BỘ GIÁO DỤC VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ

_ _ _ _ _ _ _ _ _ _ _ _

DƯƠNG VĂN LỢI

MỘT SỐ HIỆU ỨNG VẬT LÝ MỚI TRONG MÔ HÌNH $3-2-3-1 \ {\rm V\AA} \ 3-4-1$

LUẬN ÁN TIẾN SĨ VẬT LÝ

HÀ NỘI - 2018

BỘ GIÁO DỤC VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ

- - - - - - - - - - - - -

DƯƠNG VĂN LỢI

MỘT SỐ HIỆU ỨNG VẬT LÝ MỚI TRONG MÔ HÌNH $3-2-3-1 \ {\rm V\AA} \ 3-4-1$

Chuyên ngành: Vật lý t
huyết và Vật lý toán Mã số: $62\ 44\ 01\ 03$

LUẬN ÁN TIẾN SĨ VẬT LÝ

NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TS. HOÀNG NGỌC LONG

LỜI CẢM ƠN

Trước tiên, tôi xin chân thành cảm ơn GS.TS. Hoàng Ngọc Long, người thầy luôn nghiêm khắc trong chuyên môn, thân thiện trong đời sống, và hết lòng thương yêu học trò. Thầy là cầu nối đưa tôi đến với Lý thuyết trường, một lĩnh vực khó của Vật lý nhưng cũng rất nhiều thú vị. Tôi hãnh diện vì được làm học trò của thầy. Kính chúc thầy luôn luôn mạnh khỏe.

Tôi xin cảm ơn các thành viên trong Nhóm Lý thuyết trường và Hạt cơ bản - Trung tâm Vật lý lý thuyết - Viện Vật lý - Học viện Khoa học và Công nghệ đã tạo nhiều điều kiện thuận lợi giúp đỡ tôi trong suốt thời gian tôi làm nghiên cứu sinh. Đặc biệt, tôi xin cảm ơn TS. Phùng Văn Đồng, TS. Đỗ Thị Hương, TS. Lê Thọ Huệ, và một số đồng nghiệp đã cộng tác, đồng ý cho tôi sử dụng các công bố chứa các kết quả liên quan đến nội dung luận án.

Tôi xin cảm ơn các đồng chí lãnh đạo và các đồng nghiệp tại Trường Đại học Tây Bắc đã có những hỗ trợ, động viên cần thiết trong thời gian tôi làm nghiên cứu sinh.

Tôi xin cảm ơn các đồng chí lãnh đạo và các nhân viên Viện Vật lý -Học viện Khoa học và Công nghệ đã giúp đỡ tôi hoàn thành các thủ tục hành chính trong quá trình học tập, nghiên cứu, và bảo vệ luận án.

Cuối cùng, tôi xin dành sự biết ơn tới gia đình đã luôn động viên, ủng hộ, và hỗ trợ vô điều kiện về mọi mặt để tôi có thể yên tâm nghiên cứu và hoàn thành luận án này.

LỜI CAM ĐOAN

Luận án này được tôi hoàn thành dưới sự hướng dẫn của GS.TS. Hoàng Ngọc Long. Tôi xin cam đoan những kết quả trình bày trong luận án là do bản thân tôi đã thực hiện trong thời gian làm nghiên cứu sinh. Cụ thể, chương 1 là phần tổng quan giới thiệu những vấn đề cơ sở có liên quan đến luận án. Trong chương 2, tôi sử dụng các kết quả nghiên cứu mà tôi đã thực hiện cùng với TS. Phùng Văn Đồng, TS. Đỗ Thị Hương, NCS Nguyễn Thị Nhuần, và NCS Nguyễn Thị Kim Ngân. Trong chương 3, tôi sử dụng các kết quả nghiên cứu mà tôi đã thực hiện cùng với thầy hướng dẫn và TS. Lê Thọ Huệ. Cuối cùng, tôi xin khẳng định các kết quả có trong luận án "Một số hiệu ứng vật lý mới trong mô hình 3 - 2 - 3 - 1 và 3 - 4 - 1" là kết quả mới, không trùng lặp với kết quả của các luận án và công trình đã có.

Tác giả luận án

Dương Văn Lợi

MỤC LỤC

	Lời cảm ơn	i
	Lời cam đoan	ii
	Danh mục các từ viết tắt	\mathbf{v}
	Danh sách bảng	\mathbf{vi}
	Danh sách hình vẽ	vii
	Mở đầu	1
Chươi	ng 1. Tổng quan	6
1.1.	Mô hình chuẩn	6
1.2.	Các mô hình mở rộng	11
	1.2.1. Mô hình đối xứng trái-phải tối thiểu	11
	1.2.2. Các mô hình $3 - 3 - 1$	13
	1.2.3. Các mô hình $3 - 4 - 1$	15
1.3.	Kết luận chương 1	16
Chươi	ng 2. Hiện tượng luận trong mô hình $3-2-3-1\ldots$	18
2.1.	Mô hình	18
2.2.	Phần vô hướng	23
2.3.	Phần gauge	30
2.4.	Tương tác	36
	2.4.1. Tương tác fermion-gauge boson	36
	2.4.2. Tương tác vô hướng-gauge boson	40

2.5.	Hiệu ứng vật lý mới và các giới hạn	41
	2.5.1. ρ và các tham số trộn lẫn	41
	2.5.2. Dòng trung hòa thay đổi vị	46
2.6.	Kết luận chương 2	56
Chươ	ng 3. Hiện tượng luận trong mô hình $3-4-1$ tối thiểu v	ới
	neutrino phân cực phải	58
3.1.	Mô hình $3-4-1$ tổng quát $\dots \dots \dots \dots$	58
	3.1.1. Khử dị thường và lượng fermion	58
	3.1.2. Tương tác Yukawa và khối lượng fermion	64
	3.1.3. Khối lượng gauge boson	66
3.2.	Mô hình $3-4-1$ tối thiểu với neutrino phân cực phải.	73
	3.2.1. Mô hình	73
	3.2.2. Phần gauge	77
	3.2.3. Các dòng	83
	3.2.4. Thế Higgs	85
	3.2.5. W boson và các giới hạn	91
3.3.	Kết luận chương 3	93
	Kết luận chung	95
	Những đóng góp mới của luận án	97
	Danh mục các công trình đã công bố	98
	Tài liệu tham khảo	99
	Phụ lục A. Tương tác vô hướng-gauge boson	111
	Phụ lục B. Bề rộng rã muon	133

