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Abstract
We study asymptotic behavior of solutions of a periodically nonlinear elasticity problem in one-dimensional and strain-
limiting settings.
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Tóm tắt
Chúng tôi nghiên cứu dáng điệu tiệm cận nghiệm của bài toán đàn hồi phi tuyến tuần hoàn trong thiết lập một chiều và
giới hạn biến dạng.

Từ khóa: Dáng điệu tiệm cận, đồng nhất hóa, tuần hoàn, độ đàn hồi phi tuyến, giới hạn biến dạng.

1. Introduction

As a model reduction approach for tackling
multiscale problems, homogenization means up-
scaling the material properties to capture macro-
scopic behaviors. Toward homogenization inves-
tigation of our considering nonlinear elasticity
models, we focus on a periodic strain-limiting
problem. (The strain-limiting parameter in this
paper is a function depending on the position
variable, which is different from the constant in
[1, 2].) In particular, we study asymptotic be-
havior of solutions of a periodically nonlinear

elasticity problem in one-dimensional and strain-
limiting settings.

2. Formulation of the problem

2.1. Classical formulation

We consider, as in Figure 1 in the x-direction,
the spatially periodic 1D composite rod consist-
ing of alternating layers of nonlinear elastic ma-
terials Ω(1) and Ω(2). The microscopic size l cor-
responds to the length of a periodically repeated
base cell. The macroscopic size of the entire
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Hình 1. Layered composite structure (from [3]).

sampling Ω⊂R of the rod is denoted by L. With-
out loss of generality, we choose l = ε (the period
of the structure) and take L = 1 so that

ε= l

L
= ε

1
= kε

k1
. (1)

Here,
x

ε
represents the local position.

We assume that the rod is at a static state
after the action of body forces (along the rod)
f : Ω→ R and traction forces G : ∂ΩT → R. The
boundary of the set Ω is denoted by ∂Ω. It is
Lipschitz continuous and consists of two parts
∂ΩT and ∂ΩD . The displacement u : Ω → R is
provided on ∂ΩD . We are considering the strain-
limiting model of the form (as in [1])

E = σ

1+β(x)|σ| . (2)

Equivalently,

σ= E

1−β(x)|E | . (3)

In Eqs. (2) and (3), β(x) will be introduced in the
next paragraph, σ stands for the Cauchy stress
σ : Ω → R; and E represents the classical lin-
earized strain tensor

E := 1

2
(∇u +∇uT) . (4)

In one-dimensional setting, it is

E := u′ , (5)

that is, the spatial derivative of u. Hence, by (3),

σ= u′

1−β(x)|u′| . (6)

The strain-limiting parameter function is rep-
resented by β(x), which depends on the position
variable x, and it is constant over each layer, with
βε(x) =β(ε−1x). We obtain from (2) that

|E | = |σ|
1+β(x)|σ| <

1

β(x)
. (7)

This implies that
1

β(x)
is the upper-bound on

|E | and taking sufficiently large β(x) gives the
limiting-strain small upper-bound, as desired.
However, we stay away from too large β(x). If

β(x) →∞ then |E | < 1

β(x)
→ 0, a contradiction.

Moreover, we assume that β(x) is smooth and
have compact range 0 < m ≤ β(x) ≤ M . Also, it
is assumed that

β(x) =
{
β1 if j l < x < ( j +α)l for some j ∈N ,

β2 otherwise .
(8)

Here, β1 and β2 are taken so that the strong ellip-
ticity condition [1] is satisfied. Practically, the re-
quirement of strong point-wise ellipticity in each
layer is not necessary. The reason is that all the
important instability phenomena occur rather be-
low the stress levels corresponding to the loss of
ellipticity of the weakest layer (see [4, 5]).
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2.2. Function spaces
Our considered space is V := H 1

0 (Ω). Never-
theless, the methods here can be applied to more
general space H p

0 (Ω), where 2 ≤ p < ∞. The
space W 1,2

0 (Ω) is of interest because we can de-
scribe displacements that vanish on the boundary
∂Ω of Ω.

