipitation. After the process of decalcification, the tissue specimens were rinsed for 

four to eight hours in running water, and soaked in 50% and 70% ethanol sequentially. 

The tissue specimens were immersed in 90% ethanol the day before embedding with 

paraffin. Serial mesio-distal sections (6 µm) parallel to the long axis of the teeth were cut. 

Thin sections were either stained with H&E for light microscopy and identification of the 

cellular composition of inflammatory infiltrates, or stained with tartrate resistant acid 

phosphatase (TRAP) to examine osteoclastic activity. 

Sections with similar anatomic positions were selected for quantitative 

measurement. Different sections were measured randomly to avoid bias. Specific areas of 

mesial and distal interproximal sites were selected for histological assessment. Each 

measurement had three different sections. The number of inflammatory cells, including 

neutrophils, lymphocytes and plasma cells, was counted in the area of connective tissue 

above the alveolar bone at 400x magnification. The total number of osteoclasts around 

the interproximal bone was counted. The area of interproximal bone was measured. 

Osteoclast density was defined as dividing the number of osteoclasts by the area of 

interproximal bone. All the measurements were performed using computer software 

(ImageJ). All measurements in each sample were the mean of the mesial side and the 

distal site from three sequential sections.     

Quantitative reverse transcription polymerase chain reaction assay  
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Total RNA was extracted from gingival tissue with Trizol reagent (Invitrogen, 

Grand Island, NY) as per the manufacturer's protocol. Gingival tissue was homogenized 

by pestle homogenizer before adding Trizol reagent. The concentration and purity of 

RNA was estimated by the A260/A280 ratio spectrophotometrically (NanoDrop 2000c, 

Thermo Fisher Scientific, Waltham, MA). A total of 1 μg RNA was converted to cDNA 

using a high-capacity cDNA reverse transcriptase kit (Applied Biosystems, Grand Island, 

NY). The 20 µl reaction mixtures were thoroughly mixed and assayed at 25°C for 10 

minutes, 37°C for 120 minutes, and 85°C for five minutes in a thermal cycler (ABI 9700, 

Applied Biosystems).  

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was 

performed using primers and TaqMan probes for Cxcl1, Ptgs2, Nos2, and labeled with 

FAM dye (Applied Bio-systems, TaqMan gene expression assays).  β-actin (Actb) was 

utilized as an internal control and amplified using preformulated VIC-TAMRA-labeled 

TaqMan probes (Applied Biosystems, Endogenous Control). Quantification was 

performed in an automated thermal cycler (StepOnePlus™ System, Applied Biosystems). 

The reaction mixtures were kept at 50°C for two minutes (one cycle), 95°C for 20 

seconds (one cycle), 95°C for one second and 60°C for 20 seconds (40 cycles). The 

results were analyzed through a software interface and spreadsheet for the calculation of 

relative expression (2-ΔΔCT). 

The gene Cxcl1 (GRO-α, CINC, CXCL1 in humans) controls the production of 

chemokine (C-X-C motif) ligand 1 (CXCL1), which is a chemokine expressed in 

endothelial cells, fibroblasts, neutrophils, monocytes and other cells. CXCL1 is highly 
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chemotactic for neutrophils. For rodents, there is no IL-8 gene expression; therefore, 

CXCL1 plays an important role in recruiting the neutrophils during acute inflammation. 

The gene Ptgs2 controls the production of prostaglandin-endoperoxide synthase 2 

(PTGS2 or COX-2), which is an enzyme involving in the conversion of arachidonic acid 

to prostaglandin H2 and thromboxane A2. COX-2 is unexpressed under normal 

conditions in most cells, but has elevated levels during inflammation. The expression of 

Ptgs2 is associated with bone resorption, platelet aggregation, vessel tone and other 

physiological functions.  

The gene Nos2 controls the expression of inducible nitric oxide synthase (iNOS). 

The production of iNOS is stimulated by lipopolysaccharide and cytokines, such as IL-1β, 

TNF-α, and IFN-γ. Inducible nitric oxide synthase produces large quantities of nitric 

oxide (NO) upon stimulation react with superoxide (O2
-) leading to peroxynitrite 

(ONOO-) formation and cell toxicity.  

Statistical Analysis 

The comparisons between two groups were analyzed by unpaired or paired two-

tailed Student’s t-test. The comparisons between multiple groups were analyzed by one-

way analysis of variance (one-way ANOVA) and post hoc analysis was performed 

(pairwise t-test). All values were expressed as mean ± standard error of the mean. P-value 

<0.05 was considered statistically significant. 

Results 

Ligature placement induces experimental periodontitis 
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After three weeks of ligature placement, significant bone loss was observed in the 

ligature alone group (mean area of exposed root surface in three molars- no-ligature 

(healthy): 3.2±0.4 mm2, ligature alone: 7.3±0.6 mm2, p< 0.01; mean distance between 

CEJ and alveolar bone level- no ligature: 4.1±0.5 mm, ligature alone: 9.9±0.8 mm, 

p<0.01) (Fig. 2.3). Histologically, the mean area of interproximal bone in the ligature 

alone group was also significantly smaller than the area in the no ligature group (no 

ligature: 0.35±0.03 mm2, ligature alone: 0.18±0.03 mm2, p<0.01).   

RvE1 treatment regenerates lost alveolar bone 

Three weeks of RvE1 treatment significantly reversed alveolar bone loss induced 

by ligature placement compared to vehicle application (mean area of exposed root surface 

in molars - Vehicle: 8.0±0.4mm2, RvE1: 5.8±0.2 mm2, p<0.01; mean distance between 

CEJ and alveolar bone level - Vehicle: 11.4±0.5 mm, RvE1: 8.3±0.2 mm, p<0.01) (Fig. 

2.4).  The alveolar bone level in the RvE1 group was higher than that in the ligature alone 

group (mean area of exposed root surface in molars - ligature alone: 7.3±0.2 mm2, RvE1: 

5.8±0.2 mm2, p<0.01; mean distance between CEJ and alveolar bone level - ligature 

alone: 9.9±0.3 mm2, RvE1: 8.3±0.2 mm2, p=0.03) (Fig. 2.4). Histologically, regeneration 

of interproximal bone following RvE1 treatment was also observed (mean area of 

interproximal bone- Vehicle: 0.16±0.01 mm2, RvE1:0.22±0.02 mm2) (Fig. 2.5). 

RvE1 treatment reduces osteoclast activity and inhibits inflammation in 

experimental periodontitis 
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The mean count of inflammatory cells in the connective tissue in the RvE1 group 

was lower than the count in the ligature alone and Vehicle group but the difference was 

not statistically significant (Fig. 2.6).  RvE1 treatment significantly inhibited osteoclast 

activity compared to vehicle application (p<0.05). Also, the osteoclast density in the 

RvE1 group was lower than that in the ligature alone group (p=0.02) (Fig. 2.7).   

Expression of inflammation related genes was inhibited by RvE1 treatment. The 

relative gene expression levels (2-ΔΔCT) of Cxcl1, Ptgs2, Nos2 in the RvE1 groups were 

lower than the other two groups, and RvE1 treatment significantly reduced relative gene 

expression level of Cxcl1 compared to vehicle application (p=0.02).  

Subgingival microbiota shift during disease induction phase and treatment phase 

Pilot experiments were performed with checkerboard DNA-DNA hybridization to 

identify subgingival microbiota and analyze the cell counts (CFU) of 40 species derived 

from human samples. Since DNA probes were made of human bacterial DNA, the 

terminology ‘‘like species’’ was employed to describe the detection of probe signal 

(Rober et al., 2008, Duarte et al., 2010).  Mean cell counts of 33 out of 40 species 

identified by checkerboard DNA-DNA hybridization significantly increased from the 

baseline to the end of disease induction phase (Table 2.2). Only five species 

(Capnocytophaga gingivalis, Prevotella intermedia, T. forsythia, Propionibacterium 

acnes, Prevotella melaninogenica-like species) did not exhibit statistically significant 

differences. Nine species, Streptococcus oralis, Veillonella parvula, Streptococcus mitis, 

Streptococcus gordonii, Streptococcus intermedia, Streptococcus sanguini, Actinomyces 

gerencseriae, Streptococcus constellatus, and Eubacterium saburreum-like species, had 
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cell counts more than 2 x105 on day 20. Total cell counts significantly increased from 

baseline to the end of disease induction phase (p<0.01).  

RvE1 treatment significantly reduced bacteria at the end of treatment phase (day 

40). At the beginning of treatment phase (day 20), mean cell counts of species had no 

significant difference between the Vehicle group and the RvE1 group, except for one 

species: Campylobacter showae-like species. On day 40, mean cell counts of species in 

the RvE1 group were lower than mean cell counts of species in the Vehicle group, except 

two species: Streptococcus mitis and Streptococcus oralis-like species (Fig. 2.9). Mean 

cell counts of nineteen species (e.g. T. forsythia, P. gingivalis-like species) in the RvE1 

group were significantly lower than these in the Vehicle group on day 40 (Table 2.3). 

Total cell counts were significantly reduced by RvE1 treatment compared to vehicle 

application. 