DANH MỤC CÁC TỪ VIẾT TẮT

Viết tắt	Tên
ATLAS	A Toroidal LHC ApparatuS
CKM	Cabibbo-Kobayashi-Maskawa
CMS	Compact Muon Solenoid
DCH	Higgs tích điện đôi
FCNCs	Dòng trung hòa thay đổi vị
LFV	Vi phạm vị lepton
LHC	Máy gia tốc năng lượng cao
LNC	Bảo toàn số lepton thế hệ
M331	Mô hình $3 - 3 - 1$ tối thiểu
M3221	Mô hình đối xứng trái-phải tối thiểu
QCD	Sắc động học lượng tử
SCH	Higgs tích điện đơn
SM	Mô hình chuẩn
SSB	Phá vỡ đối xứng tự phát
VEV	Giá trị trung bình chân không
ν 331	Mô hình $3 - 3 - 1$ với neutrino phân cực phải

DANH SÁCH BẢNG

2.1	Hằng số tương tác của Z với các fermion 40
2.2	Hằng số tương tác của \mathcal{Z}_1 với các fermion
2.3	Hằng số tương tác của \mathcal{Z}'_1 với các fermion 42
3.1	Tích ${\mathcal B}$ và ${\mathcal L}$ của các đa tuyến trong mô hình $3-4-1$ tối thiểu
	với neutrino phân cực phải
3.2	Số lepton L khác không của các trường Higgs trong mô hình
	3-4-1tối thiểu với neutrino phân cực phải
3.3	Số lepton L khác không của các fermion trong mô hình $3-4-1$
	tối thiểu với neutrino phân cực phải

DANH SÁCH HÌNH VẼ

2.1	Miền vật lý mới khả dĩ cho trường hợp $\beta = -1/\sqrt{3}$ với các giới
	hạn $0.00016 < \Delta \rho < 0.00064, \xi = \epsilon_1 = \epsilon_2 = \pm 10^{-3}$ 43
2.2	Miền vật lý mới khả dĩ cho trường hợp $\beta=0$ với các giới hạn
	$0.00016 < \Delta \rho < 0.00064, \ \xi = \epsilon_1 = \epsilon_2 = \pm 10^{-3}.$
2.3	Miền vật lý mới khả dĩ cho trường hợp $\beta=1/\sqrt{3}$ với các giới
	hạn $0.00016 < \Delta \rho < 0.00064, \ \xi = \epsilon_1 = \epsilon_2 = \pm 10^{-3}$
2.4	Miền giới hạn (V_{uR}, V_{dR}) đến từ các hiệu khối lượng meson
	$\Delta m_{K,B_d,B_s}$ với thang vật lý mới $M = 5$ TeV
2.5	Miền giới hạn (V_{uR}, V_{dR}) đến từ các hiệu khối lượng meson
	$\Delta m_{K,B_d,B_s}$ với thang vật lý mới $M = 10$ TeV
2.6	Miền giới hạn (M, V_{dR}) đến từ các hiệu khối lượng meson
	$\Delta m_{K,B_d,B_s} \text{ với } V_{uR} = 0.05. \dots \dots$
2.7	Miền giới hạn (M, V_{dR}) đến từ các hiệu khối lượng meson
	$\Delta m_{K,B_d,B_s} \text{ với } V_{uR} = 0.1. \dots $
2.8	Miền giới hạn (M, V_{dR}) đến từ các hiệu khối lượng meson
	$\Delta m_{K,B_d,B_s}$ với $V_{uR} = 0.15.$
3.1	Giản đồ Feynman cho đóng góp vào rã muon với kênh rã chính
	(hình bên trái) và kênh rã sai (hình bên phải). $\dots \dots \dots \dots \dots \dots 92$

MỞ ĐẦU

Lý do chọn đề tài

Mô hình chuẩn (SM) là lý thuyết mô tả rất tốt ba loại tương tác cơ bản và đã được thực nghiệm kiểm chứng. Tuy nhiên, SM vẫn chưa giải thích được một số vấn đề như số thế hệ fermion bằng 3, khối lượng nhỏ của neutrino, sự tồn tại của vật chất tối. Đồng thời, một số kết quả trong SM liên quan tới tham số ρ , các hiệu khối lượng meson trung hòa, bề rộng rã của W boson, ... chưa trùng khớp với thực nghiệm, tuy sự sai khác là rất nhỏ [1–6]. Nhiều dấu hiệu khác cũng chỉ ra rằng SM chỉ là lý thuyết hiệu dụng của một lý thuyết mở rộng tổng quát hơn. Do đó, việc xây dựng các lý thuyết mở rộng nhằm giải quyết các vấn đề đang tồn tại là rất tự nhiên và cần thiết.

Trong các hướng mở rộng SM, hướng mở rộng nhóm đối xứng chuẩn phần điện yếu được rất nhiều nhà khoa học quan tâm. Theo đó, nhiều mô hình mở rộng đã được xây dựng như mô hình đối xứng trái-phải tối thiểu (M3221) [7–14], các mô hình 3 – 3 – 1 [15–22]. M3221 là một trong các hướng mở rộng thu hút nhất của SM. M3221 đóng vai trò quan trọng trong việc phát triển lý thuyết về khối lượng neutrino và sớm chỉ ra khối lượng neutrino khác không trước khi thực nghiệm xác nhận. Thế nhưng, giống như SM, hạn chế lớn nhất của M3221 là không giải thích được sự tồn tại của vật chất tối - lượng vật chất chiếm tới khoảng 23% trong Vũ trụ [23,24]. Các mô hình 3 – 3 – 1 vừa giải quyết tốt vấn đề số thế hệ fermion, vừa giải quyết được cả vấn đề khối lượng neutrino và vật chất tối nhưng phải thêm các đối xứng gián đoạn hoặc các trường, điều này là không tự nhiên [25–27].

Cũng theo hướng mở rộng nhóm đối xứng chuẩn phần điện yếu, mô hình

xây dựng dựa trên cơ sở nhóm chuẩn $SU(3)_C \otimes SU(2)_L \otimes SU(3)_R \otimes U(1)_X$ (mô hình 3 - 2 - 3 - 1) vừa mới được đề xuất [28]. Mô hình 3 - 2 - 3 - 1 có thể giải quyết tốt các vấn đề ngoài phạm vi SM nêu ra ở trên. Đối xứng chuẩn mới của mô hình cho phép giải thích số thế hệ fermion là 3, và dòng trung hòa thay đổi vị (FCNCs) ở gần đúng cây xuất hiện trong cả phần gauge và phần vô hướng. Đây có thể là nguồn mới để giải quyết các dị thường vật lý và các vấn đề khác. Hơn nữa, mô hình cũng cho khối lượng nhỏ của neutrino cũng như các ứng cử viên vật chất tối một cách tự nhiên.

