L I CAM OAN

Tôi xin cam oan r ng n i dung c a lu n án này là k t qu nghiên c u c a riêng tác gi . T t c nh ng tham kh o t các nghiên c u liên quan u c nêu ngu n g c m t cách rõ ràng. Nh ng k t qu nghiên c u và óng góp trong lu n án ch a c công b trong b t k công trình khoa h c nào khác.

> Tác gi lu n án Nghiên c u sinh

Nguy n Xuân Vinh

LICMN

Tôi xin bày t lòng bi t n sâu s c n hai Th y h ng d n: PGS. TS. Nguy n Ng c Lâm và TS. Nguy n Minh Th nh ã t n tình h ng d n tôi th c hi n các công trình nghiên c u và hoàn thành lu n án này.

Tôi xin chân thành c m n các Th y, Cô, Cán b , Nhân viên c a Vi n Nghiên c u i n t , Tin h c, T ng hóa và Phân Vi n Nghiên c u i n t , Tin h c, T ng hóa TP.HCM ã nhi t tình giúp , t o i u ki n thu n l i cho tôi trong su t th i gian h c t p và nghiên c u.

Cu i cùng, xin bày t lòng bi t n chân thành n Gia ình c a tôi, nh ng ng i thân ã chia s m i khó kh n, luôn ng viên tôi v t qua khó kh n hoàn thành t t lu n án này.

M U1
CH NG 1: TAY MÁY SONG SONG KI U STEWART–GOUGH PLATFORM VÀ
CÁC C S TOÁN H C5
1.1 T ng quan v t i u hóa thi t k và i u khi n tay máy song song ki u Stewart–
Gough Platform
1.1.1 Gi i thi u v tay máy song song5
1.1.2 Tình hình nghiên c u v tay máy song song ki u Stewart–Gough Platform.6
1.2 Các c s toán h c v tay máy song song ki u Stewart–Gough Platform
1.2.1 Phân tích hình h c tay máy song song ki u Stewart–Gough Platform 14
1.2.2 Mô hình toán c a tay máy song song ki u Stewart–Gough Platform
1.3 K t lu n ch ng 1
CH NG 2 [,] XÂY D NG CÔNG C MÔ HÌNH HÓA KH O SÁT KH N NG
HO T NGC A TAY MÁY SONG SONG KLUSTEWART-GOUGH PLATEORM
23
 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart-Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart-Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform
 23 2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform

CH NG 3. GI I PHÁP VÀ K T QU NGHIÊN C U V T I U HÓA THI T K
TAY MÁY SONG SONG KI U STEWART–GOUGH PLATFORM41
3.1 Các thu t toán t i u và ph ng pháp t i u hóa thi t k tay máy song song 41
3.1.1 Các thu t toán t i u
3.1.2 Ph ng pháp t i u hóa thi t k tay máy song song
3.2 T i u hóa thi t k tay máy song song theo m t tiêu chí
3.3 T i u hóa thi t k tay máy song song theo hai tiêu chí
3.3.1 T i u hóa thi t k theo hai tiêu chí dùng gi i thu t di truy n và thu t toán PSI
3.3.2 T i u hóa thi t k theo hai tiêu chí dùng thu t toán GA-PSI
3.3.3 T i u hóa thi t k tay máy song song theo ba tiêu chí
3.4 Nh n xét và k t lu n ch ng 371
CH NG 4. XÂY D NG MÔ HÌNH TH C NGHI M V I NG D NG GI I PHÁP
Т І U НО́А ТНІ Т К
4.1 Xây d ng mô hình th c nghi m73
4.1.1 Thitk, ch toh th ng c khí
4.1.2 Thitk, lptrìnhh thng iukhin76
4.2 Xác nh thi t k t i u cho mô hình th c nghi m
4.3 K t lu n ch ng 4
CH NG 5. I U KHI N TAY MÁY SONG SONG KI U STEWART-GOUGH
PLATFORM TRÊN C S T I U HÓA THI T K VÀ I U KHI N
5.1 Kh o sát b ng mô ph ng các thu t toán i u khi n tay máy song song ki u
Stewart–Gough Platform
5.1.1 B i u khi n PID91
5.1.2 B i u khi n m tr c ti p (Direct Fuzzy-PD)
5.1.3 B i u khi n t ch nh nh Fuzzy-PID 101

5.2 i u khi n tay máy song song trên c s t i u hóa thi t k tay máy song son
ki u Stewart–Gough Platform109
5.2.1 B i u khi n PID11
5.2.2 B i u khi n t ch nh nh Fuzzy-PID 114
5.3 Quy trình ng d ng k t qu lu n án cho h th ng th c t
5.4 K t lu n ch ng 5 120
K T LU N
KI N NGH V NH NG NGHIÊN C U TI P THEO12
CÔNG TRÌNH CÔNG B C A TÁC GI124
CÔNG TRÌNH THAM GIA C A TÁC GI12
TÀI LI U THAM KH O12
PH L C

DANHM C CÁC T VI T T T

T vitt t	Vit y Ting Anh	Vit y Ting Vit
ASME	American Society of Mechanical Engineers	Hiksckhí M
AVI	Active Vibration Isolation	H th ng cô l p dao ng tích c c
CRIGOS	Compact Robot for Image Guided Orthopedic Surgery	Robot nh g n cho ph u thu t ch nh hình v i h ng d n b ng hình nh.
CSA	Canadian Space Agency	C quan V tr Canada
ESA	European Space Agency	C quan V tr Châu Âu
GA	Genetic Algorithms	Gi i thu t di truy n
ICRA	International Conference on Robotics and Automation	H i ngh qu c t v Robot và T ng hóa
IEEE	Institute of Electrical and Electronics Engineers	VinKs invàint
IFAC	International Federation of Automatic Control	Liên oàn quct viukhin tng
IFToMM	International Federation for the Promotion of Mechanism and Machine Science	Liên oàn qu c t v Phát tri n khoa h c máy và C c u.
IROS	International Conference on Intelligent Robots and Systems	H i ngh qu c t v Robot và H th ng thông minh.
NASA	National Aeronautics and Space Administration	C quan Hàng không và V tr NASA (M)

NIST	National Institute of Standards and Technology	Vi n tiêu chu n và công ngh qu c gia (M)
PC	Personal computer	Máy tính cá nhân
PID	Proportional Integral Derivative	B i u khi n (gi i thu t) vi tích phân t l – B i u khi n (gi i thu t) PID
PPR	Pulse per rovolution	S xung trên vòng quay
PSA	Peugeot Société Anonyme	Công ty Peugeot
PSI	Parameters Space Investigation	Thu t toán i u tra không gian tham s
PWM	Pulse Width Modulation	iuch rng xung
SPI	Serial Peripheral Interface	Giao ti p ngo i vi n i ti p (SPI).

DANHM C CÁC N V O L NG

Ký hi u	Ti ng Anh	Ti ng Vi t	il ng
m	meter	mét	Chi u dài
mm	millimeter	mi-li-mét	Chi u dài
kg	kilogram	kilôgam	Kh il ng
s	second	giây	Th i gian
h	hour	gi	Th i gian
rad	radian	ra ian	Góc
N	newton	niut n	Lc

vii

DANH M C CÁC HÌNH V

Hình 1.1. C u t o tay máy song song5
Hình 1.2. Tay máy song song c a hãng Dunlop Rubber [19]7
Hình 1.3. Thi t b mô ph ng bay c a D. Stewart [19]7
Hình 1.4. Delta robot [37]7
Hình 1.5. Thi t b gia công Hexapod - D án c a NIST [3]7
Hình 1.6. Tay máy Stewart–Gough - D án Cubic Hexapod [20]8
Hình 1.7. Máy phay v i h c u trúc song song - D án Hexaglide [3]8
Hình 1.8. Thi t b SurgiScope [37]
Hình 1.9. Robot CRIGOS [31]8
Hình 1.10. H th ng nh v kính vi n v ng James Webb [84]9
Hình 1.11. H th ng th nghi m ng c PSA [84]9
Hình 1.12. Tay máy song song v i các d n ng tuy n tính [62] 10
Hình 1.13. Tay máy song ph ng dùng trong y t [81]11
Hình 1.14. Tay máy song song Stewart Platform - i h c SASTRA [75]11
Hình 1.15. H th ng ki m nh c sinh h c [9]12
Hình 1.16. H th ng gia công 5 tr c o CNC+Hexapod [110]13
Hình 1.17. Gi n vector c a tay máy song song Stewart–Gough Platform14
$H inh \ 1.18. \ B tr i \ kh \ p \ n \ i \ B_i \ tr en \ m \ t \ ph \ ng \ n \ n (a) \ va \ P_i \ tr en \ t \ m \ chuy \ n \qquad ng \ (b) \ \ 15$
Hình 2.1. L u thu t toán mô hình hóa tay máy song song
Hình 2.2. Giao di n công c mô hình hóa tay máy song song
Hình 2.3. C u hình kh o sát i m làm vi c c a tâm khâu
Hình 2.4. T p h p i m làm vi c v i góc h ng tâm khâu là h ng s
Hình 2.5. Vùng làm vi c v i góc h ng tâm khâu là h ng s
Hình 2.6. T p h p i m làm vi c khi xét gi i h n góc kh p 30
Hình 2.7. Vùng làm vi c khi xét gi i h n góc kh p 30
Hình 2.8. i m làm vi c c a tâm khâu khi t ng bán kính m t ph ng n n
Hình 2.9. Vùng làm vi c c a tâm khâu khi t ng bán kính m t ph ng n n
Hình 2.10. Ví d v c u hình khác nhau t i i m kh o sát $(x_d=-1,4; y_d=-0,7; z_d=1,1)32$
Hình 2.11. i m làm vi c c a tâm khâu khi góc h ng thay i
Hình 2.12. Vùng làm vi c c a tay máy khi góc h ng tâm khâu thay i

Hình 3.22. T p h p i m làm vi c sau khi t i u hóa theo 3 tiêu chí
Hình 3.21. Quá trình t i u theo 3 tiêu chí dùng thu t toán PSI theo hai tr ng h p 68
Hình 3.20. T p h p i m làm vi c (a) – Vùng làm vi c (b) tr c khi t i u theo 3 tiêu chí.
Hình 3.19. Quá trình t i u hóa theo hai tiêu chí dùng thu t toán PSI
Hình 3.18. C u hình ban u - Ph ng pháp GA-PSI
Hình 3.17 Phân b i m làm vi c – Vùng làm vi c c a c u hình ban u
Hình 3.16. Quá trình tìm ki m c u hình ban u dùng gi i thu t di truy n
Hình 3.15. C u hình t i u hóa c a tay máy sau khi t i u hóa theo 2 tiêu chí
Hình 3.14.Vùng làm vi c c a tay máy sau khi t i u hóa theo 2 tiêu chí
Hình 3.13. T p h p i m làm vi c c a tay máy sau khi t i u hóa theo 2 tiêu chí 60
Hình 3.12. Quá trình t i u hóa theo hai tiêu chí
Hình 3.11. Phân b i m làm vi c tr c khi t i u theo 2 tiêu chí
Hình 3.10. C u hình c a tay máy sau khi t i u hóa theo 1 tiêu chí
Hình 3.9. Vùng làm vi c c a tay máy sau khi t i u hóa theo 1 tiêu chí
Hình 3.8. T p h p i m làm vi c c a tay máy sau khi t i u hóa theo 1 tiêu chí
Hình 3.7. Quá trình t i u hóa theo 1 tiêu chí
Hình 3.6. Vùng làm vi c c a tay máy tr c khi t i u theo 1 tiêu chí
Hình 3.5. T p h p i m làm vi c tr c khi t i u theo 1 tiêu chí
Hình 3.4. C u hình ban u c a tay máy tr c khi t i u hóa thi t k
Hình 3.3. Ph ng pháp t i u hóa tay máy song song (thay i góc $i>0$)
Hình 3.2. Sthu t toán PSI
Hình 3.1. S gi i thu t di truy n
Hình 2.21. Lân c n i m k d v i det(T) $<10^{-1}$
Hình 2.20. Lân c n i m k d v i det(T)< 10^{-2}
Hình 2.19. Lân c n i m k d v i det(T)< 10^{-3}
Hình 2.18. Lân c n i m k d v i det(T)< 10^{-4}
Hình 2.17. C u hình bi n th $-xác$ nh c u hình suy bi n
Hình 2.16. K t qu v c u hình suy bi n t i v trí S ₄ ($x_4 = -0,44$, $y_4 = -0,44$, $z_4 = 1,19$) 36
Hình 2.15. Phân b i m k d
Hình 2.14. T p h p i m làm vi c
Hình 2.13. C u hình Stewart–Gough Platform i x ng – xác nh c u hình suy bi n35

ix

Hình 3.23. Vùng làm vi c sau khi t i u hóa theo 3 tiêu chí
Hình 3.24. C u hình t i u hóa theo 3 tiêu chí dùng thu t toán PSI
Hình 4.1. Tay máy song song v i chân d n ng ph ngoài không gian làm vi c [111]. 73
Hình 4.2. Thi t k c khí mô hình th c nghi m tay máy74
Hình 4.3. Mô hình c khí tay máy song song ki u Stewart–Gough Platform75
Hình 4.4. C u trúc h th ng i u khi n tay máy song song ki u Stewart-Gough Platform
Hình 4.5. Mô hình i u khi n tay máy song song trên ph n m m Matlab77
Hình 4.6. L u b i u khi n Master78
Hình 4.7. Lubi ukhi n Slave79
Hình 4.8. S b i u khi n hai vòng kín (v trí và t c) chân d n ng
Hình 4.9. nh d ng các gói d li u c a h th ng i u khi n
Hình 4.10. B i u khi n tay máy song song ã thi t k81
Hình 4.11. C u hình tay máy tr c khi t i u - Mô hình th c nghi m
Hình 4.12. T p h p i m làm vi c (a), vùng làm vi c (b) c a tay máy tr c khi t i u 83
Hình 4.13. Quá trình ti u hóa a tiêu chí dùng thu t toán PSI – Mô hình th c nghi m 84
Hình 4.14. T ph p i m làm vi c và vùng làm vi c sau khit i u hóa thit k - Mô hình
th c nghi m
Hình 4.15. C u hình t i u hóa - Mô hình th c nghi m85
Hình 4.16. Mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform 87
Hình 5.1. Mô hình tay máy song song trên n n Simulink – Matlab
Hình 5.2. S i u khi n các chân d n ng91
Hình 5.3. S i u khi n dùng thu t toán PID92
Hình 5.4. Ch ng trình mô ph ng b i u khi n PID trên Simulink - Matlab
Hình 5.5. áp ng theo v trí c a tâm khâu – Mô ph ng b i u khi n PID
Hình 5.6. áp ng theo góc h ng c a tâm khâu – Mô ph ng b i u khi n PID93
Hình 5.7. Sai s v trí (Z) c a tâm khâu – Mô ph ng b i u khi n PID
Hình 5.8. Sai s v trí (X, Y) c a tâm khâu – Mô ph ng b i u khi n PID
Hình 5.9. Sai s góc h ng c a tâm khâu – Mô ph ng b i u khi n PID
Hình 5.10. áp ng c a các chân d n ng – Mô ph ng b i u khi n PID
Hình 5 11 B i u khi n m tr c ti n (Direct Fuzzy-PD) 96

Hình 5.14. Chuy n ng v trí c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD Hình 5.15. Chuy n ng góc h ng c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-Hình 5.16. Sai s v trí (tr c Z) c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD Hình 5.17. Sai s v trí (tr c X, Y) c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-Hình 5.18. Sai s góc h ng c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD99 Hình 5.19. áp ng c a các chân d n ng – Mô ph ng b i u khi n Direct Fuzzy-PD Hình 5.20. B i u khi n t ch nh nh Fuzzy – PID 101 Hình 5.21. Mô hình b i u khi n Fuzzy-PID trên Simulink - Matlab 101 Hình 5.22. M t i u khi n m ch nh nh h s K_P'.....103 Hình 5.23. M t i u khi n m ch nh nh h s K_D'.....103 Hình 5.24. M t i u khi n m ch nh nh h s104 Hình 5.25. Chuy n ng v trí c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID 105 Hình 5.26. Chuy n ng góc h ng c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID Hình 5.27. Sai s v trí (tr c Z) c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID... 106 Hình 5.28. Sai s v trí (tr c X, Y) c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID Hình 5.29. Sai s góc h ng c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID...... 107 Hình 5.30. áp ng c a các chân d n ng – Mô ph ng b i u khi n Fuzzy-PID..... 107 Hình 5.31. Chuy n ng v trí c a tâm khâu – Th c nghi m b i u khi n PID 110 Hình 5.32. Sai s v trí (tr c Z) c a tâm khâu – Th c nghi m b i u khi n PID...... 111 Hình 5.33. Sais xácl p (tr c X, Y) c a tâm khâu – Th c nghi m b i u khi n PID 111 Hình 5.34. Sai s góc h ng c a tâm khâu – Th c nghi m b i u khi n PID...... 112 Hình 5.35. áp ng c a các chân d n ng – Th c nghi m b i u khi n PID...... 112 Hình 5.36. Chuy n ng v trí c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID 115

xi

Hình 5.37. Sai s v trí (tr c Z) c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID
Hình 5.38. Sai s v trí (tr c X, Y) c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID
Hình 5.39. Sai s góc h ng c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID 116
Hình 5.40. áp ng c a các chân d n ng – Th c nghi m b i u khi n Fuzzy-PID. 117
Hình 5.41. Quá trình i u khi n tay máy song song - B i u khi n Fuzzy-PID 118

DANHM C CÁC B NG BI U

В	ng 2.1. Thông s tay máy và gi i h n không gian kh o sát	. 27
В	ng 2.2. K t qu kh o sát i m làm vi c c a tâm khâu	. 28
B	ng 2.3. K t qu kh o sát i m làm vi c khi xét gi i h n góc kh p	30
B	ng 2.4. K t qu kh o sát i m làm vi c khi thay i bán kính m t ph ng n n	.31
В	ng 2.5. K t qu kh o sát i m làm vi c v i góc h ng tâm khâu thay i	.33
В	ng 2.6. Thông s tay máy và gi i h n không gian kh o sát	.34
В	ng 2.7. K t qu kh o sát i m k d v i c u hình Stewart–Gough Platform i x ng	35
B	ng 2.8. K t qu kh o sát i m k d v i c u hình bi n th	. 37
В	ng 2.9. K t qu kh o sát i m k d và vùng lân c n theo chu n s det(T)	. 38
В	ng 3.1. T p tham s kh i t o - Quá trình t i u hóa thi t k	.48
B	ng 3.2. nh h ng c a s b c kh o sát t i t ng chu k /th h t i u	. 49
В	ng 3.3. V trí c a các kh p t i m t ph ng n n tr c khi t i u hóa thi t k	50
В	ng 3.4. K t qu kh o sát vùng làm vi c theo 1 tiêu chí	51
B	ng 3.5. Thông s c a gi i thu t di truy n - T i u hóa theo 1 tiêu chí	.52
B	ng 3.6. K t qu t i u hóa thi t k theo 1 tiêu chí – Gi i thu t di truy n	.52
В	ng 3.7. K t qu t i u hóa thi t k theo m t tiêu chí - Ph ng pháp PSI	.52
В	ng 3.8. K t qu t i u hóa theo m t tiêu chí	53
В	ng 3.9. V trí kh p n i t i ph ng n n sau khi t i u theo 1 tiêu chí	55
B	ng 3.10. Thông s gi i thu t di truy n t i u hóa thi t k theo hai tiêu chí	57
B	ng 3.11. K t qu t i u hóa thi t k theo hai tiêu chí - Gi i thu t di truy n	57
B	ng 3.12. K t qu t i u hóa thi t k theo hai tiêu chí - Thu t toán PSI	58
В	ng 3.13. K t qu t i u theo hai tiêu chí dùng gi i thu t di truy n và thu t toán PSI	.58
B	ng 3.14. V trí kh p n i trên m t ph ng n n sau khi t i u 2 tiêu chí	61
B	ng 3.15. Thông s gi i thu t di truy n – Thu t toán GA-PSI	. 62
B	ng 3.16. K t qu tìm ki m c u hình ban u dùng gi i thu t di truy n GA	62
B	ng 3.17. V trí kh p n i c a c u hình ban u	64
В	ng 3.18. K t qu sau khi t i u hai tiêu chí dùng thu t toán GA-PSI	65
В	ng 3.19. K t qu t i u theo 3 tiêu chí dùng thu t toán PSI	. 68
В	ng 3.20. V trí kh p n i sau khi t i u hóa theo 3 tiêu chí dùng thu t toán PSI	.70
В	ng 4.1. Thông s k thu t mô hình c khí	.75

xiii

M U

Vào nh ng n mg n ây, tay máy song song ki u Stewart-Gough Platform ã с nghiên c u và ng d ng a d ng trong nhi u l nh v c khác nhau nh : gia công c khí chính xác, gi i ph u trong y h c, thiên v n h c, mô ph ng chuy n ng, ... Tay máy song song ki u Stewart-Gough Platform có nh ng u i m v t tr i so v i tay máy n i ti p nh : c ng v ng cao, kh n ng chu t i tr ng l n, kh n ng thay i v trí và nh h ng linh chính xác, n nh cao,... Tuy nhiên, tay máy song song ki u Stewart-Gough ho t, Platform c ng t n t i nh ng nh c i m nh t nh nh : không gian làm vi c b gi i h n, thi tk ch to ph ct p, giá thành cao, bài toán ng h c thu n ph ct p và c bi tt n t i các i m k d (singularities) trong không gian làm vi c [3], [19], [26], [41]. Nh m h n ch các nh c i m nêu trên, vi c nghiên c u v t i u hoá thi t k và i u khi n с c bi t trong quá trình thi t k ch t o và v n hành tay máy song song ki u quan tâm Stewart–Gough Platform. Quá trình này bao g m các b c: mô hình hóa; ánh giá kh n ng ho t ng c a tay máy v i các ràng bu c; t i u hóa thi t k theo a tiêu chí; t i u hóa b i u khi n phân c p trên c s các c u hình t i u hóa thi t k.

Hi n nay tay máy song song ki u Stewart–Gough Platform v n ang là tài nghiên c u c a nhi u tr ng i h c trên th gi i, là tài c a nhi u lu n v n th c s và ti n s ã và ang c tri n khai kh p n i trên th gi i trong ó có Vi t Nam [9], [67], [86].

Vi t Nam, vi c nghiên c u tay máy song song ã c chú ý t n m 2002. Nhi u tr ng i h c, vi n nghiên c u, c s s n xu t ã tri n khai các nghiên c u, ch t o tay máy song song.

Qua tìm hi u các công trình \tilde{a} công b trong n c, tác gi nh n th y vi c nghiên c u th ng th c hi n m t cách riêng bi t v thi t k , ch t o h th ng c khí [17], [113], [114], [116], [119], [120] ho c h i u khi n [24], [123], [124], mô ph ng ho t ng [105], [112], [117], [121], gi i bài toán ng h c [57], [106], [107], phân tích c ng v ng [36],

xu t ng d ng [122],... c a tay máy song song ki u Stewart–Gough Platform theo t ng v n khác nhau. Các nghiên c u này ch y u gi i quy t các v n h c thu t và c n c ti p t c phát tri n có th áp d ng vào th c ti n cho quá trình thi t k , ch t o và v n hành tay máy song song ki u Stewart–Gough Platform. Vì v y, m t nghiên c u có tính toàn th , có kh n ng áp d ng v i các tham s khác nhau v c u hình c khí, không gian kh o sát, c tính i u khi n,... nh m ph c v vi c thi t k , ch t o và v n hành tay máy song song ki u Stewart–Gough Platform có ý ngh a khoa h c và th c ti n. Lu n án này t ra các v n nghiên c u nh sau:

- M c tiêu nghiên c u: Xây d ng nh ng c s khoa h c v t i u hóa thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform, góp ph n t o ra công c thi t k, ch t o các h th ng ng d ng c th.
- it ng nghiên c u: Tay máy song song ki u Stewart–Gough Platform (các ph n trình bày v tay máy song song trong lu n án c hi u là tay máy song song ki u Stewart–Gough Platform).
- Ph m vi nghiên c u: T i u hóa thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform trên mô hình máy tính và th c nghi m.
- Giihncalunán:
 - V t i u hoá thi t k c u hình, lu n án gi i h n vi c áp d ng m t s lý thuy t và gi i thu t nh lý thuy t Vít xác nh c u hình suy bi n, i m k d và vùng lân c n c a tay máy song song; các gi i pháp t i u hóa s d ng gi i thu t di truy n (GA), thu t toán PSI, thu t toán GA-PSI.
 - Vi ct i u hóa thi tk c u hình c gi i h n g m 3 tiêu chí: s i m làm vi c,
 s c u hình làm vi c, c ng v ng c a tay máy.
 - Mô hình th c nghi m c xây d ng v i m c tiêu ki m tra, so sánh các gi i thu t t i u hoá thi t k và i u khi n, không òi h i t c l n và chính xác cao (s d ng các chân d n ng dùng vít me và ng c DC servo).
 - Lu n án c ng gi i h n th c nghi m kh o sát 2 gi i thu t i u khi n: PID và Fuzzy-PID.
- Ph ng pháp nghiên c u: Nghiên c u lý thuy t d a trên các ph ng pháp mô hình hóa, s d ng công c i n t ph n m m máy tính th c hi n t i u hóa thi t k và i u khi n. Ti n hành th c nghi m trên mô hình c thi t k ch t o.
- N i dung nghiên c u:
 - Xây d ng b công c mô hình hóa, kh o sát và ánh giá kh n ng ho t ng c a tay máy song song.
 - Xây d ng gi i pháp nh m t i u hóa thi t k tay máy song song ki u Stewart–
 Gough Platform theo a tiêu chí (s i m làm vi c, s c u hình làm vi c, c ng v ng c a tay máy).
 - Xây d ng mô hình th c nghi m và th c hi n t i u hóa c u hình thi t k .

- xu t thi t k gi i thu t t i u hóa cho b i u khi n tay máy trên c s s
 d ng các thu t toán i u khi n kinh i n và hi n i.
- óng góp chính và ý ngh a khoa h c c a lu n án:
 - Xây d ng c s toán h c cho t i u hoá thi t k , xây d ng b công c nghiên c u dùng mô hình hóa, ng th i ánh giá các tiêu chí nh h ng n kh n ng làm vi c c a tay máy song song ki u Stewart–Gough Platform.
 - xu t các gi i pháp t i u hóa, xây d ng các ch ng trình t i u hóa thi t k theo a tiêu chí cho tay máy song song ki u Stewart–Gough Platform theo gi i thu t di truy n, thu t toán PSI, ph ng pháp k t h p gi a gi i thu t di truy n và thu t toán PSI (thu t toán GA-PSI). c bi t, thu t toán GA-PSI có kh n ng gi m thi u th i gian t i u hóa v i c u hình ban u c xác nh phù h p theo không gian kh o sát.
 - Xây d ng mô hình v t lý tay máy song song có kh n ng tái c u hình và tính
 m, cho phép ki m ch ng các thu t toán t i u hóa thi t k và i u khi n tay
 máy song song.
 - xu t gi i pháp t i u hóa i u khi n tay máy song song trên c s áp d ng thu t toán i u khi n thông minh (Fuzzy) và ph ng pháp k t h p (Fuzzy-PID).
- Ýnghath ctincaLunán:
 - Trên c s các k t qu nghiên c u c a lu n án, v i m i ng d ng th c ti n c a tay máy song song ki u Stewart–Gough Platform, ta có th l a ch n và xác nh c u hình thi t k t i u v i các tiêu chí ph n ánh kh n ng làm vi c nh : vùng làm vi c, c u hình suy bi n, c ng v ng,... theo các yêu c u c a nhà thi t k .
 - ng d ng các gi i thu t i u khi n t i u a h p cho tay máy song song ki u
 Stewart–Gough Platform.
 - T các k t qu thu c, lu n án xu t m t quy trình s d ng t i u hoá thi t k và i u khi n cho tay máy song song theo yêu c u th c ti n ra.

Cu trúc calun án: Lun án gmphnmu, 5 ch ng ni dung và phn kt lun.

Ph n m u trình bày lý do ch n tài, m c ích, i t ng, ph m vi, gi i h n, ph ng pháp, n i dung nghiên c u, ý ngh a khoa h c và th c ti n c a lu n án. Ch ng 1 trình bày t ng quan v các v n c n nghiên c u, các c s toán h c làm n n t ng cho các nghiên c u trong lu n án (các bài toán v ng h c, các gi i h n v ng h c, ng l c h c, c u hình suy bi n, i m k d và lân c n, c ng v ng c a tay máy).

Các óng góp chính c a lu n án c trình bày trong ch ng 2, 3, 4 và 5.

Ch ng 2 trình bày vi c ng d ng các c s toán h c nêu trong ch ng 1 xây d ng b công c nghiên c u dùng cho mô hình hóa, ng th i ánh giá các tiêu chí nh h ng n kh n ng làm vi c c a tay máy song song ki u Stewart–Gough Platform. Công c cho phép: 1) Kh o sát vùng làm vi c và ánh giá các y u t nh h ng n vùng làm vi c; 2) Kh o sát c u hình làm vi c c a tay máy v i góc h ng tâm khâu thay i; 3) Áp d ng lý thuy t Vít xác nh c u hình suy bi n (Singularity), i m k d và vùng lân c n c a tay máy song song; 4) c ng v ng c a các c u hình thi t k .

Ch ng 3 trình bày các k t qu nghiên c u c a tác gi v t i u hóa thi t k tay máy song song. Các gi i pháp t i u hóa thi t k nh gi i thu t di truy n, thu t toán PSI, thu t toán k t h p GA-PSI c áp d ng tìm ki m c u hình thi t k t i u tay máy song song theo m t và a tiêu chí. Các k t qu t i u c tìm ki m, phân tích và ánh giá v i cùng không gian tham s u vào cho t t c các tr ng h p t i u.

Ch ng 4 trình bày k t qu thi t k và ch t o mô hình th c nghi m ki m ch ng các k t qu nghiên c u. ng d ng gi i pháp t i u hóa thi t k ch ng 3 xác nh và xác l p c u hình th c nghi m v t i u hóa thi t k và i u khi n cho tay máy song song.

Ch ng 5 trình bày các k t qu nghiên c u v t i u hóa b i u khi n cho tay máy song song. Trên c s c u hình t i u hóa thi t k ch ng 4, lu n án xu t và mô ph ng trên máy tính các gi i pháp t i u hóa b i u khi n dùng các thu t toán i u khi n kinh i n và hi n i: PID, Fuzzy, Fuzzy-PID. Ti n hành th c nghi m ki m ch ng, so sánh, ánh giá k t qu và ch t l ng các b i u khi n (PID, Fuzzy-PID) trên mô hình th c nghi m tay máy song song.

Ph n k t lu n t ng h p l i nh ng k t qu c a lu n án, h ng phát tri n nghiên c u ti p theo.

CH NG 1: TAY MÁY SONG SONG KI U STEWART–GOUGH PLATFORM VÀ CÁC C S TOÁN H C.

Ch ng này trình bày nh ng v n chính nh sau:

- Gi i thi u tóm t t v tay máy song song ki u Stewart–Gough Platform;
- Nh ng nghiên c u v t i u hoá và i u khi n tay máy song song ki u Stewart– Gough Platform;
- xu t n i dung nghiên c u và ph ng pháp ti n hành lu n án;
- Xác nh các c s toán h c làm n n t ng cho các k t qu nghiên c u c a lu n án.

1.1 T ng quan v t i u hóa thi t k và i u khi n tay máy song song ki u Stewart– Gough Platform.

1.1.1 Gi i thi u v tay máy song song

Tay máy song song ki u Stewart–Gough Platform [19] có 6 b c t do c c u t o b i m t m t ph ng n n (base platform), t m chuy n ng (payload platform) và 6 chân d n ng. Các chân d n ng này có kh n ng thay i chi u dài và k t n i v i hai m t ph ng thông qua các kh p n i (kh p c u ho c kh p các ng) t i các u cu i. Các kh p n i gi a các chân v i m t ph ng n n và t m chuy n ng c b trí nh hình 1.1.

Hình 1.1. C ut o tay máy song song.