The data was grouped and represented as the relative proportions of periodontal 

microbial complexes as defined by Socransky. The pattern of baseline (day 0) was quite 

different from the patterns of other time points after disease induction. Yellow and other 

complexes (27.55%, 22.32%) had higher relative proportions than did other complexes 

on day 0. The yellow complex became the only dominant microbial complex after disease 

was induced (Table 2.4).  During the treatment phase, RvE1 treatment limited changes of 

the relative proportions of periodontal microbial complexes compared to vehicle 

application. Before treatment started (day 20), the relative proportions of microbial 

complexes in the Vehicle group were similar to those in the RvE1 group. At the end of 

treatment (day 40), the Vehicle group had a relatively lower proportion of yellow 
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complex and higher proportions of orange and red complexes than did RvE1 group 

(Yellow complex - Vehicle: 33.76 %, RvE1:40.41 %; Orange complex - Vehicle: 20.53%, 

RvE1: 16.92%; Red complex: Vehicle: 4.34%, 2.93%, Table 2.5).   

Having established an impact of RvE1 on the microbiota with the checkerboard 

pilot, the definitive experimental analysis of the rat microbiota was performed using next-

generation sequencing.  There was a clear shift in the subgingival microbiota following 

ligature placement (Fig. 2.10). Considering the variation of relative abundance and 

limited sample size, a less conservative significant level (p<0.3) was chosen to find the 

potential genera representing subgingival microbiota in different groups.  Several genera 

changed significantly from baseline to the end of the disease induction phase. Two genera, 

Streptococcus and Rothia, had the largest changes in mean relative abundance during 

disease induction phase (Fig. 2.11). In the treatment phase, the subgingival microbiota 

shift was compared between the RvE1 and the Vehicle treatment groups. At the phylum 

level, Firmicutes were dominant in the RvE1 group during the treatment phase. 

Actinobacteria and Firmicutes in the Vehicle group had similar relative abundance at the 

end of treatment phase (Table 2.6). Four genera (Enterococcus, Veillonella, Allobaculum, 

Lactobacillus) demonstrated more significant difference (p<0.3) between the RvE1 group 

and the Vehicle group on day 32 than did other genera. On day 40, 11 genera 

(Coprococcus, Lactobacillus, Blautia, Sutterella, Veillonella, Streptococcus, 

Corynebacterium, Collinsella, Facklamia, Dorea, Aggregatibacter) had more significant 

difference (p<0.3) between the RvE1 group and the Vehicle group than did other genera 

(Fig. 2.12). 



55 
 

Regarding the diversity of subgingival microbial community, the evenness 

(Shannon evenness) appeared to gradually increase during the whole experiment. At the 

end of the experiment, the Shannon evenness in the Vehicle group was significantly 

lower than that in the RvE1 group (Fig. 2.13).  Richness of microbial community did not 

appear to change significantly during the phase of disease induction and the phase of 

treatment. The number of observed OTUs in the RvE1 group was lower than that in the 

Vehicle group at the end of treatment phase without statistical significance (Fig. 2.13). 

The results indicate the richness of microbial community was reduced by RvE1 treatment, 

and that the species in the RvE1 group were more evenly distributed than in the Vehicle 

group suggesting that RvE1 reduces the number of species represented in the biofilm and 

that no single species or group of species has overgrown. 

The graphs of principal coordinated analysis (weighted UniFrac distance) 

demonstrate a significant shift of subgingival microbiota between the baseline and the 

end of disease induction phase (Fig. 2.14). The variation of weighted UniFrac distance 

between samples on day 0 is larger than the variation between samples on day 20 (Fig. 

2.15) indicating the diversity between samples became smaller following disease 

induction. The diversity of the subgingival microbiota between the RvE1 group and the 

Vehicle group separated more at the end of treatment phase than did the subgingival 

microbiota at the beginning of treatment phase (Fig. 2.14). Taken together with Richness 

and Evenness data, the results indicate that RvE1 treatment increased diversity toward 

that associated with a healthy periodontium. 
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Table 2.1 List of forty species identified in the checkerboard DNA-DNA 
hybridization by the order of periodontal microbial complexes 
aPeirodontal Microbial Complexes Bacterial Species 
Actinomyces Actinomyces gerencseriae 
Actinomyces Actinomyces israelii 
Actinomyces Actinomyces naeslundii I 
Actinomyces Actinomyces visocosus 
Purple Actinomyces odontolyticus  
Purple Veillonella parvula 
Yellow Streptococcus gordonii 
Yellow Streptococcus intermedius 
Yellow Streptococcus mitis 
Yellow Streptococcus oralis 
Yellow Streptococcus sanguis 
Green Aggregatibacter actinomycetemcomitans  
Green Capnocytophaga gingivalis 
Green Capnocytophaga ochracea 
Green Capnocytophaga sputigena 
Green Eikenella corrodens 
Orange Campylobacter gracilis 
Orange Campylobacter rectus 
Orange Campylobacter showae 
Orange Eubacterium nodatum 
Orange Fusobacterium nucleatum ss nucleatum 
Orange Fusobacterium nucleatum ss polymorphum 
Orange Fusobacterium nucleatum ss vincentii 
Orange Fusobacterium periodonticum 
Orange Parvimonas micra  
Orange Prevotella intermedia 
Orange Prevotella nigrescens 
Orange Streptococcus constellatus 
Red Tannerella forsythia 
Red Porphyromonas gingivalis 
Red Treponema denticola 
Others Eubacterium saburreum 
Others Gemella morbillorum 
Others Leptotrichia buccalis 
Others Neisseria mucosa 
Others Propionibacterium acnes  
Others Prevotella melaninogenica 
Others Streptococcus anginosus 
Others Selenomonas noxia 
Others Treponema socranskii 
aThe species are listed in complex order (Actinomyces, Pulple, Yellow, Green, Orange, 
Red, Others)  
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Table 2.2 Mean counts (x105) (Mean±SEM) of 40 species in the disease induction 
phase 
Visit Day 0 (x 105)  Day20 (x 105) 
Complex Species 
Actinomyces Actinomyces gerencseriae 0.95±0.19 2.31±0.15* 
Actinomyces Actinomyces israelii 0.38±0.08 0.75±0.10* 
Actinomyces Actinomyces naeslundii I 0.39±0.07 2.64±0.18* 
Actinomyces Actinomyces visocosus 0.45±0.09 1.05±0.07* 
Purple Actinomyces odontolyticus  0.77±0.16 1.67±0.13* 
Purple Veillonella parvula 0.49±0.07 11.50±0.23* 
Yellow Streptococcus gordonii 0.73±0.22 4.44±0.32* 
Yellow Streptococcus intermedius 0.52±0.13 3.96±0.22* 
Yellow Streptococcus mitis 1.35±0.33 8.32±0.52* 
Yellow Streptococcus oralis 1.51±0.42 10.89±0.53* 
Yellow Streptococcus sanguis 0.41±0.09 3.26±0.25* 
Green Aggregatibacter 

actinomycetemcomitans  0.08±0.02 0.17±0.02* 
Green Capnocytophaga gingivalis 0.08±0.02 0.04±0.01 
Green Capnocytophaga ochracea 0.24±0.04 0.70±0.03* 
Green Capnocytophaga sputigena 0.25±0.03 0.39±0.02* 
Green Eikenella corrodens 0.34±0.06 1.07±0.04* 
Orange Campylobacter gracilis 0.12±0.03 0.18±0.01 
Orange Campylobacter rectus 0.08±0.02 0.17±0.02* 
Orange Campylobacter showae 0.32±0.06 1.10±0.06* 
Orange Eubacterium nodatum 0.14±0.02 0.38±0.03* 
Orange Fusobacterium nucleatum ss 

nucleatum 0.41±0.08 1.24±0.06* 
Orange Fusobacterium nucleatum ss 

polymorphum 0.30±0.04 0.87±0.06* 
Orange Fusobacterium nucleatum ss 

vincentii 0.39±0.06 1.53±0.08* 
Orange Fusobacterium periodonticum 0.20±0.04 0.89±0.11* 
Orange Parvimonas micra  0.26±0.04 0.92±0.05* 
Orange Prevotella intermedia 0.08±0.02 0.07±0.01 
Orange Prevotella nigrescens 0.12±0.03 0.19±0.01 
Orange Streptococcus constellatus 0.34±0.07 2.85±0.20* 
Red Tannerella forsythia 0.07±0.02 0.03±0.00 
Red Porphyromonas gingivalis 0.26±0.05 1.13±0.05* 
Red Treponema denticola 0.23±0.06 0.49±0.06* 
Others Eubacterium saburreum 0.46±0.08 2.35±0.15* 
Others Gemella morbillorum 0.69±0.10 1.91±0.06* 
Others Leptotrichia buccalis 0.43±0.04 0.93±0.04* 
Others Neisseria mucosa 0.51±0.08 1.42±0.07* 
Others Propionibacterium acnes  0.70±0.07 0.40±0.10 
Others Prevotella melaninogenica 0.10±0.03 0.07±0.01 
Others Streptococcus anginosus 0.25±0.06 1.72±0.12* 
Others Selenomonas noxia 0.42±0.08 1.36±0.05* 
Others Treponema socranskii 0.12±0.03 0.38±0.03* 

*The cell counts between day0 and day20 were significantly different (p<0.05, paired Student’s t-test, n=6)   
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Table 2.3 Mean counts (x 105) (Mean±SEM) of 40 species in the treatment phase 
Group/Visit Vehicle/Day20 

(x 105) 
RvE1/Day20 
(x 105) 

Vehicle/Day40 
(x 105) 