Bên cạnh đó, mô hình mở rộng xây dựng dựa trên cơ sở nhóm chuẩn $SU(3)_C \otimes SU(4)_L \otimes U(1)_X$ (mô hình 3 - 4 - 1) cũng là một sự mở rộng tự nhiên và hợp lý [20,29,30]. Mô hình 3 - 4 - 1 có thể có hai thang phá vỡ tại năng lượng cao giúp nó dễ dàng đáp ứng các yêu cầu của thực nghiệm, chẳng hạn như giá trị thực nghiệm của dị thường moment từ muon $(g - 2)_{\mu}$ đòi hỏi thang vật lý mới cỡ vài trăm GeV, trong khi FCNCs lại yêu cầu một thang năng lượng cỡ vài TeV. Hơn nữa, trong một số mô hình 3 - 4 - 1 cụ thể, đa tuyến lepton có chứa tất cả các lepton (trái, phải) của SM và neutrino phân cực phải - thành phần quan trọng để giải quyết vấn đề khối lượng neutrino. Dây là một sự sắp xếp hợp lý và chỉ có trong các mô hình 3 - 4 - 1. Ngoài ra, phần Higgs vật lý - một phần rất quan trọng của mô hình nhưng lại chưa được nghiên cứu đầy đủ và chi tiết.

Do vậy, chúng tôi đã tập trung nghiên cứu hai mô hình mở rộng ở trên. Mô hình 3 - 4 - 1 cụ thể được chúng tôi nghiên cứu có thể xem là sự kết hợp của mô hình 3 - 3 - 1 tối thiểu (M331) [16–18] và mô hình 3 - 3 - 1 với neutrino phân cực phải (ν 331) [15, 19–22] nên được gọi là mô hình 3 - 4 - 1tối thiểu với neutrino phân cực phải. Ngoài việc khảo sát các phần cơ bản của hai mô hình như sự sắp xếp các fermion dưới nhóm đối xứng chuẩn, phần gauge, phần vô hướng, các dòng, ... nhằm tìm lại các hạt và các tương tác của SM, đồng thời dự đoán các hạt mới và các tương tác mới, chúng tôi cũng xem xét các đóng góp của vật lý mới vào các quá trình đã biết như sự trộn của các meson trung hòa hay các kênh rã của muon, từ đó chúng tôi tìm giới hạn cho một vài tham số trong hai mô hình. Với các lý do trên, chúng tôi chọn đề tài "Một số hiệu ứng vật lý mới trong mô hình 3-2-3-1 và 3-4-1".

Mục đích nghiên cứu

- Khảo sát phần vô hướng, phần gauge, và các dòng trong mô hình 3 2 3 1 và mô hình 3 4 1 tối thiểu với neutrino phân cực phải. Đồng nhất các hạt và các tương tác của SM cũng như dự đoán các hạt mới và các tương tác mới.
- Giải quyết vấn đề số thế hệ fermion, khối lượng neutrino. Xác định các ứng cử viên vật chất tối trong mô hình 3 2 3 1.
- Khảo sát một số hiệu ứng vật lý mới và tìm giới hạn cho một vài tham số trong hai mô hình.

Đối tượng và phạm vi nghiên cứu

- Đối xứng chuẩn, sự sắp xếp các fermion, phần vô hướng, phần gauge, các dòng, ρ và các tham số trộn lẫn, FCNCs, và một vài tham số trong mô hình 3 2 3 1.
- Đối xứng chuẩn, vấn đề khử dị thường, tương tác Yukawa và khối lượng fermion, phần gauge boson trong mô hình 3-4-1 với điện tích bất kỳ của các lepton mới.
- Sự sắp xếp các fermion, phần gauge, các dòng, thế Higgs, các kênh rã của W boson và muon, và một vài tham số trong mô hình 3 − 4 − 1 tối thiểu với neutrino phân cực phải.

Nội dung nghiên cứu

- Tổng quan về SM và một số hướng mở rộng của SM.
- Khảo sát mô hình 3-2-3-1 với điện tích bất kỳ của các lepton mới. Tìm phổ hạt phần gauge và phần vô hướng, xác định các dòng. Thảo

luận vấn đề số thế hệ fermion, khối lượng neutrino, và xác định các ứng cử viên vật chất tối trong mô hình. Khảo sát một số hiệu ứng vật lý mới liên quan đến tham số ρ và FCNCs.

Khảo sát mô hình 3 – 4 – 1 với điện tích bất kỳ của các lepton mới. Xem xét các điều kiện khử dị thường, tương tác Yukawa và khối lượng fermion, khối lượng gauge boson. Khảo sát mô hình 3 – 4 – 1 tối thiểu với neutrino phân cực phải. Phân tích chi tiết các dòng và nhất là thế Higgs. Xem xét các kênh rã của W boson và muon.

Phương pháp nghiên cứu

- Lý thuyết trường lượng tử.
- Lý thuyết nhóm.
- Sử dụng phần mềm Mathematica tính số và vẽ đồ thị.

Bố cục của luận án

Ngoài phần mở đầu, kết luận chung, và phụ lục, nội dung chính của luận án được chúng tôi trình bày trong 3 chương.

Chương 1. Tổng quan: Chúng tôi giới thiệu sơ lược về SM và một số mô hình mở rộng.

Chương 2. Hiện tượng luận trong mô hình 3-2-3-1: Chúng tôi khảo sát phần vô hướng, phần gauge, xác định các dòng, đồng nhất các hạt SM. Chúng tôi thảo luận vấn đề số thế hệ fermion, khối lượng neutrino, và tìm các ứng cử viên vật chất tối trong mô hình. Chúng tôi xem xét một số hiệu ứng vật lý mới liên quan đến tham số ρ và FCNCs, từ đó xác định giới hạn cho thang vật lý mới và các yếu tố của ma trận trộn quark phân cực phải.

Chương 3. Hiện tượng luận trong mô hình 3-4-1 tối thiểu với neutrino phân cực phải: Trước tiên, chúng tôi kiểm tra điều kiện khử dị thường của các mô hình 3-4-1 và phân tích mô hình 3-4-1 với điện tích bất kỳ của các lepton mới. Sau đó, chúng tôi khảo sát mô hình 3-4-1 tối thiểu

với neutrino phân cực phải. Từ sự sắp xếp các fermion, phần gauge, các dòng, và nhất là thế Higgs sẽ được chúng tôi thảo luận chi tiết. Ngoài ra, chúng tôi cũng xem xét các kênh rã của W boson và muon, từ đó tìm giới hạn cho một vài tham số trong mô hình.

CHƯƠNG 1. TỔNG QUAN

Trong Vật lý nói riêng cũng như nhiều ngành khoa học cơ bản khác nói chung, chúng ta luôn cố gắng hệ thống hóa và tìm các khái niệm mang tính tổng quát. Một sự hệ thống hóa như thế là đi tìm các thành phần cơ bản nhất tạo nên thế giới vật chất xung quanh chúng ta. Một sự hệ thống hóa khác là tìm ra và thống nhất các tương tác giữa chúng.