Theo [32], s b c t do c a tay máy song song c tính nh sau:

$$F = \{(l-j-1) + \sum_{i=1}^{j} f_i - I_d$$
(1.1)

Trong ó: : s b c t do c a vùng làm vi c;

l:s khâu caccu; j:s kh p caccu; f_i:s b ct do cakh p th*i*; I_d:s b ct do thacaccu;

Trong tr ng h p c hai u m i m t khâu c g n v i kh p c u (spherical joint), t công th c (1.1), ta có:

$$F = 6(n + 1 + 1 - 2.n - 1) + 2.n \cdot 3 = 6 - n \tag{1.2}$$

Trong tr ng h p dùng kh p các ng (universal joint) và kh p l ng tr (prismatic joint) d c trên m i khâu, công th c (1.1) s c tính:

$$F = 6(2.n + 1 + 1 - 3.n - 1) + 2.n.2 + n.1 = 6 - n$$
(1.3)

T ph ng trình (1.2), (1.3), chúng ta thy c c u s c nh v m t cách v ng ch c n u có n = 6 khâu, khi ó b c t do c a t m d ch chuy n s là zero. N u có th i u khi n thay i chi u dài các chân d n ng thì ta s có s b c t do c a tay máy song song F = 6. Nh v y, kh n ng i u khi n v trí c a tay máy song song 6 b c t do ki u Stewart– Gough Platform s ph thu c vào vi c i u khi n chi u dài các chân d n ng này.

1.1.2 Tình hình nghiên c u v tay máy song song ki u Stewart–Gough Platform Tình hình nghiên c u trên th gi i trong l nh v c này nh sau:

- T n m 1947, t i Birmingham, Anh qu c, ti n s Eric Gough ã cho ra i c u hình u tiên v tay máy song song. Thi t k này c Eric Gough hoàn thi n và ch t o vào n m 1954 t i hãng Dunlop Rubber v i m c ích s d ng nâng chuy n các t i tr ng n ng (hình 1.2).
- N m 1965, t i IMechE, Anh Qu c, Ti n s Stewart, D. công b công trình mô t m t ng d ng t m chuy n ng (platform) 6 b c t do dùng mô ph ng và hu n luy n bay [19]. B n thi t k này ã gây tác ng r t l n n vi c hình thành các d ng tay máy song song sau này (hình 1.3).
- N m 1980: Giáo s Reymond Clavel thi t k ra Delta robot [37], sau này tr thành m t trong nh ng tay máy song song n i ti ng nh t (hình 1.4).

- N m 1985: Tay máy song ph ng ra id a trên các c u ph ng 3 b c t do dùng kh p tr và t nh ti n.
- N m 1987: Máy ng h c theo c c u song song ra i.
- N m 2002: H i ngh khoa h c v tay máy song song c t ch c t i i h c Laval, Quebec, Canada a ra nh ng nh h ng phát tri n quan tr ng v ng d ng cho tay máy song song.
- Hàng n m nh ng h i ngh khoa h c qu c t do IFToMM, ASME, IFAC, IEEE, ICRA, IROS, ... u công b các công trình nghiên c u m i v tay máy song song.

Hình 1.2. Tay máy song song c a hãng Dunlop Rubber [19]

Hình 1.4. Delta robot [37]

Hình 1.3. Thi t b mô ph ng bay c a D. Stewart [19]

Hình 1.5. Thi t b gia công Hexapod - D án c a NIST [3]

Nhi u d án các n c nh CHLB c, Th y S, Hoa K ã c tri n khai trên c s ng d ng tay máy song song – Hexapod nh :

- D án NIST (M) (hình 1.5) v i m c tiêu là o c và m r ng kh n ng c a máy d a trên nguyên lý Stewart–Gough Platform - Hexapod c tri n khai t n m 1998 n n m 2001.
- D án Cubic Hexapod h p tác gi a i h c Washington và T p oàn công ngh Hood kéo dài 6 n m t n m 1998 n n m 2004. D án này c phát tri n t tay

máy Stewart–Gough Platform lo i tr nhi u trong các h th ng chính xác (hình 1.6), i u khi n v trí v i chính xác 1 nanômét.

D án Hexaglide c tri n khai Vi n robot c a Th y s b t u t n m 1996. Tay máy là h c u trúc song song 6 b c t do, s d ng máy phay t c cao v i không gian làm vi c 700×600×500 mm, s d ng h i u khi n VME-Bus và h th ng th i gian th c. u i m c a nó là có th th c hi n các chuy n ng nhanh v i c ng v ng và chính xác cao (hình 1.7).

Hình 1.6. Tay máy Stewart–Gough -D án Cubic Hexapod [20]

Hình 1.7. Máy phay v i h c u trúc song song - D án Hexaglide [3]

- Công ty Elekta (Th y i n), m t công ty chuyên v các trang thi t b y t ã dùng robot Delta làm thi t b Surgiscope nâng gi kính hi n vi có kh i l ng 20 kg dùng trong gi i ph u (hình 1.8).
- M t d án c a châu Âu ch t o robot CRIGOS (Compact Robot for Image Guided Orthopedic Surgery) s d ng c c u Gough-Stewart nh m cung c p cho các bác s ph u thu t m t công c hi u su t cao cho ph u thu t x ng (hình 1.9).

Hinh 1.8. Thi t b SurgiScope [37]

Hãng Symetrie (Pháp, chuyên thi t k và ch t o tay máy song song) tham gia các
 d án nh :

- Kính vi n v ng không gian James Webb c thi t k v i hai h th ng nh v c m bi n CCD và ngu n sáng dùng hai tay máy song song ki u Hexapod (tay máy SONORA và BREVA) (hình 1.10).
- H th ng th nghi m ng c PSA cho hãng ô tô Peugeot-Citroën (hình 1.11)

Hình 1.10. H th ng nh v kính vi n v ng Hình 1.1. James Webb [84]

Hình 1.11. H th ng th nghi m ng c PSA [84]

***** T ng h p các nghiên c u trong n c v tay máy song:

K t h i ngh toàn qu c l n th nh t v c i n t vào n m 2002, các tác gi ã b c u nghiên c u, kh o sát các c u trúc, các bài toán ng h c và ng l c h c v tay máy song song thông qua ph ng pháp mô ph ng [104], [107], [112], [123].

T i h i ngh toàn qu c l n II v c i n t n m 2004, các tác gi Ph m V n B ch Ng c, V Thanh Quang, Tr n Th ng và Ph m Anh Tu n t i Phòng C i n t , Vi n C h c ã l a ch n mô hình, mô ph ng ng l c h c và tính toán thi t k ch t o m t robot c c u song song c th (Hexapod) ng d ng trong gia công c khí [121]. Nhóm tác gi trên c ng ã ch t o thành công thi t b này và thi t b hi n ang c tr ng bày t i Vi n C h c. M t s tác gi khác c ng công b các k t qu thi t k , phân tích l c và bi n d ng máy c t g t kim lo i và h chân hexapod dùng ph n m m Matlab [106], [117].

Các bài toán c b n v tay máy song song ti p t c công b trong nh ng n m ti p theo nh : tìm mi n làm vi c c a h robot song ph ng [105], nghiên c u xây d ng tay máy song song [113], [114], [119], bài toán i u khi n cho c c u song song [47], [124], ng d ng tay máy song song [122]. Các v n c c p c a các tác gi n t i h c Hannover, CHLB c các công trình [11], [12], [34] có giá tr h c thu t cao tham kh o cho nghiên c u tri n khai th c t . Có th th y r ng, trong giai o n này tay máy song song – Hexapod ã c nhi u nhà khoa h c trong n c quan tâm nghiên c u. Nh ng k t qu nghiên c u nói trên a ph n mang tính c b n, phù h p v i các mô hình th c nghi m và mô ph ng. Qua kh o sát các công trình công b trong n c ch a th y các nghiên c u t ng h p v t i u hoá thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform.

T ng h p các nghiên c u có liên quan v t i u hoá h th ng tay máy song song ki u Stewart–Gough Platform.

Các nghiên c u c a V.A.Glazunov và nhóm tác gi [62], [63], [66], [90], [94] ã c p sâu h n v ph ng pháp t i u hóa thi t k tay máy song song có các chân d n ng tuy n tính (hình 1.12). Trong ó, có xét n các tiêu chí v không gian làm vi c, các i m k d ... b ng ph ng pháp i u ch nh dài các chân d n ng tuy n tính. Các nghiên c u này có tính lý thuy t, ch a ckimch ngb ngth c nghi m, ph ng pháp t i u hóa thi t k s d ng thu t toán tìm ki m PSI dùng t p h p t i u Pareto. Ngoài ra, i t ng nghiên c u là tay máy song song có chân d n ng ph n m ngoài vùng không gian làm vi c (c c u c bi t). Tuy nhiên, nêu trong các công trình trên ã t ra nh ng h ng nghiên c u m i các v n cholnhv cti u hóa thi tk tay máy song song. Lu n án này c phát tri n theo h ng nghiên c ut ng th t i u hóa thi t k và i u khi n cho it ng tay c tác gi công b trong các công trình máy song song ki u Stewart-Gough [CTTG-1]-[CTTG-6].

Hình 1.12. Tay máy song song v i các d n ng tuy n tính [62]

 Các nghiên c u c a Sergiu-Dan Stan và nhóm tác gi [81], [82], [83] c p n ph ng pháp dùng gi i thu t di truy n t i u hóa tay máy song ph ng dùng trong y t (hình 1.13) và tay máy song song v i chân d n ng tuy n tính.

Hình 1.13. Tay máy song ph ng dùng trong y t [81]

Các công trình này c th c hi n cùng th i gian v i các nghiên c u c a lu n án, giúp cho lu n án kh ng nh s úng n trong vi c l a ch n gi i pháp s d ng gi i thu t di truy n t i u hóa thi t k tay máy song song. Các k t qu nghiên c u trong lu n án ã a ra gi i pháp t i u hóa thi t k cho tay máy song song b ng cách s d ng gi i thu t di truy n k t h p v i thu t toán tìm ki m PSI và t p h p t i u Pareto. Gi i pháp này c th c hi n mà không có s trùng l p v i các công trình công b trên th gi i.

Các nghiên c u c a nhóm tác gi Rahmath Ulla Baig và S. Pugazhenthi (i h c SASTRA - n) [75], [76] c p n ph ng pháp dùng gi i thu t di truy n và thu t toán n ron t i u hóa h th ng cô l p dao ng tích c c (AVI – Active Vibration Isolation) trên c s i u ch nh kho ng cách gi a các kh p n i trên m t ph ng n n và t m chuy n ng (*B_j*, *B_t*, *P_t*, *P_j*) c a tay máy song song ki u Stewart Platorm (hình 1.14). H th ng này c v n hành v i thu t toán i u khi n PID.

Hình 1.14. Tay máy song song Stewart Platform - i h c SASTRA [75]Các công trình nàyc th c hi n cùng th i i m v i các nghiên c u c a lu n án.Các tác gi t p trung th c hi n t i u hóa theo tiêu chí gi m dao ng tích c c và

i u khi n tay máy theo gi i thu t i u khi n kinh i n PID. Các n i dung nghiên c u mà lu n án xu t có tính t ng quát h n các công trình nêu trên v các tiêu chí t i u hóa thi t k và nghiên c u sâu h n v gi i thu t i u khi n thông minh dùng b i u khi n m (Fuzzy) và b i u khi n t ch nh nh PID-Fuzzy.

Lu n án ti n s c a Boyin Ding n m 2014 [9] trình bày ng d ng tay máy song song ki u Stewat-Gough Platform trong h th ng ki m nh c sinh h c. H th ng này (hình 1.15) có kh n ng o và xác nh c ng v ng c a tay máy v i chính xác cao v i các thu t toán i u khi n PID cho các chân d n ng.

Hình 1.15. H th ng ki m nh c sinh h c [9].

Công trình này quan tâm n v n kim nh và o c c ng v ng c a tay máy song song b ng th c nghi m. K t qu c a công trình này là c s so sánh giá c trình bày trong ch ng 2 và ch ng 4 c a lu n án. tr tham s c ng v ng tài thu c ch ng trình KHCN KC.03 v nghiên c u, phát tri n, ng N m 2011, d ng công ngh t ng hóa: "Nghiên c u, thi t k và ch t o tay máy song song (Stewart-Gough Platform) s d ng trong h th ng thi t b t o chuy n ng ph c h p, hình thành trung tâm gia công ch t o 5 tr c o" do PGS.TS. Lê Hoài Qu c làm ch nhi m ã С th c hi n thành công. S n ph m tài là m th th ng gia công c t g t, xây d ng trên c s m t tay máy song song Stewart–Gough Platform, có kh n ng t o hình t ng ng m t máy phay CNC 5 tr c c nh . Bàn máy (mang phôi) c v n hành và i u khi n b i 6 chân (Hexapod), n ng b ng các ng c tuy n tính [110] (hình 1.16). H th ng trên c i u khi n tích h p máy tính v i ph n m m i u khi n ho t ng gia công t o hình

theo chu n IEA (G&M code) t ng thích v i các ph n m m CAD/CAM chu n.

Hình 1.16. H th ng gia công 5 tr c o CNC+Hexapod [110]

Qua các công trình công b nêu trên, có th th y các nghiên c u v t i u hoá tay máy song song ki u Stewart–Gough Platform ch d ng t i u hoá c h ho c t i u hoá i u khi n mà ch a có các nghiên c u có tính t ng h p, y và xuyên su t có th áp d ng vào th c ti n cho toàn b quá trình thi t k, ch t o và v n hành tay máy song song ki u Stewart–Gough Platform. Vì v y, các nghiên c u v v n này có ý ngh a khoa h c và th c ti n trong vi c thi t k và ch t o tay máy song song.

N m 2012, Phân vi n Nghiên c u i n t, Tin h c và T ng hóa ã th c hi n (giai o n 1) tài nghiên c u v tay máy song song v i chân d n ng ph ph c v ng d ng công nghi p [111]. Lu n án ã phát tri n các c c u c khí và m ch i u khi n c a tài này xây d ng mô hình th c nghi m t i u hóa b i u khi n tay máy song song ki u Stewart–Gough Platform (m c 4.1).

Công trình [110] v thi t k, ch t o h th ng gia công 5 tr c o CNC+Hexapod c ng xu t nhu c u nghiên c u v t i hóa xác nh các thông s ban u (không gian, góc nghiêng) cho ng d ng th c ti n c a tay máy song song.

1.2 Các c s toán h c v tay máy song song ki u Stewart–Gough Platform

Có hai ph ng pháp chính c dùng mô hình hóa tay máy song song: ph ng pháp hình h c và ph ng pháp i s . Ph ng pháp hình h c d a trên nguyên t c phân tích hình h c các vect trong không gian c a các kh p n i và chân d n ng c a tay máy song song. Trong khi ó, ph ng pháp i s d a trên các ph ng trình toán h c ph c t p, khó ti p c n h n. Trên c s ng d ng các gi i pháp dùng các vect không gian nh lý thuy t Vít, ph ng pháp xác nh c ng v ng trong lu n án, tác gi ch n l a ph ng pháp phân tích hình h c mô hình hóa tay máy song song.

1.2.1 Phân tích hình h c tay máy song song ki u Stewart–Gough Platform

Các vector bi u di n chuy n ng c a các chân d n ng và các m t ph ng c trình bày theo hình 1.17. Trên m i m t ph ng, m t h t a s c xác nh. Hai h t a

 $\{B\}$ trên m t ph ng n n và h t a $\{P\}$ t trên t m chuy n ng s xác nh các vector v trí c a các kh p n i B_i , P_i c ng nh góc h p thành gi a các chân d n ng và hai m t ph ng.

Hình 1.17. Gi n vector c a tay máy song song Stewart–Gough Platform

Tay máy Stewart–Gough Platform d ng ix ng cóv trí các kh p n i n m trên m t ph ng n n ho c t m chuy n ng c s p x p t ng c p i x ng nhau và cùng n m trên m t vòng tròn. Nh th, vi c bi u di n hình h c c a m t ph ng n n và t m chuy n ng có th bi u di n ngi n b ng 4 bi n sau (hình 1.18):

- r_b : Bán kính vòng tròn t o b i các kh p n i trên m t ph ng n n.
- r_p : Bán kính vòng tròn t o b i các kh p n i trên t m chuy n ng.
- b: Góct ob i c p kh p n i i x ng trên m t ph ng n n.
- p: Góctobic pkh pni ix ng trênt m chuy n ng.

Hình 1.18. B trí kh p n i B_i trên m t ph ng n n (a) và P_i trên t m chuy n ng (b)

1.2.2 Mô hình toán c a tay máy song song ki u Stewart–Gough Platform

Tr c khi kh o sát mô hình toán [109] c a tay máy song song ki u Stewart–Gough Platform ta c n ph i làm rõ m t s v n v ng h c. Khác v i tay máy n i ti p, vi c gi i bài toán ng h c ng c (xác nh t a Cartesian v i v trí c a các chân d n ng cho tr c) cho tay máy song song là không quá ph c t p [8], [43], [46], [56]. Trong khi ó, vi c gi i quy t bài toán ng h c thu n (xác nh v trí c a các chân d n ng t h t a

Cartesian cho tr c) s g p r t nhi u khó kh n do t n t i các ph ng trình phi tuy n và không gi i tích c [22], [49], [68], [70], [101].

1.2.2.1 ng h c ng c

H t a chân d n ng c a tay máy song song là t p h p các bi n v chi u dài. Vi t d i d ng véc t, ta có:

$$L = [l_1 \ l_2 \ l_3 \ l_4 \ l_5 \ l_6]^{\mathrm{T}}$$
(1.4)

T a u cu i, thông th ng là h t a Cartesian c a tay máy, s bao g m t a trong không gian và các góc Euler:

$$X = [x \ y \ z \qquad]^{\mathrm{T}} \tag{1.5}$$

th hin bài toán ngh c ng c, m tánh x G c bi u di n nh sau: $G: X \Rightarrow L$. Bài toán này có nhi m v tìm véc t chi u dài L_i t t a u cu i X cho tr c. i v i tay máy song song, h t a c a m t ph ng n n {B} và h t a c a t m chuy n ng {P} s c t t i tâm c a m t ph ng n n và t m chuy n ng. Véc t t a c a các kh p trên m t ph ng n n {B} c bi u di n:

15

$$B_{i} = \begin{bmatrix} B_{ix} \\ B_{iy} \\ B_{iz} \end{bmatrix} = \begin{bmatrix} r_{b} \cos(W_{i}) \\ r_{b} \sin(W_{i}) \\ 0 \end{bmatrix}$$
(1.6)

V i
$$W_i = \frac{if}{3} - \frac{r_b}{2}$$
; $(i = 1, 3, 5)$ và $W_i = W_{i-1} + r_b$; $(i = 2, 4, 6)$

Véct t a c a các kh p n i trên t m chuy n ng $\{P\}$ c xác nh:

$$P_{i} = \begin{bmatrix} P_{ix} \\ P_{iy} \\ P_{iz} \end{bmatrix} = \begin{bmatrix} r_{p} \cos(\{i\}) \\ r_{p} \sin(\{i\}) \\ 0 \end{bmatrix}$$
(1.7)

V i
$$\{_i = \frac{if}{3} - \frac{r_p}{2}; (i = 1, 3, 5) \text{ và } \{_i = \{_{i-1} + r_p; (i = 2, 4, 6) \}$$

N u v trí mong i c at m chuy n ng so v i t a g c c xác nh b ng véc t ${}^{B}P = [x_d y_d z_d]^{T}$ thì chúng ta s có véc t bi u di n chi u dài c a các chân d n ng nh sau:

$$L_i = P_i + {}^B P - B_i \tag{1.8}$$

Khai tri n (1.8) theo $\{B\}$ chúng ta s có l i gi i c a bài toán ng ng c:

$${}^{B}L_{i} = {}^{B}_{P}R^{P}P_{i} + {}^{B}P - {}^{B}B_{i}$$
(1.9)

Trong ó ${}^{B}R_{T}$ là ma tr n chuy n i Euler 3-2-1:

$${}^{B}R_{T} = R_{Z}(X)R_{Y}(S)R_{X}(\Gamma) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} cScX & cXsrsS - crsX & srsX + crcXsS \\ cSsX & crcX + srsSsX & crsSsX - cXsr \\ -sS & cSsr & crcS \end{bmatrix}$$
(1.10)

v i c = cos() và s = sin()

Chi u dài c a các chân d n ng s c xác nh t (1.9):

$$l_i = |L_i| = \sqrt{L_{ix} + L_{iy} + L_{iz}}$$
(1.11)

1.2.2.2 ng h c thu n

bài toán ng h c thu n, ánh x F bi u di n vi c xác nh véc t v trí theo t a Cartesian v i chi u dài xác nh cho tr c c a các chân d n ng: F: L => X.

Ánh x F có tính ch t không xác nh và s có nhi u l i gi i cho ma tr n X t ng ng v i m t giá tr c th c a L. N u ánh x c a bài toán ng h c thu n ch là vi c ngh ch

o ánh x G (bài toán ng h c ng c), thì vi c xác nh ánh x F ch c n xác nh ng c l i quy trình (1.9) ho c (1.11) m t cách tu n t i v i t t c 6 chân d n ng. Do ch có l_i c xác nh, trong khi ó L_i ch a rõ nên ch có (1.11) s c áp d ng. Tuy nhiên, vi c xác nh ng c theo (1.11) khá ph c t p, khi c n gi i quy t ng th i các ph ng trình phi tuy n v i các bi n ch a rõ trong ma tr n X. Theo ph ng pháp Newton-Raphson, gi i quy t bài toán ng h c thu n, c n ph i nh ngh a m t véc t bi u di n sai l ch gi a chi u dài tính toán và th c t (o c) c a các chân d n ng:

$$f_i(X) = L_i^T L_i - |L_i|_a^2$$
(1.12)

Trong ó $|L_i|_a^2$ là chi u dài th c t o c c a các chân d n ng. Thay vào (1.9) ta có:

$$f_{i}(X) = \left({}_{P}^{B}R^{P}P_{i} + {}^{B}P - {}^{B}B_{i}\right)^{T} \left({}_{P}^{B}R^{P}P_{i} + {}^{B}P - {}^{B}B_{i}\right) - \left|L_{i}\right|_{a}^{2}$$
(1.13)

Khai tri n o hàm theo các thành ph n trong X = (x, y, z, ,):

$$\begin{aligned} \frac{\partial f_{i}(X)}{\partial x} &= 2\left(x + {}^{p}P_{i_{x}}R_{11} + {}^{p}P_{i_{y}}R_{12} + {}^{p}P_{i_{z}}R_{13} - {}^{B}B_{i_{x}}\right) \\ \frac{\partial f_{i}(X)}{\partial y} &= 2\left(y + {}^{p}P_{i_{z}}R_{21} + {}^{p}P_{i_{z}}R_{22} + {}^{p}P_{i_{z}}R_{23} - {}^{B}B_{i_{y}}\right) \\ \frac{\partial f_{i}(X)}{\partial z} &= 2\left(z + {}^{p}P_{i_{x}}R_{31} + {}^{p}P_{i_{y}}R_{32} + {}^{p}P_{i_{z}}R_{33} - {}^{B}B_{i_{z}}\right) \\ \frac{\partial f_{i}(X)}{\partial \xi} &= 2\left(x - {}^{B}B_{i_{z}}\right)\left({}^{p}P_{i_{y}}R_{13} + {}^{p}P_{i_{z}}R_{12}\right) + 2\left(y - {}^{B}B_{i_{y}}\right)\left({}^{p}P_{i_{y}}R_{23} + {}^{p}P_{i_{z}}R_{32}\right) \\ &+ 2\left(y - {}^{B}B_{i_{z}}\right)\left({}^{p}P_{i_{y}}R_{33} + {}^{p}P_{i_{z}}R_{32}\right) \\ \frac{\partial f_{i}(X)}{\partial_{x}} &= 2\left(x - {}^{B}B_{i_{z}}\right)\left({}^{-p}P_{i_{x}}\sin x \cos \Omega + {}^{p}P_{i_{y}}\sin \xi \cos x \cos \Omega + \\ &+ {}^{p}P_{i_{z}}\cos \xi \cos x \cos \Omega + \\ &+ {}^{2}\left(y - {}^{B}B_{i_{y}}\right)\left({}^{-P}P_{i_{x}}\sin x \sin \Omega + {}^{p}P_{i_{y}}\sin \xi \cos x \sin \Omega + \\ &+ {}^{p}P_{i_{z}}\cos \xi \cos x \sin \Omega + \\ &- {}^{2}\left(z - {}^{B}B_{i_{y}}\right)\left({}^{P}P_{i_{x}}\cos x + {}^{P}P_{i_{y}}\sin \xi \cos x + {}^{P}P_{i_{z}}\cos \xi \sin x \right) \\ &- {}^{2}\left(z - {}^{B}B_{i_{y}}\right)\left({}^{P}P_{i_{x}}R_{21} + {}^{P}P_{i_{z}}R_{22} + {}^{P}P_{i_{z}}R_{23}\right) \\ &+ {}^{2}\left(y - {}^{B}B_{i_{y}}\right)\left({}^{P}P_{i_{x}}R_{11} + {}^{P}P_{i_{z}}R_{12} + {}^{P}P_{i_{z}}R_{13}\right) \end{aligned}$$
(1.14)

Trong ó R_{ij} là các thành ph n c a (1.10). Ma tr n X s c vi t l i d i d ng:

Các b c ti n hành gi i bài toán ng h c thu n:

- B c 1: o chi u dài th c t các chân d n ng.
- B c 2: c l ng v trí và góc h ng c a t m chuy n ng.
- B c 3: Tính (1.10), (1.13) và (1.14) cho m i chân d n ng.
- B c 4: Th c hi n (1.15) cho n khi X_{n+1} X_n t h i t mong mu n v i sai s cho phép.

C n ph i xác nh rõ là bài toán ng h c thu n không th c th c hi n theo th i gian th c (real-time). Vì ph ng pháp Newton-Raphson là m t k thu t l p, nên s h i t c a (1.15) s c n r t nhi u b c l p. Do ó, ta nên ch n sai s v a ph i, ng th i c ng i i h n s b c l p có th t c X v i chính xác t ng i có th ch p nh n c.

1.2.2.3 ng l c h c

Trong tr ng h p t ng quát, ph ng trình ng l c h c c a c h Stewart–Gough Platform [85], [97], [101] c vi t nh sau:

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} + \ddagger_{o}(q) = J^{T} \ddagger$$
(1.16)

Trong ó: H(q) là ma tr n moment quán tính $(n \times n)$, ix ng và xác nh d ng v i m i $q \in R^6$; $C(q, \dot{q})$ là vect th hi n các l c quán tính ly tâm và Coriolis, $_g(q)$ là vect $(n \times 1)$ th hi n moment xo n t o ra b i tr ng l ng c a c h và là vect $(n \times 1)$ th hi n moment xo n t i i m thu c khâu tác ng cu i (t o b i l c tác ng); $q = [x_p, y_p, z_p, x, y, z]^T$

Các thông s trong ph ng trình ng l c h c c xác nh:

Ma tr n moment quán tính H(q):

18

$$H(q) = \begin{bmatrix} h & 0 & 0 & 0 & 0 & 0 \\ 0 & h & 0 & 0 & 0 & 0 \\ 0 & 0 & h & 0 & 0 & 0 \\ 0 & 0 & 0 & H_{44} & H_{45} & H_{46} \\ 0 & 0 & 0 & H_{54} & H_{55} & 0 \\ 0 & 0 & 0 & H_{64} & 0 & H_{66} \end{bmatrix}$$
(1.17)

trong ó: H

$$I_{44} = I_x C_s^2 C_x^2 + I_y C_s^2 S_x^2 + I_z S_s^2; H_{45} = H_{54} = (I_x - I_y) C_s C_x S_x;$$

$$H_{46} = H_{64} = I_z S_s; H_{55} = I_x S_x^2 + I_y C_x^2; H_{66} = I_z;$$

Ma tr n Coriolis h ng tâm c tính nh sau:

trong ó: $K_1 = C_s S_s (C_x^2 I_x +$

$$= C_{s}S_{s}(C_{x}^{2}I_{x} + S_{x}^{2}I_{y} - I_{z}); K_{2} = C_{s}^{2}C_{x}S_{x}(I_{x} - I_{y}); K_{3} = C_{x}S_{x}S_{x}(I_{x} - I_{y});$$

$$K_{4} = \frac{1}{2}C_{s}(C_{x} - S_{x})(C_{x} + S_{x})(I_{x} - I_{y}); K_{5} = C_{x}S_{x}(I_{x} - I_{y});$$

Ngoài ra, ma tr n Jacobian [55] c xác nh nh sau:

$$J = \begin{bmatrix} u_1^T & u_1^T R_1 P_1^P & u_1^T R_2 P_1^P & u_1^T R_3 P_1^P \\ u_2^T & u_2^T R_1 P_2^P & u_2^T R_2 P_2^P & u_2^T R_3 P_2^P \\ u_3^T & u_3^T R_1 P_3^P & u_3^T R_2 P_3^P & u_3^T R_3 P_3^P \\ u_4^T & u_4^T R_1 P_4^P & u_4^T R_2 P_4^P & u_4^T R_3 P_4^P \\ u_5^T & u_5^T R_1 P_5^P & u_5^T R_2 P_5^P & u_5^T R_3 P_5^P \\ u_6^T & u_6^T R_1 P_6^P & u_6^T R_2 P_6^P & u_6^T R_3 P_6^P \end{bmatrix}$$
(1.19)

trong ó: $u_i = \frac{R_{r_{SX}}P_i + T - B_i}{|R_{r_{SX}}P_i + T - B_i|}; R_1 = S(i)R_{r_{SX}}; R_2 = R_r S(j)R_s R_x; R_3 = R_r R_s S(k)R_x;$

v i:
$$S(i) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}; S(j) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}; S(k) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};$$

$$R_{r} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C_{r} & -S_{r} \\ 0 & S_{r} & C_{r} \end{bmatrix}; R_{s} = \begin{bmatrix} C_{s} & 0 & S_{s} \\ 0 & 1 & 0 \\ -S_{s} & 0 & C_{s} \end{bmatrix}; R_{x} = \begin{bmatrix} C_{x} & -S_{x} & 0 \\ S_{x} & C_{x} & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

 $R_{rsx} = R_r R_s R_x$ là nh ng ma tr n quay.

1.2.2.4 Các gi ih nv ngh c

Các gi i h n v ng h c c c bi t quan tâm i v i tay máy song song do k t c u c thù c a các chân d n ng c ng nh nh ng ràng bu c v các chuy n ng c khí. Tay máy song song ki u Stewart–Gough Platform có 3 gi i h n ng h c chính nh h ng n kh n ng ho t ng c a tay máy:

- Gi i h n chi u dài chân d n ng $(l_{imin} \ l_i \ l_{imax})$
- Gi i h n góc chuy n ng các kh p n i.
- Gi i h n không gian gi a các chân d n ng.

Các gi i h n nêu trên s nh h ng r t nhi u n kh n ng ho t ng c a tay máy song song. Khi ti n hành mô hình hóa và t i u thi t k c n ph i xem xét n các nh h ng này.

1.2.2.5 Lý thuy t Vít (Screw theory) và c u hình suy bi n (Singularity)

Lý thuy t Vít c phát tri n b i Robert Stawell Ball [71] áp d ng trong ng h c và t nh h c c a các c c u (c h c v t r n). ó là m t cách th hi n chuy n v, v n t c, các l c và moment xo n trong không gian ba chi u, k t h p c hai ph n quay và t nh ti n.

Có nhi u nh lý c b n c a lý thuy t Vít bao g m: nh lý c a Poinsot và nh lý c a Chasles. M t s nh lý khác bao g m J. Plücker [38], W.K. Clifford [96], A.T. Yang [7], FM Dimentberg [28], K.H. Hunt [49], ...

Vi c áp d ng lý thuy t Vít gi i các bài toán trong l nh v c tay máy ã c s d ng t khá lâu [6], [72], [95], [100]. V i s phát tri n, lý thuy t Vít c s d ng nh m t công c quan tr ng trong c h c robot, thi t k c khí, hình h c tính toán và ng l c h c a v t th (multi body). Tuy nhiên, trong nh ng n mg n y lý thuy t Vít m i c áp d ng vào nh ng bài toán c th v tay máy song song [55], [62], [66], [90], [91], [93], [115]. Lý thuy t Vít th ng c áp d ng tìm ki m các c u hình suy bi n c a tay máy song song. T i các c u hình này, tay máy s r i vào tr ng thái b t nh và m t kh n ng

i u khi n. Vì v y, lý thuy t Vít c xem là m t ph ng pháp h tr quan tr ng nghiên c u v tay máy song song.

Các c u hình suy bi n c xác nh nh sau: áp d ng lý thuy t Vít xác nh các Plücker theo tr c các chân d n ng tuy n tính c a tay máy. T các t a Plücker t a này, ta c n thi t l p các ma tr n xác nh các giá tr chu n s ho t ng c a c c u tay máy song song. C u hình suy bi n s c tìm th y n u t t c các véct trên tr c c a các ng là ph thu c tuy n tính. chân d n

Ticác cu hình suy bin, sbct do ca tay máy song song sgim i. Khi ó, quá trình iu khin ca tay máy song song skhông còn phù h p vi mô hình toán ban

u. Khi i u khi n quá trình di chuy n c a t m chuy n ng, c n chú ý n qu o d ch chuy n và c u hình làm vi c t nh c a tay máy. C n ph i thi t l p tr c các qu o d ch chuy n và các c u hình làm vi c c a tay máy song song sao cho tay máy không r i vào các c u hình suy bi n ã c tìm th y. Do ó, i u khi n tay máy song song, u tiên ta c n ph i xác nh tr c vùng làm vi c, các gi i h n v ng h c và các c u hình suy bi n [16], [21], [65], [89], [92], [94], [115].