RvE1/ Day 40 
(x 105) Complex Species 

Actinomyces Actinomyces gerencseriae 2.22±0.26 2.00±0.07 6.45±0.70 4.91±0.36 
Actinomyces Actinomyces israelii 0.67±0.12 0.51±0.04 2.43±0.25 1.78±0.15 
Actinomyces Actinomyces naeslundii I 2.68±0.38 2.30±0.09 3.16±0.38 2.22±0.18 
Actinomyces Actinomyces visocosus 1.06±0.12 0.90±0.05 2.89±0.29 2.23±0.16 
Purple Actinomyces odontolyticus  1.54±0.15 1.33±0.04 4.94±0.44 3.88±0.35 
Purple Veillonella parvula 11.40±0.19 12.10±0.17 18.63±0.98 17.93±0.52 
Yellow Streptococcus gordonii 4.22±0.36 5.49±0.35 12.66±0.47 11.50±0.96 
Yellow Streptococcus intermedius 3.57±0.30 4.56±0.24 9.39±0.28 6.74±0.66 
Yellow Streptococcus mitis 7.92±0.67 9.66±0.76 15.92±0.89 17.81±0.51 
Yellow Streptococcus oralis 10.50±0.73 12.09±0.67 20.04±1.50 21.56±0.72 
Yellow Streptococcus sanguis 3.48±0.26 3.86±0.31 8.02±0.41 6.65±0.62 
Green Aggregatibacter 

actinomycetemcomitans  0.23±0.03 0.19±0.02 1.36±0.03 0.95±0.07* 
Green Capnocytophaga gingivalis 0.05±0.01 0.05±0.01 1.10±0.03 0.76±0.01* 
Green Capnocytophaga ochracea 0.69±0.07 0.74±0.01 2.27±0.13 1.96±0.12 
Green Capnocytophaga sputigena 0.39±0.00 0.42±0.02 1.73±0.03 1.36±0.03* 
Green Eikenella corrodens 1.05±0.06 1.17±0.03 3.02±0.15 2.12±0.11* 
Orange Campylobacter gracilis 0.19±0.02 0.22±0.02 1.17±0.04 0.82±0.03* 
Orange Campylobacter rectus 0.19±0.02 0.21±0.01 1.17±0.05 0.76±0.03* 
Orange Campylobacter showae 1.28±0.00 1.12±0.03 3.36±0.15 2.29±0.06* 
Orange Eubacterium nodatum 0.39±0.03 0.46±0.02 1.56±0.04 1.17±0.01* 
Orange Fusobacterium nucleatum ss 

nucleatum 1.30±0.06 1.35±0.09 4.83±0.63 3.15±0.29 
Orange Fusobacterium nucleatum ss 

polymorphum 0.94±0.07 0.90±0.08 4.46±0.80 3.03±0.39 
Orange Fusobacterium nucleatum ss 

vincentii 1.58±0.07 1.73±0.12 4.73±0.58 2.84±0.15 
Orange Fusobacterium periodonticum 1.12±0.03 0.95±0.17 6.16±1.71 4.21±0.97 
Orange Parvimonas micra  0.98±0.04 1.03±0.04 2.64±0.11 1.83±0.05* 
Orange Prevotella intermedia 0.07±0.01 0.08±0.01 0.92±0.06 0.46±0.02* 
Orange Prevotella nigrescens 0.18±0.02 0.20±0.01 1.43±0.04 1.07±0.02* 
Orange Streptococcus constellatus 2.85±0.16 3.42±0.27 7.71±0.33 5.29±0.38* 
Red Tannerella forsythia 0.03±0.01 0.03±0.00 0.85±0.03 0.48±0.02* 
Red Porphyromonas gingivalis 1.15±0.08 1.25±0.06 3.42±0.16 2.02±0.06* 
Red Treponema denticola 0.35±0.05 0.64±0.08 4.22±1.05 2.15±0.30 
Others Eubacterium saburreum 2.48±0.16 2.71±0.16 6.49±0.29 3.48±0.04* 
Others Gemella morbillorum 1.89±0.06 2.08±0.08 5.65±0.17 4.26±0.03* 
Others Leptotrichia buccalis 1.05±0.03 0.94±0.03 2.43±0.09 2.03±0.06 
Others Neisseria mucosa 1.63±0.06 1.46±0.05 5.09±0.23 3.54±0.15* 
Others Propionibacterium acnes  0.55±0.21 0.30±0.09 1.48±0.08 1.20±0.07 
Others Prevotella melaninogenica 0.05±0.01 0.10±0.02 1.42±0.13 1.37±0.04 
Others Streptococcus anginosus 1.80±0.10 2.02±0.13 4.55±0.28 3.20±0.17* 
Others Selenomonas noxia 1.28±0.08 1.53±0.03 4.17±0.34 2.90±0.10 
Others Treponema socranskii 0.41±0.02 0.41±0.02 1.67±0.09 1.11±0.02* 

*Mean cell counts between the RvE1 group (n=3) and the Vehicle group (n=3) on d40 was significantly 
different (p<0.05, Student’s t test) 
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Table 2.4 Relative proportions of periodontal microbial complexes in the disease 
induction phase 
Visit Day 0 

(%) 
Day 8 
(%) 

Day 12 
(%) 

Day 16 
(%) 

Day 20 
(%) aComplex 

Actinomyces 15.2 6.5 8.0 8.0 8.9 
Purple 8.4 13.5 16.8 16.2 17.4 
Yellow 27.6 41.4 43.3 42.4 40.8 
Green 6.4 4.5 3.3 3.6 3.1 
Orange 16.8 15.4 11.7 13.4 13.7 
Red 3.4 2.6 1.6 2.0 2.2 
Others 22.3 15.9 15.3 14.5 13.9 
Total 100 100 100 100 100 

 
aThe definition of periodontal microbial complex was described in the previous 
publications (Socransky et al., 1998, Socransky and Haffajee, 2005) 

Table 2.5 Relative proportions of periodontal microbial complexes between the 
Vehicle group and the RvE1 group  
Group/Visit Vehicle/Day20 

(%) 
RvE1/Day20 
(%) 

Vehicle/Day 40 
(%) 

RvE1/ Day 40 
(%) Complex 

Actinomyces 8.79 6.93 7.64 7.01 
Purple 17.16 16.28 12.05 13.71 
Yellow 39.36 43.21 33.76 40.41 
Green 3.20 3.11 4.85 4.50 
Orange 14.71 14.15 20.53 16.92 
Red 2.03 2.33 4.34 2.93 
Others 14.76 14.00 16.85 14.52 
Total 100 100 100 100 
 

Table 2.6 Relative abundance of phylum level during the treatment phase 
Group/Visit Vehicle/D20 

(%) 
RvE1/D20 
(%) 

Vehicle/D32 
(%) 

RvE1/D32 
(%) 

Vehicle/D40 
(%) 

RvE1/D40 
(%) Phylum 

Actinobacteria 14.8±6.6 10.0±2.0 10.8±1.1 15.5±5.0 52.3±2.5 19.9±10.3 
Firmicutes 84.0±7.0 89.5±1.8 87.9±2.2 84.1±5.1 46.1±1.4 79.1±18.4 
Fusobacteria 0.1±0.1 0.2±0.2 0.2±0.2 0.1±0 0.7±0.7 0.4±0.2 
Proteobacteria 0.6±0.4 0.3±0.1 1.0±1.0 0.2±0.2 1.0±0.4 0.7±0.3 
Verrucomicrobia 0.4±0.4 0±0 0±0 0±0 0±0 0±0 
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Figure 2.1: Experimental Timeline. Eighteen rats were assigned to four groups (no 
ligature: n=6, ligature alone: n=6, ligature + Vehicle: n=3, ligature + RvE1: n=3). The 
first three weeks of the experiment were the disease induction phase and the subsequent 
three weeks of the experiment were the treatment phase. RvE1 (0.25µg/µl) or vehicle 
(ethanol only) was applied to the ligated teeth every other day during the treatment phase. 
Subgingival plaque samples were collected from one tooth of each rat at each time point 
(day 0, 8, 12, 16, 20, 24, 28, 32, 36, 40).   
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Figure 2.2: Bone morphometric analysis: exposed root surface & distance between 
CEJ and alveolar bone.  The exposed root surfaces on the buccal and palatal of three 
maxillary molars were measured.  The distance between alveolar bone margin and 
cementoenamel junction (CEJ) was measured at the nine indicated sites. 
  

  

Buccal  Palatal  
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Figure 2.3: Alveolar bone level at baseline and three weeks after disease induction. 
Alveolar bone destruction was seen following three weeks of ligature placement in rats. 
The exposed root surface and the distance between CEJ and alveolar bone in the ligature 
alone group were significantly larger than these in the no ligature group.  
  

 

  Buccal: baseline Palatal: baseline 

Buccal: 3-week disease induction Palatal: 3-week disease induction 

*P<0.01 *P<0.01 
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Figure 2.4: Bone morphometric analysis.  The exposed root surface of the molars in the 
RvE1 group was significantly smaller than that in the Vehicle and the ligature alone 
group. The distance between CEJ and alveolar bone in the RvE1 group was also 
significantly shorter than that in the Vehicle group and the ligature group. RvE1 
treatment significantly reversed alveolar bone loss associated with experimental 
periodontitis. The p-value was calculated by pair-wise t-test following one-way analysis 
of variance (ANOVA).  
 