1.1. Mô hình chuẩn

Được đánh giá là một trong những thành công nhất của lĩnh vực Vật lý Hạt cơ bản thế kỷ XX, SM là lý thuyết mô tả rất tốt ba loại tương tác cơ bản gồm tương tác yếu, tương tác điện từ, và tương tác mạnh. Với việc tìm ra hạt Higgs vào cuối năm 2012 bởi máy gia tốc năng lượng cao (LHC) tại Trung tâm nghiên cứu hạt nhân Châu Âu bằng hai thiết bị đo độc lập là ATLAS và CMS, các tiên đoán của SM đều đã được thực nghiệm xác nhận. SM đã giải thích gần như trọn vẹn mọi hiện tượng vi mô liên quan đến vật chất thông thường trong Vũ trụ với độ chính xác rất cao.

SM được xây dựng dựa trên cơ sở nhóm đối xứng chuẩn $SU(3)_C \otimes$ $SU(2)_L \otimes U(1)_Y (3-2-1)$ [31–35]. Trong đó, $SU(3)_C$ là nhóm đối xứng không Abel mô tả tương tác mạnh và tác động lên các quark mang tích màu. Có tám hạt truyền tương tác mạnh là các gauge boson không khối lượng (gluon). $SU(2)_L$ là nhóm spin đồng vị không Abel và tác động lên các fermion phân cực trái. $U(1)_Y$ là nhóm chuẩn gắn với số lượng tử siêu tích yếu Y. Nhóm đối xứng $SU(2)_L \otimes U(1)_Y$ mô tả tương tác điện yếu với bốn hạt truyền tương tác là các gauge boson gồm hai hạt mang điện (W^{\pm}_{μ}) và một hạt trung hòa (Z_{μ}) có khối lượng, hạt còn lại (A_{μ}) là hạt trung hòa và không có khối lượng (photon).

Ngoài các gauge boson truyền tương tác, thành phần vật chất thông thường còn lại cấu tạo nên vũ trụ là các fermion [23]. Các fermion gồm các lepton $e, \nu_e, \mu, \nu_\mu, \tau, \nu_\tau$, và các quark u, d, c, s, t, b. Trong SM, các fermion được sắp xếp theo các thế hệ: thế hệ thứ nhất gồm ν_e, e, u, d ; thế hệ thứ hai gồm ν_μ, μ, c, s ; và thế hệ thứ ba gồm ν_τ, τ, t, b . Để dòng tương tác yếu có dạng V - A, các fermion được tách thành fermion phân cực trái và phân cực phải. Các fermion phân cực trái được xếp vào lưỡng tuyến và các fermion phân cực phải được xếp vào đơn tuyến của nhóm $SU(2)_L$. Cụ thể với các lepton,

$$\psi_{iL} = \begin{pmatrix} \nu_{iL} \\ e_{iL} \end{pmatrix} \sim (1, 2, -1),$$

$$e_{iR} \sim (1, 1, -2), \quad i = 1, 2, 3.$$
(1.1)

Với các quark,

$$Q_{iL} = \begin{pmatrix} u_{iL} \\ d_{iL} \end{pmatrix} \sim \left(3, 2, \frac{1}{3}\right),$$
$$u_{iR} \sim \left(3, 1, \frac{4}{3}\right), \quad d_{iR} \sim \left(3, 1, -\frac{2}{3}\right), \quad (1.2)$$

trong đó *i* là chỉ số thế hệ. Các con số trong ngoặc đơn lần lượt biểu thị số lượng tử tương ứng với nhóm thành phần trong 3 - 2 - 1. Trong SM, toán tử điện tích được xác định $Q = T_3 + Y/2$, với T_3 là vi tử chéo của nhóm $SU(2)_L$.

Theo cơ chế Higgs, để sinh khối lượng cho các gauge boson W^{\pm}_{μ}, Z_{μ} thì đối xứng $SU(2)_L \otimes U(1)_Y$ phải bị phá vỡ. Do đó, một lưỡng tuyến Higgs được đưa thêm vào,

$$\phi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} = \begin{pmatrix} \varphi^+ \\ \frac{v+h+iG_Z}{\sqrt{2}} \end{pmatrix} \sim (1,2,1).$$
(1.3)

Quá trình phá vỡ đối xứng tự phát (SSB) xảy ra theo sơ đồ $SU(2)_L \otimes U(1)_Y \xrightarrow{v} U(1)_Q$. Khối lượng của các gauge boson được xác định từ số

hạng động năng trong Lagrangian như sau,

$$\mathcal{L} = \left(D_{\mu}\langle\phi\rangle\right)^{\dagger} \left(D^{\mu}\langle\phi\rangle\right), \quad D_{\mu} = \partial_{\mu} - igT_{a}A^{a}_{\mu} - ig'\frac{Y}{2}B_{\mu}, \quad (1.4)$$

trong đó T_a (a = 1, 2, 3) là các vi tử của nhóm $SU(2)_L$. Đối với biểu diễn lưỡng tuyến thì $T_a = \frac{1}{2}\sigma_a$ $(\sigma_a$ là các ma trận Pauli). g, g' và A^a_μ, B_μ lần lượt là các hằng số tương tác và các trường chuẩn của hai nhóm chuẩn $SU(2)_L$ và $U(1)_Y$. Sau khi SSB, các trạng thái gauge boson vật lý cùng khối lượng tương ứng của chúng lần lượt được xác định là

$$A_{\mu} = s_{W} A_{\mu}^{3} + c_{W} B_{\mu}, \qquad m_{A} = 0,$$

$$Z_{\mu} = c_{W} A_{\mu}^{3} - s_{W} B_{\mu}, \qquad m_{Z} = \frac{gv}{2c_{W}},$$

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \mp i A_{\mu}^{2}), \qquad m_{W^{\pm}} = \frac{gv}{2},$$
(1.5)

ở đây chúng tôi đã ký hiệu $s_W = \sin \theta_W$, $c_W = \cos \theta_W$. θ_W là góc trộn lẫn giữa A^3_{μ} và B_{μ} . θ_W được gọi là góc Weinberg: $\tan \theta_W = g'/g$. Thực nghiệm đã xác định $\sin^2 \theta_W \simeq 0.231$. Khi đồng nhất hệ số đỉnh tương tác của lý thuyết Fermi với lý thuyết Glashow - Weinberg - Salam: $G_F/\sqrt{2} \sim g^2/8m_W^2$ sẽ suy ra $v \simeq 246$ GeV. Kết hợp với liên hệ của hằng số tương tác điện từ $e = g \sin \theta_W$, ta tính được $m_W \simeq 80$ GeV và $m_Z \simeq 91$ GeV. Theo dữ liệu gần đây [1]: $m_W = 80.385 \pm 0.015$ GeV, $m_Z = 91.1876 \pm 0.0021$ GeV.