Xét tay máy song song ki u Stewart–Gough Platform (hình 1.17) v it a c a các kh p n i trên m t ph ng n n vàt m chuy n ng (B_i, P_i) . Các vít l c c nh v d c tr c trên các chân d n ng c xác nh b i các t a Plücker E_i :

$$E_i = e_i + e_{oi}; (i = 1, .., 6)$$
 (1.20)

V i: : h s Clifford, $(^{2} = 0)$

 e_i : t a c a véc t ($e_i e_{oi} = 0$)

Cácta cavéct e_i cth hin thông quat a cacác im:

$$\left(\frac{x_{P_i}-x_{B_i}}{L_i};\frac{y_{P_i}-y_{B_i}}{L_i};\frac{z_{P_i}-z_{B_i}}{L_i}\right)$$

v i: $x_{P_i}, y_{P_i}, z_{P_i}$: t a c a i m $P_i, x_{B_i}, y_{B_i}, z_{B_i}$: t a c a i m B_i

T các t a Plücker c a các vít n v E_i , ta c n xác nh ma tr n T nh sau:

Tro

ng ó:
$$e_{xi} = \frac{x_{Bi} - x_{Ai}}{L_i}, e_{yi} = \frac{y_{Bi} - y_{Pi}}{L_i}, e_{zi} = \frac{z_{Bi} - z_{Pi}}{L_i}$$

 $e_{xi}^o = y_{Pi}e_{zi} - z_{Pi}e_{yi}; e_{yi}^o = z_{Pi}e_{xi} - x_{Pi}e_{zi}; e_{zi}^o = x_{Bi}e_{yi} - y_{Bi}e_{xi}$

C u hình c a c c u song song là c bi t khi nh th c c a ma tr n T ti n n zero, ngh a là: det(T) = 0. C u hình suy bi n s c tìm th y n u t t c các véct trên tr c c a các d n ng là ph thu c tuy n tính.

1.2.2.6 c ng v ng c a tay máy song song

c ng v ng là c tính quan tr ng trong các thông s k thu t c a các c c u song song. Theo [CT T-1], giá tr th hi n " c ng v ng" c a tay máy song song С xem là giá tr trung bình các nh th c det(T) t ng ng v i m i c u hình thi t k . N u giá tr này càng l n thì tay máy song song càng gi m c các c u hình suy bi n và nâng cao c ng v ng trong quá trình ho t ng. T i m i c u hình thi t k , c ng v ng (stiffness) c xác nh nh sau:

$$stiffness = \frac{\sum_{x=1}^{i} \sum_{y=1}^{j} \sum_{z=1}^{k} \sum_{\{=1, z=1}^{l} \sum_{w=1}^{m} \sum_{w=1}^{n} |det(T)|}{i. j. k. l. m. n}$$
(1.22)

v i *i*, *j*, *k*, *l*, *m*, *n* là các b c kh o sát trong không gian làm vi c theo v trí d ch chuy n (x, y, z) và góc chuy n ng (,,) c a tâm khâu. c ng v ng là m t tiêu chí dùng t i u hóa thi t k tay máy song song s c trình bày trong ch ng 3 c a lu n án.

1.3 Ktlunch ng 1

Ch ng 1 ã gi i thi u tóm t t t ng quan tình hình nghiên c u trong và ngoài n c v tay máy song song ki u Stewart–Gough Platform. Trong ó tác gi ãt p trung vào các công trình nghiên c u hi n nay v t i u hoá thi t k và i u khi n cho tay máy này. T ó lu n án ã xu t nhi m v nghiên c u t ng th v t i u hoá thi t k và i u khi n cho tay máy song song ki u Stewart-Gough Platform.

Ch ng 1 c ng xác nh nh ng các c s toán h c liên quan n lu n án nh : ph ng pháp phân tích hình h c, các bài toán ng h c (ng h c ng c, ng h c thu n), bài toán ng l c h c, các gi i h n v ng h c, ph ng pháp áp d ng lý thuy t Vít xác nh c u hình suy bi n và ph ng pháp xác nh c ng v ng c a c u hình tay máy. Các c s toán h c và các ph ng pháp này s c s d ng làm n n t ng th c hi n các nghiên c u trong lu n án.
GOUGH PLATFORM

Ch ng này trình bày k t qu ng d ng các c s toán h c và các khái ni m c b n xây d ng b công c nghiên c u dùng cho mô hình hóa, ã nêu trong ch ng 1 ng th i ánh giá các tiêu chí nh h ng n kh n ng làm vi c c a tay máy song song ki u Stewart–Gough Platform. K t qu ng d ng công c c trình bày bao g m: Kh o sát i m làm vi c và ánh giá các y u t nh h ng n vùng làm vi c; Kh o sát c u hình làm vi c c a tay máy v i góc h ng tâm khâu thay i; Áp d ng lý thuy t Vít xác nh các c u hình suy bi n (singularity), i m k d và vùng lân c n; Xác nh c ng v ng c a c u hình thi t k tay máy. B công c này s cs d ng cho các nghiên c u v t i u hóa thi t k các ch ng sau.

Mô hình hóa không gian làm vi c c a tay máy song song [5], [78], [88] là quá trình tìm ki m không gian ho t ng c a tâm khâu (v trí tâm c a t m chuy n ng). Quá trình này c n xem xét n các gi i h n v ng h c tay máy song song. Các gi i h n v ng h c và các thông s c a tay máy nh : gi i h n chi u dài chân d n ng, gi i h n v góc kh p n i, bán kính ng tròn t o b i các kh p n i,... s l n l t c kh o sát và ánh giá nh h ng c a chúng n kh n ng làm vi c c a tay máy song song.

2.1 Xây d ng công c mô hình hóa tay máy song song ki u Stewart–Gough Platform

Công trình [110] ã xây d ng m t công c tính toán và mô ph ng cho phép mô t b ng hình nh chuy n ng c a c c u song song, có kh n ng c l ng chi u dài các ng, kh o sát bài toán ng l c h c và mô ph ng chuy n chân d n ng c a c u t imhinti n im ích cho tr c, cho phép tìm ragi i pháp t i u hóa kh thi và l a ch n trên c s t p h p t i u Pareto. Tuy nhiên, v i nhu c u ng d ng nhi u thu t toán khác nhau nh gi i thu t di truy n, ph ng pháp PSI, thu t toán k t h p GA-PSI, tác gi nh n th y c n ph i xây d ng m t b công c m i có kh n ng th c hi n vi c mô hình hóa tay máy vàt i u hóa thi t k theo yêu c u t ng quát ã tra c a lu n án.

c xây d ng có kh n ng kh o sát vùng làm vi c v i các c u hình B công c thi t k khác nhau c ng nh ánh giá các tiêu chí nh h ng n kh n ng ho t ng c a tay máy song song. T p tham s kh o sát g m: thông s tay máy, vùng không gian kh o sát, s b c kh o sát, các gi i h n ng h c mà chúng s c i u ch nh d dàng thông

CH

qua giao di n c a b công c . B công c này s c ng d ng th c hi n các phép tính c s cho quá trình t i u hóa v i các thu t toán t i u khác nhau ch ng sau.

L u thu t toán th c hi n quá trình mô hình hóa tay máy song song c a b công c c th hi n hình 2.1.

Hình 2.1. L u thu t toán mô hình hóa tay máy song song

B công c c vi t d i d ng ngôn ng C t o thành các M-file trên ph n m m Matlab gi i các bài toán c b n bao g m:

- Bài toán ng h c
- Bài toán ng l c h c
- Xác nh t p h p các i m làm vi c, vùng làm vi c, c u hình làm vi c c a tay máy
- Xác nh các c u hình suy bi n, i m k d và vùng lân c n
- Tính c ng v ng c a c u hình tay máy
- Hi n th tay máy theo các c u hình tùy ch n.

u tiên, t p tham s kh o sát g m: thông s c a tay máy, vùng không gian kh o sát, s b c kh o sát, các gi i h n v ng h c nh chi u dài chân d n ng, gi i h n góc kh p c xác nh. T s b c kh o sát và vùng không gian kh o sát cho tr c, ch ng trình s tính b c d ch chuy n c n thi t theo các tr c (x, y, z) và các góc Euler (, ,).

T i v trí kh o sát u tiên, m t ch ng trình con c th c thi gi i bài toán ng h c nh m xác nh t a các kh p trên m t ph ng n n (công th c 1.6) và t m chuy n ó xác nh chi u dài các chân d n ng (công th c 1.11) thông ng (công th c 1.7), t qua các vet chân d n ng (công th c 1.8) và các ma tr n quay (công th c 1.10). Các ràng bu c v chi u dài chân d n ng, gi i h n góc kh p (m c 1.2.2.4) s c ki m tra xác nh các c u hình làm vi c c a tay máy song song. K ti p, m t ch ng trình con с th c thi xác nh các c u hình suy bi n, i m k d và vùng lân c n (m c 1.2.2.5).

Quá trình kh o sát cl plivit t c các v trí trong không gian kh o sát. Sau khi k t thúc vòng l p, c ng v ng c a c u hình thi t k tay máy s c xác nh. Cu i cùng, m t ch ng trình con c dùng d ng hình 3D t t p h p các i m làm vi c c a tay máy c ng nh các c u hình làm vi c theo tùy ch n c a ng i dùng.

B công c c xây d ng nh trên cho phép th c thi các nhi m v :

Tính toán và th hi n các k t qu mô hình hóa v kh n ng làm vi c c a tay máy song song (s i m làm vi c, s c u hình làm vi c v i góc h ng thay i, c ng v ng) v i t p tham s kh o sát. Trên c s ó, ta có th phân tích và ánh giá các tiêu chí nh h ng n kh n ng làm vi c c a tay máy song song (gi i h n không gian kh o sát, chi u dài chân d n ng, bán kính m t ph ng n n, gi i h n góc kh p, c u hình suy bi n, ...) nh m c 2.2.

- Th c hi n các tính toán c s, xác nh các tiêu chí t i u trong quá trình t i u hóa thi t k tay máy song song. T i m i chu k c a quá trình t i u hóa thi t k, b công c c s d ng kh o sát và ánh giá các k t qu v vùng làm vi c, các tiêu chí c n t i u theo th t u tiên giúp các gi i thu t có c s ch n l a các gi i pháp thi t k ti p theo.
- Th hi n hình d ng 3D các c u hình thi t k tay máy song song v i tùy ch n v trí kh o sát và góc h ng c a tâm khâu. Xác nh v trí kh p n i c a các c u hình thi t k .

B công c mô hình hóa tay máy song song c xây d ng v i m t giao di n (hình 2.2) cho phép nh p các tham s kh o sát nh : thông s tay máy, vùng không gian kh o sát, các gi i h n v ng h c, s b c kh o sát theo v trí và góc h ng c t bên trái. Khi ti n hành kh o sát (check workspace), máy tính s th c hi n ch ng trình mô hình hóa (hình 2.1) cho các k t qu nh : s i m làm vi c, s c u hình, vùng làm vi c, th i gian kh o sát s c th hi n tr c quan gi a giao di n. Các c u hình làm vi c t c c a tay máy s c bi u di n trong không gian 3D. Các c u hình này có kh n ng thay i theo tùy ch n v v trí và góc h ng kh o sát trong các ô t ng ng bên ph i giao di n.

4		Stewar	t-Cough Pla	atform Toolkit				- 🗆 🗙
Interface								۲.
1068333	9 4 I I	1						
Alpha_b (degree)	60	KHÀO SẢ'	T VÙNG L	ÀM VIỆC THI	EO 2 TIÊU C	НÍ		
Alpha r (degree)	60						M	ột tiêu chí
Height	2	55 tâm kháu khảo sát	1331					
R_b	2.5	Số tâm khẩu dạt dước	358			Chanadan	. Internet and the set	
R_P	1	Tile (%)	25,5971		TP	Cuốu sự	I KHA II GA HIVE	
Leg nin (n)	1	Số cấu hình khảo sát	287495		Vi tri ta:	1.	vi tri	goc
Leg πas (π.)	52	Số cấu hình đạt được	114028		16	~	125	~
X min (m)	-3.5	19 IE (%)	39.6625					
X max (m)	3.5	Thời gian tính toán (s)	100 2579					
Y min (m)	3.5	The second (202515					
Y max (m)	3.5	Irang that Ho	an tat!					
Z mir (m)	0.7	Charles and an and the line av	Characterist	and the set thereit				
Z max (m)	4.7	Check workspace (no limit)	Check workspa	ica (lour muri				
Roll min (cegree)	-18					and the second		
Roll max (degree)	10						The second second	
Pitch min (degree)	-18	and the second second			10			
Pitch max (degree)	18		1	No.	المريد الشمير	1 march		
Yaw min (cegree)	-18	b-	1		100	T	There is a second	
Yaw max (degree)	18	5	· · · · · · · · · · · · · · · · · · ·	0.0	ĭ_){`↓<`↓	184	11	
Number X step	10	4		0.6	4 11 1	15-1	11-1-	[These]
Number Y step	10	NO	the .			: 11 1	-17 1	4
Number Z step	10	3 MARK	ALL.	0.4	1 1 1	11 344	- Marine	
Number Roll step	5	2 the the	NUM-	02	1 10 10	4.	and it	The second
Number Pitch stop	5		1432.		1 March		< M24	4
Number Yaw step	5		AND .		K. Cal	mail 1	Sel.	17
Angles top min	15			-	2	1 - the	\mathbb{Z}	
Augles top max	185	2	0		C		1	
Angles base min	15	-2	-2			.7	×. *	
Angles base max	195	Thể tích	52.8507			1	-4 -4	
Load default par	ameters	Clear Flot wo	rkspace	Tinh the	ftich	Plo	t rooot	

Hình 2.2. Giao di n công c mô hình hóa tay máy song song

Ph n ti p theo s trình bày các k t qu ng d ng b công c ã thi t k mô hình hóa tay máy song song ki u Stewart–Gough Platform, kh o sát kh n ng làm vi c c a tay máy v i các tiêu chí khác nhau, các nh h ng t các thông s , các gi i h n v ng h c, xác nh c u hình suy bi n ...

2.2 Mô hình hóa tay máy song song ki u Stewart–Gough Platform s d ng b côngc ã thi t k .

2.2.1 i m làm vi c c a tay máy v i góc h ng tâm khâu là h ng s

Vùng làm vi c c a tay máy song song c xác nh b ng t p h p các i m làm vic t c c a tâm khâu trong m t gi i h n không gian kh o sát [1]. Vùng không gian c chial i theo các tr c x, y, z thành t p h p các i m c n kh o sát c a tâm kh o sát s khâu. Trong bài toán này, m t i m làm vi c t c c a tay máy c xác nh khi tâm cm t im kho sátv igóch ng là h ng s. Khi ó im kho khâu có th v nt i c xem là th a mãn gi i h n chi u dài c a các chân d n ng. ây sát c a tay máy с xem là tiêu chí th hi n c vùng làm vi c c a tay máy, quy nh kh n ng ho t ng c a tay máy song song.

K t qu kh o sát c th c hi n theo các v trí c a tâm khâu (x_d , y_d , z_d) trong vùng không gian kh o sát c gi i h n: x_{min} x_d x_{max} ; y_{min} y_d y_{max} ; z_{min} z_d z_{max} v i góc h ng Euler c a tâm khâu (,,) là h ng s . Thông s tay máy và gi i h n không gian kh o sát c th hi n b ng 2.1. C u hình tay máy song song c kh o sát th hi n theo hình 2.3 v i v trí tâm khâu $x_d = y_d = 0$, $z_d = 3,5$ m.

Thông s tay máy	Giá tr	Gi ihnkhosát	Giá tr	
b	/3 rad	X _{min}	-3,5 m	
р	/3 rad	X _{max}	3,5 m	
r _b	2,5 m	Ymin	-3,5 m	
r_p	1 m	Ymax	3,5 m	
limin	1 m	Zmin	0,7 m	
limax	5,2 m	Zmax	4,7 m	
, ,	0 rad	Xdstep, Ydstep, Zdstep	30 b c	

B ng 2.1. Thông s tay máy và gi i h n không gian kh o sát

Hình 2.3. C u hình kh o sát i m làm vi c c a tâm khâu

K t qu kh o sát i m làm vi c c a tay máy song song v i góc h ng tâm khâu là h ng s c th hi n b ng 2.2 và hình 2.4.

B ng 2.2. K t qu kh o sát i m làm vi c c a tâm khâu

S i m kh o sát trong không gian	29.791
S imlàmvic t c	12.984
T l t c (%)	43,6
Th i gian kh o sát (s)	62

(Ghi chú: Các k t qu kh o sát thu c trong lu n án này c th c hi n trên c u hình máy tính: Intel Core 2 Duo E7200, 2.53 GHz, 2GB Ram; ph n m m Matlab R2009b)

Hình 2.4. T p h p i m làm vi c v i góc h ng tâm khâu là h ng s

28

Ta có th nh n xét r ng không ph i t t c các i m kh o sát u có th th a mãn các i u ki n ràng bu c v gi i h n chi u dài c a các chân d n ng. Vì v y, n u thay i vùng không gian kh o sát, ta s có các phân b i m làm vi c khác nhau c a tay máy song song. hình 2.4 th hi n t p h p các i m làm vi c c a tâm khâu th a mãn i u ki n ràng bu c v chi u dài chân d n ng v i không gian kh o sát b ng 2.2.

có th xem xét rõ h n vùng làm vi c c a tay máy song song, t phân b i m làm vi c t c trong không gian, ta s xác nh ng bao bên ngoài (t p h p các i m n m ngoài cùng) c a phân b i m làm vi c này. N u xem vùng không gian lân c n gi a nh ng i m làm vi c u th a mãn ràng bu c v chi u dài các chân d n ng thì t p h p toàn b các không gian lân c n này c g i là vùng làm vi c c a tay máy song song. Vùng làm vi c c a tay máy (hình 2.5) c th hi n v i góc nhìn khác quan sát vùng lõm t o ra do ràng bu c v liên k t chuy n ng gi a các chân d n ng.

Hình 2.5. Vùng làm vi c v i góc h ng tâm khâu là h ng s

Nh v y, có th nh n xét r ng, vùng làm vi c khi góc h ng tâm khâu là h ng s ph thu c vào gi i h n v chi u dài các chân d n ng, không gian kh o sát và các ràng bu c v liên k t chuy n ng gi a các chân d n ng c a tay máy song song.

2.2.2 Cácy ut nhh ng n vùng làm vi c

2.2.2.1 nhh ng bigi ih ngóc kh p

Ngoài gi i h n v chi u dài c a các chân d n ng, gi i h n góc chuy n ng c a các kh p n i t i m t ph ng n n (*angle_base_{imin}*, *angle_base_{imax}*) và t m chuy n ng (*angle_top_{imin}*, *angle_top_{imax}*) là m t y u t nh h ng n kh n ng làm vi c c a tay máy song song. Các góc này hình thành t c c u c khí, v trí c a các kh p n i trên m t ph ng n n và t m chuy n ng c a tay máy.

Ti n hành kh o sát vùng làm vi c c a tay máy song song theo t p tham s nh b ng 2.1, thêm vào ó là các gi i h n v góc kh p trên m t ph ng n n và t m chuy n ng: *angle_base_{imin}* = 0,2618 rad; *angle_base_{imax}* =2,8798 rad. K t qu kh o sát c trình bày b ng 2.3, hình 2.6 và hình 2.7.

B ng 2.3. K t qu kh o sát i m làm vi c khi xét gi i h n góc kh p

Hình 2.6. T p h p i m làm vi c khi xét gi i h n góc kh p

Hình 2.7. Vùng làm vi c khi xét gi i h n góc kh p

So sánh k t qu b ng 2.2 và b ng 2.3, s i m làm vi c c a tâm khâu t c t 12.984 i m ã gi m xu ng còn 7.516 i m (gi m 42,1%). Nh v y, có th nh n xét r ng: gi i h n góc kh p làm suy gi m s i m làm vi c c ng nh thu nh vùng làm vi c c a tay máy song song (hình 2.4, hình 2.5, hình 2.6 và hình 2.7).

2.2.2.2 nhh ng b i bán kính m t ph ng n n

M t trong nh ng thông s nh h ng n vùng làm vi c c a tay máy song song là bán kính ng tròn t o b i v trí c a các kh p n i trên m t ph ng n n và t m chuy n ng (r_b, r_p) . xem xét nh h ng c a thông s này, ta ti n hành kh o sát vùng làm vi c c a tay máy song song (theo b ng 2.1) v i bán kính r_b c thay i: $r_b = 4$ m. K t qu kh o sát c bi u di n theo b ng 2.4, hình 2.8 và hình 2.9.

S i m kh o sát trong không gian	29.791
S imlàmvic t c	3.494
T 1 t c (%)	11,7

So sánh k t qu t i b ng 2.2 và b ng 2.4, s i m làm vi c gi m t 12.984 i m xu ng còn 3.494 i m (gi m 73%). Bên c nh ó, vùng làm vi c b thu nh và kéo th p xu ng do các kh p c u t i m t ph ng n n c d ch ra xa (bán kính r_b t ng), trong khi gi i h n v chi u dài các chân d n ng không thay i (hình 2.4, hình 2.5, hình 2.8 và hình 2.9).

Hình 2.8. i m làm vi c c a tâm khâu khi Hình 2.9. Vùng làm vi c c a tâm khâu khi t ng bán kính m t ph ng n n t ng bán kính m t ph ng n n

2.2.2.3 K t lu n v các nh h ng tác ng n vùng làm vi c

Nh v y, khi ti n hành xem xét m t s nh h ng tác ng n vùng làm vi c c a tay máy song song ki u Stewart–Gough Platform, có th nh n xét nh sau:

- Chi u dài c a các chân d n ng càng l n thì vùng làm vi c c a tay máy song song s càng l n và ng c l i.
- Góc kh p càng l n thì vùng làm vi c c a tay máy song song (s i m kh o sát t c trong không gian) s càng l n và ng c l i.
- Khi gi i h n v chi u dài các chân d n ng và gi i h n góc kh p không thay i, bán kính ng tròn trên m t ph ng n n càng nh thì vùng làm vi c c a tay máy song song s càng l n và ng c l i.

Các k t lu n nêu trên có th d dàng nh n th y, nh ng vi c t o ra các gi i pháp toán h c và ch ng minh chúng b ng k t qu nh l ng là c n thi t phát tri n các nghiên c u ti p theo.

2.2.3 C u hình làm vi c c a tay máy song song v i góc h ng tâm khâu thay i

m c 2.2.1, vùng làm vi c c a tay máy song song ki u Stewart–Gough Platform c xác nh khi góc h ng c a tâm khâu là h ng s không i. Trên th c t , tay máy song song có nhi u c u hình làm vi c khác nhau t i m i m t i m kh o sát trong không gian. T i m i i m kh o sát, khi t m chuy n ng l n l t thay i theo các góc h ng Euler (,,) s t o thành các c u hình khác nhau c a tay máy song song (hình 2.10). ng v i m i c u hình khác nhau này, ta s ph i tính n các ràng bu c v chi u dài các chân d n ng. N u th a mãn các ràng bu c này, ta có th xem ây là c u hình làm vi c t c c a tay máy.

Hình 2.10. Ví d v c u hình khác nhau t i i m kh o sát (x_d =-1,4; y_d =-0,7; z_d =1,1).

Trong bài toán này, m t i m kh o sát c xem là i m làm vi c t c n u tay máy tha mãn các ràng bu c (dài chân d n ng, gi i h n góc kh p ...) cho t t c các c u hình kh o sát khi góc h ng thay it i i m kh o sát ó. Nh v y, khi ti n hành kh o sát theo góc h ng thay i, ngoài k t qu v s imlàmvic t c trong không gian ta c n ph i xem xét n t ng s c u hình t c c a tay máy song song cho dù t i m t v trí kh o sát nào ó không th a mãn h t t t c các c u hình kh o sát. Bên c nh tiêu chí i m làm vi c c, tiêu chí v s c u hình làm vi c c ng nh h ng v s t n kh n ng ho t ng c a tay máy song song. Các k t qu này s là ti n cho các bài toán t i u theo a tiêu chí s c nghiên c u trong ch ng 3.

Ti n hành kh o sát c u hình làm vi c c a tay máy theo b ng 2.1 v i các góc h ng thay i trong gi i h n: min d max; min d max; min d max.

Trong ó $_{min} = _{min} = _{min} = -0,2618 \text{ rad}; _{max} = _{max} = _{max} = 0,2618 \text{ rad}.$ S b c kh o sát theo góc h ng: $_{dstep} = _{dstep} = _{dstep} = 5 \text{ b c}$

K t qu kh o sát các c u hình làm vi c c a tâm khâu v i s thay i v các góc h ng c bi u di n theo b ng 2.5, hình 2.11 và hình 2.12.

S 29.791 S c u hình kh o sát i m kh o sát 6.434.856 S i m làm vi c 10.450 S c u hình t 2.996.056 t с с T 1 t c (%) 35,1 T 1 t 46,6 c (%) 5 2 2 'n -2 -2

B ng 2.5. K t qu kh o sát i m làm vi c v i góc h ng tâm khâu thay i.

Hình 2.11. i m làm vi c c a tâm khâu khi Hình 2.12. Vùng làm vi c c a tay máy khi góc h ng thay i góc h ng tâm khâu thay i

S i m làm vi c so v i m c 2.2.1 ã gi m t 12.984 i m xu ng còn 10.450 i m v i 2.996.056 c u hình làm vi c. Trong vùng làm vi c (hình 2.12) tay máy song song s có th ho t ng v i t t c các c u hình trong gi i h n góc h ng cho tr c. Ngoài ra, s t n t i m t s c u hình tay máy n m ngoài vùng làm vi c. Vi c s d ng các c u hình này c n c cân nh c khi tính toán i u khi n chuy n ng cho tay máy song song.

Khi ti n hành xem xét các gi i h n v góc kh p t i m t ph ng n n và t m chuy n ng, bán kính m t ph ng n n,... có th k t lu n r ng s i m làm vi c, s c u hình làm vi c c a tâm khâu s b nh h ng t ng t nh các bài toán m c 2.2.1 và m c 2.2.2.
Các c u hình thi t k s óng vai trò quy t nh n kh n ng ho t ng c a tay máy song song. Các gi i h n v chi u dài chân d n ng, gi i h n góc kh p n i, các y u t khác nh bán kính m t n n hh ng áng k n vùng làm vi c c a tay máy song song.

Các k t qu kh o sát vùng làm vi c s là c s xác nh ph m vi chuy n ng cho bài toán i u khi n c a tay máy trình bày trong ch ng 4 và ch ng 5.

Các k t qu trên ã c công b công trình s [CTTG-1] c a tác gi.

2.2.4 Áp d ng lý thuy t Vít xác nh c u hình suy bi n, i m k d và vùng lân c n c a tay máy song song

Ph n này s trình bày ph ng pháp ng d ng lý thuy t Vít [63], [64] (m c 1.2.2.5) tìm ki m các c u hình suy bi n và t ó xem xét các nh h ng c a các c u hình suy bi n n vùng làm vi c và quá trình i u khi n chuy n ng c a tay máy song song. Ph ng pháp c ng s xác nh các i m k d và vùng lân c n c a chúng theo giá tr c a chu n s det(T). ánh giá tính hi u qu , ph ng pháp này c th c hi n v i hai c u hình thi t k khác nhau c a tay máy song song trong cùng không gian kh o sát. C u hình thi t k c kh o sát u tiên là c u hình ki u Stewart–Gough Platform v i các v trí B_i i x ng (hình 2.13). C u hình thi t k th hai là m t bi n th c a tay máy song song c trình bày hình 2.17.

2.2.4.1 C u hình ki u Stewart–Gough Platform i x ng

T p tham s kh o sát c a tay máy song song ki u Stewart–Gough Platform có c u hình thi t k nh hình 2.13 và các thông s b ng 2.6.

Thông s tay máy	Giá tr	Gi ihnkhosát	Giá tr	
b	/2 rad	Xmin	-1,1 m	
р	/3 rad	Xmax	1,1 m	
r _b	2,4 m	Ymin	-1,1 m	
r _p	0,9 m	Ymax	1,1 m	
l _{imin}	1 m	Zmin	0,5 m	
l _{imax}	3,7 m	Zmax	2,8 m	
dstep, dstep, dstep	5 b c	Xdstep, Ydstep, Zdstep	10 b c	

B ng 2.6. Thông s tay máy và gi i h n không gian kh o sát

T i m i m t v trí tâm khâu kh o sát, các góc h ng s thay i v i gi i h n các góc kh p: 0 angle_base_i, angle_top_i rad.

Ti n hành tìm ki m các c u hình suy bi n d a theo các giá tr det(T) (m c 1.2.2.5). K t qu kh o sát c trình bày t i b ng 2.7, hình 2.14 và hình 2.15.

Hình 2.13. C u hình Stewart–Gough Platform i x ng – xác nh c u hình suy bi n B ng 2.7. K t qu kh o sát i m k d v i c u hình Stewart–Gough Platform i x ng

S	i m kh o sát	1.331	S c u hình kh o sát	287.496
S	imlàmvic t c	1.263	Scuhình t c	113.866
S	imk d	4	S c u hình suy bi n	4

K t qu cho th y xu t hi n 04 c u hình suy bi n t i 04 i m làm vi c c a tâm khâu. Các i m này c xem là i m k d (singularity) c a tay máy song song c kh o sát.

Hình 2.14. T ph p i m làm vi c

Hình 2.15. Phân b i m k d

Các i m k d (hình 2.15) c xác nh v i t a :

- $S_1 (x_1 = 0,66, y_1 = 0,44, z_1 = 0,5);$
- $S_2 (x_2 = 0,66, y_2 = 0,66, z_2 = 0,73);$
- $S_3 (x_3 = 0, y_3 = 0,88, z_3 = 0,96);$
- $S_4 (x_4 = -0,44, y_4 = -0,44, z_4 = 1,19)$

Hình 2.16. K t qu v c u hình suy bi n t i v trí S_4 ($x_4 = -0,44$, $y_4 = -0,44$, $z_4 = 1,19$).

C u hình suy bi n này có các thông s nh sau:

V trí các kh p n i trên m t ph ng n n (B_i) :

$$B_{i} = \begin{bmatrix} x_{Bi} \\ y_{Bi} \\ z_{Bi} \end{bmatrix} = \begin{bmatrix} 2,3182 & 2,3182 & -0,6211 & -1,697 & -1,697 & -0,6211 \\ -0,6211 & 0,6211 & 2,3182 & 1,697 & -1,697 & -2,3182 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

V trí các kh p n i trên t m chuy n ng (P_i) :

$$P_{i} = \begin{bmatrix} x_{p_{i}} \\ y_{p_{i}} \\ z_{p_{i}} \end{bmatrix} = \begin{bmatrix} 0,010 & -0,890 & -1,340 & -0,890 & 0,010 & 0,460 \\ -0,339 & 0,339 & -0,440 & -1,219 & -1,219 & -0,440 \\ 1,190 & 1,190 & 1,190 & 1,190 & 1,190 \end{bmatrix}$$

Chi u dài các chân d n ng: $L_i = \begin{bmatrix} 2,768 & 3,433 & 3,088 & 3,251 & 2,135 & 2,472 \end{bmatrix}$

Ma tr n c a Plücker (Ma tr n T) theo (1.21)

	-0,8336	0,3469	0,4298	-0,2670	-0,9963	0,2864
Т	-0,9344	-0,0821	0,3466	0,2153	-0,8035	0,3902
	-0,2327	-0,8930	0,3853	0,8931	0,2393	1,0942
1 –	0,2482	-0,8969	0,3660	0,6211	0,6211	1,1009
	0,7996	0,2237	0,5574	-0,9459	0,9459	0,9772
	0,4373	0,7597	0,4813	-1,1158	0,2990	0,5419

$=> \det(T) = 0$

nh th c c a ma tr n T có giá tr det(T) = 0. K t qu này cho th y, t i c u hình kh o sát, t t c các véct trên tr c c a các chân d n ng là ph thu c tuy n tính. Theo lý thuy t Vít, c u hình ang c kh o sát c xem là m t c u hình suy bi n. ng th i, i m kh o sát c ng c xem là i m k d c a tay máy song song. hình 2.16 cho th y, c u hình tay máy s r i vào tình tr ng b t nh và m t ki m soát. Nói cách khác, trong tr ng h p này tay máy song song s m t kh n ng i u khi n và không th khôi ph c l i các c u hình tr c ó. Vì v y, i v i bài toán i u khi n tay máy song song, c n ph i xác nh tr c t t c các c u hình suy bi n trong không gian làm vi c, sau ó c n i u ch nh thu t toán i u khi n tránh ho c v t qua nh ng c u hình suy bi n này trong quá trình chuy n ng c a tâm khâu.