 

 

RvE1 group Vehicle group 

 

*P<0.01 

*P<0.01 
*P<0.01 

*P=0.03 



64 
 

0

0.1

0.2

0.3

0.4

no ligature  ligature alone ligature+Vehicle ligature+RvE1

A
re

a 
(m

m
2 )

 

Area of interproximal bone 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.5: Histological area of interproximal bone.  The area of interproximal bone in 
the RvE1 group was larger than that in the ligature alone group and the Vehicle group 
(p=0.18). The p-value was calculated by pair-wise t-test following one-way analysis of 
variance (ANOVA). 
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Figure 2.6: Inflammatory cell infiltrate.  Inflammatory cell counts in the RvE1 group 
tended to be lower than that in the ligature alone group and the Vehicle group.  However, 
the differences were not statistically significant.  There was a significantly greater 
inflammatory cell infiltrate in the ligature alone group compared to no ligature. The p-
value was calculated by pair-wise t-test following one-way analysis of variance 
(ANOVA).  

Vehicle group RvE1 group 

*P=0.048 
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Figure 2.7: Osteoclast density.  Osteoclast density was defined by dividing active 
osteoclast count (TRAP positive multinucleated osteoclasts) around the interproximal 
bone by the total area of the interproximal bone. The osteoclast density in the RvE1 
group was significantly lower than that in the Vehicle and the ligature alone group. The 
p-value was calculated by pair-wise t-test following one-way analysis of variance 
(ANOVA). 
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Figure 2.8: Relative quantity of inflammation-related gene expression (2-ΔΔCT). 
Relative mRNA expression (2-ΔΔCT) was used to analyze the gene expression levels of 
inflammation related genes in different groups. Gene expression of Cxcl1 in the RvE1 
group was significantly lower than that in the Vehicle group. Gene expression of Ptgs2 in 
the RvE1 group was significantly lower than that in the ligature alone group. Gene 
expression of Nos2 in the RvE1 group was lower than that in the ligature alone group and 
the Vehicle group but was not statistically significant. The p-value was calculated by 
pair-wise t-test following one-way analysis of variance (ANOVA).  
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Figure 2.9: Mean counts (x105) of subgingival taxa on day 20 and day 40.  At the 
baseline of the treatment phase (day 20), mean cell counts of most of the species had no 
significant difference between the Vehicle group and the RvE1 group. At the end of 
treatment phase (day 40), mean cell counts of species belonging to orange, red, or others 
complex were significantly reduced in the RvE1 group.   

Vehicle day 20 _____________ 

RvE1 day 20    _____________ 

Vehicle day 40 __________ 
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Figure 2.10: Taxonomic composition of the subgingival microbiota during disease 
induction phase (genus level).  The taxonomic composition of subgingival microbiota in 
six samples is shown. The listed color-coded genera were the dominant genera during 
disease induction phase (day 0 to day 20). More information relating to color-coding 
taxonomy can be found in Appendix 1. 
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Figure 2.11: Mean difference of taxonomic relative abundance between day 0 and 
day 20.  Mean relative abundance difference between day 0 and day 20 was calculated by 
subtracting mean relative abundance on day 0 from mean relative abundance on day 20 in 
the same sample. Positive values indicate the mean relative abundance on day 20 was 
larger than the relative abundance on day 0. Some OTUs did not match any known 
genera in the reference data base, therefore, only the names of family level (f__) were 
listed for these OTUs. The p-values were calculated by paired Student’s t test (***P<0.05; 
**0.05≤P<0.1; *0.1≤P<0.2). 
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Figure 2.12: Mean difference of taxonomic relative abundance between the RvE1 
group and the Vehicle group.  Mean relative abundance difference between the RvE1 
group and the Vehicle group was calculated by subtracting mean relative abundance of 
the Vehicle group from mean relative abundance of the RvE1 group. Positive values 
indicate the mean relative abundance of the RvE1 group was larger than the relative 
abundance of the Vehicle group. The p-values were calculated by Student’s t test 
( ***p<0.1; **0.1≤p<0.2; *0.2≤p<0.3)  
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Figure 2.13: Alpha diversity of subgingival microbial community.  The difference in 
Shannon evenness, non-parametric Shannon index and number of observed OTUs 
between the Vehicle group and the RvE1 group at each time point (n=3 in each group) 
was compared (Student’s t-test). The Shannon evenness and non-parametric Shannon 
index in the Vehicle group were significantly lower than in the RvE1 group on day 40. 
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Figure 2.14: Principal coordinate analysis (PCoA).  Principal coordinate analysis plots 
depicting distances among microbial communities based on qualitative community 
metrics show that the inflammation induced by ligature placement drove the composition 
change in the microbial community. The microbial community in the RvE1 group 
clustered apart from the microbial community in the Vehicle group at the end of 
treatment phase (day 40).  Larger values of each component (PC) explain more of the 
variance in the data. 
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Figure 2.15: Beta diversity of subgingival microbial community during the disease 
induction phase.  Distances were calculated by weighted UniFrac.  RvETx vs. RvETx 
represents the distance between samples in the RvE1 group. Vehicle vs. Vehicle 
represents the distance between samples in the Vehicle group.  RvETx vs. Vehicle 
represents the distances between samples in the RvE1 group and samples in the Vehicle 
group. There were no statistically significant differences between any group comparison 
(p>0.05).       
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Discussion 

Regeneration of tissues lost to disease induced SPMs has been demonstrated in 

several models in addition to periodontitis (Serhan et al., 2012, Serhan, 2014), but the 

mechanism of regeneration induced by SPMs is not entirely clear. It is believed that 

enhanced recruitment of non-phlogistic macrophages in the resolution phase might play a 

critical role given that macrophages of the proper phenotype are necessary for various 

types of tissue regeneration  (Yin et al., 2006, Godwin et al., 2013, Aurora et al., 2014) 

The present study suggests that RvE1 application regenerated alveolar bone lost to 

periodontitis that along with inhibition of  inflammation and reduction of osteoclast 

activity. Regeneration of alveolar bone following SPM application has been 

demonstrated in a P .gingivalis induced periodontitis rabbit model (Hasturk et al., 2007) 

and a surgery and plaque induced periodontitis minipig model (Van Dyke et al., 2015). 

The present model had a relatively more horizontal bone loss induced by ligature 

placement compared to the bone loss in the rabbit or minipig model and thus presented a 

more challenging model to regenerate lost alveolar bone than the previous studies. It has 

been reported that the distance between CEJ and alveolar bone in the molar region of the 

rat gradually increases during physiological growth (Kuhr et al., 2004). Although this 

could not be controlled in this experiment, the potential for underestimation of the impact 

of RvE1 treatment exists. Taken together, the data suggest that RvE1 demonstrates 

promise as a topical therapy to regenerate tissues lost to periodontal inflammation. 

It is well established that RvE1 inhibits neutrophil infiltration, osteoclast 

differentiation, and enhances efferocytosis of apoptotic cells during inflammation 
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resolution (Serhan et al., 2008). In the present study, RvE1 treatment significantly 

reduced osteoclast density compared to vehicle.  The inhibition of immune cell 

infiltration and inflammation related gene expression were observed following RvE1 

application. While all inflammation related genes tested were reduced, only the reduction 

in expression of Cxcl1 was statistically significantly different from the Vehicle group at 

the end of RvE1 treatment. Given Cxcl1 is a very important neutrophil chemoattractant in 

rodents, downregulation of the Cxcl1 gene product likely plays a major role in reduction 

of local inflammation following RvE1 application. The peak of inflammation in the 

ligature model usually occurs in the first two weeks as reflected in the degree of alveolar 

bone destruction (de Lima et al., 2000). In the present study, therapy began at week 3 to 

ensure the periodontitis was chronic, mimicking the human situation. 

The concept, a breakdown in the balance between “protective” bacterial species 

and “harmful” bacterial species, has been termed ‘‘dysbiosis”. Dysbiosis within the 

resident biofilm is associated with several inflammation related diseases in humans, such 

as inflammatory bowel disease, colitis, obesity, and cancer (Tamboli et al., 2004, Round 

and Mazmanian, 2009, Sobhani et al., 2011, Henao-Mejia et al., 2012). Periodontitis is 

one of the best characterized human diseases associated with dysbiosis, which is also 

known as a microbial-shift disease (Darveau, 2010, Jiao et al., 2014). Taxonomic 

composition and cell counts within the subgingival microbiota have been related to the 

status of periodontal disease in a myriad of studies (Socransky et al., 1998, Paster et al., 

2001, Socransky and Haffajee, 2005, Teles et al., 2013).  Periodontal treatment results in 

a shift within the microbiota back to a health-related subgingival microbiota.  Stability of 



77 
 

the shift requires appropriate professional maintenance (Haffajee et al., 2006, Colombo et 

al., 2012). From an ecological point of view, the alpha diversity decreases, but the beta 

diversity increases in the resolved state of periodontal disease compared to the diversity 

in active periodontal disease (Griffen et al., 2012, Liu et al., 2012, Abusleme et al., 2013, 

Li et al., 2014, Shi et al., 2015). In active (untreated) periodontal disease, many disease-

associated species are able to grow well by obtaining required nutrients from the 

inflamed environment. Therefore, the diseased microbial community is more diverse at 

the local site (alpha diversity) than is the healthy microbial community. However, the 

microbial community of different diseased samples becomes more similar (beta diversity) 

compared to the microbial community of different healthy samples because the diseased 

environment favors the growth of similar taxa. 

In the present study, the changes in the subgingival microbiota were significant, 

following the induction of experimental periodontitis (Table 2.2, 2.4, Fig. 2.10, 2.11). 