Từ đó, tham số ρ được xác định như sau,

$$\rho = \frac{m_W^2}{m_Z^2 c_W^2} = 1. \tag{1.6}$$

Theo dữ liệu gần đây [1]: $\rho = 1.0004 \pm 0.00024$. Dù sự chênh lệch này là rất nhỏ nhưng các đóng góp từ bổ đính cũng chưa thỏa đáng. Có thể sự chênh lệch này là do đóng góp của vật lý mới.

Đối với phần Higgs, khối lượng của các Higgs boson được xác định thông qua thế vô hướng,

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \frac{\lambda}{4} (\phi^{\dagger} \phi)^2, \qquad (1.7)$$

trong đó μ có thứ nguyên khối lượng, λ là hằng số không thứ nguyên. Sau khi SSB, Higgs boson h nhận khối lượng cỡ thang điện yếu, $m_h = \sqrt{\lambda/2}v$. Cuối năm 2012, Higgs boson được tìm thấy bởi LHC với khối lượng 125 GeV rất có thể là h. Ngoài ra, ba hạt khác là φ^+, φ^- và G_Z có khối lượng bằng không. Chúng được gọi là các Goldstone boson. Các hạt này lần lượt bị hấp thụ bởi các gauge boson có khối lượng tương ứng ở trên.

Các fermion nhận khối lượng thông qua tương tác Yukawa,

$$-\mathcal{L}_{Y} = h_{ij}^{e} \bar{\psi}_{L}^{i} \phi e_{R}^{j} + h_{ij}^{d} \bar{Q}_{L}^{i} \phi d_{R}^{j} + h_{ij}^{u} \bar{Q}_{L}^{i} (i\sigma_{2}\phi^{*}) u_{R}^{j} + H.c., \qquad (1.8)$$

trong đó h_{ij} là các hệ số tương tác. Khai triển Lagrangian trên, chúng ta nhận được $\mathcal{M}_{ij}^e = h_{ij}^e \frac{v}{\sqrt{2}}$, $\mathcal{M}_{ij}^d = h_{ij}^d \frac{v}{\sqrt{2}}$, và $\mathcal{M}_{ij}^u = h_{ij}^u \frac{v}{\sqrt{2}}$. Tiến hành chéo hóa các ma trận khối lượng này sẽ xác định được các trạng thái fermion vật lý cùng khối lượng tương ứng. Với các quark dưới, chúng ta có

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix}_{L,R} = V_{L,R}^{d} \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{L,R}, \quad V_{L}^{d\dagger} \mathcal{M}^{d} V_{R}^{d} = \begin{pmatrix} m_{d'} & 0 & 0 \\ 0 & m_{s'} & 0 \\ 0 & 0 & m_{b'} \end{pmatrix},$$

ở đây d, s, b là các trạng thái chuẩn; d', s', b' là các trạng thái vật lý với các khối lượng tương ứng là $m_{d'}, m_{s'}, m_{b'}; V_{L,R}^d$ là ma trận chuyển cơ sở. Tương tự cho các quark trên u, c, t với ma trận chuyển cơ sở là $V_{L,R}^u$. Ma trận trộn các quark được định nghĩa là $V_{CKM} = V_L^{u\dagger} V_L^d$. Đến nay, các yếu tố của ma trận này cũng như khối lượng của các fermion đã được xác định [1].

Tương tác của các gauge boson với các fermion được xác định qua Lagrangian sau,

$$\mathcal{L}_{\rm int} = \frac{g}{\sqrt{2}} \left(J^{-}_{\mu} W^{\mu +} + J^{+}_{\mu} W^{\mu -} \right) + g s_{W} J^{em}_{\mu} A^{\mu} + \frac{g}{2c_{W}} J^{0}_{\mu} Z^{\mu}.$$
(1.9)

Trong đó, các dòng mang điện và trung hòa nhận được là

$$J_{\mu}^{-} = \frac{1}{2} \bar{\nu}_{i} \gamma_{\mu} (1 - \gamma_{5}) e_{i} + \frac{1}{2} \bar{u}_{i} \gamma_{\mu} (1 - \gamma_{5}) d_{i}, \qquad J_{\mu}^{+} = (J_{\mu}^{-})^{\dagger},$$

$$J_{\mu}^{em} = Q(f) \bar{f} \gamma_{\mu} f,$$

$$J_{\mu}^{0} = \bar{f} \gamma_{\mu} \left[g_{V}^{Z_{\mu}}(f) - g_{A}^{Z_{\mu}}(f) \gamma_{5} \right] f,$$
(1.10)

với f tính cho tất cả các fermion. Các hằng số tương tác của dòng yếu trung hòa được xác định: $g_V^{Z_{\mu}}(f) = T_3(f_L) - 2s_W^2 Q(f), \ g_A^{Z_{\mu}}(f) = T_3(f_L)$. Có thể

nhận thấy các dòng mang điện có dạng V - A như trong tương tác yếu và chỉ có các fermion phân cực trái trong lưỡng tuyến tham gia. Các dòng mang điện nối fermion trên và fermion dưới, còn dòng trung hòa và điện từ nối các fermion cùng loại.

Trong SM, các dòng trung hòa bảo toàn mọi vị ở gần đúng cây nhưng dòng mang điện của W boson lại thay đổi vị quark thông qua ma trận Cabibbo-Kobayashi-Maskawa (CKM). Điều này trực tiếp dẫn tới các quá trình vi phạm vị quark như sự trộn lẫn của các meson trung hòa hay các kênh rã meson. Đến nay, tất cả các dự đoán trên của SM đã được thực nghiệm kiểm chứng, kết quả cho thấy là chưa trùng khớp, tuy sự sai khác rất nhỏ [1–6,36,37]. Rất có thể sự sai khác này liên quan đến vật lý mới.

Một số vấn đề khác của SM mà chúng tôi quan tâm:

- Trong SM, số lepton luôn luôn được bảo toàn và đúng đến mọi bậc của lý thuyết nhiễu loạn [32,38]. Đồng thời, các neutrino trong SM không có khối lượng. Nhưng theo thực nghiệm, các neutrino có khối lượng rất nhỏ (khác không) và có sự chuyển hóa giữa các thế hệ khác nhau [39, 40]. Điều này chứng tỏ rằng có sự vi phạm số lepton thế hệ trong vùng lepton trung hòa.
- Trong SM, các thế hệ fermion biểu diễn giống nhau (lặp lại) dưới đối xứng chuẩn và chỉ cần xây dựng mô hình cho một thế hệ từ đó suy ra cho các thế hệ còn lại. Do vậy, SM không giải thích được tại sao chỉ có ba thế hệ fermion quan sát thấy trong tự nhiên [23].
- Trong SM không tồn tại hạt nào thỏa mãn tính chất của vật chất tối (trung hòa, thời gian sống đủ lớn, mật độ tàn dư, ...). Các kết quả thực nghiệm quan sát Vũ trụ lại cho thấy Vũ trụ hiện tại chứa khoảng 23% vật chất tối [23,24].
- Bề rộng rã toàn phần của W boson được tính ở mức cây với phần điện yếu và kể đến hiệu ứng bổ đính QCD [41]: $\Gamma_W^{\text{tot}} = 1.04 \frac{\alpha M_W}{2s_W^2} + \frac{\alpha M_W}{4s_W^2} \simeq 2.0936 \text{ GeV}$. Theo dữ liệu gần đây [1]: $\Gamma_W^{\text{tot}} = 2.085 \pm 0.042 \text{ GeV}$.