2.2.4.2 C u hình bi n th

Ti n hành kh o sát vùng làm vi c c a tay máy song song v i t p thông s u vào cho tr c t ng t nh m c 2.2.4.1 v i c u hình bi n th nh hình 2.17. C u hình bi n th có v trí các kh p n i trên m t ph ng n n (B_i) và t m chuy n ng (P_i) nh sau:

Hình 2.17. C u hình bi n th -xác nh c u hình suy bi n. Ta có k t qu kh o sát c th hi n nh b ng 2.8.

B ng 2.8. K t qu kh o sát i m k d v i c u hình bi n th

S	tâm khâu kh o sát	1.331	S c u hình kh o sát	287.496
S	imlàmvict c	479	S c u hình t c	170.674
S	imk d	0	S c u hình suy bi n	0

Theo k t qu kh o sát, s i m làm vi c c a tâm khâu và s c u hình t c ít h n so v i k t qu kh o sát c u hình chu n ki u Stewart–Gough Platform (m c 2.2.4.1). Trong vùng làm vi c c a tay máy không xu t hi n các c u hình suy bi n c ng nh i m k d. Tuy nhiên, k t qu kh o sát l i cho th y t n t i nh ng c u hình có giá tr det(T) r t nh. Nh ng i m làm vi c ch a các c u hình này có th c xem là lân c n c a nh ng i m k d. N u xem xét v i các giá tr det(T) > 0, ta s xác nh c vùng lân c n c a các i m k d c a tay máy song song. Vi c i u khi n tránh các vùng lân c n i m k d s nâng cao an toàn cho tay máy song song trong quá trình chuy n ng.

Ti n hành kh o sát theo nh ng giá tr chu n s khác nhau c a det(T) ta thu c k t qu theo b ng 2.9, hình 2.18 ÷ hình 2.21.

B ng 2.9. K t qu kh o sát i m k d và vùng lân c n theo chu n s det(T)

Các k t qu thu c cho th y t n t i các i m k d trong vùng làm vi c c a tay máy song song. Các i m k d này có các vùng lân c n c n tránh khi i u khi n tay máy song song. Các giá tr c a chu n s det(T) s nh h ng n vùng làm vi c c a tay máy song song: khi giá tr chu n s c a det(T) càng t ng, vùng làm vi c c a tay máy càng gi m và ng c l i. Vi c xác nh các gi i h n c a chu n s det(T) giúp cho vi c i u khi n tay máy song song m b o m t m c an toàn c n thi t trong quá trình i u khi n.

Các k t qu trên ã c công b công trình s [CTTG-3] c a tác gi.

2.2.5 c ng v ng c a tay máy

Nh ã trình bày m c 1.2.2.6, c ng v ng là c tính quan tr ng trong các thông s k thu t c a các c c u song song. S d ng b công c , ti n hành xác nh c ng v ng c a tay máy song song theo các c u hình khác nhau.

Tính theo công th c 1.22 và b ng 2.1, ta có:

- C u hình tay máy d ng i x ng ki u Stewart–Gough Platform nh hình 2.3 có
 c ng v ng *stiffness* = 1,92.10⁻¹⁸.
- C u hình tay máy d ng bi n th nh hình 2.17 có c ng v ng stiffness = 0,012724.

Có th nh n th y r ng, c u hình tay máy d ng bi n th (hình 2.17) có c ng v ng cao h n so v i c u hình tay máy i x ng ki u Stewart–Gough Platform (hình 2.3). Trong quá trình thi t k , c ng v ng c a các c u hình quy t nh n kh n ng ng v ng và kh n ng ch u t i trong quá trình ho t ng c a tay máy song song, c bi t là i v i các ng d ng trong gia công c khí và máy công c . Ngoài ra, c ng v ng s giúp xác nh tính kh thi c a c u hình thi t k trong vi c b trí và l p t mô hình c khí cho tay máy song song.

Tiêu chí v c ng v ng s c xem xét trong quá trình t i u hóa thi t k cho tay máy song song ki u Stewart–Gough Platform trong ch ng 3.

Các k t qu trên c ánh giá là phù h p v i công trình [9], [10], [33], [52], [CT T-1].

2.3 K t lu n ch ng 2

Trong ch ng này tác gi ã trình bày gi i pháp xây d ng b công c mô hình hóa tay máy song song ki u Stewart–Gough Platform. B công c c xây d ng có kh n ng kh o sát vùng làm vi c c ng nh ánh giá các tiêu chí nh h ng n kh n ng ho t

ng c a tay máy song song. im c bit là b công c cho phép ng d ng th c hin các gi i thu t t i u hoá thit k và hin th t ng minh các c u hình t i u hóa t các d lius.

mô hình hóa vùng làm vi c c a tay máy song song B công c ã c ng d ng g m: kh o sát i m làm vi c, c u hình làm vi c v i góc h ng tâm khâu thay i; các nh n vùng làm vi c: gi i h n chi u dài chân d n ng, gi i h n kh p n i, h ng tác ng ng tròn trên m t ph ng n n; xác nh c u hình suy bi n, i m k d và vùng bán kính c ng v ng c a tay máy v i các c u hình thi t k . B công c c ng lân c n; c ng th hi n tr c quan c u hình tay máy song song theo các i m làm vi c và c u hình d ng tùy ch n.

Các k t qu ng d ng b công c trong ch ng này c ng cho th y không gian làm vi c c a tay máy song song ki u Stewart–Gough Platform ch u nh h ng b i nhi u y u t khác nhau. Khi xem xét càng nhi u các y u t ràng bu c, kh n ng làm vi c c a tay máy càng b gi i h n. nâng cao kh n ng làm vi c c a tay máy song song, c n thi t ph i xây d ng m t gi i pháp nh m tìm ki m c u hình thi t k t i u c a tay máy sao cho các tiêu chí khác nhau c a tay máy nh : s i m làm vi c, s c u hình, c ng v ng,... t c là l n nh t. ây chính là bài toán t i u hóa thi t k c n ph i gi i quy t.

Các k t qu ng d ng b công c th c hi n vi c kh o sát các tham s c a tay máy song song nh trên cho th y b công c c thi t k là h p lý, áp ng c các yêu c u nghiên c u. B công c này s c s d ng cho các nghiên c u v t i u hóa thi t k ch ng 3 và 4.

CH NG 3. GI I PHÁP VÀ K T QU NGHIÊN C U V T I U HÓA THI T K TAY MÁY SONG SONG KI U STEWART–GOUGH PLATFORM

T i u hóa thi t k tay máy song song ki u Stewart–Gough Platform là bài toán tìm ki m, xác nh c u hình t i u c a tay máy theo các tiêu chí và m c tiêu khác nhau. T i các c u hình t i u này, tay máy s có kh n ng ho t ng t t nh t theo các i u ki n và tiêu chí ã t ra trong quá trình t i u hóa.

Trên c s s d ng b công c (ch ng 2), ch ng này xu t các gi i pháp và trình bày các k t qu th c hi n t i u hóa thi t k theo a tiêu chí cho tay máy song song ki u Stewart–Gough Platform v i các gi i pháp t i u hóa khác nhau bao g m: gi i thu t di truy n, thu t toán PSI, ph ng pháp k t h p gi a gi i thu t di truy n và thu t toán PSI (thu t toán GA-PSI). Các k t qu kh o sát s c phân tích và ánh giá theo các tiêu chí: i m làm vi c, s c u hình t с, c ng v ng c a tay máy song song. Vi c ch n S l a th t u tiên các tiêu chí s nh h ng n quá trình và k t qu t i u hóa. Các gi i phápti uhóa thitk cók tqu ti ut ng ng và c áp d ng phù h p theo t ng c cho phép k t lu n kh n ng làm vi c c a tay máy bài toán c th . Các k t qu thu song song sau khi ti n hành t i u hóa thi t k.

3.1 Các thu t toán t i u và ph ng pháp t i u hóa thi t k tay máy song song

3.1.1 Các thu t toán t i u

Các thu t toán t i u có th chia thành 3 nhóm: các thu t toán tìm ki m ki u li t kê, các thu t toán tìm ki m toán h c, và các thu t toán tìm ki m ng u nhiên [27], [77], [79], [87].

Nguyên t c c a các thu t toán tìm ki m ki u li t kê khá n gi n. Trong m t không gian tìm ki m h u h n, ho c r i r c, thu t toán s c l ng giá tr c a hàm m c tiêu t i t t c các i m t n t i trong vùng kh o sát. Các thu t toán tìm ki m ki u li t kê phù h p cho các quá trình th c hi n n gi n. Tuy nhiên, khi kh o sát v i không gian tham s l n, các thu t toán này l i có m t h n ch và không hi u qu do c n nhi u th i gian x lý.

Các thu t toán tìm ki m toán h c d a trên các khai tri n toán h c các hàm m c tiêu và các gradient c a nó. Các thu t toán này òi h i các khai tri n c a các hàm m c tiêu ph i là hàm t ng minh, ôi khi ph i là hàm liên t c và kh vi. Ngoài ra, các thu t toán tìm ki m này ch có kh n ng tìm ki m t i u c c b . T i u toàn c c ch có th xác nh khi i m tìm ki m ban u c a thu t toán n m trong vùng lân c n c a i m t i u toàn c c. Các thu t toán tìm ki m ng u nhiên d a trên s ti n tri n c a quá trình x lý. Các thu t toán này th ng c phát minh d a theo s sao chép c a các hi n t ng, quy lu t t nhiên. Có th li t kê m t s thu t toán c b n: gi i thu t mô ph ng luy n kim (simulated annealing), gi i thu t leo i (hill climbing), gi i thu t tìm ki m tabu (tabu search), thu t toán àn ki n (ant colony algorithm) [39], [53], [58], gi i thu t di truy n (genetic algorithm) [30], [81], [82], [83], [108], [118]...

Bài toán t i u hóa tay máy song song có không gian tìm ki m r t l n và các hàm m c tiêu không th xác nh b ng các bi u th c toán h c t ng minh. Vì v y, các thu t toán tìm ki m ki u li t kê và các thu t toán tìm ki m toán h c là không phù h p t i u hoá tay máy song song.

Gi i thu t di truy n là gi i thu t ti n hóa d a theo c ch c a ch n l c t nhiên và các hi u bi t v di truy n h c [108]. Ph ng pháp ch y u c a gi i thu t di truy n là tìm ki m l i gi i t i u t quá trình ti n hóa c a qu n th . m i th h ti n hóa, các cá th mang l i gi i kém s b lo i b và thay vào ó là các cá th m i có l i gi i t t h n. Sau m i th h, qu n th kh o sát s có c t p h p các l i gi i t t h n. Quá trình này s l p l i cho n khi t c l i gi i t t nh ti n hóa.

Gi i thu t di truy n, c ng nh các gi i thu t ti n hóa nói chung d a trên quan i m chor ng quá trình ti n hóa c a t nhiên là quá trình hoàn h o nh t, h p lý nh t và t nó ã mang tính t i u. Quá trình ti n hóa th hi n tính t i u ch, th h sau bao gi c ng t t h n (phát tri n h n, hoàn thi n h n) th h tr c. Ti n hóa t nhiên c duy trì nh hai quá trình c b n: sinh s n và ch n l c t nhiên. Các th h m i luôn c s n sinh ra b sung, thay the h c . Cá the nào phát tri n h n, thích ng h n v i môi tre ng s có nhi u kh n ng t n t i và phát tri n, cá th nào không thích ng cvimôitr ngs b ào thi. Các cá th m i sinh ra trong quá trình ti n hóa nh s lai ghép th h cha-m. M t cá th m i có th mang nh ng tính tr ng c a cha-m (*di truy n*), c ng có th mang nh ng tính tr ng hoàn toàn m i (*t bi n*). Di truy n và t bi n là hai c ch có vai trò quan tr ng nh nhau trong ti n trình ti n hóa, dù r ng hi n t ng t bi n di n ra v i xác su t nh h n nhi u so v i di truy n. Gi i thu t di truy n nói riêng và các gi i thu t ti n hóa nói chung tuy có i m khác bi t nh ng u mô ph ng ba quá trình c b n c a ti n hóa t nhiên: ch n l c t nhiên, lai ghép (sinh s n) và t bi n.

42

Hình 3.1. S gi i thu t di truy n

V m thình th c, GA c nh ngh a là m t t p: $GA = (I, \Psi, \Omega, s, t, \sim, \})$ v i:

I = B': Không gian tìm ki m l i gi i c a bài toán.

 $\Psi: I \to R$: Ký hi u c a hàm thích nghi (Fitness function).

: Ký hi u cho t p các phép toán di truy n.

 $s: I^{++} \to I^{-}$ ký hi u cho thao tác ch n; gi l i μ cá th .

 $t: I^{\sim} \rightarrow \{True, False\}$ là tiêu chu n d ng.

 \sim , l n l t là s cá th trong th h cha m và th h con cháu.

V i nh ng khái ni m và nh ngh a trên chúng ta có th hình th c hóa gi i thu t di truy n t ng quát dùng gi i quy t m t bài toán bao g m n m thành ph n chính sau:

- C u trúc d li u I bi u di n cho không gian tìm ki m c a bài toán.
- Ph ng pháp kh i t o qu n th ban u P(0).
- Hàm thích nghi xác nh thích nghi c a các cá th trong qu n th .
- Các ph ng th c ti n hóa c a gi i thu t di truy n nh lai ghép và t bi n.
- Các tham s c n thi t cho gi i thu t nh kích th c qu n th, xác su t lai, xác su t t bi n, s th h ti n hóa,....

Gi i thu t di truy n t ng quát c vi t nh sau:

Begin

$$\begin{split} t &:= 0; \\ \text{Kh it } o \ P(0) = \left\{ a_1(0), a_2(0), \cdots, a_{-}(0) \right\} \in I^- \\ \text{Tính thích nghi cho các cá th thu c } P(0) \\ P(0) &= \left\{ \Psi(a_1(0)), \Psi(a_2(0)), \cdots, \Psi(a_{-}(0)) \right\}; \\ \text{While (ch a th a i u ki n d ng) do} \\ t &:= t + 1; \\ \text{Tái sinh } P'(t) \text{ t } P(t); \\ \text{Lai } Q(t) \text{ t } P(t-1); \\ \text{ t bi n } R(t) \text{ t } P(t-1); \\ P(t) &:= P(t-1) \cup Q(t) \cup R(t); \\ \text{ anh giá} \\ P(t) &= \left\{ \Psi(a_1(t)), \Psi(a_2(t)), \cdots, \Psi(a_{-}(t)), ..., \Psi(a_{-+}(t)) \right\}; \end{split}$$

Return;

End

Thu t toán i u tra không gian tham s (PSI) cho phép hình thành và a ra gi i pháp cho bài toán xác nh t p h p các gi i pháp kh thi. M i u, vi c s d ng thu t toán PSI ph i d a trên các cu c i tho i gi a máy tính và nhà thi t k. Sau ó, thu t toán PSI c s d ng nh m t c s cho s phát tri n các ph ng pháp tìm ra gi i pháp có tính kh thi và t p h p t i u Pareto, xác nh tiêu chu n, phân chia và t ng h p các h th ng quy môl n, c l ng nh y c a các tiêu chu n i v i vi c thay i các biên.

S thu t toán PSI c ti n hành theo 3 b c (hình 3.2):

- B c 1: Xây d ng các b ng tra
- B c 2: L a ch n các ràng bu c c a các tiêu chí
- B c 3: Ki m tra và xác nh các gi i pháp phù h p
- M ts c i m liên quan n ph ng pháp t i u hóa thi t k dùng PSI:
- Các bài toán v c b n có nhi u tiêu chí.
- Xem xét ng th i t t c các tiêu chí c b n theo các th t u tiên.
- Xác nh t p h p các gi i pháp kh thi là m t b c quan tr ng trong vi c hình thành và gi i quy t các bài toán.
- Vi c hình thành và gi i quy t bài toán là m t quá trình th ng nh t và c gi i quy t theo ph ng th c t ng h.
- Các tham s c a m t mô hình có tính liên t c, có r t nhi u các ràng bu c khác nhau gi a các tham s và bi n thi t k .
- Các nhà thi t k th ng g p nh ng khó kh n l n trong vi c phân tích các gi i pháp kh thi và các t p h p t i u c ng nh trong vi c l a ch n gi i pháp t i u nh t.

Thu t toán và ch ng trình s xác nh các nghi m cho phép và các nghi m t i u hóa trên t p h p Pareto khi l a ch n các tham s c c u song song v i nhi u tiêu chí khác nhau. T p h p t i u Pareto s c tìm th y trên biên thay i c a nh ng kho ng các tham s .

Lu n án này s l n l t s d ng các gi i thu t di truy n, thu t toán PSI và thu t toán k t h p GA-PSI ti n hành t i u hóa thi t k tay máy song song. Tham s c a các tiêu chí t i u trong lu n án c xem xét g m: s i m làm vi c, s c u hình làm vi c khi góc h ng thay i và c ng v ng c a tay máy.

3.1.2 Ph ng pháp t i u hóa thi t k tay máy song song

Có nhi u ph ng pháp t i u hóa thi t k m t tay máy song song ki u Stewart– Gough Platform b ng cách thay i các tham s c a tay máy nh : góc $_b$, $_p$, bán kính r_b , r_p , gi i h n chuy n ng theo chi u dài c a các chân d n ng (l_{imin} , l_{imax}) ho c gi i h n chuy n ng góc c a kh p n i (*angle_baseimin, angle_baseimax, angle_topimin, angle_topimax*) c a tay máy. Tuy nhiên, khi ch n l a các ph ng pháp t i u hóa thi t k khác nhau, c n xem xét kh n ng áp d ng kh d các k t qu nghiên c u trong vi c ch t o h th ng c khí và i u khi n c a tay máy.

Có th nh n th y r ng vi c thay i các tham s nh gi ih n chuy n ng c a chi u dài chân d n ng, gi ih n chuy n ng góc c a kh p n i, bán kính r_b , r_p c a tay máy g p nhi u khó kh n và h n ch do ph thu c nhi u vào c u t o c khí. Trong khi ó các góc b, p l i có th thay i d dàng mà không nh h ng n c c u c a tay máy n u các kh p B_i , P_i c b trí theo các ng tròn trên m t ph ng n n ho c t m chuy n ng.

Lu n án này s d ng ph ng pháp t i u hóa thi t k cho tay máy song song ki u Stewart–Gough Platform b ng cách thay i các v trí kh p $B_i = (B_1, B_2, ..., B_6)$ trên m t

ng tròn có bán kính c nh r_b v i th t gi a các kh p không thay i. Nói cách khác, các thu t toán t i u s tìm ki m các góc $_i = (1, 2, ..., 6) > 0$ sao cho tay máy t c các tiêu chí (s i m làm vi c, s c u hình làm vi c, c ng v ng) là l n nh t (hình 3.3). Ph ng pháp này có tính kh thi cao trong vi c thi công mô hình v t lý và kh o sát các c u hình t i u hóa thi t k v sau.

Hình 3.3. Ph ng pháp t i u hóa tay máy song song (thay i góc i>0)

Lu n án s l n l t áp d ng các gi i pháp t i u hóa khác nhau cho các bài toán t i u thi t k tay máy song song theo a tiêu chí. Các k t qu t i u s c kh o sát và ánh giá v i cùng m t t p tham s kh i t o bao g m các thông s c a tay máy và vùng không gian kh o sát gi thi t cho tr c th hi n b ng 3.1. t ng bài toán c th, các thông s liên quan khác s c b sung vào quá trình t i u hóa.

Các tham s xác l p cho bài toán t i u hóa thi t k :

Thông s tay máy	Ký hi u	Giá tr	
Bán kính ng tròn t o b i kh p n i B_i	r _b	2 m	
Bán kính ng tròn t o b i kh p n i P_i	<i>r</i> _p	1 m	
	l _{imin}	1 m	
Gi i n n cm u dai chan d n ng	limax	3 m	
	angle_base _{imin}	0,2618 rad	
Gi i n n goc kn p n i tren m t pn ng n n	angle_base _{imax}	2,8798 rad	
	angle_top _{imin}	0,1745 rad	
Gi i h n gốc kh p n i trên t m chuy n ng	angle_top _{imax}	2,9670 rad	
Không gian kh o sát			
	Xmin	-1,5 m	
GI I II II KII O Sat theo tr $c x$	Xmax	-0,7 m	
	Ymin	1,2 m	
Gi i n n kn o sat theo tr c y	Ymax	1,8 m	
	Z.min	0,9 m	
Gi i n n kn o sat theo tr c z	Z.max	2,5 m	
	min, min, min	-0,1745 rad	
GIINNKN O SAT THEO GOC N ng , ,	max, max, max	0,1745 rad	
S b c kh o sát theo v trí	Xdstep, Ydstep, Zdstep	5 b c	
S b c kh o sát theo góc h ng	dstep, dstep, dstep	5b c	

B ng 3.1. T p tham s kh i t o - Quá trình t i u hóa thi t k

Ch n c u hình ban u tr c khi t i u có v trí các kh p B_i và P_i c b trí u v i $_b = _p = /3$ rad (hình 3.4, b ng 3.3). T c u hình ban u này, các gi i pháp t i u hóa s l n l t c áp d ng t i u hóa thi t k tay máy l n l t theo các tr ng h p: - T i u hóa theo l tiêu chí: S i m làm vi c c a tâm khâu v i góc h ng là h ng s = = = 0 rad (m c 3.2).

- T i u hóa theo a tiêu chí:
 - Bài toán 2 tiêu chí: S i m làm vi c c a tâm khâu; s c u hình làm vi c c a tay máy v i góc h ng thay i trong gi i h n kh o sát (m c 3.3).
 - Bài toán 3 tiêu chí: S i m làm vi c c a tâm khâu; s c u hình làm vi c c a tay máy v i góc h ng thay i; c ng v ng c a tay máy. Trong bài toán này, th t u tiên c a các tiêu chí s c xem xét và ánh giá trong hai tr ng h p khác nhau (m c 3.3.3).

Các k t qu t i u hóa thi t k trong lu n án (ch ng 3, ch ng 4) c th c hi n trên c s s d ng b công c (ch ng 2) kh o sát các c u hình thi t k c a tay máy t i các chu k /th h t i u.

S cuhình kh o sát tim t chu k /th h t i u s quy t nh n th i gian t i u hóa. N u s b c kh o sát (step) quá nh, k t qu kh o sát s không bao quát c h t vùng không gian kh o sát c ng nh các c u hình c a tay máy. Trong tr ng h p ch n s b c kh o sát l n, s c u hình kh o sát s r t l n, quá trình t i u hóa không mang tính kh thi v m t th i gian (b ng 3.2). Bên c nh ó các c u hình kh o sát c ch n l a quá g n nhau s có các k t qu t ng t, không h tr nhi u trong vi c ánh giá kh n ng làm vi c c a tay máy. Vì v y, s b c kh o sát theo v trí và góc h ng c n c cân nh c và ch n l a tr c khi ti n hành quá trình t i u hóa thi t k tay máy song song.

S	b c kh o sát (<i>step</i>) theo v trí và góc h	ng	3	5	7	10
S	i m kh o sát = $(step)^3$		9	125	343	1.000
S	c u hình kh o sát = $(step)^6$		81	15.625	117,649	1.000.000

Bng 3.2. nhh ng c as b c kh o sátt it ng chu k /th h t i u

Thông qua quá trình th nghi m và i u ch nh các thu t toán t i u hóa thi t k trong lu n án, s b c kh o sát theo v trí (x_{dstep} , y_{dstep} , z_{dstep}) và góc h ng ($_{dstep}$, $_{dstep}$, $_{dstep}$) s c l a ch n phù h p theo th tích vùng không gian kh o sát và gi i h n góc h ng c a t m chuy n ng. Vi c l a ch n này c th c hi n theo nguyên t c m b o tính toàn v n c a vùng không gian kh o sát và th i gian kh o sát kh thi. Các k t qu t i u hóa trong lu n án cho th y các giá tr này là phù h p cho vi c xác nh vùng không gian làm vi c v i th i gian t i u hóa thông quá l n trong khi v n m b o c tính khác bi t và a d ng c a các gi i pháp t i u hóa thi t k . Các k t qu t i u hóa thi t k c xem

xét loib các cu hình suy bin, im d bit và vùng lân cn ca chúng. Vì vy, sb c kho sát (chia li) skhông nh hng nvic xác nh cu hình ti u hóa.

Các c u hình thi t k c a tay máy trong ch ng 3 s c th hi n v i v trí tâm khâu: $x_d = -0,7$; $y_d = 1,56$; $z_d = 1,22$ m.

Hình 3.4. Cu hình ban uc a tay máy tr ckhi ti u hóa thi t k B ng 3.3. V trí ca các kh p tim t ph ng n n tr ckhi ti u hóa thi t k

V trí B_i (m)	1	2	3	4	5	6
B_{i_x}	1,73205	1,73205	0	-1,73205	-1,73205	0
B _{iy}	-1	1	2	1	-1	-2

V i gi i thu t di truy n, các tiêu chí t i u s xác nh hàm thích nghi c a các cá th. th h u tiên, c u hình thi t k c a tay máy s c ch n l a ng u nhiên. Các c u hình thi t k có hàm thích nghi t t nh t s c ch n l c và l u l i cho quá trình ti n hóa th h tip theo. Trong thu t toán i u tra không gian tham s PSI, sau m i chu k t i u, c u hình thi t k có s i m làm vi c nhi u nh t s cl a ch n theo l i khuyên c a nhà thi t k ho c t h chuyên gia t i u hóa c tích h p trong ch ng trình máy tính clach n nàys làc s cho chu k t i u k ti p. Thu t (hình 3.2). C u hình thi t k toán GA-PSIs d ng gi i thu t di truy n tìm ki m c u hình ban u phù h p cho thu t gi m thi u th i gian t i u hóa. Thu t toán này có kh n ng giúp nhà thi t k toán PSI c các c u hình ban u phù h p v i s thay i v không gian kh o sát và xác nh thông s tay máy.

i v i các gi i pháp nêu trên, t i m i chu k ho c th h t i u, b công c mô hình hóa (hình 2.2) s th c hi n vi c kh o sát và ánh giá vùng làm vi c c a các c u hình thi t k . K t thúc quá trình t i u hóa, thi t k t i u c a các gi i pháp s c ánh giá và so sánh v i c u hình thi t k ban u (hình 3.4).

3.2 T i u hóa thi t k tay máy song song theo m t tiêu chí

Ti n hành kh o sát c u hình ban u c a tay máy (hình 3.4) theo b ng 3.1, s **i m làm vi c c a tâm khâu** v i góc h ng là h ng s = = = 0 (rad) c th hi n theo hình 3.5, hình 3.6 và b ng 3.4.

B ng 3.4. K t qu kh o sát vùng làm vi c theo 1 tiêu chí

Hình 3.5. T p h p i m làm vi c tr c khi t i u theo 1 tiêu chí

Hình 3.6. Vùng làm vi c c a tay máy tr c khi t i u theo 1 tiêu chí

Trong ph n này, tác gi ti n hành t i u hóa thi t k l n l t theo các gi i pháp sau:

- Gi i thu t di truy n (GA).
- Thu t toán i u tra không gian tham s (PSI).

Áp d ng gi i thu t di truy n (hình 3.1) v i các thông s nh b ng 3.5 và hàm thích nghi:

$$Fitness = S \quad i \ m \ lam \ vi \ c \qquad t \qquad c \qquad (3.1)$$

B ng 3.5. Thông s c a gi i thu t di truy n - T i u hóa theo l tiêu chí

S	cá th trong qu n th	50	Xác xu t t bi n	0,01
S	nhi m s c th trong cá th	6	Xác xu t lai ghép	0,89
S	gen trong nhi m s c th	4	S th h t i a	2.000

K t qu t i u hóa thi t k theo m t tiêu chí dùng gi i thu t di truy n c trình bày theo b ng 3.6.

B ng 3.6. K t qu t i u hóa thi t k theo l tiêu chí – Gi i thu t di truy n

Thông c	Ban	u	Thhtiu				
Thong s			1	5	47	247	
S i m làm vi c t c		47	57	125	179	179	
T l t i u (%)		0	21,2	165,9	280,8	280,8	
Th i gian t i u (s)			0,8	4,1	39,3	206,5	

D a vào b ng k t qu sau khi t i u, ta có th nh n th y r ng, s i m làm vi c t c t ng t 47 lên 125 v trí ch sau b n th h u c a gi i thu t di truy n (t ng 165,9%). T i th h cu i, ta có s i m làm vi c t c sau khi t i u là 179 i m. Nh v y, khi k t thúc quá trình t i u, s i m làm vi c t c ã t ng lên 280,8% so v i c u hình kh o sát ban u (t 47 i m lên 179 i m).

Quá trình t i u hóa chi ti t theo m t tiêu chí c a gi i thu t di truy n c th hi n trong hình 3.7, hình 3.8, hình 3.9 v i t a v trí kh p B_i c a tay máy th hi n b ng 3.9.

Áp d ng thu t toán PSI (hình 3.2), ta có k t qu t i u hóa thi t k theo m t tiêu chí c trình bày theo b ng 3.7.

Thông g	Ban u	Chuk ti u			
Thong S		1	2	7	100
S i m làm vi c t c	47	68	93	180	180
T l t i u (%)	0	44,6	97,8	282,9	282,9
Th i gian t i u (s)	0,56	16	33	116	1.662

B ng 3.7. K t qu t i u hóa thi t k theo m t tiêu chí - Ph ng pháp PSI

D a vào b ng 3.7, chúng ta có th nh n th y s tâm khâu t c t ng t 47 lên 68 i m làm vi c ch sau chu k t i u u tiên (t ng 44,6%). T chu k t i u th b y n chu k cu i (chu k 100), s tâm khâu ra t c sau khi t i u là 180 v trí (t ng 282,9%) so v i c u hình ban u (hình 3.4).

T chuk t i uth b y n chuk t i ucu i, giá tr t i utheo tiêu chí th nh t là nh nhau. i u này cho th y kh n ng t n t i các c u hình thi t k khác nhau có cùng s tâm khâu ra t giá tr l n nh t trong vùng kh o sát. Trong tr ng h p này, bài toán t i u s có nhi u l i gi i khác nhau d a trên các thông s ràng bu c c a tay máy song song.

So sánh k tqu t i uc a haigi i pháp:

có th ánh giá hi u qu c a các gi i pháp t i u hóa thi t k theo m t tiêu chí, các k t qu t ng h p, quá trình t i u hóa chi ti t c a gi i thu t di truy n và ph ng pháp PSI s c trình bày và so sánh theo b ng 3.8, hình 3.7, hình 3.8, hình 3.9. T a v trí kh p n i B_i c a tay máy sau khi t i u c trình bày b ng 3.9.

Th ân a r	Tr c khi	Ktqu ti u			
I nong s	ti uhóa	Thu t toán GA	Thu t toán PSI		
S i m làm vi c t c	47	179	180		
T l t i u (%)	0	280,9	282,9		
Th h/chuk ttiu		47	7		
Th i gian t i u (s)		206	1.662		

B ng 3.8. K t qu t i u hóa theo m t tiêu chí

Hình 3.8. T p h p i m làm vi c c a tay máy sau khi t i u hóa theo 1 tiêu chí.

Hình 3.9. Vùng làm vi c c a tay máy sau khi t i u hóa theo 1 tiêu chí

54

V trí c a các kh p t i m t ph ng n n $B_i = (B_1, B_2, ..., B_6)$ sau khi t i u c th hi n b ng 3.9.

Thu t toán	V trí B_i (m)	1	2	3	4	5	6
	B_{i_x}	1,6483	0,7135	-0,4771	-1,5565	-1,8818	-1,8818
Di truy n	B_{i_y}	1,1328	1,8684	1,9423	1,2559	-0,6775	-0,6775
DCI	B_{i_x}	1,5321	0,3473	-1,0000	-1,7321	-1,7321	-1,9696
421	B_{i_y}	1,2856	1,9696	1,7321	1,0000	-1,0000	-0,3473

B ng 3.9. V trí kh p n i t i ph ng n n sau khi t i u theo 1 tiêu chí

C u hình thi t k t i u theo hai gi i pháp c miêu t trong hình 3.10 v i các kh p n i B_i có v trí d ch chuy n l i g n v i vùng không gian kh o sát h n so v i c u hình thi t k ban u (hình 3.4 và hình 3.10). Các kh p n i này có th t b trí trên m t ph ng n n và theo ng tròn phù h p v i ph ng pháp t i hóa thi t k ã trình bày m c 3.1.2.