We denote by H−1(Ω) the dual space, which
is the space of continuous linear functionals on
H 1

0 (Ω), and the value of a functional b ∈ H−1(Ω)
at a point v ∈ H 1

0 (Ω) is represented by 〈b, v〉. The
Sobolev norm ‖ ·‖H 1

0 (Ω) is of the form

‖v‖H 1
0 (Ω) = ‖v‖H 1(Ω) :=

(
‖v‖2

L2(Ω) +‖∇v‖2
L2(Ω)

) 1
2

.

The dual norm to ‖ ·‖H 1
0 (Ω) is ‖ ·‖H−1(Ω).

Let Ω be a bounded, connected, open, Lips-
chitz domain of R,

f ∈ H 1
∗(Ω) =

{
g ∈ H 1(Ω)

∣∣∣∣
ˆ

Ω

g d x = 0

}
.

We consider the following problem: Find u ∈
H 1(Ω) and σ ∈ L1(Ω) ([6]) such that

−div(σ) = f in Ω ,

σ= u′

1−β(x)|u′| in Ω ,

u = 0 on ∂ΩD ,

σ=G on ∂ΩT .

(9)

The considered model (2) is compatible with
the laws of thermodynamics [7, 8], that is, the
class of materials are elastic and non-dissipative.

For the later use, we consider uε(x) ∈
W 1,2

0 (Ω). Assume that uε(x) = u
(x

ε

)
is a peri-

odic function in x with period ε. Equivalently,
u(y) = u

(x

ε

)
is a periodic function in y with pe-

riod 1. This implies that for any integer k,

uε(x) = uε(x +ε) = uε(x +kε) ,

correspondingly,

u
(x

ε

)
= u

(x

ε
+1

)
= u

(x

ε
+k1

)
= u(y +k) .

This observation supports the expressions of ε in
(1). (Note that the spatial periodicity of the com-
posite produces the same periodicity for u.)

For simplicity, we assume perfect bonding
conditions at the interface ∂Ω between the layers,
that is, the displacement and traction are contin-
uous across each interface for all possible defor-
mations:

(uε)(1) = (uε)(2) on ∂Ω ,

(σε)(1) = (σε)(2) on ∂ΩT .
(10)

We assume ∂ΩT =�. In homogenization the-
ory, using (9), we rewrite the considered formu-
lation in the form of displacement problem: Find
u ∈ H 1(Ω) such that

−div
(

u′
ε

1−βε(x)
∣∣u′

ε

∣∣
)
= f in Ω , (11)

uε = 0 (uε)(1) = (uε)(2) on ∂Ω . (12)

Let

aε(x,u′
ε) = u′

ε

1−βε(x)
∣∣u′

ε

∣∣ , (13)

in which uε(x) ∈W 1,2
0 (Ω).

3. Existence and uniqueness

In [9], the existence and uniqueness of solu-
tion to (11)-(12) is proved and thanks to the fol-
lowing Lemma ([9, 10, 11]).

Lemma 3.1. Let

Z :=
{
ζ ∈ L∞(Ω)

∣∣∣ 0 ≤ |ζ| < 1

M

}
. (14)

For any ξ ∈Z , consider the mapping

ξ ∈Z �→ F (ξ) := ξ

1−βε(x)|ξ| ∈R .

Then, for each ξ1,ξ2 ∈Z , we have

|F (ξ1)−F (ξ2)| ≤ |ξ1 −ξ2|
(1−βε(x)(|ξ1|+ |ξ2|))2

, (15)

(F (ξ1)−F (ξ2))(ξ1 −ξ2) ≥ |ξ1 −ξ2|2 . (16)

In our case of 1D, the solution u can be ob-
tained directly from (11)-(12).
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4. Asymptotic behavior of solutions

Now, we want to investigate the asymptotic
behavior of the solutions uε of the following
problem (in periodic case)





−div a
(x

ε
,u′

ε

)
= f on Ω ,

uε ∈ H 1
0 (Ω) ,

(17)

as ε→ 0. We will prove that uε converges weakly
in H 1

0 (Ω) to the solution u∗ of the problem
{

−div â
(
u′∗

)= f on Ω ,

u∗ ∈ H 1
0 (Ω) ,

(18)

whose representation can be obtained from a.
The weak formulation of (17) is as follows:





ˆ

Ω

(
a

(x

ε
,u′

ε

))
φ′ d x =

ˆ

Ω

f φd x ,∀φ ∈V ,

uε ∈ H 1
0 (Ω) .