Ngoài ra, SM cũng không giải quyết được vấn đề bất đối xứng vật chất và phản vật chất [23,42], sự lượng tử hóa điện tích [23]. Nhiều dấu hiệu khác cũng chỉ ra rằng SM chỉ là lý thuyết hiệu dụng của một lý thuyết mở rộng tổng quát hơn. Việc xây dựng các lý thuyết mở rộng nhằm giải quyết các vấn đề còn tồn tại là rất tự nhiên và cần thiết.

1.2. Các mô hình mở rộng

Nhiều lý thuyết khác nhau đã được xây dựng nhằm giải thích các vấn đề ngoài phạm vi SM. Lý thuyết thống nhất lớn SU(5) và SO(10) giải thích tốt các vấn đề như khối lượng neutrino, bất đối xứng vật chất và phản vật chất. Nhưng lý thuyết này làm việc ở thang năng lượng quá lớn (10^{16} GeV) nên rất khó kiểm chứng bằng thực nghiệm. Trái lại, lý thuyết siêu đối xứng làm việc ở thang năng lượng cõ TeV có thể kiểm chứng bằng thực nghiệm bởi LHC. Tuy nhiên, vùng không gian tham số của các mô hình được xây dựng theo lý thuyết này lại bị giới hạn rất hẹp. Hơn nữa, cho đến nay chưa có hạt siêu đối xứng nào được tìm thấy. Ngoài ra, còn có lý thuyết nhiều chiều không gian, lý thuyết dây, ...

Trong các hướng mở rộng SM, hướng mở rộng đối xứng chuẩn phần nhóm đối xứng mô tả tương tác điện yếu được rất nhiều nhà khoa học quan tâm và có nhiều điểm thú vị. Theo hướng mở rộng này, nhiều mô hình đã được xây dựng như M3221 [7–14], các mô hình 3-3-1 [15–22], các mô hình 3-4-1 [20,29,30].

1.2.1. Mô hình đối xứng trái-phải tối thiểu

M3221 được xây dựng dựa trên cơ sở nhóm chuẩn $SU(3)_C \otimes SU(2)_L \otimes$ $SU(2)_R \otimes U(1)_{B-L}$ [7–14], trong đó phần $SU(2)_L$ tương xứng với $SU(2)_R$ nên được gọi là đối xứng trái-phải. Hằng số tương tác của $SU(2)_L$ và $SU(2)_R$ là bằng nhau. Trong M3221, các fermion phân cực trái được xếp vào lưỡng tuyến của $SU(2)_L$ giống như trong SM, các fermion phân cực phải tương ứng được xếp vào lưỡng tuyến của $SU(2)_R$. Các số lượng tử ứng với tích màu $(SU(3)_C)$ và tích B - L $(U(1)_{B-L})$ của tất cả các fermion giống như thông thường. M3221 thường làm việc với một vô hướng là lưỡng tuyến đôi của $SU(2)_L$ và $SU(2)_R$, và hai tam tuyến vô hướng (một trái và một phải).

M3221 đóng vai trò quan trọng trong việc phát triển các lý thuyết về khối lượng neutrino đó là cơ chế seesaw, và chỉ ra khối lượng neutrino khác không trước khi được thực nghiệm xác nhận. Đặc biệt, các kết quả mang tính hiện tượng luận của các hạt mới đóng góp vào sự trộn lẫn meson cũng như các kênh rã meson đã được nghiên cứu [43–48]. Sự đóng góp của dòng phân cực phải cho vấn đề V_{ub} cũng đã được thảo luận [49–51].

Đặc điểm quan trọng trong M3221 là đối xứng chẵn lẻ hoàn toàn chính xác nhưng tính bất đối xứng như đã thấy trong tương tác yếu dẫn đến sự tự động phá vỡ của $SU(2)_R$ ở thang năng lượng lớn. Nói chung, thực nghiệm yêu cầu thang trái-phải nằm trong miền TeV. Đồng thời, đối xứng trái-phải nên được mở rộng để có sự phù hợp hơn.

Cũng giống như SM, M3221 không thể giải quyết vấn đề vật chất tối. Hơn nữa, liên quan đến hiện tượng dư thừa diphoton 750 GeV [52,53], M3221 đã được mở rộng. Hướng đề xuất chỉ mở rộng lượng hạt [54–56] là không tự nhiên do các trường mới đã được đưa vào bằng tay. Tuy nhiên, các để xuất theo hướng mở rộng đối xứng chuẩn [28] là tự nhiên và có thể cho các kết quả thú vị. Theo hướng mở rộng này, ba mô hình đã được đề xuất. Mô hình thứ nhất dựa trên đối xứng chuẩn $SU(3)_C \otimes SU(3)_L \otimes SU(3)_R \otimes U(1)_X$. Các quark mới xuất hiện ở thành phần thứ ba trong các tam tuyến (phản tam tuyến) của $SU(3)_L$ và $SU(3)_R$ hoàn thành biểu diễn fermion, hai thành phần đầu tiên là các quark của SM. Hai mô hình tiếp theo lần lượt dựa trên đối xứng chuẩn $SU(3)_C \otimes SU(2)_L \otimes SU(3)_R \otimes U(1)_X$ và $SU(3)_C \otimes SU(3)_L \otimes SU(2)_R \otimes U(1)_X$ rõ ràng vi phạm đối xứng trái-phải. Các vô hướng và các quark mới cũng được đưa vào một cách tự nhiên nhưng khác với mô hình thứ nhất. Tất cả các mô hình này đòi hỏi số thế hệ fermion phải là 3 nhằm thỏa mãn các điều kiện khử dị thường cũng như tiệm cận tự do trong Sắc động học lượng tử (QCD) tương tự các mô hình 3-3-1 [15–22]. Để giải thích cường độ tín hiệu lớn diphoton thì thang vật lý mới nói chung phải thấp (dưới vài TeV) và tham số điện tích phải lớn [28]. Do sau đó tín hiệu diphoton đã không còn xuất hiện [57,58] nên thang vật lý mới phải đủ lớn đồng thời tham số điện tích không cần thiết phải lớn hơn nhiều so với các giá trị thông thường.