Có th k t lu n r ng, v i s i m làm vi c t c c a tâm khâu (góc h ng là h ng s), vùng làm vi c c a tay máy song song ã c m r ng h n sau khi ti n hành t i u hóa thi t k (hình 3.6 và hình 3.9) v i c hai gi i pháp. K t qu t i u v s i m làm vi c thu t toán PSI t t h n gi i thu t di truy n (180 i m so v i 179 i m làm vi c). Tuy nhiên, th i gian t i u hóa c a thu t toán PSI l n h n so v i gi i thu t GA (1.662 giây so v i 206 giây).

Các k t qu trên ã c công b công trình [CTTG-1] và [CTTG-2] c a tác gi .

3.3 T i u hóa thi t k tay máy song song theo hai tiêu chí

Ph n này trình bày k t qu áp d ng gi i thu t di truy n và thu t toán PSI t i u hóa thi t k tay máy song song theo hai tiêu chí: **s i m làm vi c và s c u hình t**

c. Tip ó là ph ng pháp k th p gi i thu t di truy n và PSI gi m thi u th i gian ti u hóa và nâng cao tính linh ho t trong vi c ch n l a c u hình ban u tr c khi t i u.

Tr c tiên, gi i thu t di truy n và thu t toán PSI c áp d ng cho vi c tìm ki m không gian làm vi c c a tay máy song song v i hai tiêu chí nh sau: s tâm khâu và c u hình làm vi c khi góc h ng thay i. T i m i m t v trí tâm khâu c kh o sát, các góc h ng (,,) l n l t thay it o thành các c u hình khác nhau. Trong lu n án này, m t i m làm vi c c xác nh khi tay máy có kh n ng ho t ng t t c các c u hình khác nhau khi góc h ng thay it i i m kh o sát ó. Khi ti n hành kh o sát v i góc h ng thay i, c n l u ý r ng, ngoài k t qu v s i m làm vi c t c (tiêu chí th nh t) trong không gian chúng ta c n ph i xem xét n s c u hình t c c a tay máy song c kh o sát không th a mãn h t t t c các c u hình. ây song cho dù t i v trí tâm khâu là tiêu chí the hai quy tenhen n khen ng ho teng ce a tay máy song song.

Ti n hành kh o sát c u hình ban u tr c khi t i u (hình 3.4) v i t p tham s b ng 3.1. K t qu kh o sát tr c khi ti n hành t i u hóa cho th y tay máy song song v i gi i h n góc kh p có s i m làm vi c t c 1 v trí và 5.829 c u hình (hình 3.11). Có th nh n th y r ng, khi xem xét thêm ràng bu c v các c u hình t i m i i m làm vi c và gi i h n c a các kh p n i, s i m làm vi c t c c a tay máy \tilde{a} gi m xu ng r t nhi u.

m r ng vùng làm vi c c a tay máy, quá trình t i u hóa thi t k theo hai tiêu chí trong lu n án s d a trên nguyên t c u tiên c i thi n tiêu chí th nh t (s i m làm vi c) tr c so v i tiêu chí th hai (s c u hình làm vi c).

Hình 3.11. Phân b i m làm vi c tr c khi t i u theo 2 tiêu chí

3.3.1 T i u hóa thi t k theo hai tiêu chí dùng gi i thu t di truy n và thu t toán PSI

Áp d ng gi i thu t di truy n (hình 3.1) v i các tham s nh b ng 3.10 v i hàm thích nghi c nh ngh a nh sau:

Fitness = S i m làm vi c t
$$c * 10^i + S c$$
 u hình t c. (3.2)

V i $i > log(S \ c \ u \ h)hhh h \ o \ sat); (i \in Z; i \ge 0)$

B ng 3.10. Thông s gi i thu t di truy n t i u hóa thi t k theo hai tiêu chí

S cá th trong qu n th	50	Xác xu t t bi n	0,05
S nhi m s c th trong cá th	6	Xác xu t lai ghép	0,89
S gen trong nhi m s c th	4	S th h t i a	500

K t qu t i u hóa thi t k theo hai tiêu chí dùng gi i thu t di truy n th hi n b ng 3.11. Quá trình t i u hóa theo hai tiêu chí c a gi i thu t di truy n c th hi n t hình 3.12 n hình 3.14 v i t a v trí kh p B_i c a tay máy th hi n hình 3.15 và b ng 3.14.

B ng 3.11. K t qu t i u hóa thi t k theo hai tiêu chí - Gi i thu t di truy n

Thân	Ban	Th h t i u				
I nong s	u	1	6	89	131	181
S i m làm vi c t c	1	39	68	160	169	169
T l t i u (%)		3.900	6.800	16.000	16.900	16.900
Scuhình t c	5.829	37.389	41.967	44.407	44.407	44.407
T l t i u (%)		641,4	720	761,8	761,8	761,8
Th i gian t i u (s)		234	1.407	20.884	30.739	42.471

K t qu t i u hóa theo hai tiêu chí cho th y, th h th 131 gi i thu t di truy n \tilde{a} tt i k t qu tìm ki m t t nh t v i s i m làm vi c t c là 169 i m, s c u hình làm vi c t c là 44.407 c u hình. Th i gian t i u hóa c a gi i thu t di truy n là 42.471 s 11,8 gi.

Áp d ng thu t toán PSI ti n hành hóa thi t k theo hai tiêu chí cho tay máy song song. K t qu t i u hóa thi t k theo hai tiêu chí dùng thu t toán PSI c trình bày theo b ng 3.12.

Thêng s	Ban	Chuk ti u				
I nong s	u	1	12	25	40	
S tâm khâu t c	1	28	28	169	169	
T l t i u (%)		2.800	2.800	16.900	16.900	
S c u hình t c	5.829	10.877	10.877	44.601	44.601	
T l t i u (%)		186,6	186,6	765,2	765,2	
Th i gian t i u (s)		3.492	41.92	87.293	139.670	

B ng 3.12. K t qu t i u hóa thi t k theo hai tiêu chí - Thu t toán PSI

Thu t toán PSI cho k t qu t i ut chu k 25 v i 169 i m làm vi c t c và 44.601 c u hình. Trong chu k t i u u tiên, s i m làm vi c và s c u hình làm vi c t c t ng nhanh so v i c u hình ban u. Trong 11 chu k t i u k ti p, các tiêu chí không c c i thi n. T chu k 12 tr i, các tiêu chí kh o sát t ng nhanh và t t i u t i chu k 25. Quá trình t i u hóa thi t k theo hai tiêu chí k t thúc t i chu k 40. Th i gian t i u hóa là 139.670 s 38,8 gi.

So sánh các k t qu t i u hóa theo hai tiêu chí: Các k t qu c trình bày b ng 3.13, t hình 3.12 n hình 3.14 v i t a v trí kh p B_i c a tay máy th hi n hình 3.15 và b ng 3.14.

Thênga	Tr c khi	Ktqutiu			
Thong s	ti uhóa	Gi i thu t di truy n	Thu t toán PSI		
S i m làm vi c t c	1	169	169		
T l t i u (%)		16.900	16.900		
S c u hình t c	5.829	44.407	44.601		
T l t i u (%)		761,8	765,2		
Th h /chuk tt i u		131	25		
Th i gian t i u (s)		42.471	139.670		

B ng 3.13. K t qu t i u theo hai tiêu chí dùng gi i thu t di truy n và thu t toán PSI

K tqu cho thy, sau khi ti u hóa tay máy có s cithin r tlnv s im làm vicc ng nh s cu hình làm vic t c. Hai gi i pháp ti u hóa có cùng tph p
i m làm vi c và vùng làm vi c sau khi t i u (169 i m). Thu t toán PSI có s c u hình làm vi c t c nhi u h n 3,4% so v i gi i thu t di truy n (44.601 so v i 44.407 c u hình). Hai c u hình t i u hóa thi t k (hình 3.15) có v trí kh p n i sai l ch 1.10^{-4} m. Th i gian ti n hành t i u hóa c a thu t toán PSI l n h n so v i gi i thu t di truy n (38,8 gi so v i 11,8 gi) (b ng 3.14).

Trong 80 th h u tiên c a gi i thu t di truy n, các tiêu chí t i u thay i theo h ng t ng nh ng không theo quy lu t do nh h ng b i tính t bi n và lai ghép c a gi i thu t di truy n. T th h 80 tr i, hàm thích nghi b t u h i t và t t i u t i th h 131. i v i thu t toán PSI, trong kho ng 12 chu k t i u u tiên, các tiêu chí không

c c i thi n (hình 3.12 b, d). Trong kho ng th i gian này, quá trình t i u hóa c xem là không hi u qu do c u hình ban u c a thu t toán PSI không phù h p v i vùng không gian kh o sát. Tính hi u qu ban u và th i gian t i u hóa l n c a thu t toán PSI s c xem xét và gi i quy t ph n sau.

a) Gi i thu t di truy n

b) Thu t toán PSI

a) Gi i thu t di truy n

b) Thu t toán PSI

Hình 3.14. Vùng làm vi c c a tay máy sau khi t i u hóa theo 2 tiêu chí

Hình 3.15. C u hình t i u hóa c a tay máy sau khi t i u hóa theo 2 tiêu chí

60

Thu t toán	V trí <i>B_i</i> (m)	1	2	3	4	5	6
Di truy n	B_{i_x}	-1,5343	0,8325	0,0942	-0,7297	-1,1492	-1,2281
	B_{i_y}	1,2828	1,8184	1,9977	1,8621	1,6368	1,5785
PSI	B_{i_x}	-1,5343	0,8326	0,0942	-0,7298	-1,1493	-1,2281
	B_{i_y}	1,2829	1,8185	1,9978	1,8621	1,6368	1,5785

B ng 3.14. V trí kh p n i trên m t ph ng n n sau khi t i u 2 tiêu chí.

Nh v y có th nh n xét r ng, gi i thu t di truy n và thu t toán PSI ã c tác gi áp d ng thành công trong vi c t i u hóa thi t k tay máy song song ki u Stewart–Gough Platform theo hai tiêu chí. C u hình ban u c a tay máy song song ki u Stewart–Gough Platform có s i m làm vi c c ng nh s c u hình làm vi c ban u th p. Khi áp d ng gi i thu t di truy n và thu t toán PSI, c u hình t i u hóa thi t k có các tiêu chí ho t ng c nâng cao h n nhi u l n so v i c u hình ban u (t ng t 1 lên 169 i m làm vi c i v i tiêu chí 1, t 5.829 lên 44.601 c u hình làm vi c i v i tiêu chí 2).

Cáck tqu trên ch a xét ny ut v c ng v ng. Y ut này s c kh o sát và ánh giá ph n sau.

Các k t qu trên ã c công b công trình [CTTG-1] và [CTTG-2] c a tác gi.

3.3.2 T i u hóa thi t k theo hai tiêu chí dùng thu t toán GA-PSI

V ik tqu kh o sátt m c 3.2 và 3.3.1, có th k tlu n r ng thu t toán PSI có k t qu t i ut th n so v i gi i thu t di truy n. Tuy nhiên thu t toán này v n còn i m h n ch v hi u qu t i u ban u (hình 3.12 b, d) và th i gian t i u hóa l n (b ng 3.8, b ng 3.13) do vi c ch n l a c u hình ban u ch a th t s phù h p v i không gian kh o sát. C u hình thi t k ban u này th ng c ch n theo c u hình chu n (i x ng) và có s i m làm vi c ban u t ng i th p. Do các chu k t i u c a thu t toán PSI có th i gian x lý l n và k th a k t qu t các chu k t i u tr c ó. Vì v y, vi c ch n l a c u hình ban

u phù h p có vai trò quy t nh trong vi c gi m thi u th i gian t i u hóa c a thu t toán PSI, c bi t là v i t i u hóa a tiêu chí v i vùng không gian kh o sát khác nhau. Bài toán ch n l a c u hình ban u sao cho phù h p v i vùng kh o sát b t k c t ra nh m m c ích gi m thi u th i gian tính toán cho quá trình t i u hóa. Lu n án xu t dùng gi i thu t di truy n nh m tìm ki m c u hình ban u cho quá trình t i u hóa dùng thu t toán PSI (g i t t là thu t toán GA-PSI) theo 3 b c:

- B c 1: Áp d ng gi i thu t di truy n có th i gian t i u hóa ng n tìm ki m c u hình ban u phù h p cho quá trình t i u hóa dùng thu t toán PSI v i vùng không gian kh o sát b t k .
- B c 2: Trên c s c u hình ban u c xác nh t gi i thu t di truy n, thu t toán PSI c áp d ng xác nh c u hình t i u hóa thi t k v i các tham s nh ph n 3.3.1.
- B c 3: Phân tích, ánh giá và so sánh k t qu t i u hóa thi t k c a thu t toán
 GA-PSI v i các k t qu ã th c hi n m c 3.3.1.

<u>**B**</u> c 1: Áp d ng gi i thu t di truy n tìm ki m c u hình ban u cho thu t toán PSI

V im c ích không philà xác nh giá tr t i u toàn c c và gim thigian x lý, gi i thu t di truy n có s cá th không quá l n và s th h kho sát s c gi i h n so v im c 3.2 và m c 3.3.1.

Áp d ng gi i thu t di truy n v i các tham s nh b ng 3.15 và hàm thích nghi nh công th c 3.2. Quá trình và k t qu tìm ki m c u hình ban u dùng gi i thu t di truy n

c th hi n b ng 3.16, hình 3.16, hình 3.17, hình 3.18. V trí các kh p n i B_i c trình bày theo b ng 3.17.

B ng 3.15. Thông s gi i thu t di truy n – Thu t toán GA-PSI

S	cá th trong qu n th	20	Xác xu t t bi n	0,01
S	nhi m s c th trong cá th	6	Xác xu t lai ghép	0,89
S	gen trong nhi m s c th	4	S th h t i a	1.000

Thên a a	Th h kh o sát					
Thong s	1	2	3	36	137	
S i m làm vi c t c	0	1	13	94	66	
Scuhình t c	1.824	2.717	7.474	29.429	20.629	
Th i gian kh o sát s	95	191	287	3.447	13.118	

B ng 3.16. K t qu tìm ki m c u hình ban u dùng gi i thu t di truy n GA

Hình 3.16. Quá trình tìm ki m c u hình ban u dùng gi i thu t di truy n.

K t qu tìm ki m t t nh t c a gi i thu t di truy n t c t th h th 36 v i s tâm khâu là 94 v trí, s c u hình làm vi c t c là 29.429 c u hình (hình 3.16, hình 3.17). K t qu này s c xem là thông s kh i t o cho quá trình t i u hóa ti p theo dùng thu t toán PSI. T a v trí kh p n i trên m t ph ng n n $B_i = (B_1, B_2, ..., B_6)$ c a c u hình c l a ch n th hi n b ng 3.17 và hình 3.18.

Hình 3.17 Phân b i m làm vi c - Vùng làm vi c c a c u hình ban u.

Hình 3.18. C u hình ban u - Ph ng pháp GA-PSI

В	ng 3.17.	V trí kh	pnie	c a c	u hình ban	и
~			<i>P</i> ·· · ·			

V trí B_i (m)	1	2	3	4	5	6
B_{i_x}	-1,3918	1,5454	0,9604	0,1603	-0,3154	-0,4118
B_{i_y}	1,4362	1,2694	1,7542	1,9935	1,9749	1,9571

<u>**B** c 2:</u> Trên c s c u hình ban u c xác nh t gi i thu t di truy n, áp d ng thu t toán PSI tìm ki m c u hình t i u hóa thi t k.

Ti n hành t i u theo hai tiêu chí v i c u hình ban u (hình 3.18) dùng thu t toán PSI, ta thu c k t qu nh b ng 3.18 v i quá trình t i u hóa c th hi n t i hình 3.19.

Hình 3.19. Quá trình t i u hóa theo hai tiêu chí dùng thu t toán PSI

Thông c	Tiu	iu ChuktiuPSI				
i nong s	GA	1	2	12	17	32
S i m làm vi c t c	94	141	146	169	169	169
S c u hình t c	29.429	36.726	37.266	42.122	46.601	46.601
Th i gian t i u (s)	13.118	16.369	19.620	52.133	68.389	117.159

B ng 3.18. K t qu sau khi t i u hai tiêu chí dùng thu t toán GA-PSI

<u>B</u> c 3: ánh giá và so sánh k t qu thu t toán GA-PSI

Theo k t qu t c, chu k t i u th nh t dùng thu t toán PSI, s tâm khâu t ng t 94 lên 141 v trí (t l t i u t 150%), ng th i c u hình làm vi c c a tay máy song song t ng t 29.429 lên 36.726 c u hình (t l t i u t 124,8%). Thu t toán GA-PSI có k t qu t i u hóa t i chu k t i u th 17 v i s i m làm vi c t c là 169 i m và s c u hình t c là 44.601 c u hình. T p h p i m làm vi c, vùng làm vi c và t a v trí kh p n i trên m t ph ng n n $B_i = (B_1, B_2, ..., B_6)$ trùng v i k t qu t i u hóa theo hai tiêu chí c a thu t toán PSI th hi n hình 3.13, hình 3.14. C u hình thi t k t i u c a tay máy song song th hi n hình 3.15 v i t a v trí kh p B_i b ng 3.14.

Quá trình t i u hóa thi t k theo hai tiêu chí v i thu t toán GA-PSI (hình 3.16, hình 3.19) cho th y có s c i thi n liên t c theo hai tiêu chí. Kho ng th i gian kém hi u qu do vi c ch n l a c u hình không phù h p khi áp d ng thu t toán PSI thu n túy (m c 3.3.1) ã c lo i tr .

So sánh k t qu t i u theo tr ng h p dùng thu t toán PSI thu n túy và ph ng pháp k t h p GA-PSI chúng ta có th a ra m t s nh n xét nh sau:

- K t qu t i u c a hai thu t toán này theo hai tiêu chí là t ng ng.
- C u hình thi t k tay máy sau khi t i u trong hai tr ng h p (t a v trí kh p n i trên m t ph ng n n B_i) có sai s 1.10⁻⁴m.
- Th i gian t i u dùng ph ng pháp k t h p GA-PSI ít h n so v i thu t toán PSI và t p h p t i u Pareto thu n túy:
 - + Th i gian t i u hóa dùng thu t toán GA-PSI:

 $t_{GA-PSI} = 117.159 \text{ s} \quad 32,5 \text{ (gi)}$

+ Th i gian t i u hóa dùng thu t toán PSI:

 $t_{PSI} = 139.670 \text{ s} \quad 38.8 \text{ (gi)}$

Vi ck th p thu t toán GA-PSI gi i quy t bài toán t i u hóa tay máy song song theo hai tiêu chí cho k t qu không khác bi t so v i tr ng h p dùng thu t toán PSI. u i m c a thu t toán GA-PSI là cho phép lo i b th i gian t i u kém hi u qu ban u i v i thu t toán PSI (c i thi n > 16% th i gian kh o sát) nh vào vi c xác nh c c u hình ban u phù h p v i vùng không gian kh o sát. Khi t i u hóa thi t k theo a tiêu chí v i s b c kh o sát l n, th i gian tính toán có th m t n hàng tr m gi . Khi ó, ph ng pháp k t h p GA-PSI có th gi m thi u m t kho ng th i gian tính toán áng k cho các nhà thi t k . Bên c nh ó, thu t toán GA-PSI còn giúp nhà thi t k trong vi c ch n l a c u hình ban u phù h p khi ti n hành t i u hóa thi t k trong vùng không gian kh o sát b t k .

Các k t qu nghiên c u trong ph n này ch a xét n c ng v ng c a tay máy song song. ây là m t tiêu chí quan tr ng quy t nh n kh n ng ho t ng c a tay máy song song trên th c t. Tiêu chí này s c xem xét và ánh giá trong quá trình t i u hóa ph n ti p theo.

Các k t qu trên ã c công b công trình s [CTTG-1] và [CTTG-2] c a tác gi.

3.3.3 T i u hóa thi t k tay máy song song theo ba tiêu chí

Vi c áp d ng các gi i pháp t i u hóa theo hai tiêu chí dùng gi i thu t di truy n, thu t toán PSI, thu t toán GA-PSI ã cho k t qu c i thi n rõr t v s i m làm vi c và s c u hình làm vi c c a tay máy song song. Các c u hình t i u này có v trí các kh p n i B_i trên m t ph ng n n t p trung g n vùng không gian kh o sát t c s i m làm vi c và s c u hình làm vi c là l n nh t. Trên th c t, các c u hình t i u hóa hình 3.15 không m b o c c ng v ng ho t ng và không có tính kh thi trong vi c xây d ng mô hình th c nghi m c a tay máy (m c 1.2.2.6). Vì v y, nh t thi t c n ph i xem xét n tiêu chí v c ng v ng c a các c u hình thi t k trong quá trình t i u hóa.

Ph n này trình bày k t qu áp d ng thu t toán PSI t i u hóa thi t k tay máy song song theo 3 tiêu chí: (1) S i m làm vi c; (2) S c u hình làm vi c; (3) c ng v ng c a các c u hình thi t k. Quá trình t i u hóa s c kh o sát và ánh giá theo hai tr ng h p v i th t u tiên i v i các tiêu chí l n l t là (1)-(2)-(3) và (3)-(1)-(2) theo b ng 3.1 v i các thông s c i u ch nh: $angle_base_{imin} = angle_top_{imin} = 0$ rad; $angle_base_{imax} = angle_top_{imax} = rad; x_{dstep}, y_{dstep}, z_{dstep} = 10 b c.$ K t qu kh o sát tr c khi ti n hành t i u hóa v i gi i h n các góc h ng và s b c kh o sát nh trên cho th y tay máy song song (hình 3.4) t c 50 v trí và 41.383 c u hình (hình 3.20), c ng v ng (*stiffness*) t giá tr 1,92.10⁻¹⁸.

Hình 3.20. T p h p i m làm vi c (a) - Vùng làm vi c (b) tr c khi t i u theo 3 tiêu chí.

Áp d ng thu t toán PSI, ti n hành t i u hóa tay máy song song theo 3 tiêu chí. Quá trình t i u hóa c th hi n theo hình 3.21 và b ng 3.19. T p h p i m làm vi c và c u hình t i u hóa trong hai tr ng h p c th hi n hình 3.22-hình 3.24 và b ng 3.20.

e) Tiêu chí 3 - Th t (1)-(2)-(3) Hình 3.21. Quá trình t i u theo 3 tiêu chí dùng thu t toán PSI theo hai tr ng h p

Tiêu chíti u	Ban u	Th t u tiên (1)-(2)-(3)	Th t u tiên (3)-(1)-(2)	
(1) S i m làm vi c t c	50	159	84	
(2) S c u hình t c	41.383	65.387	62.018	
(3) c ng v ng	1,92.10 ⁻¹⁸	0,0133	0,0292	

B ng 3.19. K t qu t i u theo 3 tiêu chí dùng thu t toán PSI

B ng 3.19 cho th y thu t toán PSI ã nâng cao c kh n ng ho t ng c a tay máy song song (hình 3.24) theo các tiêu chí v s i m làm vi c, s c u hình làm vi c và

c ng v ng c a tay máy. Trong c hai tr ng h p, các tiêu chí u c c i thi n áng k so v i c u hình ban u (hình 3.4). Tr ng h p (1)-(2)-(3) có s i m làm vi c và c u hình t c l n h n so v i tr ng h p (3)-(1)-(2). Khi áp d ng th t u tiên (3)-(1)-(2), tay máy song song có c ng v ng l n h n so v i tr ng h p (1)-(2)-(3).

Hình 3.22. T p h p i m làm vi c sau khi t i u hóa theo 3 tiêu chí

Hình 3.23. Vùng làm vi c sau khi t i u hóa theo 3 tiêu chí

Hình 3.24. C u hình t i u hóa theo 3 tiêu chí dùng thu t toán PSI

Th t tiu	V trí <i>B_i</i> (m)	1	2	3	4	5	6
	B_{i_x}	1,9126	1,4627	0,2437	-1,9126	-1,6773	-0,2437
(1)-(2)-(3)	B _{iy}	-0,5847	1,3639	1,985	0,5847	-1,0892	-1,985
(3)-(1)-(2)	B_{i_x}	1,891	1,8671	-0,3816	-1,5542	-1,5094	-0,3128
	B_{i_y}	-0,6511	0,7167	1,9632	1,2586	-1,3121	-1,9753

B ng 3.20. V trí kh p n i sau khi t i u hóa theo 3 tiêu chí dùng thu t toán PSI

Khi xét c ng v ng, k t qu t i u hóa có s i m làm vi c và s c u hình n cíth n so vitr ngh pt i u theo hai tiêu chí (m c 3.3). K t qu t i u hóa khi t n tiêu chí c ng v ng ã giúp cho tay máy m b o ckh n nghot ng c ng xét nh kh n ng ch u t i trên th c t . C u hình t i u hóa theo 3 tiêu chí (hình 3.24) có phân b v trí các kh p n i B_i không t p trung v vùng kh o sát nh m c 3.3. Các kh p này с c tr ng tâm c a t m chuy n ng t t h n so v i hình phân b r ng v i kh n ng ch a c vùng làm vi c c a tay máy so v i c u hình ban 3.15 ng th i v n c i thi n u.

Có th k t lu n r ng, thu t toán PSI ã c áp d ng thành công trong vi c t i u hóa theo 3 tiêu chí. Kh n ng ho t ng c a tay máy song song c nâng cao v i các tiêu chí khác nhau v s i m làm vi c, s c u hình làm vi c, c ng v ng c a tay máy. Vi c ch n th t u tiên t i u s nh h ng n quá trình và k t qu t i u hóa. ây là m t ch n l a cho nhà thi t k trong quá trình t i u hóa tay máy song song theo a tiêu chí.

Các k t qu trên ã c công b công trình s [CTTG-5], [CTTG-6] c a tác gi .

3.4 Nh n xét và k t lu n ch ng 3

Trong ch ng này, tác gi ã trình bày các gi i pháp t i u hóa thi t k theo a tiêu chí cho tay máy song song ki u Stewart–Gough Platform, s d ng gi i thu t di truy n GA, thu t toán PSI, thu t toán GA-PSI.

Khit i uhoá l tiêu chí (s i m làm vi c c a tâm khâu v i góc h ng là h ng s) k t qu t i uv s i m làm vi c c a gi i thu t GA và thu t toán PSI nh n c g n gi ng nhau. S tâm khâu ã t ng lên 380,9% khi áp d ng GA và 382,9% khi áp d ng PSI. Tuy nhiên, th i gian t i u hóa c a PSI (1.662 giây) l n h n so v i gi i thu t GA (206 giây).

Khit i u hoá 2 tiêu chí (theo s i m làm vi c và s c u hình làm vi c), k t qu t i u hoá c a gi i thu t GA và thu t toán PSI c ng cho k t qu t ng ng v t p h p i m làm vi c và không gian làm vi c sau khit i u (169 i m), có t ng ng s c u hình làm vi c (PSI: 44.601 ; GA: 44.407 c u hình), có v trí kh p n i sai l ch 1.10⁻⁴ m. Th i gian ti n hành t i u hóa c a thu t toán PSI (38,8 gi) l n h n so v i gi i thu t di truy n (11,8 gi).

M t i m m i trong ch ng này là xu t gi i thu t k t h p GA-PSI, trong ó dùng gi i thu t di truy n tìm ki m c u hình ban u cho quá trình t i u hóa dùng thu t toán PSI. Vi c k t h p hai thu t toán GA-PSI gi i quy t bài toán t i u hóa tay máy song song theo hai tiêu chí không làm thay i k t qu c a PSI. u i m c a gi i pháp cho phép lo i b th i gian t i u kém hi u qu ban u c a thu t toán PSI (c i thi n h n 16% th i gian kh o sát). i u này có ý ngh a th c t, cho phép gi m th i gian t i u hoá thi t k theo a tiêu chí khi có thay i v không gian kh o sát và s b c kh o sát l n.

Khit i u hoá 3 tiêu chí: (1) s i m làm vi c, (2) s c u hình làm vi c, (3) c ng v ng c a các c u hình thi t k , k t qu t i u hoá c a gi i thu t PSI cho th y s i m làm vi c, s c u hình làm vi c và c ng v ng c a tay máy c nâng cao. S c u hình, s i m làm vi c và c ng v ng s ph thu c vào th t u tiên c a các tiêu chí. Tr ng h p u tiên theo th t (1)-(2)-(3) có s i m làm vi c và c u hình t c l n h n so v i tr ng h p (3)-(1)-(2). Khi áp d ng th t u tiên (3)-(1)-(2), tay máy song song có c ng v ng l n h n so v i tr ng h p (1)-(2)-(3).

Các k t qu thu c nói trên cho phép k t lu n : sau khi ti n hành t i u hóa thi t k v i các gi i pháp xu t, kh n ng làm vi c c a tay máy song song ã c nâng cao. Ph thu c vào bài toán c th, các gi i pháp t i ut ng ng s clach n phù h p tìm ki m c u hình t i u hóa. Thu t toán PSI có th c áp d ng trong tr ng h p c u hình thi t k ban u c a tay máy c xác nh là c n biên v i không gian làm vi c cho tr c. Gi i thu t di truy n GA có th c s d ng kh o sát nhanh các c u hình g n t i u v i ph m vi kh o sát l n. Thu t toán GA-PSI cho phép xác nh c u hình thi t k t i u trong tr ng h p vùng không gian kh o sát là các bi n s thay i.

The t u tiên các tiêu chí cho bài toán t i u hoá s c ch n l a theo yêu c u c the c a nhi m v thi t k . i v i các ng d ng trong y h c (hình 1.8, hình 1.9), tay máy song song s c n nhi u vùng không gian làm vi c (s i m làm vi c, s c u hình làm vi c).

t ng linh ho t và phân gi i chuy n ng c a góc h ng, ta có th ch n th t là (1)-(2)-(3). i v i các ng d ng gia công c khí, máy công c (hình 1.5, hình 1.7, hình 1.16), thì tiêu chí v c ng v ng c a tay máy song song s c chú tr ng, ch n th t là (3)-(1)-(2). Trong s n xu t, các tay máy song song ki u Delta robot (hình 1.4) th c hi n các tác v g p và t (pick and place) l i chú tr ng nhi u n kh n ng áp ng nhanh và h ng d ch chuy n trong không gian r ng, có th ch n th t t i u hóa là (2)-(1)-(3).

Nh v y, có th k t lu n r ng, vi c ng d ng các gi i pháp t i u hoá xu t trong ch ng này có ý ngh a th c ti n, cho phép nhà thi t k có kh n ng xác nh c u hình c n thi t trong quá trình thi t k và ch t o tay máy song song theo nhi m v t ra. Các gi i pháp t i u hóa này c ng có th áp d ng v i các tiêu chí t i u khác nh : t c d ch chuy n, kh n ng t i tr ng, gia t c chuy n ng,... V n này c n c ti p t c nghiên c u v sau.

Các k t qu t i u hóa thi t k theo a tiêu chí trong ch ng này s c ng d ng tìm ki m m t c u hình thi t k t i u theo 3 tiêu chí cho mô hình th c nghi m c xây d ng trong ch ng 4.

CH NG 4. XÂY D NG MÔ HÌNH TH C NGHI M V I NG D NG GI I PHÁP T I U HÓA THI T K

Ph n u c a ch ng này trình bày các k t qu thi t k, ch t o m t mô hình áp d ng các thu t toán t i u hóa và i u khi n cho tay máy song song ki u Stewart–Gough Platform. Mô hình tay máy có tính m, c thi t k v i kh n ng thay i các c u hình làm vi c và áp d ng các thu t toán i u khi n khác nhau. Mô hình c xây d ng g m hai ph n: Thi t k, ch t o h th ng c khí phù h p v i ph m vi nghiên c u c a lu n án; Ch t o, l p trình h th ng i u khi n chuy n ng cho tay máy song song.

Ph n ti p theo c a ch ng trình bày k t qu ng d ng gi i pháp t i u hóa thi t k trong ch ng 3 xác l p m t c u hình th c nghi m cho tay máy song song ki u Stewart– Gough Platform. Trên c s t p thông s và không gian kh o sát c a mô hình tay máy, thu t toán PSI c áp d ng xác nh các c u hình t i u hóa thi t k a tiêu chí v i th t u tiên khác nhau. C u hình t i u hóa c ch n xây d ng thành c u hình th c nghi m ph c v cho vi c kh o sát quá trình t i u b i u khi n chuy n ng c a tay máy nh s trình bày trong ch ng 5.

4.1 Xây d ng mô hình th c nghi m

T i Vi t Nam, m t s k t qu nghiên c u cho th y tay máy song song ãt ng b c c ng d ng vào các l nh v c nh gia công c khí, ng d ng công nghi p [110], [113], [119], [122], [124]. N m 2012, Phân vi n Nghiên c u i n t, Tin h c, T ng hóa TP.HCM ã th c hi n thành công tài tay máy song song có hai chân d n ng ph n m ngoài không gian làm vi c v i m ch i u khi n h th ng có kh n ng áp d ng các thu t toán i u khi n và giao ti p máy tính [111].