The increased cell counts of species and shift of relative proportions of microbial 

complexes were significant based on the results of checkerboard DNA-DNA 

hybridization. Regarding the diversity of ecological community, the richness and 

evenness of microbial community increased during the disease induction phase.  At the 

end of the treatment phase, the lower number of OTUs observed in the RvE1 group 

compared to the Vehicle group, coupled with our understanding of an increased alpha 

diversity with the onset of periodontal disease, suggests that RvE1 was associated with 

resolution of periodontal disease (Fig. 2.13). The microbial community became less 
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diverse at the end of disease induction compared to the microbial community of different 

samples at baseline (Fig. 2.15).  

At the end of the treatment phase, RvE1 treatment significantly inhibited bacterial 

cell growth (Table 2.3), and reversed the shift of the relative proportions of periodontal 

microbial complexes (Table 2.5). The dominance of Streptococcus species in the 

subgingival microbiota following RvE1 treatment could be observed both in the results of 

checkerboard DNA-DNA hybridization and 16s rRNA gene sequencing (Table. 2.5, Fig. 

12). The profile of the subgingival microbiota in the RvE1 group is different from the 

profile of the subgingival microbiota in the Vehicle group at the end of treatment phase 

(Table 2.6, Fig. 2.12, 2.14). Considering the difference of periodontal environment (Fig. 

2.4, 2.7, 2.8) and the differences in the subgingival microbiota between the RvE1 group 

and the Vehicle group following RvE1 application, the change of subgingival microbiota 

appeared to be induced by changes in the local environment. 

The purpose of the pilot studies using DNA Checkerboard analysis was to screen 

for microbial changes using a relatively less expensive and faster technique before the 

unbiased 16S DNA sequencing was used.  The pilot studies served their purpose, but the 

information obtained beyond the observation that changes occurred should not be ignored.  

After experimental periodontitis was induced, the species or genera of the human red 

complex and orange complex were detected by checkerboard DNA-DNA hybridization, 

but they were barely detected by next-generation sequencing suggesting that the human 

probes were cross-reacting with rat associated species that are quite distinct. The ability 

of checkerboard DNA-DNA hybridization to detect bacteria in rat biofilm is not a new 
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observation since it was previously shown that 25 species were detected by human 

bacterial DNA probes in the biofilm collected from the rat ligature induced periodontitis 

model utilizing checkerboard DNA-DNA hybridization (Duarte et al., 2010). It is fair to 

say that the species of rat biofilm detected by checkerboard DNA-DNA hybridization are 

not the same species detected in human biofilm. However, the changes in counts of 

species and the change of relative proportions in clusters are likely valid.  

Although identifying taxa by 16s rRNA gene sequencing can avoid the problem 

of cross reactions, interpretation of the relative abundance in the taxonomic composition 

is difficult. Further, OUT assignment based on existing reference databases such as 

SILVA and Greengenes using 97% similarity in sequences of the V3 and V4 regions of 

the 16S gene can also result in OUT misclassifications, even at the genus level. One 

should also take into account the fact that these databases were not build solely with 

sequences from murine microorganisms, increasing the chances of misclassifications. 

According to results published only in abstract form, a mock community consisting of the 

same amount of the 40 human periodontitis associated species could be detected 

accurately by checkerboard DNA-DNA hybridization, but not all the species were 

detected by 16s rRNA gene sequencing. Also, the relative abundance of these species 

was biased in the sequencing results (Teles F, 2015 ).  The bias in sequencing might be 

caused by different copy numbers of 16s rRNA in different species, the primers used to 

amplified DNA, the relative composition of bacteria in a community, and the DNA 

extraction method (Diaz et al., 2012, Abusleme et al., 2014).  
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In order to describe the microbiota in rat oral biofilm comprehensively, it was 

necessary to use a next-generation sequencing technique.  Because there is no rat oral 

bacterial DNA probe set available and there is lack of information on the rat subgingival 

microbiota, it was not possible to directly compare techniques. Since the threshold of 

97% sequence similarity was used to assign the OTUs in the present study, only results of 

genus level were reported. At the end of the treatment phase, several genera had smaller 

mean relative abundance in the RvE1 group than the mean relative abundance in the 

Vehicle group (Fig. 2.12).  Some of the genera, such as Coprococcus, Blautia, Sutterella, 

Collinsella and Dorea, were anaerobic and reduced relative abundance with RvE1 

treatment. These genera might be the experimental periodontitis associated pathogens in 

rat ligature model; many of the periodontitis associated pathogens in humans are also 

anaerobic and have small relative abundance (Teles et al., 2013). The results indicate that 

the local environment became less favorable for multiple species to grow following the 

continuation of RvE1 application. 

It is interesting to observe that Streptococcus was the dominant genus in the RvE1 

group at the end of the treatment phase, but not in the Vehicle group. Since Streptococcus 

was the dominant genus caused by ligature placement, the results can be explained by the 

overgrowth of pathogens in the Vehicle group reducing the percentage of Streptococcus. 

The same phenomenon was also observed in the change of relative proportions of 

periodontal microbial complexes. Taken together these results indicate that the difference 

in periodontal environment created by control of inflammation resulted in the changes in 

taxonomic composition of the subgingival microbiota. 
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CHAPTER THREE: PREVENTION OF SUBGINGIVAL MICROBIOTA SHIFT 
FOLLOWING RESOLVIN E1 APPLICATION 

Introduction 

The ‘‘ecological plaque hypothesis’’ was proposed to describe and explain the 

dynamics between the host environment and the oral microbiota in healthy and diseased 

conditions from the ecological point of view (Marsh, 1994, Marsh, 2003). The hypothesis 

emphasizes there is a direct link between local environmental conditions and the activity 

and composition of the microbial community. The changes in local environment will 

trigger the changes in the microbiota, and vice versa. For example, as a periodontal 

pocket forms an environment is created favoring putative pathogen growth and 

expression of virulence factors. Flourishing periodontal pathogens compete with health-

related pathogens leading to the shift in the microbiota. In order to prevent periodontitis, 

it is best to avoid the initial establishment of diseased environment (gingivitis) and thus 

prevent the deleterious microbial shift. 

In Chapter 2, it was demonstrated that application of resolvin E1 (RvE1) reverses 

the shift in the subgingival microbiota by inhibiting inflammation and reversing bone loss 

in ongoing experimental periodontitis. The results imply the recovery of a diseased local 

environment leads the change of subgingival microbiota. If the ecological plaque 

hypothesis regarding the relationship between host environment and characteristics of the 

microbiota is true, prevention of formation of a diseased environment should stop the 

shift of the microbiota. In order to test this hypothesis, we proposed two specific aims: 
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Specific Aim 1 – To examine the changes of rat subgingival microbiota during 

periodontitis progression with or without prophylactic RvE1 treatment using next-

generation sequencing 

We hypothesize that prophylactic RvE1 application will prevent or reduce 

periodontitis progression in the ligature induced periodontitis rat model, and the 

subgingival microbiota composition will be relatively stable.  

Specific Aim 2 – To examine the changes of the clinical and local inflammatory 

response in the periodontium of rats with or without prophylactic treatment 

We hypothesize that the resolution of inflammation will prevent changes in the 

subgingival microbiota. Bone morphometry, histomorphometry, and real time 

quantitative reverse transcription polymerase chain reaction (qRT-PCR) are used to 

analyze the change of local environment and inflammatory response. 

Materials and methods 

Animals and experimental periodontitis model 

This experiment was approved by Institutional Animal Care and Use Committee 

(IACUC) of the Forsyth Institute. Twelve six-week old male Wistar rats (weight 180-200 

g, Charles River Laboratories, New York, NY) were used, and all animals were housed in 

controlled temperature (22o C to 25o C) and dark/light cycle (12/12 hours) conditions. 

These rats received standard laboratory chow diet and water ad libitum. Rats were 

sedated by isoflurane 2-3% before being anesthetized with ketamine (80mg/kg, 

intraperitoneally) and xylazine (16 mg/kg, intraperitoneally). 
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Sixteen rats were divided into four groups (no ligature, ligature + Vehicle, ligature 

+ RvE1 (0.1µg/µl), ligature + RvE1 (0.5µg/µl)), and each group had four rats. 5–0 silk 

ligature placed subgingivally on the first day of this experiment to induce periodontitis on 

the maxillary right and left second molars of all rats. The experimental period was four 

weeks. During the experiment, 1 µg/µl RvE1 (Cayman Chemical Co. Inc., Ann Arbor, 

MI) dissolved in 9 µl of saline was applied on the ligated teeth of the rats in the RvE1 

(0.1µg/µl=0.28mM) group, 1 µg/µl RvE1 dissolved in 1 µl of saline was applied on the 

ligated teeth of the rats in the RvE1 (0.5µg/µl=1.4mM) group, and 10 µl of 10% ethanol 

(vehicle alone) was applied on the ligated teeth of the rats in the Vehicle group. RvE1 

solution and vehicle were applied three times a week (M, W, F). Four rats in the no 

ligature group were sacrificed on the first day of the experiment to collect healthy 

baseline tissue samples. At the end of four weeks, all rats in other groups were sacrificed 

to collect tissue samples. The timeline of the experiment is summarized in Fig. 3.1. 

The collected samples included subgingival plaque, gingival tissue, maxillae, and 

serum. Subgingival plaque samples were collected on day 0, 7, 10, 14, 17, 21, 24, and 28. 