1.2.2. Các mô hình 3 - 3 - 1

Các mô hình 3-3-1được xây dựng dựa trên cơ sở nhóm đối xứng chuẩn $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ (3 – 3 – 1). Trong đó, phần nhóm đối xứng điện yếu $SU(2)_L \otimes U(1)_Y$ trong SM đã được mở rộng thành $SU(3)_L \otimes U(1)_X$. Hướng mở rộng này được phát triển bởi Valle, Pisano, Pleitez, Frampton, Foot, Long, Tran, và một số tác giả khác [15–22]. Các mô hình theo hướng mở rộng này có nhiều ưu điểm như có thể kiểm chứng bởi LHC, không gian tham số ít bị giới hạn, và cho giải thích hợp lý nhiều vấn đề ngoài SM. Chẳng hạn như trong các mô hình 3 - 3 - 1, với một vài giả thiết phù hợp trong phần fermion và biểu diễn, các điều kiên khử di thường dẫn đến hệ quả số thế hê fermion phải là bôi số của 3 [17,59]. Kết hợp với điều kiên tiêm cân tư do QCD đòi hỏi số thế hệ quark phải nhỏ hơn hoặc bằng 5. Hơn nữa, số thế hệ lepton phải bằng số thế hệ quark [60], chúng ta có câu trả lời tại sao số thế hệ fermion phải bằng 3. Ngoài ra, cũng từ các điều kiện khử dị thường, một trong các thế hệ quark phải biến đổi khác với hai thế hệ còn lại, chúng ta có thế giải thích tại sao quark Top lại quá nặng. Các vấn đề khác như khối lượng neutrino, lượng tử hóa điện tích cũng đã được giải thích hợp lý [25,59,61–63].

Tùy theo thành phần thêm vào đáy của tam tuyến lepton, chúng ta có được các lớp mô hình khác nhau.

* Mô hình 3-3-1 với neutrino phân cực phải

Trong mô hình này, neutrino phân cực phải được đưa vào đáy của tam tuyến $SU(3)_L$, $(\nu_L, e_L, (\nu_R)^c)^T$ [15,19–22]. Điều này dẫn tới hệ quả các neutrino trong mô hình có thể nhận khối lượng nhỏ thông qua cơ chế seesaw [25]. Tuy nhiên, thang seesaw rất cao, có thể cỡ thang thống nhất lớn, và dẫn đến vấn đề phân bậc không tự nhiên trong mô hình 3-3-1. Trong các lý thuyết đối xứng trái-phải, thống nhất lớn SO(10), hoặc SM với các neutrino phân cực phải cũng gặp phải vấn đề tương tự. Đặc biệt, thực nghiệm chưa quan sát thấy neutrino phân cực phải.

Trong $\nu 331$, hạt vật chất tối đã được đồng nhất [26]. Tuy nhiên, tính bền của vật chất tối không được đảm bảo. Hơn nữa, theo giới hạn bởi thực nghiệm thì vật chất tối nằm trong miền khối lượng thấp (cỡ MeV) là không tự nhiên. Theo đó thì chúng phải có khối lượng nằm trong thang vật lý mới (cỡ TeV). Ngoài ra, có những mở rộng đơn giản như thêm một đơn tuyến vô hướng thực trung hoà với đối xứng Z_2 cũng cho vật chất tối [27].

Trong $\nu 331$, khi xếp các lepton và phản lepton vào tam tuyến, số lepton sẽ không còn là đối xứng Abel, nó là đối xứng không Abel. Để đóng kín đại số, toán tử mới \mathcal{L} (số lepton mở rộng) đã được xây dựng [64]. Ngoài ra, hai tam tuyến Higgs trong $\nu 331$ tương tự nhau dưới đối xứng chuẩn, chúng được phân biệt do số lepton khác nhau. Nếu số lepton bị vi phạm, chúng hoàn toàn tương đương. Theo đó, có thể rút gọn phần Higgs. Mô hình 3 - 3 - 1 tiết kiệm [65,66] được xây dựng dựa trên ý tưởng này. Mô hình 3 - 3 - 1 tiết kiệm có nhiều ưu điểm như số đa tuyến Higgs nhỏ nhất, lượng tham số tự do ít hơn nhiều so với các mô hình 3 - 3 - 1 ban đầu, giải thích được khối lượng neutrino khác không. Ngoài ra, rất gần với $\nu 331$ còn có mô hình 3 - 3 - 1 với fermion trung hoà. Mô hình này cho khối lượng neutrino với thang seesaw cỡ TeV, đồng thời giải thích hợp lý ma trận trộn lepton, ma trận trộn quark.

* Mô hình 3-3-1 tối thiểu

Đây là lớp mô hình 3 - 3 - 1 được xây dựng bằng cách xếp các lepton phân cực trái và lepton mang điện phân cực phải trong SM vào cùng một tam tuyến $SU(3)_L$, $(\nu_L, e_L, (e_R)^c)^T$. Do vậy, các mô hình loại này không cần thêm các lepton mới [16–18]. Cũng như trong ν 331, một toán tử mới \mathcal{L} (số lepton mở rộng) đã được xây dựng. Trong M331, các trường Higgs có VEV khác không đều có số lepton L = 0. M331 tuy không cần đến các neutrino phân cực phải nhưng lại cho phổ Higgs phức tạp và rất khó chéo hoá chính xác được. Gần đây, một mô hình chỉ xét đến hai tam tuyến Higgs đã được xây dựng và gọi là mô hình 3 - 3 - 1 tối thiểu rút gọn [67]. Mô hình này cho phổ Higgs đơn giản như mô hình 3 - 3 - 1 tiết kiệm.

Ngoài ra, không gian tham số của M331 bị giới hạn mạnh bởi cực Landau và thực nghiệm về FCNCs. Hơn nữa, đối xứng B - L được bảo toàn trong lý thuyết [68]. Do đó, đối xứng này nên được xem xét trong các lý thuyết mới. Gần đây, các nhà khoa học đã đề xuất mô hình mở rộng từ SM tương tự như hướng mở rộng 3-3-1, đồng thời đưa thêm nhóm chuẩn $U(1)_N$ vào để diễn tả đối xứng B-L tạo thành nhóm chuẩn $SU(3)_C \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_N$ [64]. Mô hình này không chỉ giải quyết được các vấn đề đã nghiên cứu trong các mô hình 3-3-1 mà còn giải thích tự nhiên một số vấn đề mới như vật chất tối [64,69], bất đối xứng baryon của Vũ trụ [70].

1.2.3. Các mô hình 3 - 4 - 1

Các mô hình 3-4-1 được xây dựng dựa trên cơ sở nhóm chuẩn $SU(3)_C \otimes$ $SU(4)_L \otimes U(1)_X (3-4-1) [20,29,30]$. Trong đó, nhóm chuẩn $SU(2)_L \otimes U(1)_Y$ của SM đã được mở rộng thành $SU(4)_L \otimes U(1)_X$. Theo hướng này thì đây là sự mở rộng cao nhất của phần điện yếu [71].