Hình 4.1. Tay máy song song v i chân d n ng ph ngoài không gian làm vi c [111]

Trên c s tay máy song song v i chân d n ng ph (hình 4.1) [111], tác gi lu n án ã xây d ng m t mô hình tay máy song song ki u Stewart–Gough Platform b ng vi c tái c c u, b sung, i u ch nh các chi ti t, thành ph n c khí và m ch i u khi n h th ng.

4.1.1 Thitk, ch toh th ngc khí

Mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform c thi t k có c c u bao g m m t ph ng n n và t m chuy n ng g n v i sáu chân d n ng thông qua các kh p các ng c b trí trên các rãnh tr t tròn nh hình 4.2.

Thông th ng, các tay máy song song ng d ng gia công c khí chính xác s d ng chân d n ng là ng c tuy n tính [110]. Tuy nhiên, v i m c tiêu xây d ng m t h th ng ph c v vi c nghiên c u, kh o sát k thu t i u khi n, không òi h i t c và chính xác cao, tác gi s d ng các chân d n ng s d ng vitme- ng c DC.

Hình 4.2. Thi t k c khí mô hình th c nghi m tay máy.

có th thay i và kh o sát các c u hình khác nhau c a tay máy, t m chuy n ng và m t ph ng n n c thi t k có rãnh tr t theo ng tròn. Nh v y, các kh p các ng có th c b trí trên rãnh tr t tròn c a m t ph ng n n và t m chuy n ng. Thi t k này cho phép xây d ng các c u hình tay máy khác nhau phù h p v i n i dung nghiên c u và ph ng pháp t i u hóa thi t k tay máy c a lu n án ã trình bày trong ch ng 3.

Chân d n ng là c c u vitme- ng c DC có c m bi n gi i h n kho ng cách chuy n ng. Chi u dài th c t c a chân d n ng c xác nh b ng tín hi u encoder

g n v i ng c DC. Mô hình c khí sau khi hoàn ch nh có c c u nh hình 4.3. Mô hình này có kh n ng thay i v trí các chân d n ng trên m t ph ng n n và t m chuy n ng. Các thông s k thu t c a mô hình c khí c trình bày b ng 4.1. Các c u t o chi ti t c khí c a h th ng th c nghi m (kh p các ng, t m chuy n ng, m t ph ng n n, chân d n ng, ...) c trình bày trong ph 1 c 2.

Hình 4.3. Mô hình c khí tay máy song song ki u Stewart–Gough Platform B ng 4.1. Thông s k thu t mô hình c khí

Thông s k thu t	Giá tr
Bán kính rãnh tr t m t ph ng n n	$r_b = 0,2 \text{ m}$
Bán kính rãnh tr t t m chuy n ng	$r_p = 0,15 \text{ m}$
Giihncachândn ng	$0,32 \text{ m}$ l_i $0,52 \text{ m}$
T c d ch chuy n t i a c a chân d n ng	$v_{max} = 16 \text{ mm/s}$
in áp nhm c ng c	U = 24 VDC
S xung/vòng quay c a encoder	100 ppr
B c ren c a vitme	2,52 mm
Gi ihn chuyn ng ca tâm khâu	X/Y/Z: 300/300/200 mm / / : ± 0,43 rad
Tr ng l ng	5 kg

4.1.2 Thitk, lptrìnhh th ng iukhin

Do tay máy song song có nhi u chân d n ng v i các ràng bu c l n nhau cho nên không gian làm vi ch ts c a d ng và quá trình i u khi n r t ph c t p [32], [103]. th c hi n m t tác ng i u khi n cho khâu ng h c cu i, các khâu ng h c ph i С ng th i, ph i h p v i nhau m t cách nh p nhàng và chính xác. i u khi n i v i tav máy song song, vi cáp d ng các gi i thu t i u khi n cho các chân d n ng c n th c hi n quá trình phih p chuy n ng gi a các kh p. Thông th ng, h th ng i u khi n с thi t k có b i u khi n trung tâm ph i h p các b i u khi n chuy n ng c a các chân d n ng. Ngoài ra, có th ánh giá và c i thi n các thu t toán i u khi n, h th ng i u khi n c n có tính m , d dàng áp d ng các thu t toán i u khi n khác nhau v i ch c n ng giám sát, thu nh p s li u theo th i gian th c. ây là nh ng yêu c u c b n c n ph i gi i quy t khi thi t k và xây d ng h th ng i u khi n cho mô hình tay máy song song.

Trong lu n án này, c u trúc h th ng i u khi n c xu t nh hình 4.4. Các nhi m v i u khi n c phân c p c th nh sau:

- Máy tính (PC) th c hi n các tính toán v ng h c, ng l c h c c a tay máy;
 giám sát, hi n th và l u tr các d li u th c nghi m theo th i gian th c; giao ti p v i b i u khi n trung tâm (Master); t o giao di n ng i dùng.
- B i u khi n trung tâm (Master) th c hi n nhi m v k t n i gi a máy tính và các b i u khi n tr c ti p (Slave); tính toán và ph i h p t c chuy n ng c a các kh p.
- Các b i u khi n tr c ti p (Slave 1, ..., Salve 6) k t n i v i Master thông qua bus n i ti p SPI, th c hi n nhi m v i u khi n chuy n ng c a chân d n ng bám theo v trí và t c t thông qua m ch công su t và encoder. Các thu t toán i u khi n c tích h p và l a ch n th c thi thông qua giao di n ng i dùng t máy tính.

Hình 4.4. C u trúc h th ng i u khi n tay máy song song ki u Stewart–Gough Platform

m b o quá trình x lý d li u c a h th ng c liên t c c ng nh m b o tin c y trong quá trình i u khi n, b i u khi n Master, các b i u khi n Slave và máy tính PC c ng b hóa v i th i gian l y m u $T_s = 1$ ms.

so sánh k t qu v i mô ph ng b ng Matlab, tác gi xây d ng m t ch ng trình i u khi n trên n n Simulink-Matlab s d ng công c Realtime Windows Target (hình 4.5). Trong quá trình i u khi n, máy tính s tính toán các v trí chuy n ng c n thi t l_r và nh n v v trí th c t l_m c a các chân d n ng. Các d li u v v trí, t c c a các chân d n c thu th p, giám sát và i u khi n trong su t quá trình v n hành tay máy ng theo th i gian th c. Các thu t toán i u khi n tích h p s n trong các b i u khi n Slave cl a ch n th c thi (control mode) thông qua giao di n c a ch ng trình i u khi n S cluli, hin th d id ng biu trên máy tính. Các d li u ánh giá ch t l ng c a b i u khi n thông qua vi c xem xét các tiêu chu n ch t l ng c a h th ng.

Hình 4.5. Mô hình i u khi n tay máy song song trên ph n m m Matlab

В i u khi n Master óng vai trò quan tr ng trong vi c giám sát, thu th p d li u và chuy n ng ng b c a h th ng (hình 4.6). B i u khi n Master s truy n các tín hi u i u khi n và d li u o c gi a máy tính và b i u khi n Slave thông qua các giao th c truy n thông khác nhau (hình 4.9). Trong quá trình i u khi n, b i u khi n Master chuy n ng mong mu n (v_r) phù h p cho các chân d n s tính toán và arat c ng. Các giá tr t c này s c tính d a vào các sai s v trí (e_i) và t c th ct (v_m) c a các chân d n ng. Nh ó, h th ng s c m b o chuy n ng nh p nhàng gi a các chân d n ng c a tay máy song song.

Hình 4.6. Lu bi ukhi n Master

Các b i u khi n Slave có nhi m v i u khi n chuy n ng c a chân d n ng (c c u vitme- ng c DC) bám theo v trí t (l_{r_i}) và t c t (v_{r_i}) thông qua m t m ch công su t và tín hi u h i ti p t encoder (hình 4.7). Các thu t toán i u khi n nh PID, Fuzzy-PID c xây d ng và tích h p thành các ch ng trình con v i ngôn ng 1 p trình

ANSI C. Các thu t toán này có th d dàng i u ch nh, phát tri n theo yêu c u nghiên c u và c g i th c thi thông qua giao di n t máy tính. i u này cho phép ch n l a t c th i các thu t toán i u khi n khác nhau trong quá trình i u khi n. Tín hi u i u khi n (PWM) thông qua m ch công su t s i u ch nh v trí vàt c c a chân d n ng theo s i u khi n hai vòng kín nh hình 4.8.

Hình 4.7. L u b i u khi n Slave

Hình 4.8. *S b i u* khi n hai vòng kín (v trí và t c) chân *d n ng*.

Ph ng th c giao ti p gi a máy tính và b i u khi n Master c xây d ng thông qua giao th c truy n thông RS-232 có t c 115.2 kps. Giao th c SPI (Serial Peripheral Interface) c s d ng làm giao th c truy n thông gi a b i u khi n Master và các b i u khi n Slave. Các nh d ng gói d li u c a h th ng i u khi n c trình bày hình 4.9

Header byte	l _m	Checksum byte	End byte
-------------	----------------	---------------	----------

d) T Slave n Master

Hình 4.9. nh d ng các gói d li u c a h th ng i u khi n

B i u khi n th c t sau khi ch t o c trình bày hình 4.10 v i các thông s k thu t th hi n b ng 4.2 và s m ch nguyên lý chi ti t trình bày t i ph 1 c 2.

Hình 4.10. B i u khi n tay máy song song ã thi t k B ng 4.2. Thông s k thu t b i u khi n tay máy song song

Vi i u khi n Master	PIC18F4550
Vi i u khi n Slave	DSPIC30F4011
K t n i PC - Master	RS232 115.2 kps
K t n i Master - Slave	SPI 1Mbps
M ch công su t (PWM)	LM18200 20 khz
Thu t toán i u khi n 2 vòng kín (t c , v trí)	PID, Fuzzy-PID
Chu k 1 y m u (T_s)	1 ms
Ph n m m máy tính	Simulink - Matlab 2014a, Realtime Windows Targets
Ngôn ng l p trình vi i u khi n (PIC, DSPIC)	Ngôn ng 1 p trình ANSI C (CSS-C Compiler v4.114)

4.2 Xác nh thi t k t i u cho mô hình th c nghi m.

Ph n này s trình bày k t qu ng d ng gi i pháp t i u hóa thi t k (ch ng 3) cho mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform ã c u t o trong m c 4.1. Trên c s các thông s k thu t c khí (b ng 4.1) c a mô hình th c nghi m,

81

không gian kh o sát c a mô hình th c nghi m c xác nh trong kho ng X/Y/Z=300/300/200 mm v i gi i h n góc kh p // = ± 0,43 rad.

Ti n hành kh o sát trên máy tính m t c u hình ban u có v trí các chân B_i và P_i c b trí nh b ng 4.3 v i các tham s kh o sát nh m c 3.3. S d ng b công c mô hình hóa (hình 2.2), k t qu kh o sát (hình 4.12 a) cho th y tay máy có 52 i m làm vi c và 24.525 c u hình làm vi c t c v i c ng v ng có giá tr *stiffness* = 2,2.10⁻¹⁸. Vùng làm vi c c a tay máy v i c u hình ban u tr c khi t i u c th hi n hình 4.12 b.

Hình 4.11. C u hình tay máy tr c khi t i u - Mô hình th c nghi m B ng 4.3. V trí kh p n i tr c khi t i u - Mô hình th c nghi m

V trí B_i , P_i (m)	1	2	3	4	5	6
B_{i_x}	0,1732	0,1732	0,00	-0,1732	-0,1732	0,00
B_{i_y}	-0,100	0,100	0,200	0,100	-0,100	-0,200
P_{i_x}	0,0928	0,0555	-0,1484	-0,1484	0,0555	0,0928
P_{i_y}	0,1177	0,1393	0,0215	-0,0215	-0,1393	0,1177
P_{i_z}	0,03	0,03	0,03	0,03	0,03	0,03

Áp d ng thu t toán PSI k th p v it p h p t i u Pareto, ti n hành t i u hóa thi t k cho mô hình th c nghi m v i các tiêu chí t i u nh sau: s i m làm vi c, s c u hình làm vi c, c ng v ng c a c u hình tay máy. Quá trình t i u hóa thi t k c th c hi n v i th t t i u các tiêu chí l n l t là (1)-(2)-(3) và (3)-(1)-(2) nh ã trình bày m c 3.3.3. K t qu, quá trình t i u hóa thi t k chi ti t trên mô hình th c nghi m c th hi n b ng 4.4 và hình 4.13. Vùng làm vi c và c u hình tay máy sau khi t i u hóa thi t k c trình bày hình 4.14, hình 4.15 v i v trí các kh p n i th hi n b ng 4.5.

	Thông s		Chuk ti u PSI - Th t ti u (1)-(2)-(3)						
			1	3	4	5	6	25	
S	i m làm vi c	t c	52	55	56	57	57	57	
S	c u hình t	c	24.525	23.809	24.034	24.144	24.537	24.537	
	c ng v ng		2,2.10 ⁻¹⁸	0,00156	0,0012	0,00122	0,00156	0,00156	
		Chuk ti u PSI - Th t ti u (3)-(1)-(2)							
	Thông g		Chu	ıktiu	PSI - Th	t t i	u (3)-(1)	-(2)	
	Thông s		Chu 1	ıktiu 3	PSI - Th	17	u (3)-(1) 18	-(2) 25	
S	Thông s i m làm vi c	t c	Chu 1 52	uktiu 3 44	PSI - Th 4 44	t t i 17 44	u (3)-(1) 18 42	-(2) 25 42	
S S	Thông s i m làm vi c c u hình t	t c c	Chu 1 52 24.525	1 k t i u 3 44 18.327	PSI - Th 4 44 18.046	t t i 17 44 17.915	u (3)-(1) 18 42 17.592	-(2) 25 42 17.598	

B ng 4.4. K t qu t i	u hóa thi t k theo	a tiêu chí dùng PSI - Mô	hình th c nghi m
----------------------	--------------------	--------------------------	------------------

Hình 4.13. Quá trình t i u hóa a tiêu chí dùng thu t toán PSI – Mô hình th c nghi m

c) Vùng làm vi c - Th t (1)-(2)-(3) d) Vùng là

d) Vùng làm vi c - Th t (3)-(1)-(2)

Hình 4.14. T p h p i m làm vi c và vùng làm vi c sau khi t i u hóa thi t k - Mô hình th c nghi m

Hình 4.15. C u hình t i u hóa - Mô hình th c nghi m

Th t t i u	V trí B_i (m)	1	2	3	4	5	6
(1) (2) (2)	B_{i_x}	0,1902	0,14862	0,0278	-0,1902	-0,1854	-0,0278
(1)-(2)-(3)	B_{i_y}	-0,0618	0,13382	0,1980	0,0618	-0,0749	-0,1980
(2) (1) (2)	B_{i_x}	0,1952	0,1952	-0,0601	-0,1315	-0,1315	-0,0601
(3)-(1)-(2)	B _{i,}	-0,0432	0,0432	0,1907	0,1475	-0,1475	-0,1907

B ng 4.5. V trí kh p n i sau khi t i u hóa thi t k - Mô hình th c nghi m

So sánh k t qu và quá trình t i u hóa (b ng 4.4, hình 4.13 và hình 4.14), có th nh n th y r ng trong tr ng h p (1)-(2)-(3) vùng làm vi c và c u hình làm vi c t c l n h n so v i tr ng h p (3)-(1)-(2). Tuy nhiên, i v i tr ng h p (3)-(1)-(2), tay máy song song s có c ng v ng l n h n tr ng h p (1)-(2)-(3). C u hình sau khi t i u (3)-(1)-(2) có v trí các kh p n i c b trí g n nhau theo t ng c p (hình 4.15 b). K t qu này phù h p v i các nghiên c u ã trình bày trong ch ng 3 và các công trình [9], [10], [33], [52].

m b o c ng v ng cho quá trình i u khi n chuy n ng c a tay máy, c u hình có c ng v ng l n nh t sau khi t i u theo th t t i u (3)-(1)-(2) (hình 4.15 b) s

c xây d ng và b trí trên mô hình th c nghi m nh m ki m ch ng các gi i pháp t i u hóa b i u khi n. Mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform v i c u hình t i u hóa thi t k c xây d ng hoàn ch nh nh hình 4.16.

Trên c s c u hình th c nghi m, ch ng 5 s trình bày các k t qu nghiên c u v t i u hóa b i u khi n. Các k t qu này s có gi i h n vùng không gian làm vi c c a mô hình th c nghi m c xác nh theo hình 4.15 d và t p thông s k thu t c trình bày t i b ng 4.1 và b ng 4.2.

Hình 4.16. Mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform
Các k t qu trên ã c công b công trình s [CTTG-5], [CTTG-6] c a tác gi .
4.3 K t lu n ch ng 4

Trong ch ng 4, tác gi ã trình bày các k t qu thi t k và xây d ng m t mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform. Mô hình th c nghi m c xây d ng g m hai b c: Thi t k , ch t o h th ng c khí phù h p v i ph m vi nghiên c u c a lu n án; Ch t o, l p trình h th ng i u khi n chuy n ng cho tay máy song song. Cuhình c khí s d ng chân d n ng d ng vít me và d n ng b ng ng c DC servo. Cu trúc d n ng này tuy không m b o t c và chính xác cao nh ng phù h p cho các nghiên cu v k thu t i u khi n.

Mô hình này áp ng c các yêu c u nghiên c u. Mô hình th c nghi m có tính m, có kh n ng thay i các c u hình và áp d ng các thu t toán i u khi n m t cách linh ho t. H th ng i u khi n c phân c p v i kh n ng ph i h p ng b các chân d n ng trong quá trình ho t ng. Các d li u c a h th ng c thu th p, giám sát và i u

khi n theo th i gian th c.

Ch ng 4 c ng ã trình bày vi c áp d ng thành công k t qu nghiên c u v t i u hóa thi t k theo a tiêu chí cho tay máy song song (ch ng 3) xác nh c u hình thi t k t i u trên mô hình th c nghi m. Thu t toán PSI c áp d ng t i u hóa thi t k tav máv theo các tiêu chí v c ng v ng, s i m làm vi c và c u hình làm vi c. C u hình t i u hóa theo th t (3)-(1)-(2)cáp d ng cho c u hình th c nghi m làm c s cho các nghiên c u ti p theo trong ch ng 5. K t qu này ã ch ng t c kh n ng áp d ng trên th c t c a các gi i pháp t i u hóa thi t k tay máy song song ki u Stewart-Gough Platform mà tác gi ã nghiên c u, trình bày trong lu n án và các công trình ã công b.

CH NG 5. I U KHI N TAY MÁY SONG SONG KI U STEWART– GOUGH PLATFORM TRÊN C S T I U HÓA THI T K VÀ I U KHI N

Ph n u ch ng này trình bày k t qu kh o sát trên máy tính các thu t toán i u khi n và ph ng pháp c i ti n các b i u khi n cho tay máy song song ki u Stewart-Gough Platform thông qua quá trình mô ph ng. Trên c s c u hình t i u hóa thi t k và thông s c a h th ng th c nghi m (ch ng 4), các thu t toán toán i u khi n kinh i n và thu t toán i u khi n thông minh c áp d ng trong vi c tìm ki m b i u khi n thích h p cho tay máy song song. c i ti n b i u khi n, tác gi áp d ng các ph ng pháp k t h p nh m c i ti n các tiêu chu n ch t l ng c a h th ng.

Trong ph n ti p theo, ph ng pháp i u khi n kinh i n (PID) và ph ng pháp i u khi n k t h p (Fuzzy-PID) s c áp d ng trên mô hình th c nghi m ki m ch ng và ánh giá các k t qu t quá trình mô ph ng.

M t quy trình áp d ng các k t qu t i u hóa thi t k và i u khi n cho tay máy song song c xu t trong ph n cu i ch ng 5.

5.1 Kh o sát b ng mô ph ng các thu t toán i u khi n tay máy song song ki u Stewart–Gough Platform

C u hình th c nghi m (hình 4.15 b) v i vùng không gian làm vi c và t p thông s k thu t (hình 4.14 b, b ng 4.1) c mô hình hóa trên ph n m m Simmulink - Matlab (hình 5.1) v i mô hình toán các thành ph n và mô hình gi i bài toán ng h c ng c c a tay máy c trình bày chi ti t t i ph l c l. Trên c s c u hình này, các thu t toán i u khi n và ph ng pháp c i ti n s c kh o sát, ánh giá thông qua k t qu mô ph ng và phân tích ch t l ng b i u khi n trong quá trình chuy n ng [4], [13], [15], [54], [59], [60]. Các tiêu chu n ch t l ng c a h th ng s c phân tích trên c s áp ng quá c a t m chuy n ng và quá trình ph i h p c a các chân d n ng.

Hình 5.1. Mô hình tay máy song song trên n n Simulink – Matlab

Các thông s c a mô hình [61] c xác nh theo b ng 4.1 v i: $_{b} = 0,2182 \text{ rad}; \quad_{p} = 0,288 \text{ rad}; \quad_{r_{b}} = 0,2 \text{ m}; \quad_{r_{p}} = 0,15 \text{ m};$ $l_{imin} = 0,32 \text{ m}; \quad_{limax} = 0,52 \text{ m}; \quad_{mass_{lower_leg}} = 0,27 \text{ kg}; \quad_{mass_{upper_leg}} = 0,23 \text{ kg}$ $I_{x_lower_leg} = I_{y_lower_leg} = 0,1953 \text{ kg.m}^{2}; \quad_{I_{z_lower_leg}} = 0,3894 \text{ kg.m}^{2}$ $I_{x_upper_leg} = I_{y_upper_leg} = 0,0619 \text{ kg.m}^{2}; \quad_{I_{z_upper_leg}} = 0,1232 \text{ kg.m}^{2}$

Chuy n ng tham chi u theo v trí và góc h ng c a tâm khâu áp d ng cho các thu t toán i u khi n nh sau:

$$X_{ang} = -0,02\sin(0,1 \ t) \ rad/s;$$

$$Y_{ang} = Z_{ang} = 0,02\sin(0,1 \ t) \ rad/s;$$

$$X_{pos} = Y_{pos} = 0,02\sin(0,1 \ t) \ m;$$

$$Z_{pos} = 0,383 + 0,02\sin(0,1 \ t) \ m;$$

(5.1)

Các k t qu kh o sát s c phân tích và ánh giá theo áp ng chuy n ng (v trí và góc h ng) c a tâm khâu và quá trình ph i h p gi a các chân d n ng. Các tiêu chu n ch t l ng c a h th ng c ánh giá bao g m: v t l (*POT*), sai s xác l p (e_{xl}) , th i gian lên (t_{rise}) , th i gian xác l p (t_{xl}) theo áp ng chuy n ng v v trí và góc h ng c a tâm khâu [11], [13]. B ng t ng h p k t qu nghiên c u mô ph ng các tiêu chu n ch t l ng c a các b i u khi n trong lu n án c trình bày chi ti t t i ph l c 5. Trên c s so sánh các tiêu chu n ch t l ng c a b i u khi n, ta có th ch n b i u khi n phù h p v i các m c tiêu i u khi n khác nhau. V n này s c trình bày rõ h n ph n k t lu n c a ch ng 5.

90

T chuy n ng tham chi u c a tâm khâu, mô hình bài toán ng h c ng c c thi t k xác nh chi u dài mong mu n c a các chân d n ng. T i các chân d n ng, các thu t toán i u khi n c ng nh ph ng pháp c i ti n s c áp d ng cho các b i u khi n thành ph n theo cùng m t s nh hình 5.2.

Hình 5.2. S i u khi n các chân d n ng.

Trong ó:

 $r_i(t)$: chi u dài mong mu n c a chân d n ng th *i*. $e_i(t)$: sai s chuy n ng c a chân d n ng th *i*. $u_i(t)$: 1 c i u khi n c a chân d n ng th *i*. $c_i(t)$: chi u dài th c t c a chân d n ng th *i*.

Tính n nh và kh n ng thích nghi c a các b i u khi n s c ki m tra b ng m t tín hi u nhi u v i công su t nhi u: $Noise_power = 0,2$.

Trong lu n án, v i các b i u khi n khác nhau, các áp ng quá c a các chân d n c xem xét ánh giá quá trình ph i h p gi a các chân d n ng s ng th i ng. Quá trình ph i h p này s nh h ng an toàn và kh n ng i u khi n bám n c a tay máy song song. Các áp ng quá thành ph n c a các chân d n ng v i các b i u khi n khác nhau c trình bày chi ti t trong ph 1 c 4.

5.1.1 B iukhin PID

Thu t toán i u khi n u tiên c áp d ng cho các b i u khi n chân d n ng là thu t toán i u khi n vi tích phân t l PID (Proportional Integral Derivative) [42], [45], [48], [80], [98], [99] v i l c i u khi n c tính theo công th c:

$$u(t) = K_p e(t) + K_D \frac{de(t)}{dt} + K_I \int e(t)dt$$
(5.2)

Hình 5.4. Ch ng trình mô ph ng b i u khi n PID trên Simulink - Matlab

Theo ph ng pháp Ziegler-Nichols th c hi n trong công trình [23], [40] và ph ng pháp auto-tuning [2] trong quá trình mô ph ng, b thông s i u khi n khâu PID c tác gi ch n v i: $K_P = 5.10^3$; $K_I = 8.10^3$; $K_D = 2.10^3$.

Ti n hành kh o sát b i u khi n PID v i áp ng chuy n ng c a tâm khâu c th hi n hình 5.5 và hình 5.6. Các sai s chuy n ng c a tâm khâu theo v trí và góc h ng cùng v i áp ng c a các chân d n ng c trình bày t hình 5.7 n hình 5.10.

Hình 5.5. $\dot{a}p$ ng theo v trí c a tâm khâu – Mô ph ng b i u khi n PID

Hình 5.6. $\dot{a}p$ ng theo góc h ng c a tâm khâu – Mô ph ng b i u khi n PID

Hình 5.7. Sai s v trí (Z) c a tâm khâu – Mô ph ng b i u khi n PID

Hình 5.8. Sai s v trí (X, Y) c a tâm khâu – Mô ph ng b i u khi n PID

Hình 5.9. Sai s góc h ng c a tâm khâu – Mô ph ng b i u khi n PID

Hình 5.10. áp ng c a các chân d n $ng - M\hat{o}$ ph ng b i u khi n PID

K t qu kh o sát cho th y b i u khi n PID có tính n nh, chuy n ng c a tâm khâu bám theo tín hi u tham chi u t t, nh h ng b i nhi u không áng k v i th i gian xác l p ng n. Các tiêu chu n ch t l ng c a b i u khi n PID (b ng 5.5) cho th y áp ng theo tr c Z có v t l khá l n (*POT*=10,57%). Sai s xác l p (e_{xl}) c a tâm khâu có giá tr 1.10⁻³ m theo v trí và 1,1.10⁻³ rad theo góc h ng. Th i gian xác l p c a áp ng t_{xl} = 4,5 s v i th i gian lên t_{rise} = 0,17 s cho th y t c bi n thiên (du_i/dt) c a các l c i u khi n u_i là r t l n trong kho ng th i gian quá .

Có th thyr ng bi u khi n PID vi các hs K_P , K_I , K_D mà lu n án ã chn có tính n nh, các tiêu chu n cht l ng c a h th ng ch p nh n c nh ng v n c n ph i c i thi n t t h n.

5.1.2 B i u khi n m tr c ti p (Direct Fuzzy-PD)

Theo k t qu c trình bày m c 5.1.1, v t 1 (*POT*) và sai s xác l p (e_{xl}) c xem là hai tiêu chu n quan tr ng quy t nh n ch t l ng c a b i u khi n. Nh m c i thi n các tiêu chu n *POT* và e_{xl} so v i b i u khi n PID, tác gi xu t s d ng b i u khi n m tr c ti p (Direct Fuzzy-PD) cho tay máy song song ki u Stewart–Gough Platform [18], [29], [35], [44], [51], [69], [73], [74], [103]. ây là b i u khi n m v i tín hi u i u khi n u(t) c tính theo sai s e(t) (khâu P) và o hàm c a sai s e(t) (khâu D) nh hình 5.11.

Hình 5.11. B i u khi n m tr c ti p (Direct Fuzzy-PD)

Hình 5.12. Ch ng trình mô ph ng b i u khi n m tr c ti p (Direct Fuzzy-PD)

B i u khi n m trên n n Simulink–Matlab (hình 5.12) v i các lu th p thành m c xây d ng nh m gi m thi u v tl và sai s xác l p c a h th ng theo s bi n thiên c a e(t) và e(t) (b ng 5.1, hình 5.13). Các hàm liên thu c c a e(t), e(t) và u(t) c xây d ng theo d ng hàm tam giác v i các bi n ngôn ng n m trong kho ng [-1,1]. Các hàm liên thu c này c a b i u khi n m tr c ti p c th hi n chi ti t trong ph l c 3.

e(t) / e(t)	NB	NM	NS	NT	ZE	PT	PS	PM	PB
NB	NB	NB	NB	NB	NM	NS	NT	ZE	PT
NM	NB	NB	NB	NM	NS	NT	ZE	PT	PS
NS	NB	NB	NM	NS	NT	ZE	PT	PS	PM
ZE	NB	NM	NS	NT	ZE	PT	PS	PM	PB
PS	NM	NS	NT	ZE	РТ	PS	PM	PB	PB
PM	NS	NT	ZE	РТ	PS	PM	PB	PB	PB
PB	NT	ZE	РТ	PS	PM	PB	PB	PB	PB

B ng 5.1. Lu th p thành m u(t) - B i u khi n m tr c ti p (Direct Fuzzy-PD)

Hình 5.13. M t i u khi n m - B i u khi n m tr c ti p (Direct Fuzzy-PD)

Ti n hành kh o sát b i u khi n, áp ng chuy n ng c a tâm khâu theo v trí và góc h ng c th hi n hình 5.14 và hình 5.15 \tilde{a} bám t t theo chuy n ng tham chi u. Các sai s chuy n ng c a tâm khâu c trình bày t hình 5.16 n hình 5.18. áp ng c a các chân d n ng thành ph n c th hi n hình 5.19. Các tiêu chu n ch t l ng c a b i u khi n c trình bày chi ti t t i b ng 5.5.

Hình 5.14. Chuy n ng v trí c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD

Hình 5.15. Chuy n ng góc h ng c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD

Hình 5.16. Sai s v trí (tr c Z) c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD

Hình 5.17. Sai s v trí (tr c X, Y) c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD

Hình 5.18. Sai s góc h ng c a tâm khâu – Mô ph ng b i u khi n Direct Fuzzy-PD

Hình 5.19. áp ng c a các chân d n ng – Mô ph ng b i u khi n Direct Fuzzy-PD D a theo k t qu kh o sát, có th nh n th y r ng v t l (POT) ã gi m xu ng áng k so v i tr ng h p dùng b i u khi n PID (t 10,57% gi m xu ng 1,37%). Sai s xác l p theo v trí c a tâm khâu gi m t 1.10^{-3} m xu ng còn 0,84.10⁻³ m. Sai s xác l p theo góc h ng gi m t $1,1.10^{-3}$ rad xu ng còn 0,5.10⁻³ rad. Bên c nh các c i thi n rõ r t v v t l và sai s xác l p, b i u khi n m tr c ti p có kho ng th i gian lên (t_{rise}) và th i gian xác l p (t_{xl}) l n h n trong tr ng h p dùng b i u khi n PID. Th i gian xác l p t ng t 4,5 s lên 6,3 s và th i gian lên t ng t 0,17 s lên 0,45 s. i u này gây ra h n ch v t c áp ng c a h th ng trong quá trình quá .

Nh vy, có th nh n th y r ng, b i u khi n m tr c ti p ã c i thi n các tiêu chu n ch t l ng v v t l và sais xác l p t th n so v i b i u khi n PID tr c ó. Tuy nhiên, b i u khi n m l i làm ch m quá trình áp ng c a h th ng do có th i gian lên và th i gian xác l p t ng cao. H n ch này s c xem xét trong ph n ti p theo v i b i u khi n k t h p Fuzzy-PID.

ivicác bài toán có yêu cu u tiên v v tlvà chính xác (sais xác lp) và không ph thu c nhi u n thigian xác lp thìb i u khi n m tr c tip nh trên c xem là phù h p và có tính t i u h n so v ib i u khi n PID.

5.1.3 B i u khi n t ch nh nh Fuzzy-PID

Theo k t qu kh o sát m c 5.1.1 và m c 5.1.2, b i u khi n PID có áp ng bi n thiên c a l c i u khi n $u_i(t)$ l n. Bên c nh ó, b i u khi n m tr c nhanh v i ti p (Direct Fuzzy-PD) 1 i có u i m v v tl vàsais xáclpnh. có th c i thi n các tiêu chu n ch t l ng c a h th ng m t cách chung nh t, tác gi xuts d ng b iukhint chnh nh Fuzzy-PID d atrêns k th p u imc ab iukhinm và i u khi n PID [14], [25], [29], [50], [102]. M t trong nh ng h n ch c a khâu PID là b các h s K_P , K_L , K_D không thay i trong quá trình i u khi n. Vì v y, áp ng c a h th ng th ng không cho k t qu t i u v i s bi n thiên liên t c c a sai s . B i u khi n xu t (hình 5.20) có kh n ng thay i các h s K_P , K_L , K_D c a t ch nh nh Fuzzy-PID khâu PID trong quá trình i u khi n d a theo các lu t ch nh m và s thay i c a các thông s e(t) và e(t).