(19)

Let Y be the unit period in R. We denote
by W 1,2

per (Y ) the set of all mean value zero func-
tions in the Sobolev space W 1,2(Y ). The homog-
enization results for periodic case are stated and
proved below, thanks to [12, 13, 14].

Theorem 4.1 ([13]). Let uε be the solutions of
(19), where a is 1-periodic, piecewise continu-
ous in the first variable, and satisfies the bound-
edness a(x,0) = 0 as well as continuity condition
(16) and monotonicity condition (15) on the sec-
ond variable. Then,

uε � u0 in H 1
0 (Ω) ,

a
(x

ε
,u′

ε

)
� â(u′

0) in L2(Ω) ,

as ε→ 0, where u0 is the unique solution of




ˆ

Ω

(
â

(
u′

0

))
φ′ d x =

ˆ

Ω

f φd x ∀φ ∈ H 1
0 (Ω) ,

u0 ∈ H 1
0 (Ω) .

(20)

The operator â is defined as

â(ξ) =
ˆ

Y
a

(
y,ξ+D y vξ

)
d y , (21)

where vξ is the unique solution of the cell prob-
lem




ˆ

Y

(
a

(
y,ξ+D y vξ

))
φd y = 0 ∀φ ∈W 1,2

per (Y ) ,

vξ ∈W 1,2
per (Y ) .

(22)

Proof. First, we note that uε and a
(x

ε
,u′

ε

)
are

bounded in H 1(Ω) and L2(Ω), respectively. In-
deed, let φ = uε in (19), then it follows from the
coercivity of a and (19) that

∥∥u′
ε

∥∥2
L2(Ω) =

ˆ

Ω

∣∣u′
ε

∣∣2 d x

≤
ˆ

Ω

a
(x

ε
,u′

ε

)
u′
ε d x

≤ ‖ f ‖H−1(Ω)‖uε‖H 1(Ω)

≤ c‖uε‖H 1(Ω) .

(23)

The Poincaré inequality

‖uε‖L2(Ω) ≤
∥∥u′

ε

∥∥
L2(Ω)

leads to

∥∥u′
ε

∥∥
L2(Ω) ≤ ‖uε‖H 1(Ω) =

(
‖uε‖2

L2(Ω) +
∥∥u′

ε

∥∥2
L2(Ω)

)1/2

≤
�

2
∥∥u′

ε

∥∥
L2(Ω) .

This means that the norms
∥∥u′

ε

∥∥
L2(Ω) and

‖uε‖H 1(Ω) on H 1
0 (Ω) are equivalent. Thus,

1

2
‖uε‖2

H 1(Ω) ≤
∥∥u′

ε

∥∥2
L2(Ω) .

Taking (23) into account, we obtain

1

2
‖uε‖2

H 1(Ω) ≤
∥∥u′

ε

∥∥2
L2(Ω) ≤ c‖uε‖H 1(Ω) ,

which implies

‖uε‖H 1(Ω) ≤ 2c .

The desired boundedness of the sequence uε in
H 1(Ω) then follows. Thus, there exists a subse-
quence, still denoted by uε such that

uε � u∗ in H 1
0 (Ω) .
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It follows that a
(x

ε
,u′

ε

)
is bounded in L2(Ω).