Other samples were collected immediately after sacrificing the rats. The maxillae were 

split into two halves: one half was taken for the analyses of bone morphometry and 

gingival gene expression. The palatal gingiva of the ligated molar was harvested and 

stored in 200µl of RNAlater (Sigma-Aldrich) for the qRT-PCR assay. The remaining 

specimen was defleshed by beetles to obtain clean bone block. The other half was 

processed for histomorphometric analysis. Blood was obtained by heart aspiration and 
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centrifuged to collect serum. Serum was aliquoted and stored at -80 oC (eight aliquots of 

100µl each) for future analysis. 

Bacterial DNA extraction and amplification 

Subgingival plaque samples were collected by using the tip of 2-Whiteside scaler 

(Hu-Friedy, Chicago, IL) from the palatal site of the maxillary second molars. Before 

placing the ligature on the maxillary second molars, the plaque sample was collected 

from two teeth (two maxillary second molars) of each rat at baseline and then the samples 

were pooled in one collection tube. The sample was collected from one ligated tooth of 

each rat each time after ligature placement. The DNA of subgingival plaque was 

extracted using the MolYsis Basic (CaerusBio Inc., Dowingtown, PA) and QIAamp® 

mini kit (QIAGEN Inc., Valencia, CA).  

The extracted bacterial DNA was amplified with the multiple displacement 

amplification kit (GenomiPhiTM V3 DNA amplification kit, GE Healthcare Bio-Sciences, 

Pittsburgh, PA). The concentration of amplified DNA samples was measured with 

fluorescent nucleic acid stain (Quant-iT™ PicoGreen® dsDNA Assay, Life Technologies, 

Grand Island, NY).  

Next-generation sequencing 

The microbial composition of the plaque samples (50ng/10µl) were characterized 

by sequencing the hyper-variable V3 and V4 regions of the 16S rRNA gene using the 

Illumina MiSeq® platform. Successfully merged reads following paired-end sequencing 

were processed through the QIIME pipeline (Caporaso et al., 2010) filtering out low 
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quality sequences using a quality score threshold of 20.  Operation Taxonomic Units 

(OTUs) were created by clustering the merged quality filtered reads at a 97% identity 

threshold using sequences from a reference database (SILVA/Greengenes) (DeSantis et 

al., 2006, Quast et al., 2013) as a guide.  All remaining sequences entered a de novo 

clustering step where they were clustered at the same 97% identity threshold without 

guidance from the reference database.  Potential chimeric OTUs were removed through 

the use of UCHIME (Edgar et al., 2011) and the gold 16 database (Public domain version 

of UCHIME, version 4.1, http://drive5.com/uchime/uchime_download.html).  Taxonomic 

assignments to OTUs from phylum to genus level were completed through QIIME’s use 

of the given reference database (SILVA/Greengenes) and the UCLUST algorithm (Edgar, 

2010).  Further analysis included alpha and beta diversity and abundance profiles of the 

microbial community in the samples.   

Morphometric analysis 

The dissected maxilla bones were stained with methylene blue and the images (in 

0.63X10 times magnification) were taken under the dissecting microscope (Axio 

observer A1, ZEISS) using AxioVision 4.8 software. The areas of exposed root surface 

were measured at the buccal and palatal sites of three maxillary molars. The distance 

between alveolar bone margin and cementoenamel junction (CEJ) was measured at nine 

sites (mesial, middle, and distal sites of the first molar; interproximal site between the 

first molar and the second molar; mesial and distal sites of the second molar; 

interproximal site between the second molar and the third molar; mesial and distal sites of 

the third molar) of three maxillary molars at the buccal site and the palatal site. The 
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direction of the distance line was parallel with the axis of root. All measurements were 

performed using computer software (ImageJ). The measurements of buccal and palatal 

sites were added for statistical analysis.   

Histomorphometry  

Half of the maxilla was processed following the protocol in chapter 2. Serial 

mesio-distal sections (6 µm) parallel to the long axis of the teeth were cut. Thin sections 

were either stained with H&E for light microscopy and identification of the cellular 

composition of inflammatory infiltrates, or stained with tartrate resistant acid phosphatase 

(TRAP) to examine osteoclastic activity. 

Sections with similar anatomic positions were selected for quantitative 

measurements. Different sections were measurement randomly to avoid bias. The specific 

areas of mesial and distal interproximal sites were selected for histological assessment. 

Each measurement had three different sections. The number of inflammatory cells, 

including neutrophils, lymphocytes and plasma cells, was counted in the area of 

connective tissue above the alveolar bone at 400x magnification. The total number of 

osteoclasts associated with the interproximal bone was counted. The area of 

interproximal bone was measured. Osteoclast density was defined by dividing the number 

of osteoclasts by the area of interproximal bone. All the measurements were performed 

with computer software (ImageJ). The mean of the mesial site and the distal site from 

three sequential sections was determined.     

Quantitative reverse transcription polymerase chain reaction assay  
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Total RNA was extracted from gingival tissue with Trizol reagent (Invitrogen, 

Grand Island, NY) as per the manufacturer's protocol. The concentration and purity of 

RNA was estimated by the A260/A280 ratio spectrophotometrically (NanoDrop 2000c, 

Thermo Fisher Scientific, Waltham, MA). A total of 1 μg RNA was converted to cDNA 

using a high-capacity cDNA reverse transcriptase kit (Applied Biosystems, Grand Island, 

NY).  

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was 

performed using primers and TaqMan probes for Cxcl1, Ptgs2, Nos2, and labeled with 

FAM dye (Applied Bio-systems, TaqMan gene expression assays). β-actin (Actb) was 

utilized as an internal control and amplified using preformulated VIC-TAMRA-labeled 

TaqMan probes (Applied Biosystems, Endogenous Control). Quantification was 

performed in an automated thermal cycler (StepOnePlus™ System, Applied Biosystems). 

The reaction mixtures were kept at 50°C for two minutes (one cycle), 95°C for 20 seconds 

(one cycle), 95°C for one second and 60°C for 20 seconds (40 cycles). The results were 

analyzed through a software interface and spreadsheet for the calculation of relative 

expression (2-ΔΔCT). 

Statistical Analysis 

The comparison between two groups was analyzed by unpaired or paired two-

tailed Student’s t test. The comparison between multiple groups was analyzed by one-

way analysis of variance (one-way ANOVA) and post hoc analysis was performed 
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(pairwise t-test). All values were expressed as mean ± standard error of the mean. P-value 

<0.05 was considered statistically significant. 

Results 

Prophylactic RvE1 treatment prevents alveolar bone loss in the ligature induced 

periodontitis rat model   

One rat in the RvE1 (0.5µg/µl) group died from the anesthesia in the second week 

of the experiment; the results of the RvE1 (0.5µg/µl) group were derived from three rats. 

Prophylactic RvE1 treatment significantly prevented alveolar bone loss compared to 

vehicle application (Mean area of exposed root surface in molars - ligature + Vehicle: 

6.8±0.4 mm2, ligature + RvE1 (0.1µg/µl): 5.3±0.3 mm2, ligature + RvE1 (0.5µg/µl): 

5.1±0.4 mm2; distance between CEJ and alveolar bone level- ligature + Vehicle: 8.9±0.5 

mm, ligature + RvE1 (0.1µg/µl): 6.9±0.5 mm, ligature + RvE1 (0.5µg/µl): 6.5±0.4 mm) 

(Fig. 3.2). Mean histological area of interproximal bone in the RvE1 (0.1µg/µl) group 

and the RvE1 (0.5µg/µl) group was larger than the area in the Vehicle group (Fig.3.3).   

Prophylactic RvE1 treatment inhibits inflammation and reduces osteoclast activity 

Prophylactic RvE1 treatment significantly inhibited inflammatory cell infiltration 

compared to vehicle application. The cell counts in the connective tissue between the 

RvE1 (0.1µg/µl) group and the RvE1 (0.5µg/µl) group was not significantly different 

(Fig. 3.4). Osteoclast activity was significantly inhibited by prophylactic RvE1 treatment. 

Osteoclast density between the RvE1 (0.1µg/µl) group and the RvE1 (0.5µg/µl) group 

was not significantly different (Fig. 3.5). 
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Prophylactic RvE1 treatment (0.1µg/µl) significantly inhibited the expression 

levels of Ptgs2 and Nos2 genes compared to vehicle application (Fig. 3.6). The gene 

expression level of Ptgs2 in the RvE1 (0.5µg/µl) group was significantly lower than that 

in the Vehicle group, but the gene expression level of Nos2 in the RvE1 (0.5µg/µl) group 

was lower than that in the Vehicle group with no statistical significance (p=0.07). Both 

RvE1 treatments (0.1µg/µl and 0.5µg/µl) did not significantly reduce the expression level 

of Cxcl1 gene.  

Subgingival microbiota change is inhibited by prophylactic RvE1 treatment 

The taxonomic composition of subgingival microbiota at the genus level is 

demonstrated in Fig. 3.7. The taxonomic composition of the subgingival microbiota at 

baseline was significantly different from the compositions on day 14 and day 28. One 

genus, Rothia, exhibited dominant and consistent relative abundance in all the samples at 

baseline (72.6±6.6 %). After the disease was induced, the taxonomic composition became 

diverse in different samples. Generally, four genera, Streptococcus, Lactobacillus, 

Bifidobacterium, and Enterococcus, had relatively higher relative abundance than other 

genera in samples during disease progression (Fig. 3.7).  