Hình 5.20. B i u khi n t ch nh nh Fuzzy – PID

Hình 5.21. Mô hình b i u khi n Fuzzy-PID trên Simulink - Matlab

Theo [25], [50], [102], các h s K_P , K_D n m trong kho ng $[K_{Pmin} K_{Pmax}]$ và $[K_{Dmin} K_{Dmax}]$

Trong ó: $K_{Pmin} = 0.5.K_p$; $K_{Pmax} = 1.5.K_p$; $K_{Dmin} = 0.5.K_d$; $K_{Pmax} = 1.5.K_d$; v i $K_p = 5.10^3$; $K_i = 8.10^3$; $K_d = 2.10^3$ c ch n nh m c 5.1.1.

Tuy n tính hóa các h s K_P , K_I , K_D cho b i u khi n t ch nh nh (Fuzzy-PID) theo [25], [50], [102], ta có:

$$K_{P} = (K_{P\max} - K_{P\min}).K_{P} + K_{P\min}$$
$$K_{D} = (K_{D\max} - K_{D\min}).K_{D} + K_{D\min}$$
$$K_{I} = K_{P}^{2} / (S.K_{D})$$

Trong ó K_P, K_D c xác nh t 49 lu t ch nh nh m và có giá tr chu n hóa trong kho ng [0,1], s = $T_I/T_D \in$ [1,1000] s c xác nh d a vào vi c ch nh nh tham s K_P, K_D . Các hàm liên thu c c a e(t), $e(t), K_P, K_D$ và c xác nh có d ng tam giác và các bi n ngôn ng trong kho ng [-1, 1]. Các hàm liên thu c này c a b i u khi n t ch nh nh m c th hi n chi ti t trong ph 1 c 3 c a lu n án. Lu t h p thành m và m t ch nh nh m các h s K_P, K_D và c a b i u khi n PID c th hi n t b ng 5.2 n b ng 5.4 và t hình 5.22 n hình 5.24.

e(t) / e(t)	NB	NM	NS	ZE	PS	PM	PB
NB	PM	PS	PT	ZE	PT	PS	PM
NM	PB	PM	PS	PT	PS	PM	PB
NS	PB	PB	PM	PS	PM	PB	PB
ZE	PB	PB	PB	PM	PB	PB	PB
PS	PB	PB	PM	PS	PM	PB	PB
PM	PB	PM	PS	PT	PS	PM	PB
PB	PM	PS	PT	ZE	PT	PS	PM

B ng 5.2. Lu th p thành m h s K_{P} ' - B i u khi n t ch nh nh Fuzzy-PID.

Hình 5.22. M t i u khi n m ch nh h s $K_{P'}$ B ng 5.3. Lu th p thành m h s $K_{D'}$ - B i u khi n t ch nh nh Fuzzy-PID.

e(t) / e(t)	NB	NM	NS	ZE	PS	PM	PB
NB	PT	PS	PM	PB	PM	PS	PT
NM	ZE	PT	PS	PM	PS	PT	ZE
NS	ZE	ZE	PT	PS	PT	ZE	ZE
ZE	ZE	ZE	ZE	PT	ZE	ZE	ZE
PS	ZE	ZE	PT	PS	PT	ZE	ZE
PM	ZE	PT	PS	PM	PS	PT	ZE
PB	PT	PS	PM	PB	PM	PS	PT

Hình 5.23. M t i u khi n m ch nh h s K_D

103

e(t) / e(t)	NB	NM	NS	ZE	PS	PM	PB
NB	РТ	PS	PM	PB	PM	PS	РТ
NM	ZE	PT	PS	PM	PS	PT	ZE
NS	ZE	ZE	РТ	PS	РТ	ZE	ZE
ZE	ZE	ZE	ZE	РТ	ZE	ZE	ZE
PS	ZE	ZE	PT	PS	PT	ZE	ZE
PM	ZE	PT	PS	PM	PS	PT	ZE
PB	PT	PS	PM	PB	PM	PS	PT

B ng 5.4. Lu th p thành m h s - B i u khi n t ch nh nh Fuzzy-PID.

Hình 5.24. M t i u khi n m ch nh nh h s

Ti n hành kh o sát h th ng v i b i u khi n t ch nh nh Fuzzy-PID v i cùng i u ki n và thông s kh o sát nh tr ng h p 5.1.1. K t qu cho th y các áp ng, sai s chuy n ng c a tâm khâu (hình 5.25-hình 5.30) và các tiêu chu n ch t l ng c a b i u khi n (b ng 5.5) c c i thi n áng k m t cách chung nh t so v i tr ng h p ch dùng b i u khi n PID kinh i n ho c b i u khi n m tr c ti p.

Hình 5.25. Chuy n ng v trí c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID

Hình 5.26. Chuy n ng góc h ng c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID

Hình 5.27. Sai s v trí (tr c Z) c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID

Hình 5.28. Sai s v trí (tr c X, Y) c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID

Hình 5.29. Sai s góc h ng c a tâm khâu – Mô ph ng b i u khi n Fuzzy-PID

Hình 5.30. áp ng c a các chân d n ng – Mô ph ng b i u khi n Fuzzy-PID

T các k t qu kh o sát m c 5.1.1 và m c 5.1.2, có th nh n th y r ng các tiêu chu n ch t l ng c a h th ng v i b i u khi n Fuzzy-PID ã c c i thi n trên c s k th p các u i m c a b i u khi n PID và b i u khi n m tr c ti p.

Tiêu chu n ch t l ng	PID	Direct Fuzzy-PD	Fuzzy-PID	
v t1 (POT)(%)	10,57	0	5	
Sai s xác l p (e_{xl}) theo v trí (m)	1.10-3	0,84.10-3	0,84.10 ⁻³	
Sai s xác l p (e_{xl}) theo góc h ng (rad)	1,1.10-3	0,5.10-3	0,32.10-3	
Th i gian xác l p (t_{xl}) (s)	4,5	6,5	3,9	
Th i gian lên (t_{rise}) (s)	0,17	0,45	0,41	

B ng 5.5. Tiêu chu n ch t l ng h th ng $-M\hat{o}$ ph ng b i u khi n

So v i b i u khi n PID, v t l c a b i u khi n Fuzzy-PID \tilde{a} gi m t 10,57% xu ng còn 5%. Kho ng sai s xác l p theo v trí gi m t 1.10^{-3} m xu ng còn 0,84. 10^{-3} m. Giá tr này có k t qu t ng ng so v i tr ng h p dùng b i u khi n m tr c ti p. Ngoài ra, chuy n ng theo góc h ng có kho ng sai s là nh nh t so v i hai tr ng h p dùng b i u khi n PID và b i u khi n m tr c ti p.

Khi xem xét n t c áp ng c a h th ng, th i gian xác l p c a b i u khi n Fuzzy-PID có giá tr $t_{xl} = 3,9$ s. Giá tr này cho th y b i u khi n Fuzzy-PID có kh n ng xác l p nhanh h n so v i b i u khi n PID ($t_{xl} = 4,5$ s) và b i u khi n m tr c ti p (t_{xl} = 6,5 s). Bên c nh ó, th i gian lên c c i thi n áng k so v i tr ng h p dùng b i u khi n m tr c ti p (t_{rise} gi m t 0,45 s xu ng còn 0,41 s).

Có th th y r ng các tiêu chu n ch t l ng c a h th ng ã c c i ti n t t h n thông qua vi c dùng các lu t i u khi n m ch nh nh các h s K_P , K_I , K_D c a b i u khi n PID kinh i n theo s bi n thiên c a e(t) và e(t). T t c các ch tiêu ch t l ng c a h th ng c nâng cao m t cách ng th i trong quá trình i u khi n chuy n ng c a tay máy song song ki u Stewart Platform.

5.1.4 Nh n xét v các b i u khi n.

Quaktqu môph ng, cóth thyr ng biukhi n PID vicách s K_P , K_L , K_D ã ch n cótính n nh, các tiêu chu n cht l ng c a h th ng ch p nh n c nh ng v n c n phicithint t h n. B cu cóth kh ng nh r ng biukhi n PID phù h p cho quá trình chuy n ng catay máy song song ki u Stewart Platform.

B i u khi n m tr c ti p (Direct Fuzzy-PD) v i lu t i u khi n m ã ch n có kh n ng c i thi n t th n so v i i u khi n PID v các tiêu chu n nh v tl, sais xác l p. Tuy nhiên b i u khi n m tr c ti plicóh n ch v th i gian áp ng c a h th ng.

i v i các bài toán yêu c u u tiên v v t l và chính xác (sai s xác l p) và không ph thu c nhi u n th i gian xác l p thì b i u khi n m tr c ti p c xem là phù h p và có tính linh ho t h n so v i b i u khi n PID.

ivib iukhint chnh nh Fuzzy-PID, ktqu choth y các tiêu chu n chtl ng c a h th ng c c ithin ng th i và t giá tr t i u h n so v i b i u khi n PID và b i u khi n m tr c ti p. B i u khi n Fuzzy-PID có tính n nh và áp ng nhanh ng th i có v t l và sais xác l p nh trong quá trình i u khi n chuy n ng c a tay máy song song ki u Stewart Platform. ây chính là i m t i u hóa c a b i u khi n Fuzzy-PID so v i b i u khi n PID và b i u khi n m tr c ti p.

Các k t qu nghiên c u mô ph ng áp d ng các ph ng pháp và gi i thu t i u khi n cho mô hình tay máy song song ki u Stewart-Gough Platform có ý ngh a quan tr ng trong vi c nh h ng l a ch n và ng d ng các gi i thu t t i u cho h th ng th c nghi m.

Các k t qu trên ã c công b công trình s [CTTG-4] c a tác gi.

Cáck tqu kh o sát và c i ti n b i u khi n s c ki m ch ng b ng th c nghi m trên mô hình v t lý ph n ti p theo.

5.2 i u khi n tay máy song song trên c s t i u hóa thi t k tay máy song song ki u Stewart–Gough Platform

Ph n này trình bày k t qu th c nghi m trên mô hình v t lý nh m m c ích ki m ch ng các k t qu kh o sát và c i ti n b i u khi n t m c 5.1. Thu t toán i u khi n PID và thu t toán i u khi n t ch nh nh Fuzzy-PID s cl n l t áp d ng cho các b i u khi n tr c ti p (Slave) c a các chân d n ng. Các thu t toán này s c áp d ng v i c u hình th c nghi m (hình 4.15 b), chuy n ng tham chi u và các thông s i u khi n nh m c 5.2.1 và 5.2.2. Các chuy n ng tham chi u c gi i h n trong ph m vi thông s k thu t c a mô hình c khí (b ng 4.1) và vùng làm vi c c a c u hình th c nghi m (hình 4.14 d).

Các tiêu chí ch t l ng c a b i u khi n s c ánh giá theo các áp ng quá , sai s chuy n ng c a tâm khâu và quá trình ph i h p chuy n ng gi a các chân d n ng thành ph n c a tay máy song song. Các áp ng quá , sai s chuy n ng c a tâm khâu c n i suy b ng cách gi i bài toán ng h c thu n (m c 1.2.2.2) t giá tr chi u dài th c t o c c a các chân d n ng. B ng t ng h p k t qu nghiên c u th c nghi m các tiêu chu n ch t l ng i vi các b i u khi n khác nhau trong lu n án c trình bày chi ti t t i ph l c 5. K t qu th c nghi m các áp ng quá thành ph n c a các chân d n ng vi các b i u khi n khác nhau c trình bày chi ti t trong ph l c 6 c a lu n án.

5.2.1 B i u khi n PID

Áp d ng thu t toán PID cho mô hình th c nghi m (hình 4.16) v i s i u khi n các chân d n ng nh hình 4.8. Theo ph ng pháp Ziegler-Nichols [23], [40] và ph ng pháp auto-tuning [2] trong quá trình th c nghi m, các thông s c a b i u khi n PID cho mô hình th c nghi m c tác gi ch n v i: $K_P = 8,5$, $K_I = 0,005$, $K_D = 0,02$.

Trong quá trình i u khi n theo th i gian th c, chi u dài th c t các chân d n ng o t các encoder c thi t b ghi nh n và bi u di n hình 5.35. K t qu n i suy v i áp ng quá và sai s chuy n ng c a tâm khâu c th hi n t hình 5.31 n hình 5.34. Các tiêu chu n ch t l ng c a h th ng c trình bày t i b ng 5.6.

Hình 5.31. Chuy n ng v trí c a tâm khâu – Th c nghi m b i u khi n PID

Hình 5.32. Sai s v trí (tr c Z) c a tâm khâu – Th c nghi m b i u khi n PID

Hình 5.33. Sai s xác l p (tr c X, Y) c a tâm khâu – Th c nghi m b i u khi n PID

Hình 5.34. Sai s góch ng c a tâm khâu – Th c nghi m b i u khi n PID

Hình 5.35. áp ng c a các chân d n ng – Th c nghi m b i u khi n PID

Tiêu chu n ch t l ng	Mô ph ng	Th c nghi m	
v tl (<i>POT</i>)(%)	10,57	0	
Sai s xác l p (e_{xl}) theo v trí (m)	1.10-3	1,7.10-3	
Sai s xác l p (e_{xl}) theo góc h ng (rad)	1,1.10-3	2.10-3	
Th i gian xác l p (t_{xl}) (s)	4,5	5,7	
Th i gian lên (t_{rise}) (s)	0,17	3,7	

B ng 5.6. Tiêu chu n ch t l ng h th ng -B i u khi n PID

K t qu th c nghi m cho th y, áp ng chuy n ng theo v trí c a tâm khâu (hình 5.31) không có v t l (POT = 0%) so v i k t qu mô ph ng (POT = 10,57%). Sai s xác l p theo v trí và góc h ng c a tâm khâu khá nh và t ng ng v i k t qu mô ph ng. Theo gi i h n t c c a chân d n ng ($v_{max} = 16$ mm/s), mô hình tay máy c xem là có áp ng nhanh v i th i gian xác l p $t_{xl} = 5,7$ s, th i gian lên $t_{rise} = 3,7$ s v i kho ng d ch chuy n (75 mm) trong quá trình quá . Có th th y r ng, b i u khi n PID v i các h s K_P , K_I , K_D th c nghi m ã ch n có tính n nh, các tiêu chu n ch t l ng c a h th ng ch p nh n c.

Có th kh ng nh b i u khi n PID v i các thông s \tilde{a} ch n có ch t l ng i u khi n t t và phù h p cho mô hình th c nghi m tay máy song song. Nh v y, các tiêu chu n ch t l ng c ng nh các c tr ng v n nh, t c áp ng nhanh và sai s xác l p c a b i u khi n PID \tilde{a} c ki m ch ng b ng các k t qu th c nghi m trên mô hình tay máy song song ki u Stewart–Gough Platform.

Trên th c t, do sai s xác l p dao ng theo chuy n ng tham chi u (hình 5.32, hình 5.33, hình 5.34) nên tay máy có hi n t ng rung l c trong quá trình i u khi n. Ngoài ra, khi xem xét quá trình ph i h p gi a các chân d n ng (hình 5.35), ta có th th y r ng quá trình xác l p c a các chân d n ng không ng nh t. i u này gây ra hi u ng gi ng l c gi a các chân d n ng, gây m t an toàn cho k t c u c khí và b i u khi n. Các h n ch v sai s xác l p và kh n ng ph i h p chuy n ng gi a các kh p s c c i ti n trong ph n ti p theo v i b i u khi nt ch nh nh Fuzzy-PID.

5.2.2 B i u khi n t ch nh nh Fuzzy-PID

Nh ã trình bày m c 5.1.1 và m c 5.2.1, m t trong nh ng h n ch c a khâu PID là các h s K_P , K_I , K_D không thay i trong quá trình i u khi n. Vì v y, các tiêu chu n ch t l ng c a h th ng (v t l, sai s xác l p) th ng không t k t qu t t nh t và quá trình ph i h p gi a các chân d n ng ch a ng b. B i u khi n t ch nh nh Fuzzy-PID là m t l a ch n t t h n c i thi n các h n ch nêu trên d a theo s k t h p các u i m c a b i u khi n m và b i u khi n PID. Các k t qu mô ph ng trình bày m c 5.1.3 cho th y, b i u khi n t ch nh nh Fuzzy-PID cho k t qu c i thi n rõ r t v áp ng quá . Ph n này s trình bày các k t qu th c nghi m b i u khi n t ch nh nh Fuzzy-PID cho tay máy song song ki u Stewart–Gough Platform.

Ti n hành áp d ng thu t toán t i u hóa b i u khi n Fuzzy-PID ã kh o sát m c 5.1.3. Các thông s th c nghi m c xác nh theo [25], [50], [102] nh sau:

$$K_{Pmin} = 3; K_{Pmax} = 15; K_{Dmin} = 0,01; K_{Dmax} = 0,1;$$

Tuy n tính hóa các h s K_P , K_I , K_D nh m c 5.1.3, ta có:

$$\begin{split} K_{p} &= (K_{p_{\text{max}}} - K_{p_{\text{min}}}).K_{p} + K_{p_{\text{min}}}, \\ K_{D} &= (K_{D_{\text{max}}} - K_{D_{\text{min}}}).K_{D} + K_{D_{\text{min}}}, K_{I} = K_{p}^{2} / (S.K_{D}), \end{split}$$

Trong ó K_P, K_D c xác nh t các lu t i u khi n m (b ng 5.2, b ng 5.3) và có giá tr chu n hóa trong kho ng [0,1], s = $T_I/T_D \in [1,1000]$ s c xác nh d a vào vi c ch nh nh tham s K_P, K_D (b ng 5.4). Hàm liên thu c c a K_P, K_D và c xác nh có d ng tam giác, các bi n ngôn ng và m t i u khi n th hi n nh m c 5.1.3.

Chi u dài th c t các chân d n ng c th hi n hình 5.40. K t qu n i suy v i áp ng quá và sai s chuy n ng c a tâm khâu c th hi n t hình 5.36 n hình 5.39. Các tiêu chu n ch t l ng th c nghi m c a h th ng c trình bày t i b ng 5.7.

Hình 5.36. Chuy n ng v trí c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID

Hình 5.37. Sai s v trí (tr c Z) c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID

Hình 5.38. Sai s v trí (tr c X, Y) c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID

Hình 5.39. Sai s góc h ng c a tâm khâu – Th c nghi m b i u khi n Fuzzy-PID

Hình 5.40. áp ng c a các chân d n ng – Th c nghi m b i u khi n Fuzzy-PID B ng 5.7. Tiêu chu n ch t l ng h th ng – B i u khi n Fuzzy-PID

Tiêu chu n ch t l ng	Mô ph ng	Th c nghi m	
v tl (POT)(%)	5	0	
Sai s xác l p (e_{xl}) theo v trí (m)	0,84.10-3	1,5.10-3	
Sai s xác l p (e_{xl}) theo góc h ng (rad)	0,32.10-3	1,7.10-3	
Th i gian xác l p (t_{xl}) (s)	3,9	5,7	
Th i gian lên (t_{rise}) (s)	0,41	3,7	

K t qu th c nghi m cho th y chuy n ng theo v trí c a tâm khâu không có v t 1 (POT = 0%) (hình 5.36) và sai s xác l p c a tâm khâu c c i thi n áng k so v i tr ng h p dùng b i u khi n PID. Các sai s chuy n ng gi m t 1,7.10⁻³ m xu ng còn 1,5.10⁻³ m theo tr c Z và t 1,5.10⁻³ m xu ng còn 1.10⁻³ m theo tr c X, Y (hình 5.37, hình 5.38). Kho ng sai s xác l p theo góc h ng c ng gi m t 2.10⁻³ rad xu ng còn 1,7.10⁻³ rad (hình 5.39) v i th i gian xác l p và th i gian lên có giá tr t ng ng so v i tr ng h p b i u khi n PID. Nh các giá tr c a sai s xác l p gi m i áng k nên quá trình chuy n ng c a tay máy trong th c t ã tri t tiêu c s rung l c và ti ng n trong quá trình v n hành. Ngoài ra, có th nh n th y r ng quá trình ph i h p chuy n ng gi a các kh p c a b i u khi n t ch nh nh Fuzzy-PID ã c c i thi n áng k . Trong quá trình quá , chuy n ng c a các kh p c ng b hóa và không có v t l nh trong tr ng h p s d ng b i u khi n PID (hình 5.40). i u này m s ph i h p nh p nhàng và ng b gi a các kh p trong quá trình i u khi n chuy n ng c a tay máy song song (hình 5.41), c bi t là trong các tr ng h p có s thay i t ng t c a tín hi u i u khi n.

Hình 5.41. Quá trình i u khi n tay máy song song - B i u khi n Fuzzy-PID

K t qu th c nghi m m c 5.2.1 và 5.2.2 cho th y b i u khi n kinh i n PID ã c t i u hóa thông qua vi c k t h p lý thuy t i u khi n m ch nh nh các h s c a b i u khi n kinh i n PID. Các ch tiêu v ch t l ng c a h th ng ã c c i thi n m t cách toàn di n cho quá trình i u khi n chuy n ng c a tay máy song song ki u Stewart-Gough Platform.

K t qu cho th y m t s i m khác bi t v áp ng c a h th ng th c nghi m (m c 5.2.1, 5.2.2) và k t qu mô ph ng (m c 5.1.1, 5.1.3). Các áp ng c a h th ng trên mô hình th c nghi m có v t 1 (*POT*) th p h n trong khi th i gian xác l p (t_{xl}) l n h n so

v i k t qu mô ph ng trên máy tính. i u này c lý gi i do mô hình tay máy th c t có các sai s v ch t o và b gi i h n v t c chuy n ng so v i mô hình trên máy tính.

Vi c ch n l a, áp d ng và so sánh ch t l ng i u khi n t các thu t toán khác thông qua h th ng th c nghi m t i u hóa i u khi n tay máy song song ki u Stewart–Gough Platform s c tác gi ti p t c nghiên c u v sau.

Các k t qu kh o sát trên mô hình th c nghi m (ch ng 4 và ch ng 5) ã ki m ch ng m t cách tin c y, y và mang tính h th ng các k t qu nghiên c u v t i u hóa thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform trình bày trong lu n án.

Các k t qu trên ã c công b công trình s [CTTG-5], [CTTG-6] c a tác gi .

5.3 Quy trình ng d ng k t qu lu n án cho h th ng th c t

Các k t qu nghiên c u m c 4.2 và 5.2 cho th y tính kh thi trong vi c ng d ng các ph ng pháp t i u hóa thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform cho các mô hình th c t . Các gi i thu t t i u hóa n u c áp d ng theo m t quy trình v i các h ng d n c th s giúp các nhà nghiên c u th c hi n quá trình thi t k và ch t o tay máy song song v i nhi u ch n l a linh ho t trong th i gian ng n.

Tác gi xu t m t quy trình ng d ng các k t qu nghiên c u v t i u hóa thi t k và i u khi n cho tay máy song song ki u Stewwart-Gough Platform. Quy trình th c hi n nh sau:

<u>**B**</u> c1: Xác nh yêu c u thi t k (vùng không gian làm vi c, các c u hình làm vi c v i góc h ng tâm khâu thay i, c ng v ng...). Ti p theo, c n xác nh các tiêu chí thi t k và th t u tiên c a chúng. i v i các ng d ng trong thiên v n h c, y h c (hình 1.8, hình 1.9 và hình 1.10), tay máy song song th ng s òi h i chính xác và không gian làm vi c l n h n c ng v ng. Trong tr ng h p này th t u tiên (1)-(2)-(3) (m c 3.3.3) s là ph ng pháp phù h p cho quá trình t i u hóa thi t k . Trong khi ó, v i các ng d ng gia công c khí, máy công c , s n xu t, d ch v (hình 1.5, hình 1.7, hình 1.11 và hình 1.16), thì tiêu chí v c ng v ng và t c chuy n ng c a tay máy song song s c chú tr ng nhi u h n.

<u>**B**</u> <u>c</u> <u>2</u>:</u> D a trên yêu c u th c t, ti n hành t i u hóa thi t k. Các thu t toán t i u hóa thi t k \tilde{a} trình bày trong lu n án nh thu t toán di truy n GA, thu t toán PSI, thu t toán k t h p GA-PSI có th c áp d ng xác nh c u hình thi t k phù h p m b o

các tiêu chí và thông s ho t ng ã tra. Các gi i thu t t i u hóa ã c nghiên c u và trình bày trong lu n án này có th áp d ng cho các ph ng pháp t i u v i các tiêu chí t i u khác nh : t c d ch chuy n, kh n ng t i tr ng, gia t c chuy n ng,...

V i các c u hình tay máy c xác nh sau quá trình t i u hóa thi t k, các nhà nghiên c u có th ng d ng b công c mô hình hóa tay máy c ng nh kh o sát, ánh giá và phân tích các ràng bu c, các tiêu chí ho t ng cho c u hình tay máy song song trên máy tính. i u này s giúp các nhà nghiên c u xem xét s phù h p c ng nh i u ch nh các thông s c a tay máy tr c khi tri n khai th c hi n xây d ng mô hình v t lý.

<u>**B**</u> <u>c</u> <u>3</u>: T i u hóa b i u khi n b ng cách c i ti n các thu t toán. Vi c l a ch n thu t toán i u khi n ph i phù h p v i các yêu c u v tiêu chu n ch t l ng c a h th ng nh v t l, th i gian xác l p, th i gian lên, sai s xác l p,.... Ví d : i v i l nh v c thiên v n h c, y h c,... thu t toán Dirrect Fuzzy-PD s là m t ch n l a phù h p v i yêu c u không có v t l, thu t toán Fuzzy-PID s cho phép các h th ng có áp ng nhanh,

v tl r t th p phù h p v i các h th ng gia công c khí, máy công c , s n xu t, d ch v \dots

<u>**B**</u> c 4: Ki m tra b ng mô ph ng và th c nghi m.

5.4 K t lu n ch ng 5

Ch ng 5 ã trình bày k t qu kh o sát b ng mô ph ng các b i u khi n kinh i n PID, b i u khi n m tr c ti p và b i u khi n t ch nh nh Fuzzy-PID. B i u khi n PID c xem là phù h p cho quá trình chuy n ng c a tay máy song song v i tính n nh, các tiêu chu n ch t l ng c a h th ng ch p nh n c và c n ph i c i thi n t t h n. B i u khi n m tr c ti p c ó kh n ng c i thi n t t h n so v i i u khi n PID v c ác tiêu vtl, sais xáclpnh nglihnch v thigian áp ngc a h th ng. chu n nh c xem là phù h p và có tính linh ho t h n so v i b i u iukhinm trctip В khi n PID i v i các bài toán yêu c u u tiên v v tl và chính xác. B i u khi n t ch nh nh Fuzzy-PID có các tiêu chu n ch t l ng c a h th ng cti uhóamt cách ngb sovib i u khi n PID vàb i u khi n m tr c ti p.

K t qu th c nghi m trên c u hình t i u hóa thi t k cho th y b i u khi n PID v i các h s K_P , K_I , K_D ã ch n có tính n nh, các tiêu chu n ch t l ng c a h th ng ch p nh n c v i ph m vi c a mô hình v t lý. B i u khi n PID có hi n t ng rung l c trong quá trình i u khi n và quá trình xác l p c a các chân d n ng không ng nh t. B iukhint chnh nh Fuzzy-PID có các ch tiêuch tl ng c a h th ng c c ithin m t cách toàn din và kh n ng ph i h p gi a các chân d n ng t th n so v i b iu khi n PID.

Các k t qu kh o sát trên mô hình th c nghi m (ch ng 4 và ch ng 5) ã ki m ch ng m t cách tin c y, y và mang tính h th ng các k t qu nghiên c u v t i u hóa thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform trình bày trong lu n án.

Các k t qu t i u b i u khi n trong ph m vi ch ng 5 c xác nh v i m t c u hình c th. Trong tr ng h p t ng quát, m t quy trình ng d ng các k t qu nghiên c u v t i u hóa thi t k và i u khi n cho tay máy song song ki u Stewart–Gough Platform \tilde{a} c xây d ng v i các h ng d n c th.

Các k t qu trên ã c công b công trình s [CTTG-4]-[CTTG-6] c a tác gi .

K TLU N

Lunán tãravn nghiên cuv ti uhóa cuhình ckhí vàh th ngiu khin int nh m tth th ng nh t. Ktqu lunán cho th yb ng các gi i pháp k thu t int có th h tr th chin quá trình thit k ti ucho các h th ng c khí.

D a trên vi c nghiên c u v t i u hoá thi t k và i u khi n tay máy song song ki u Stewart–Gough Platform, lu n án ã a ra nh ng k t qu nghiên c u chính nh sau:

- Xây d ng b công c mô hình hóa tay máy song song ki u Stewart–Gough Platform. ng d ng b công c phân tích và ánh giá t ng h p các ràng bu c (gi i h n chi u dài chân d n ng, gi i h n góc kh p, bán kính m t ph ng n n); xem xét nh ng tiêu chí c bi t nh h ng n th tích c a vùng làm vi c; xác nh các c u hình suy bi n, i m k d và vùng lân c n, c ng v ng cho tay máy song song ki u Stewart–Gough Platform.
- 2. xu t nh ng gi i thu t t i u hóa thi t k theo a tiêu chí: gi i thu t di truy n GA, thu t toán PSI, thu t toán GA-PSI nh m nâng cao kh n ng ho t ng c a tay máy song song. Trong ó thu t toán GA-PSI có kh n ng gi m th i gian t i u hóa thi t k cho tay máy song song ki u Stewart–Gough Platform.
- 3. Xây d ng mô hình th c nghi m linh ho t g m h c khí tay máy song song ki u Stewart–Gough Platform có kh n ng thay i c u hình thi t k v i h th ng i u khi n phân c p. Lu n án ng d ng gi i thu t t i u hóa xác nh m t c u hình th c nghi m t i u trên mô hình ã xây d ng. Mô hình này c s d ng làm công c ki m tra các gi i thu t i u khi n khác nhau cho quá trình chuy n ng c a tay máy song song ki u Stewart–Gough Platform.
- 4. xu t các ph ng pháp nâng cao ch t l ng b i u khi n i t ng ng h c tay máy song song trên c s k t h p các thu t toán i u khi n kinh i n và i u khi n hi n i (thu t toán Fuzzy, thu t toán t ch nh nh Fuzzy-PID). Áp d ng ki m ch ng các gi i pháp t i u hóa thi t k và i u khi n vào mô hình th c nghi m tay máy song song ki u Stewart–Gough Platform. K t qu th c nghi m phù h p v i các k t qu mô ph ng trên máy tính và các công trình ã công b.

KI N NGH V NH NG NGHIÊN C U TI P THEO

- Ti p t c các nghiên c u v t i u hóa thi t k và i u khi n tay máy song song ki u
 Stewart–Gough Platform b ng ph ng pháp k t h p các thu t toán tìm ki m ng u
 nhiên khác và các thu t toán tìm ki m theo biên.
- Gi i bài toán t i u hóa thi t k theo a tiêu chí có tính n t i tr ng.
- Nghiên c u, ng d ng các gi i thu t i u khi n khác trên mô hình th c nghi m.

CÔNG TRÌNH CÔNG B C A TÁC GI

- [CTTG-1] Nguy n Minh Th nh, Lê Hoài Qu c, Nguy n Xuân Vinh, Nguy n Ng c Lâm (2011), "Optimization of Parallel Manipulators Using Genetic Algorithms", *H i ngh toàn qu c l n th 5 v C i n t , VCM-2010*, tr. 242-247. *Journal of Computer Science and Cybernetics*, ISSN: 1813-9663, vol. 27, no. 1, pp. 93-106.
- [CTTG-2] Nguy n Minh Th nh, Lê Hoài Qu c, Nguy n Xuân Vinh, Nguy n Ng c Lâm (2011), "T i u Hóa Thi t K Tay Máy Song Song Dùng Gi i thu t di truy n K t H p T p H p T i u Pareto", *H i ngh toàn qu c v i u khi n và T* ng hoá - VCCA-2011, tr. 207-214.
- [CTTG-3] Nguy n Xuân Vinh, Nguy n Minh Th nh, Lê Hoài Qu c, Nguy n Ng c Lâm (2012), "Xác nh T p H p C u Hình Suy Bi n Tay Máy Song Song Dùng Lý Thuy t Vít", H i ngh toàn qu c l n th 6 v C i n t, VCM-2012, tr. 754-762.
- [CTTG-4] Nguy n Xuân Vinh, Nguy n Minh Th nh, Lê Hoài Qu c, Nguy n Ng c Lâm (2013), "i u Khi n Tay Máy Song Song Dùng Lý Thuy t M K t H p Gi i Thu t Di Truy n", H i ngh toàn qu c l n th 2 v i u khi n và T ng hoá - VCCA-2013, tr. 305-313.
- [CTTG-5] Nguy n Xuân Vinh, Lê Qu c Hà, Nguy n Ng c Lâm, Lê Hoài Qu c, Nguy n Minh Th nh (2014), "Experimental System for the Optimization of the Parallel Manipulator Control", *H i ngh toàn qu c l n th 7 v C i n t*, *VCM-2014*, tr. 280-287. Journal of Computer Science and Cybernetics, ISSN: 1813-9663, vol. 31, no.