Indeed, by the boundedness a(x,0) = 0 and the
growth condition of a and (23), we obtain

∥∥∥a
(x

ε
,u′

ε

)∥∥∥
2

L2(Ω)
=
ˆ

Ω

∣∣∣a
(x

ε
,u′

ε

)∣∣∣
2

d x (24)

≤ c

ˆ

Ω

∣∣u′
ε

∣∣2 d x

≤ c‖uε‖2
H 1(Ω)

≤C ,

where the constant C is independent of ε. This
means that there is a subsequence, still denoted
by a

(x

ε
,u′

ε

)
such that

a
(x

ε
,u′

ε

)
� η∗(x) in L2(Ω) ,

One can show (using the ideas from the proof of
Theorem 11.2 in [15]) that

η∗(x)(= â(u∗)) = ã(x,u′
∗) , a.e. in Ω

for some ã ∈ Mon(1,α;Ω) (notation in [15]), and
the following equation is satisfied (see [14]):

−divη∗(x) = f on Ω .

that is,
−div ã(x,u′

∗) = f on Ω ,

with the unique solution u∗.
In our special case p = 2 for (19), the exis-

tence and uniqueness of weak solution has been
verified in [10]. Also, from (19), we have that




ˆ

Ω

(
a

(x

ε
,u′

ε

))
φ′ d x =

ˆ

Ω

f φd x , ∀φ ∈V ,

uε ∈ H 1
0 (Ω) .

(25)

Passing to limit when ε→ 0, we obtain
ˆ

Ω

η∗φ′ d x =
ˆ

Ω

f φd x , ∀φ ∈ H 1
0 (Ω) .

This means especially that (see [13])
ˆ

Ω

η∗φ′ d x =
ˆ

Ω

f φd x , ∀φ ∈C∞
0 (Ω) .

If we can show that

η∗ = â
(
u′
∗
)

, for a.e. x ∈Ω , (26)

then it follows by the uniqueness of the solution
of the homogenized problem (20) that u∗ = u0.

To this end, we fix ξ and let uξ
ε be defined as

the unique solution of the auxiliary problem





ˆ

Y

(
a

(
y,ξ+Duξ

ε

))
φ′ d x = 0, ∀φ ∈W 1,2

per (Y ) ,

uξ
ε ∈W 1,2

per (Y ) ,

(27)

such that

â(ξ) =
ˆ

Y
a

(
y,ξ+Duξ

ε

)
d y ,

(recall that â was defined in (21)).
Now, we define

wξ
ε (x) = ξx +εuξ

ε

(x

ε

)
.

Then,





wξ
ε � ξx in H 1(Ω) ,

Dx wξ
ε � ξ in L2(Ω) ,

a
(x

ε
,Dwξ

ε

)
� â(ξ) in L2(Ω) ,

−divx a
(x

ε
,Dwξ

ε

)
= 0 on Ω .

Based on the monotonicity of a, we have
ˆ

Ω

(
a

(x

ε
,Duε

)
−a

(x

ε
,Dwξ

ε

))
(Duε−Dwξ

ε )φ≥ 0,

for any nonnegative φ ∈C∞
0 (Ω).

The compensated compactness (Div-Curl
Lemma) and periodicity then implies that

ˆ

Ω

(η∗(x)− â(ξ))(Du∗−ξ)φd x ≥ 0,

for any nonnegative φ ∈C∞
0 (Ω). Hence, for a fix

ξ ∈R as in our setting, we have that

(η∗(x)− â(ξ))(Du∗(x)−ξ) ≥ 0 for a.e. x ∈Ω .
(28)
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In particular, if (ξm) is a countable dense subset
in R, then (28) implies that

(η∗(x)−â(ξm))(Du∗(x)−ξm) ≥ 0 for a.e. x ∈Ω .
(29)

By the continuity of â (readily), it follows that

(η∗(x)− â(ξ))(Du∗(x)−ξ) ≥ 0 for a.e. x ∈Ω ,

and for every ξ ∈ R . Since â is monotone and
continuous, we have that â is maximal mono-
tone. This means η∗(x) = â(Du∗), and we obtain
the desired result.

5. Conclusions

In this paper, we investigate asymptotic be-
havior of solutions for a periodically nonlinear
elasticity problem in one-dimensional and strain-
limiting settings. By analysis, we obtained the
limit of the solutions. An open question is ex-
tending this study to higher dimensions and more
general settings.
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