While comparing the mean relative abundance of each genus in the RvE1 groups 

with the mean relative abundance of each genus in the vehicle group on day 14, several 

genera had a higher difference (p<0.3) between the RvE1 (0.5µg/µl) group or the RvE1 

(0.1µg/µl) group and the Vehicle group than did other genera (Fig. 3.8.a&b). Among 

these genera, three genera, Jeotgalicoccus, f__Enterococcaceae;g__, Haemophilus, were 
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shared in the comparisons between the RvE1 groups (0.1 or 0.5 µg/µl ) and the Vehicle 

group.  

While comparing the mean relative abundance of each genus in the RvE1 groups 

with the mean relative abundance of each genus in the vehicle group on day 28, five 

genera (f__Enterobacteriaceae;g__, f__Clostridiaceae;g__, f__Coriobacteriaceae;g__, 

Rothia, Granulicatella) had a higher difference (p<0.3) between the RvE1 (0.1µg/µl) 

group and the Vehicle group than did other genera, and eight genera 

(f__Enterobacteriaceae;g__, Lactobacillus, Granulicatella, f__Micrococcaceae;g__, 

Turicibacter, f__Planococcaceae;g__, Facklamia, f__Clostridiaceae;Other) had a higher 

difference (p<0.3) between the RvE1 (0.5µg/µl) group and the Vehicle group than did 

other genera. Most of these genera had lower relative abundance in the RvE1 groups than 

the relative abundance in the Vehicle group (Fig. 3.9.a&b). Among these genera, 

Granulicatella and f__Enterobacteriaceae had lower mean relative abundance in both of 

the RvE1 groups than mean relative abundance in the Vehicle group.  

The diversity of microbial community increased significantly after the disease 

was induced. Generally, the Vehicle group had higher evenness (Shannon evenness) and 

richness (number of observed OTUs) than did the RvE1 groups indicating more species 

grew in the inflamed environment without RvE1 application. Moreover, the Shannon 

evenness and the number of observed OTUs in each group on day 14 were higher than 

these on day 0 and day28 (Fig. 3.10). 

The subgingival microbiota in all three groups shifted significantly following the 

induction of periodontitis. The diversity between samples in three groups became larger 
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on day 14 and day 28 compare to the diversity between samples on day 0 (Fig. 3.11). At 

the end of experiment, the mean weighted UniFrac distance between samples in the 

Vehicle was shorter than the mean weighted UniFrac distances between samples in RvE1 

groups without statistically significant differences (Fig. 3.12). The results indicate the 

phylogenetic profile of subgingival microbiota between samples in the Vehicle group was 

closer to each other than that in the RvE1 groups.  

RvE1 application appeared to be correlated to the body weight change of animals   

The mean increased body weight of rats in the RvE1 (0.5µg/µl) group was significantly 

higher than the mean increased body weight of rats in the RvE1 (0.1µg/µl) group and in 

the Vehicle group during the experimental period (four weeks). The mean increased body 

weight of rats in the Vehicle group was lower than the mean increased body weight of 

rats in the RvE1 groups (Fig.3.13). The results implied RvE1 application might be 

correlated to the body weigh change of animals.      

 

 

 

 

 

 

 

 

 



92 
 

0d: 
baseline 
plaque 
sample 

collection 

7d: 
plaque 
sample 

collection 

 

10d: 
plaque 
sample 

collection 

14d: 
plaque 
sample 

collection 

 

17d:  
plaque 
sample 

collection 

21d:  
plaque 
sample 

collection 

24d:  
plaque 
sample 

collection 

28d:  
plaque 
sample 

collection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Experimental Timeline.  Sixteen rats were assigned to four groups, but one 
rat in the RvE1 (0.5µg/µl) group was excluded from the study because of accidental 
anesthesia death (no ligature: n=4, ligature + Vehicle: n=4, ligature + RvE1 (0.1µg/µl): 
n=4, ligature + RvE1 (0.5µg/µl): n=3).  The period of this experiment was four weeks. 
All rats had bilateral maxillary second molars ligated except the rats in the no ligature 
group. Rats in the no ligature group were sacrificed at baseline, and other rats were 
sacrificed at the end of the experiment. RvE1 (0.1µg/µl), RvE1 (0.5µg/µl), or vehicle 
(10% ethanol) was applied on the ligated teeth of rats in the different groups three times a 
week (M, W, F). Subgingival plaque samples were collected twice a week (M, F).   

 

 

 

 

 
  

The treatment started on the first day 
of the experiment. 

RvE1 (0.5µg/µl): 1µg RvE1/2µl 
RvE1 (0.1µg/µl): 1µg RvE1/10µl 

 Vehicle: 10µl ethanol 10% 

Sacrifice the rats in each group: 
RvE1 (0.5µg/µl) (n=3) 
RvE1 (0.1µg/µl) (n=4) 

Vehicle (n=4) 
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Figure 3.2: Bone morphometric analysis.  The exposed root surface of three molars in 
the RvE1 groups (RvE1(0.1µg/µl) or RvE1 (0.5µg/µl)) was significantly smaller than that 
in the Vehicle group. The distance between CEJ and alveolar bone in the RvE1 groups 
was also significantly shorter than that in the Vehicle group. RvE1 application 
significantly prevented alveolar bone loss. The p-value was calculated by pair-wise t-test 
following one-way analysis of variance (ANOVA).  
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Figure 3.3:  Histological area of interproximal bone.  Area of interproximal bone in 
the RvE1 groups was greater than that in the Vehicle group (p = 0.2). The p-value was 
calculated by pair-wise t-test following one-way analysis of variance (ANOVA). 
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Figure 3.4: Inflammatory cell infiltrate. Inflammatory cell count in the RvE1 groups 
was significantly lower than that in the Vehicle group. There was no significant 
difference of inflammatory cell count between the RvE1 (0.1µg/µl) group and the RvE1 
(0.5µg/µl) group. The p-value was calculated by pair-wise t-test following one-way 
analysis of variance (ANOVA).  
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Figure 3.5: Osteoclast density.  Osteoclast density was defined by dividing active 
osteoclast count (TRAP positive multinucleated osteoclasts) around the interproximal 
bone by the total area of the interproximal bone. The osteoclast density in the RvE1 
groups (RvE1 (0.1µg/µl) or RvE1 (0.5µg/µl)) was significantly lower than that in the 
Vehicle group. Osteoclast density of the RvE1 (0.1µg/µl) group was not significantly 
different from that of the RvE1 (0.5µg/µl) group. The p-value was calculated by pair-
wise t-test following one-way analysis of variance (ANOVA). 
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Figure 3.6: Relative quantity of inflammation-related gene expression (2-ΔΔCT).  
Relative mRNA expression (2-ΔΔCT) was used to analyze the gene expression levels of 
inflammation related genes in different groups. There was no significant difference in 
Cxcl1 gene expression between the three groups. Gene expression of Ptgs2 in the RvE1 
groups (RvE1 (0.1µg/µl) or RvE1 (0.5µg/µl)) was significantly lower than that in the 
Vehicle group. Gene expression of Nos2 in the RvE1 (0.1µg/µl) group was significantly 
lowered than that in the Vehicle group. The p-value was calculated by pair-wise t-test 
following one-way analysis of variance (ANOVA). 
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Figure 3.7: Taxonomic composition of the subgingival microbiota (genus level).  
Taxonomic compositions of eleven samples in three groups are presented (Vehicle: n=4, 
RvE1 (0.1µg/µl): n=4, RvE1 (0.5µg/µl): n=3). The dynamics of the subgingival 
microbiota composition at different time points (day 0, 14, 28) was recorded. Rothia 
species was dominant at baseline. Streptococcus and Lactobacillus species had larger 
relative abundance than did other species after disease induction. Complete information 
of color coding genera can be found in Appendix 1. 
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Figure 3.8: Mean difference of taxonomic relative abundance between RvE1 and 
Vehicle on day 14.  Mean relative abundance difference between the RvE1 group 
(0.1µg/µl- Panel A, or 0.5µg/µl- Panel B) and the Vehicle group was calculated by 
subtracting mean relative abundance of the Vehicle group from mean relative abundance 
of the RvE1 group. Positive values indicate the mean relative abundance of the RvE1 
group was larger than the relative abundance of the Vehicle group. The family name (f__) 
was listed for the OTUs with unknown genus. The p-values were calculated by Student’s 
t test (***P<0.1; **0.1≤P<0.2; *0.2≤P<0.3).   