2, pp. 83-96.

[CTTG-6] Nguyen Xuan Vinh, Nguyen Ngoc Lam, Le Quoc Ha, Le Hoai Quoc, Nguyen Minh Thanh, (2015), "Optimal Design and Control of a Stewart-Gough Platform", 7th IEEE International Conferences on Cybernetics and Intelligent Systems (CIS) Robotics, Automation and Mechatronics (RAM), Cambodia.

CÔNG TRÌNH THAM GIA C A TÁC GI

[CT T-1] Nguyen Minh Thanh, Victor Glazunov, Tran Cong Tuan, Nguyen Xuan Vinh (2010), "Multi-criteria optimization of the parallel mechanism with actuators located outside working space", *The 11th International Conference on Control, Automation, Robotics and Vision*, IEEE 2010, Singapore.

TÀI LI U THAM KH O

- [1] A. Calin, T. Muntean (2003), "Determining the Workspace of a Hexapod Machine Tool", Proceedings of the International Conference on Manufacturing Systems, Iassy.
- [2] A. Leva, C. Cox, A. Ruano (2002), "Hands-on PID autotuning: a guide to better utilisation", IFAC. Professional Brief.
- [3] A. Merlet J.P. (2006), *Parallel Robots*, Kluwer Academic Publishers.
- [4] A. Omran, G. El-Bayiumi, M. Bayoumi, and A. Kassem (2008), "Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator", *International Journal of Mecanical, Industrial and Aerospace Engineering*.
- [5] A. V. Korobeynikov, V. E. Turlapov (2005), "Modeling and Evaluating of the Stewart–Gough Platform", *International Conference Graphicon*, Novosibirsk Akademgorodok, Russia.
- [6] A.F. Kraynev, V.A. Glazunov (1991), "Parallel Structure Mechanisms in Robotics", *MERO'91, Sympos. Nation. de Roboti Industr*, Bucuresti, Romania, pp. 104-111.
- [7] A.T. Yang (1974), "Calculus of Screws", *Basic Questions of Design Theory*, William R. Spillers, Elsevier, pp. 266-281.
- [8] B. Dasgupta and T. S. Mruthyunjaya (1998), "A Newton– Euler formulation for the inverse dynamics of the Stewart–Gough Platform manipulator", *Mech. Mach.Theory*, vol. 33, no. 8, pp. 1135–1152.
- [9] B. Ding (2014), "A Study of a Gough-Stewart Platformbased Manipulator for Applications in Biomechanical Testing", PhD thesis, The University of Adelaide, School of Mechanical Engineering.

- [10] B. Ding, B. Cazzolato, R. Stanley, S. Grainger, J. Costi (2014), 'Stiffness Analysis and Control of a Stewart Platform-Based Manipulator With Decoupled Sensor-Actuator Locations for Ultrahigh Accuracy Positioning Under Large External Loads", ASME Journal of Dynamics, Measurement and Control.
- [11] B. Heimann, H. Abdelatif (2007), "Dynamics and Control of Robots with parallel kinematical Structures", *ISMA 2007*, HCMC.
- [12] B. Heimann, M. Grotijahn and J. Kuhn (2004), "Friction and Rigid Body Identification of Robots with Parallel Kinematic"; *The 8th Intl Conference* on Mechatronics Technology, Hanoi.
- [13] C. Canudas de Wit, B. Siciliano, G. Bastin (1996), Theory of Robot Control, Springer, London.
- [14] C.C. Yu (1999), Autotuning of PID Controllers: Relay Feedback Approach, Springer, London.
- [15] C.H. An, C.G. Atkeson, J.M. Hollerbach (1988), Model–Based Control of a Robot Manipulator, MIT Press, Cambridge.
- [16] C.M. Gosselin, J. Angeles (1990), "Singularity Analysis of Closed Loop Kinematic Chains", *IEEE Trans. on Robotics and Automation*, vol. 6, no. 3, pp. 281-290.
- [17] Cong Bang Pham, Song Huat Yeo and Guilin Yang (2007), "Analytical Forceclosure workspace of Cable-driven planar Parallel Mechanisms"; ISMA 2007, HCMC.
- [18] D. Angeli (1999), "Input-to-State stability of PD-controlled robotic systems", *Automatica 35*, pp. 1285–1290.
- [19] D. Stewart (1966), "A Platform with Six Degres of Freedom". In: Pr. Inst. Mech.
 Eng. v.180, Pt.1, 15, pp. 371-386.
- [20] D. Thayer, J. Vagners, A. von Flotow, C. Hardham, and K. Scribner (2002), "Sixaxis vibration isolation system using soft actuator and multiple sensors", *Journal of Spacecraft and Rockets*, vol. 39, no. 2, pp. 206-212.
- [21] D. Zlatanov, R.G Fenton, B. Benhabib (1998), "Identification and Classification of the Singular Configurations of Mechanisms", *Mechanism and Machine Theory*, vol. 33, no. 6, pp. 743-760.

- [22] D.C.H Yang, T.W Lee (1984), "Feasibility Study of a Platform Type of Robotic Manipulators from a Kinematic Viewpoint", *Journal of Mechanisms, Transmissions, and Automation in Design*, vol. 106, pp. 191-198.
- [23] Dingyu Xue, YangQuan Chen, and P. Derek Atherton (2007), *Linear Feedback Control: Analysis And Design With Matlab*, ISBN 978-0-898716-38-2.
- [24] Dinh Cong Huan, Vuong Thi Dieu Huong, Vu Minh Hung, Do Thi Ngoc Oanh, Nguyen Huy Thuy and Pham Anh Tuan (2004), "Development of a Control System for Hexapod", *The 8th Intl. Conference on Mechatronics Technology*, Hanoi.
- [25] E. Yesil, M. Guzelkaya, I. Eksin (2004), "Self tuning fuzzy PID type load and frequency controller", *Energy Conversion and Management*, vol. 45, no. 3, pp. 377-390.
- [26] E.F. Fitcher (1986), "A Stewart–Gough Platform-Based Manipulator: General Theory and Practical Construction". *The International Journal of Robotic Research*, vol. 5, no. 2, pp. 157-182.
- [27] Ehrgott, Matthias, Gandibleux, Xavier (2002), "Multiple Criteria Optimization: State of the Art Annotated Bibliographic Survey", *International Series in Operations Research & Management Science*, vol. 52, pp. 376-388.
- [28] F. Dimentberg (1965), The Screw Calculus and its Applications in Mechanics, *Clearinghouse for Federal Technical and Scientific Information*, Virginia.
- [29] F. Herrera, M. Lozano, J. L. Verdegay (1995), "Tuning Fuzzy logic controllers by Genetic Algoritms", *International Journal of Approximate Reasoning 12*, pp. 299 – 315.
- [30] F. Pernodet, H. Lahmidi, P. Michel (2009), "Use of genetic algorithms for multicriteria optimization of building refurbishment", *Eleventh International IBPSA Conference*, Glasgow, Sclotland, July 27-30, 2009.
- [31] G. Brandt, A. Zimolong ; L. Carrat, P. Merloz, H.-W. Staudte, S. Lavallee, K. Radermacher and G. Rau (2002), "A compact robot for image guided orthopedic surgery", *IEEE Transactions on Information Technology in Biomedicine*, vol. 3, no. 4, pp. 252-60.

- [32] G. Lebret, K. Liu, and F. L. Lewis (1993), "Dynamic analysis and control of a Stewart–Gough Platform manipulator," J. Robot. Syst., vol. 10, no. 5, pp. 629–655.
- [33] Gong, Youhong (1992), "Design analysis of a Stewart platform for vehicle emulator systems", Mater thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering
- [34] H. Abdellatif and B. Heimann (2006), "Dynamics and Control of Robots with Parallel Kinematic Structures", *The 3rd Viet Nam Conference on Mechatronics*, Ha Noi, 2006.
- [35] H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka (1995), "Selecting Fuzzy If
 Then Rules for Classification Problems using Genetic Algorithm", *IEEE Transaction on Fuzzy Systems*, vol. 3, no. 3, August 1995.
- [36] Huy Hoang Pham, I-Ming Chen (2007), "Stiffness Analysis of a 6-DOF Flexure Parallel Mechanism"; *ISMA 2007*, HCMC.
- [37] I. Bonev (2001), "Delta Parallel Robot the Story of Success", http://www.parallemic.org.
- [38] J. Plücker (1865), "On a New Geometry of Space", Philosophical Transactions of the Royal Society, vol. 155, pp. 725–791.
- [39] J. Dr'eo, A. P' Etrowski, P. Siarry, E. Taillard (2006), Metaheuristics for Hard Optimization - Simulated Annealing, Tabu Search, Evolutionary and Genetic Algorithms, Ant Colonies,..., Springer-Verlag Berlin Heidelberg 2006, pp. 6-9.
- [40] J. G. Ziegler, N. B. Nichols (1942), "Optimum setting for Automatic Controllers". Trans. ASME 64, pp. 759-768.
- [41] J. P. Merlet (1988), *Parallel Manipulators*, Rapport de Recherche Inria NO 791, Fevrier.
- [42] J. Park, W.K. Chung (2000), "Design of a robust H PID control for industrial manipulators", ASME J. Dyn. Syst. Meas. Contr, vol. 122, no. 4, pp. 803–812.
- [43] J. Wittenburg (2008), "Dynamics of Multibody Systems" (Second Edition), ISBN 978-3-540-73913-5, Springer Berlin Heidelberg New York, pp. 9-23.

- [44] J. Yen, R. Langari (1999), Fuzzy Logic _ Intelligence, Control, and Information. Center of Fuzzy Logic, Robotics, and Intelligent Systems Texas A&M University. Prentice Hall, Upper Saddle River, New Jersey 07458.
- [45] J.A. Ramirez, I. Cervantes, R. Kelly (2000), "PID regulation of robot manipulators: stability and performance", Sys. Contr. Lett. 41, pp. 73–83.
- [46] J.Wang and C. M. Gosselin (1998), "A new approach for the dynamic analysis of parallel manipulators", *Multibody Syst. Dyn*, vol. 2, pp. 317–334.
- [47] Jong-Gug Bae, Ho-Seok Shim and Jeh Won Lee (2004), "Active Control of a Ship Cabin Motion Using 3-DOF Parallel Mechanisms", *The 8th Intl. Conference* on Mechatronics Technology, Hanoi, 2004.
- [48] K. Aström, T. Hagglund (1995), PID Controllers: Theory, Design, and Tuning, Instrument Society of America, Research Triangle Park.
- [49] K. Hunt (1983), "Structural Kinematics of In-Parallel-Actuated Robot Arms", ASME Journal of Mechanisms, Transmissions, and Automation in Design, vol. 105, no. 4, pp. 705-712.
- [50] K. K. Ahn and B. K. Nguyen (2006), "Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller", *International Journal* of Control, Automation, and Systems, vol. 4, no. 6, pp. 756-762.
- [51] K. K. Passino and S. Yurkovich (1998), *Fuzzy Control*, Department of Electrical Engineering, The Ohio State University. Copyrigh 1998 Addision – Wesley Longman, Inc.
- [52] Klimchik, Pashkevich, Caro; Chablat (2011), "Stiffness Matrix of Manipulators With Passive Joints: Computational Aspects", IEEE Transactions on Robotics, vol. 28, no. 4.
- [53] L. Kuhn (2002), Ant Colony Optimization for Continuous Spaces, A thesis submitted to The Department of Information Technology and Electrical Engineering, The University of Queensland, pp. 9-15.
- [54] L. Sciavicco, B. Siciliano (1996), Modeling and Control of Robot Manipulator McGraw-Hill, New York.
- [55] L. W. Tsai (1998), "The Jacobian Analysis of A Parallel Manipulator Using Reciprocal Screws", *Proceedings of the 6th International Symposium on*

Recent Advances in Robot Kinematics, Salzburg, Austria, edited by J. Lenarcic and M. Husty, Kluwer Academic Dordrecht, pp. 327–336.

- [56] L. W. Tsai (2000), "Solving the inverse dynamics of a Stewart–Gough manipulator by the principle of virtual work", ASME Journal of Mechanical Design 122, no. 1, pp. 3-9.
- [57] Le Xuan Huy, Hoang Nga, Do Tran Thang and Pham Minh Tuan (2004),
 "Determination of Control Data based on Dynamic Simulation for Hexapod",
 The 8th Intl. Conference on Mechatronics Technology, Hanoi, 2004.
- [58] M. Dorigo and T. Stützle (2004), Ant Colony Optimization, ISBN 0-262-04219-3, A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England, pp. 65-78.
- [59] M. Takegaki, S. Arimoto (1981), "A new feedback method for dynamic control of manipulators", *Trans. ASME J. Dyn. Syst. Meas. Contr*, vol. 102, pp. 119– 125.
- [60] M.W. Spong, M. Vidyasagar (1989), Robot Dynamics and Control, Wiley, New York.
- [61] Matlab, *Modeling the Stewart–Gough Platform*, http://www.mathworks.com.
- [62] Nguyen Minh Thanh, Le Hoai Quoc, Victor Glazunov (2009), "Constraints analysis, determination twists inside singularity and parametrical optimization of the parallel mechanisms by means the theory of screws", *Proceedings of the (CEE 2009) 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, IEEE*, Toluca, Mexico, 2009, pp. 89-95.
- [63] Nguyen Minh Thanh, Le Hoai Quoc, Victor Glazunov (2012), "Singularity Analysis, Constraint Wrenches and Optimal Design of Parallel Manipulators", Book chapter of Serial and Parallel Robot Manipulators -Kinematics, Dynamics, Control and Optimization, ISBN: 978-953-51-0437-7, pp. 359-372.
- [64] Nguyen Minh Thanh, V.A Glazunov, Lu Nhat Vinh, Nguyen Cong Mau (2008),
 "Parametrical optimization of parallel mechanisms while taking into account singularities". *International Conference on Control, Automation, Robotics*
and Vision (ICARCV) Proceedings, Hanoi, Vietnam, IEEE 2008, pp. 1872-1877.

- [65] Nguyen Minh Thanh, V.A Glazunov, Tran Cong Tuan, Nguyen Xuan Vinh, "Multicriteria optimization of the parallel mechanism with actuators located outside working space", *The 11th International Conference on Control, Automation, Robotics and Vision*, IEEE 2010, December 7-10, 2010, Singapore.
- [66] Nguyen Minh Thanh, Victor Glazunov, Lu Nhat Vinh (2010), "Determination of Constraint Wrenches and Design of Parallel Mechanisms". *International Conference on Electrical Engineering, Computing Science and Automatic Control*, IEEE 2010, Mexico, pp. 46-53.
- [67] O. Ulucay (2006), Design and Control of Stewart–Gough Platform, Master Thesis, Sabaci University.
- [68] P. Nanua, Kenneth J. Waldron, and V. Murthy (1990), "Direct Kinematic Solution of a Stewart–Gough Platform", *IEEE Transactions on Robotics and Automation*, vol. 6. no. 4.
- [69] P. Tomei (1991), "Adaptive PD controller for robot manipulators", *IEEE Trans. Robot. Autom*, vol. 7, no. 4, pp. 565–570.
- [70] P.R. McAcree, R.W. Daniel (1996), "A Fast, Robust Solution to the Stewart–Gough Platform Forward Kinematics", *Journal of Robotic Systems*, vol. 13, no. 7, pp. 407-427.
- [71] R. Ball, (1900), A Treatise on the Theory of Screws, Cambridge at the University Press.
- [72] R. Featherstone (1987), *Robot Dynamics Algorithms*. Springer. ISBN 0898382300.
- [73] R. Kelly (1997), "PD control with desired gravity compensation of robot manipulators: A review", *Int. J. Robot.* Res, vol. 16, no. 5, pp. 660–672.
- [74] R. Kelly (1998), "Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions", *IEEE Trans. Autom. Contr*, vol. 43, no. 7, pp. 934–937.
- [75] R. Ulla Baig, S. Pugazhenthi (2011), "Design optimization of an active vibration isolation system", *International Journal of the Physical Sciences*, vol. 6, no. 30, pp. 6882 6890, 23 November, 2011.

- [76] R. Ulla Baig, S. Pugazhenthi (2014), "Neural Network Optimization of Design Parameters of Stewart Platform for Effective Active Vibration Isolation", *Journal of Engineering and Applied Sciences*, vol. 9, no. 4, pp. 78-84.
- [77] R.B Statnikov (1999), Multicriteria Design. Optimization and Identification, Dordrecht/ Boston / London: Kluwer Academic Publishers, 1999.
- [78] R.F. Boian, M. Bouzit, G.C. Burdea, J.E. Deutsch (2004), "Dual Stewart–Gough Platform Mobility Simulator", *Proceedings of the 26th Annual International Conference of the IEEE EMBS*, San Fran cisco, CA, USA.
- [79] R.T. Marler and J.S. Arora (2004), "Survey of multi-objective optimization methods for engineering", *Struct Multidisc Optim* 26, pp. 369–395, DOI 10.1007/s00158-003-0368-6, Springer-Verlag 2004.
- [80] S. Arimoto, F. Miyazaki (1984), "Stability and robustness of PID feedback control for robot manipulators of sensory capability". *Robotics Research*, ed. by M. Brady, R. Paul (MIT Press, Cambridge 1984) pp. 783–799
- [81] S. D. Stan, M. Manic, R. Balan, V. Maties (2009), "Genetic algorithms for workspace optimization of planar medical parallel robot", *IEEE International Conference on Emerging Trends in Computing*, ICETIC 2009, Virudhanagara, Tamil Nadu, India.
- [82] S. D. Stan, V. M tie, R. B lan (2008), "Kinematics Analysis, Design And Optimization Of A Six Degrees-Of-Freedom Parallel Robot", ENOC 2008, Saint Petersburg, Russia.
- [83] S. D. Stan, V. Maties, R. Balan, C. Lapusan (2008), "Optimization of a Hexapod Micro Parallel Robot Using Genetic Algorithms", *Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering*, Springer-Verlag, 2008.
- [84] Symetrie (2015), "Hexapod Technology", http://www.symetrie.fr/.
- [85] T. R. Kane and D. A. Levinson (1985), Dynamics: Theory and Application, McGraw-Hill, New York, N.Y.
- [86] T. W. Fong (1990), Design and Testing of a Stewart–Gough Platform Augmented Manipulator for Space Applications, Master Thesis of Science in Aeronautics and Astronautics, Massachusetts Institute of Technology Aine.

- [87] T. Weise (2008), Global Optimization Algorithms Theory and Application, pp. 250-274.
- [88] V. Saxena, Dongming Liu, C. M. Daniel, J. W. Sutherland (1997), "A Simulation Study of the Workspace and Dexterity of A Stewart–Gough Platform based machine Tool", *Proceedings of the ASME Dynamic System and Control Divison*, Dallas, TX, USA.
- [89] V.A Glazunov, A.F. Kraynev, G.V. Rashoyan, A.N. Trifonova (1999), "Singular Zones of the parallel Structure Mechanisms", *Proceeding of the 10th World Congress on TMM*, Oulu, Finland, pp. 2710-2715.
- [90] V.A Glazunov, R. Gruntovich, A. Lastochkin, Nguyen Minh Thanh (2007), "Representations of constraints imposed by kinematic chains of parallel mechanisms", *Proceedings of the 12th IFToMM World Congress in Mechanism and Machine Science*, France, June 17-21, vol. 1, pp. 380-385.
- [91] V.A. Glazunov, Nguyen Minh Thanh (2008), "Determination of the parameters and the Twists Inside Singularity of the parallel Manipulators with Actuators Situated on the Base", In Proceedings of the Seventeenth CISM-IFToMM Symposium, Tokyo, Japan, pp. 467-474.
- [92] V.A. Glazunov, Nguyen Ngoc Hue, Nguyen Minh Thanh (2009), "Singular configuration analysis of the parallel mechanisms", *Journal of Machinery* and Engineering Education, ISSN 1815-1051, no. 4, 2009, pp. 11-16.
- [93] V.A. Glazunov (2006), "Twists of Movements of the parallel Mechanisms Inside Their Singularities", *Mechanism and Machine Theory*, pp. 1185-1195.
- [94] V.A. Glazunov, A.F. Krainev, G.V. Rashoyan, A.N. Trifonova, and M.G. Esina (2000), "Modeling the zones of singular positions of the parallel-structure manipulators", *Journal of Machinery Manufacture and Reliability*, Allerton Press Inc, no. 2, pp. 85-91.
- [95] V.A. Glazunov, A.S. Koliskor, A.F. Kraynev (1991), Spatial Parallel Structure Mechanisms, Moscow, Nauka.
- [96] W. K. Clifford (1873), "Preliminary Sketch of Biquaternions", *Paper XX*, *Mathematical Papers*, pp. 381.
- [97] W. Q. D. Do and D. C. H. Yang (1998), "Inverse dynamic analysis and simulation of a platform type of robot," *J. Robot. Syst*, vol. 5, no. 3, pp 209–227.

- [98] Y. Choi, W.K. Chung (2004), "PID Trajectory Tracking Control for Mechanical Systems", *Lecture Notes in Control and Information Sciences*, vol. 289, Springer, New York 2004.
- [99] Y. Choi, W.K. Chung, I.H. Suh (2001), "Performance and H optimality of PID trajectory tracking controller for Lagrangian systems", *IEEE Trans. Robot. Autom*, vol. 17, no. 6, pp. 857–869.
- [100] Y.N. Sarkissyan, T.F. Parikyan (1990), "Analysis of Special Configurations of the parallel Topology Manipulators", *Eight CISM-IFMoMM Symp. of Robots* and Manipulators, Krakow, Poland, pp. 156-163.
- [101] Z. Geng, L. S. Haynes, J. D. Lee, and R. L. Carroll (1992), "On the dynamics model and kinematics analysis of a class of Stewart–Gough Platform" *Robot.Autonomous Syst*, vol. 9, pp. 237–254.
- [102] Zhen-Yu Zhao, M. Tomizuka, and S. Isaka (1993), "Fuzzy Gain Scheduling of PID Controllers", *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 23, no. 5, September/October 1993.
- [103] Zude Zhou, Wei Meng, Qingsong Ai, Quan Liu, Xiang Wu (2013), "Practical Velocity Tracking Control of a Parallel Robot Based on Fuzzy Adaptive Algorithm", Advances in Mechanical Engineering, vol. 2013, Article ID 574896.
- [104] Bùi Quang c, ng V n Nghìn (2002), "Thi t k và ch t o Robot Crane", H i ngh toàn qu c l n I v C i n t, Hà N i.
- [105] ng B o Lâm, Ph m Minh H i, Phan V n ng (2005), "Thu t toán tìm mi n làm vi c c a h tay máy song song ph ng 3 b c t do", H i ngh toàn qu c l n 6 v T ng hóa, Hà N i.
- [106] inh Công Hu n, V ng Th Di u H ng, Th Ng c Oanh, Nguy n Huy Th y, Ph m Anh Tu n, H c Hi n (2004), "Thi t k ng h c máy c t g t kim lo i Hexapod b ng mô ph ng", H i ngh toàn qu c l n II v C i n t, TP.HCM.
- [107] H c Hi n (2002), "Gi i bài toán ng h c ng c c c u Hexapod 6 CTC", H i ngh toàn qu c l n I v C i n t, Hà N i.
- [108] Hoàng Ki m, Lê Hoàng Thái (2000), Gi i thu t di truy n cách gi i t nhiên các bài toán trên máy tính, Nhà xu t b n giáo d c.

- [109] Lê Hoài Qu c (2005), K thu t ng i máy, T p I Robot công nghi p, NXB i
 H c Qu c Gia TP. H Chí Minh, tái b n l n th nh t..
- [110] Lê Hoài Qu c, Nguy n Minh Th nh (2011), "Mô hình hoá c h tay máy song song và xây d ng trung tâm gia công trên máy phay CNC 5 tr c o", *H i ngh toàn qu c v i u khi n và T ng hoá, VCCA-2011*, 25-26/2011, Hà N i, Vi t Nam.
- [111] Lê Qu c Hà (2012), "Nghiên c u thi t k , ch t o tay máy song song v i chân d n ng ph ph c v ng d ng công nghi p", Báo cáo tài KHCN&PTCN B Công Th ng, 2012.
- [112] Lê Thanh Th y, Ph m Anh Tu n, Ph m V n Bích Ng c, Tr n Th ng (2002),
 "Mô ph ng ng l ch c robot c c u song song", H i ngh toàn qu c l n I
 v C i n t , Hà N i.
- [113] Nguy n H ng Thái (2006), "Ch t o th nghi m Robot Hexaglide", H i ngh toàn qu c l n 3 v C i n t , Hà N i.
- [114] Nguy n H ng Thái (2006), "M t k u máy khoan cao t c 2 b c t do có c u trúc ng h c song song", H i ngh toàn qu c l n 3 v C i n t, Hà N i.
- [115] Nguy n Minh Th nh, Tr n Công Tu n, Nguy n Ng c Lâm, Nguy n Minh Thi, Phan V n c (2011), "ng d ng t a Plücker xem xét c u hình suy bi n c a c c u song song", H i ngh toàn qu c v i u khi n và T ng hoá -VCCA-2011, Vi t Nam.
- [116] Nguy n Minh Tu n, ng V n Nghìn (2004), "Nh ng k t qu nghiên c u ban u v Hexapod", H i ngh toàn qu c l n II v C i n t, TP.HCM.
- [117] Nguy n Minh Tu n, ng V n Nghìn (2004), "Phân tích l c và bi n d ng trong h chân Hexapod b ng ph n m m MATLAB", H i ngh toàn qu c l n II v C i n t, TP.HCM.
- [118] Nguy n Ng c Tú, Tr n V n L ng (2007), "Gi i thu t lai cho bài toán s p hàng a trình t sinh h c", T p chí phát tri n KH&CN, t p 10, s 04 2007.
- [119] Nguy n Thi n Phúc, Tr n Minh Ngh a, Nguy n ình Nin (2005), "Nghiên c u t o d ng tay máy song song d ng Hexa", H i ngh toàn qu c l n 6 v T ng hóa, Hà N i.
- [120] Ph m V n B ch Ng c, V Quang Th ng, Tr n Th ng, Ph m Anh Tu n (2004),"Thi t k robot c c u song song (Hexapod) ng d ng trong gia công c khí

chính xác", H i ngh C h c toàn qu c nhân d p 25 n m thành l p Vi n C h c.

- [121] Ph m V n B ch Ng c, V Thanh Quang, Tr n Th ng, Ph m Anh Tu n (2004),
 "Mô ph ng và thi t k Hexapod cho gia công c khí chính xác", H i ngh toàn qu c l n II v C i n t, TP.HCM.
- [122] Thái Th Thu Hà, H Thanh Tâm (2005), "ng d ng tay máy song song trong máy ot a CMM", H i ngh toàn qu c l n 6 v T ng hóa, Hà N i.
- [123] T Di p Công Thành, ng V n Nghìn (2002), "B i u khi n Parallel Robot", H i ngh toàn qu c l n I v C i n t, Hà N i.
- [124] V Minh Hùng, Th Ng c Oanh, Nguy n Huy Th y, Ph m Anh Tu n (2005),
 " i u khi n ph i h p v trí nhi u tr c cho robot c c u song song 6 b c t do Hexapod PR6-01", H i ngh toàn qu c l n 6 v T ng hóa, Hà N i.

Hình PL1.1. Mô hình toán tay máy song song trên Simulink - Matlab

Hình PL1.2. Mô hình gi i bài toán

ng h c ng c tay máy song song trên Simulink – Matlab

Hình PL2.1. C u t o chân d n ng (Vitme- ng c DC)

Hình PL2.2. Chân d n ng th c t

Hình PL2.4. Kh p các ng th c t

Hình PL2.5. C ut ot m chuy n ng

Hình PL2.6. T m chuy n ng th c t

Hình PL2.8 M t ph ng n n th c t

nguyên lý b i u khi n Slave

Hình PL2.10. S nguyên lý b i u khi n Master

Hình PL2.11. M ch i u khi n tay máy song song ki u Stewart–Gough Platform

(*a*)

⁽b)

Hình PL2.12. Mô hình th c nghi m h th ng i u khi n tay máy song song ki u Stewart– Gough Platform

c) Hàm liên thu c c a u(t)

Hình PL3.1. Các hàm liên thu c - B i u khi n m tr c ti p (Direct Fuzzy-PD)

Hình PL3.2. Các hàm liên thu c - B i u khi n Fuzzy-PID

Ph l c 4. K t qu mô ph ng - áp ng các chân d n ng tay máy song song

Tiêu chu n ch t	ng / Tr c	X	Y	Z
v tl (POT)	V trí (%)	0	0	10,57
	Góc h ng (%)	0	0	0
Sais xác l p (e_{xl})	V trí (m)	0,53.10-3	1.10-3	0,57.10 ⁻³
	Góc h ng (rad)	1.10-3	1,1.10-3	0,3.10-3
Th i gian xác l p (t_{xl})	V trí (s)	0	0	4,5
	Góc h ng (s)	0	0	0
Th i gian lên (<i>t</i> _{rise})	V trí (s)	0	0	0,17
	Góc h ng (s)	0	0	0

Ph l c 5. Các tiêu chu n ch t l ng c a b i u khi n tay máy song song B ng PL5.1. Mô ph ng b i u khi n PID

B ng PL5.2. Mô ph ng b i u khi n Direct Fuzzy-PD

Tiêu chu n ch t	l ng / Tr c	X	Y	Z
vtl (POT)	V trí (%)	0	0	1,37
	Góc h ng (%)	0	0	0
Sais xác l p (e_{xl})	V trí (m)	0,1.10-3	0,84.10-3	0,076.10-3
	Góc h ng (rad)	0,5.10-3	0,3.10-3	0,24.10-3
Th i gian xác l p (t_{xl})	V trí (s)	0	0	6,3
	Góc h ng (s)	0	0	0
Th i gian lên (<i>t_{rise}</i>)	V trí (s)	0	0	0,45
	Góc h ng (s)	0	0	0

Tiêu chu n ch t l ng / Tr c		Х	Y	Z
vtl (POT)	V trí (%)	0	0	5
	Góc h ng (%)	0	0	0
Sais xác l p (e_{xl})	V trí (m)	0,03.10-3	0,84.10-3	0,5.10-3
	Góc h ng (rad)	0,32.10 ⁻³	0,28.10-3	0,2.10-3
Th i gian xác l p (t_{xl})	V trí (s)	0	0	3,9
	Góc h ng (s)	0	0	0
Th i gian lên (<i>t</i> _{rise})	V trí (s)	0	0	0,41
	Góc h ng (s)	0	0	0

B ng PL5.3. Mô ph ng b i u khi n Fuzzy-PID

B ng PL5.4. Th c nghi m b i u khi n PID

Tiêu chu n ch t	ng / Tr c	Х	Y	Z
vtl (POT)	V trí (%)	0	0	0
	Góc h ng (%)	0	0	0
Sais xác l p (e_{xl})	V trí (m)	1.10-3	1,5.10-3	1,7.10-3
	Góc h ng (rad)	1,8.10-3	2.10 ⁻³	2.10 ⁻³
Th i gian xác l p (t_{xl})	V trí (s)	0	0	5,7
	Góc h ng (s)	0	0	0
Th i gian lên (<i>t_{rise}</i>)	V trí (s)	0	0	3,7
	Góc h ng (s)	0	0	0

Tiêu chu n ch t l ng / Tr c		X	Y	Z
vtl (POT)	V trí (%)	0	0	0
	Góc h ng (%)	0	0	0
Sais xác l p (e_{xl})	V trí (m)	1.10-3	1.10-3	1,5.10-3
	Góc h ng (rad)	1,7.10-3	1,6.10-3	1,6.10-3
Th i gian xác l p (t_{xl})	V trí (s)	0	0	5,7
	Góc h ng (s)	0	0	0
Th i gian lên (<i>t</i> _{rise})	V trí (s)	0	0	3,7
	Góc h ng (s)	0	0	0

B ng PL5.5. Th c nghi m b i u khi n Fuzzy-PID

Ph l c 6. K t qu th c nghi m - áp ng các chân d n ng tay máy song song

160