*** 

*** 

** 
** 

** 

* 

* 

* 

** 

** 

** 

** 

*** 

* 

* 

* 

25.7% 

-15.6% 

* 

16.4% 



100 
 

-1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

f__Enterobacteriaceae;g__

Lactobacillus

Granulicatella

f__Micrococcaceae;g__

Turicibacter

f__Planococcaceae;g__

Facklamia

f__Clostridiaceae;Other

Mean relative abundance difference 

D28 RvE1(0.5µg/µl) vs. Vehicle 

-1.0% 0.0% 1.0% 2.0%

f__Enterobacteriaceae;g__

f__Clostridiaceae;g__

f__Coriobacteriaceae;g__

Rothia

Granulicatella

Mean relative abundance difference 

D28 RvE1(0.1µg/µl) vs. Vehicle 
A 

 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Mean difference of taxonomic relative abundance between RvE1 and the 
Vehicle on day 28. Mean relative abundance difference between the RvE1 group 
(0.1µg/µl- Panel A, or 0.5µg/µl- Panel B) and the Vehicle group was calculated by 
subtracting mean relative abundance of the Vehicle group from mean relative abundance 
of the RvE1 group. Positive values indicate the mean relative abundance of the RvE1 
group was larger than that of the Vehicle group. Most of the genera had smaller relative 
abundance in the RvE1 group. The family name (f__) was listed for the OTUs with 
unknown genus. The p-values were calculated by Student’s t test (***P<0.1; 
**0.1≤P<0.2; *0.2≤P<0.3).  
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Figure 3.10: Alpha diversity of subgingival microbial community. The differences in 
Shannon evenness, non-parametric Shannon index or number of observed OTUs in the 
same group at different time points (d0 vs. d14, d14 vs. d28) were calculated (Student’s t-
test). Generally, the richness and evenness of microbial community were the highest on 
day 14. The evenness and richness of the Vehicle group were higher than the RvE1 
groups (RvE1 (0.1µg/µl) or RvE1 (0.5µg/µl)) at all three time points. The results indicate 
that inflammation in the local environment in the Vehicle group might be more severe 
than that in the RvE1 groups as more species are expected in an inflammatory 
environment compared to an uninflamed environment.   
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Figure 3.11: Principal coordinate analysis (PCoA).  Principal coordinate analysis plots 
depicting distances among microbial communities based on qualitative community 
metrics reveal that there were significant shifts of microbial communities during disease 
progression. At the end of the experiment, microbial communities in three groups were 
not separated clearly. However, the communities within the Vehicle group appeared to be 
closer to each other than did communities of other two groups. The profile indicated the 
Vehicle group had smaller beta diversity (diversity between communities) than did other 
two groups. Reduced beta diversity is one of the characteristics of microbial community 
in periodontitis. Larger values of each component (PC) explain more of the variance in 
the data.  
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Figure 3.12: Beta diversity of subgingival microbial community at different time 
points. The mean distance between communities of the Vehicle group became shorter 
than that of other two groups at the end of the experiment (day 28). This result is 
consistent with principal coordinate analysis plot.  The distances were calculated by 
weighted UniFrac (High: RvE1 (0.5µg/µl) group, Low: RvE1 (0.1µg/µl) group, Vehicle: 
Vehicle group). 
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Figure 3.13: Mean body weight change during the experiment. Body weight change 
was defined as the body weight of the animal at baseline subtracted from the body weight 
of the animal at the end of the experiment (the 4th week). The mean body weight change 
of rats in the RvE1 (0.5µg/µl) group was significantly larger than the mean body weight 
change of rats in the RvE1 (0.1µg/µl) group and the Vehicle group.   
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Discussion 

Prophylactic RvE1 treatment did not completely stop alveolar bone loss induced by 

ligature placement, but prophylactic RvE1 treatment significantly inhibited alveolar bone 

loss compared to vehicle application (Fig. 3.2). The prevention of alveolar bone loss was 

associated with the inhibition of inflammatory cell infiltration and the reduction of 

osteoclast activity following RvE1 application (Fig. 3.4, 3.5). The results confirmed the 

impact of RvE1 on the inhibition of neutrophil infiltration in the inflammatory 

environment (Arita et al., 2005b, Hasturk et al., 2007) and the inhibition of osteoclast 

differentiation (Gao et al., 2013). The gene expression of Ptgs2 and Nos2 in the gingival 

tissue was significantly inhibited by RvE1 application (Fig. 3.6).  However, RvE1 

application did not inhibit the expression of Cxcl1 gene significantly. The result of 

limited change of Cxcl1 gene expression following RvE1 application might be related to 

the acute nature of the insult as opposed to the chronic lesion in Chapter 2. Resolvins do 

not inhibit inflammation. Rather, they provide a feed forward, receptor agonist driven 

enhancement of resolution.  Since Cxcl1 expression is critical in the acute phase and the 

other two genes are expressed later, the lack of impact of RvE1 on Cxcl1 in the acute 

phase should not be unexpected.  Different concentrations of RvE1 (0.1 or 0.5 µg/µl) did 

not have significantly different impact on prevention of alveolar bone loss, inhibition of 

inflammatory cell infiltration, inhibition of osteoclastogenesis, and reduction of 

expression of inflammation related genes in gingival tissue.  

The taxonomic composition of the subgingival microbiota at baseline was 

significantly different from that following ligature placement (Fig. 3.7). Generally, 
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Rothia was the dominant genus with the highest relative abundance (72.4±6.6 %) and 

Streptococcus species had the second largest relative abundance (9.8±3.4 %) at baseline. 

Similar results were reported earlier in the taxonomic composition of supragingival 

biofilm in rats (Manrique et al., 2013). Bifidobacterium, Lactobacillus, or Streptococcus, 

were generally the dominant genera during disease progression. Considering the variation 

of relative abundance and limited sample size, a less conservative significant level (p<0.3) 

was chosen to find the potential genera representing subgingival microbiota in different 

groups. While comparing the mean relative abundance of different genera between the 

RvE1 groups (0.1 or 0.5 µg/ml) and the Vehicle group, several genera had a relatively 

more significant difference (p<0.3) than other genera (Fig. 3.8, 3.9). Most of the genera 

on day 14 were different from the genera on day 28. The results indicate the subgingival 

microbiota composition was dynamic during disease progression. For example, 

Lactobacillus genus had an inverse relationship in the three groups on day 14 and day 28 

(Mean relative abundance ± SEM: RvE1 (0.5µg/µl) vs. RvE1 (0.1µg/µl) vs. Vehicle- 

28.9±3, 8.6±4.9, 3.3±1.4 % on day 14; RvE1 (0.5µg/µl) vs. RvE1 (0.1µg/µl) vs. Vehicle- 

7.4±7.4, 17.5±10.7, 27.9±8.0 % on day 28). At the end of the experiment, these genera, 

which had more significant difference of relative abundance between groups than did 

other genera, generally had small relative abundance (< 1%) and had reduction of relative 

abundance in the RvE1 groups (Fig. 3.9.a&b). Two of these genera were found in both 

RvE1 groups. One genus, which belongs to Enterobacteriaceae family, could not be 

assigned to any known genus in the reference genome. Another genus, Granulicatella, 

has species in the commensal oral bacteria found in dental plaque (Mikkelsen et al., 
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2000). The Granulicatella species are also related to refractory periodontitis 

(Granulicatella elegans) (Colombo et al., 2012) , acute dental abscess (Granulicatella 

adiacens) (Robertson and Smith, 2009), endodontic infection (Granulicatella adiacens) 

(Siqueira and Rocas, 2006) and endocarditis (Granulicatella adiacens, Granulicatella 

elegans) (Cargill et al., 2010) in humans.  

The richness and evenness of the microbial community in the Vehicle group were 

higher than in the RvE1 groups following disease induction. Although the richness and 

evenness of the microbial community in the Vehicle group were also higher than in the 

RvE1 groups at baseline, the difference between the groups became more significant 

following disease induction (Fig. 3.10). The dose effect of RvE1 appeared to play a role 

in affecting community diversity given the richness and evenness of microbial 

community in the RvE1 group (0.5µg/µl) was lower than these in the RvE1 group 

(0.1µg/µl). While considering the dynamics of community diversity at different time 

points, the evenness and richness were highest on day 14 and lowest on day 0. Given the 

evenness and richness of microbial community were positively related to diseased state of 

periodontitis (Abusleme et al., 2013, Shi et al., 2015), the dynamics of community 

diversity might represent the change of inflammation process in experimental 

periodontitis. The most severe inflammation happened within the first two weeks, but 

then the inflammation decreased gradually. The inhibition of inflammation by RvE1 

appeared to repress the growth of multiple species resulting in the decrease of richness 

and evenness of microbial community.  
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The subgingival microbiota of all groups shifted following ligature placement 

(Fig. 3.11). At the end of the treatment, the mean distance representing the diversity 

between samples was the lowest in the Vehicle group (Fig. 3.13). The reduced beta 

diversity in the Vehicle group could be linked to the unresolved inflammation. Taken 

together, the change of subgingival microbiota was different between the RvE1 groups 

and the Vehicle group.  The results indicate that the prevention of local environment 

change induced by experimental periodontitis might be associated with the changes of 

diversity and taxonomic composition in subgingival microbiota. 

RvE1 and other SPMs have shown the analgesic properties by regulating specific 

receptors, such as transient receptor potential cation channel subfamily V member 

(TRPV), dependent nociception (Xu et al., 2010, Bang et al., 2010). RvE1 treatment also 

prevented body weight loss in the colitis mice model by controlling acute inflammation 

(Arita et al., 2005b). It is interesting to observe the correlation between RvE1 application 

and body weight change of the animals (Fig. 3.13). RvE1 treatment might affect the gain 

of weight in animals by controlling pain and inflammation induced by ligature placement. 

It has been demonstrated that body weight change was affected by post-operative pain in 

animal model (Jablonski et al., 2001, Brennan et al., 2009). However, more studies have 

to be conducted to investigate the correlation between body weight change and trauma 

induced by the ligature placement in experimental periodontitis model.  
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CONCLUSIONS 

Resolvin E1 treatment of existing ligature induced periodontitis significantly 

regenerates lost alveolar bone. Prophylactic resolvin E1 treatment significantly prevents 

alveolar bone loss in ligature induced periodontitis rat model. The limited shift of 

subgingival microbiota in experimental periodontitis following resolvin E1 application 

was associated with reduced inflammation and repressed osteoclast activity in the local 

environment. The results of this experimental periodontitis model suggest that changes in 

the composition of the subgingival microbiota emerge as a result of inflammation. 
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