Theo hiểu biết của chúng tôi, góp phần thúc đẩy sự phát triển của các mô hình 3-4-1 trước tiên là Fayyazuddin và Riazuddin với việc giới thiệu thập tuyến [72]. Trong đó, điện tích của các lepton thành phần thứ ba và thứ tư của tứ tuyến lần lượt là q = 0, q' = 1. Giới hạn thu được về sin của góc Weinberg là $\sin^2 \theta_W = 0.25$ và thang phá vỡ nhóm SU(4) là $3.3 \times 10^4 \ge m_X \ge 6.4 \times 10^3$ GeV. Tại thời điểm đó, việc sắp xếp các hạt trong [72] là chưa đúng. Tiếp theo là M. B. Voloshin [71], người đã cố gắng giải quyết vấn đề liên quan tới khối lượng nhỏ và moment từ lớn của neutrino. Theo đó, các tác giả chỉ tập trung vào phần lepton mà ở đó điện tích của các lepton thành phần thứ ba và thứ tư của tứ tuyến lần lượt là q = 1, q' = 0.

Các vấn đề liên quan đến khử dị thường và lượng tử hóa điện tích, neutrino và sự khác biệt giữa các thế hệ đã được đề cập trong [73,74]. Trong [75], các neutrino và bất biến chuẩn điện từ đã được thảo luận, trong khi rã hai lần beta không neutrino giải phóng Majoron trong mô hình 3 - 4 - 1tối thiểu với neutrino phân cực phải chứa một thập tuyến đã được xem xét trong [75, 76]. Gắn với đối xứng gián đoạn Z_2 , mô hình không có các điện tích lạ sinh phổ khối lượng phù hợp đã được đề xuất trong [77]. Mô hình $SU(4)_{(EW)} \otimes U(1)_{(B-l)}$ với đối xứng trái-phải đã được đề xuất trong [78]. Điều thú vị là sự thống nhất điện yếu của các quark và các lepton trong một nhóm chuẩn $SU(3)_C \otimes SU(4) \otimes U(1)$ đã được xây dựng trong [79]. Vấn đề moment từ dị thường muon trong mô hình $SU(4) \otimes U(1)_N$ đã được thảo luận trong [80]. Khối lượng neutrino và sự trộn lẫn theo cách thức đặc biệt đã được trình bày trong [30].

Đó là tất cả những gì đã có, ngoại trừ mô hình 3-4-1 siêu đối xứng [81], thế Higgs chứa thập tuyến lần đầu tiên được chúng tôi phân tích. Mô hình 3-4-1 tối thiểu với neutrino phân cực phải được chúng tôi trình bày trong chương 3 là tương tự các mô hình 3-4-1 đã được xây dựng đầu tiên [20,29].

1.3. Kết luận chương 1

Trong chương này, chúng tôi đã xem xét các vấn đề sau:

- Những nét cơ bản của SM như sự sắp xếp các fermion, phổ hạt trong phần gauge và vô hướng, các dòng, một số kết quả và một số vấn đề chưa thể giải quyết trong phạm vi SM có liên quan đến nội dung của luận án.
- 2. Một số mô hình mở rộng từ SM như M3221, các mô hình 3-3-1 với hai lớp mô hình cơ bản là ν 331 và M331, các mô hình 3-4-1, và một vài hướng mở rộng khác.

Qua đó, chúng tôi nhận thấy rằng:

SM là lý thuyết tốt để mô tả ba loại tương tác cơ bản gồm tương tác yếu, tương tác điện từ, và tương tác mạnh. Thế nhưng, còn nhiều vấn đề mà SM chưa thể giải thích. Rất có thể SM là lý thuyết hiệu dụng của

một lý thuyết tổng quát hơn. Việc đi tìm các lý thuyết mở rộng từ SM là tự nhiên và cần thiết.

- M3221 là một trong nhiều hướng mở rộng thu hút nhất của SM. M3221 giải quyết tốt vấn đề khối lượng neutrino. Tuy nhiên, M3221 không giải thích được sự tồn tại của vật chất tối, và M3221 đã được mở rộng. Các đề xuất trong [28] là tự nhiên và nên được tiếp tục nghiên cứu.
- Các mô hình 3 3 1 thông thường giải quyết được vấn đề khối lượng neutrino, vật chất tối nhưng không tự nhiên.
- Các mô hình 3 4 1 là một sự mở rộng thú vị và giải quyết được nhiều vấn đề ngoài SM. Thế nhưng, phần Higgs vật lý là phần quan trọng lại chưa được nghiên cứu nhiều. Với sự phát triển mạnh mẽ của Vật lý Hạt như hiện nay, nó nên được nghiên cứu nhiều hơn nữa.

Vì vậy, chúng tôi tập trung nghiên cứu mô hình 3-2-3-1 và 3-4-1. Các kết quả nghiên cứu được chúng tôi trình bày trong các chương tiếp theo.

CHƯƠNG 2. HIỆN TƯỢNG LUẬN TRONG MÔ $\label{eq:higher} \dot{\rm HINH}\ 3-2-3-1$

Trong chương này, chúng tôi trình bày mô hình 3 - 2 - 3 - 1 với điện tích bất kỳ của các lepton mới. Chúng tôi khảo sát phổ khối lượng của các trường gauge boson và các trường vô hướng, xác định các tương tác của các gauge boson với các fermion và với các vô hướng, đồng nhất các hạt và các tương tác trong SM. Chúng tôi thảo luận các vấn đề số thế hệ fermion, khối lượng neutrino, và tìm các ứng cử viên vật chất tối trong mô hình. Chúng tôi xem xét một số hiệu ứng vật lý mới liên quan đến tham số ρ và FCNCs, từ đó xác định giới hạn cho thang vật lý mới và các yếu tố của ma trận trộn quark phân cực phải. Các kết quả chính của chương này đã được chúng tôi công bố tại Phys. Rev. D **95**, 075034, 2017.

2.1. Mô hình

Như chúng tôi đã đề cập, đối xứng chuẩn của mô hình được xác định bởi nhóm chuẩn $SU(3)_C \otimes SU(2)_L \otimes SU(3)_R \otimes U(1)_X (3-2-3-1)$, trong đó $SU(3)_C$ là đối xứng QCD thông thường và phần còn lại là sự mở rộng của đối xứng điện yếu. Nhóm đối xứng này chứa đựng M3221 như một nhóm con. Tuy nhiên, mô hình đang xem xét không bảo toàn đối xứng trái-phải Z_2 giữa các nhóm trái và nhóm phải cũng như giữa các trường thành phần tương ứng bên trong các nhóm này.

Toán tử điện tích trong mô hình được xác định [28],

$$Q = T_{3L} + T_{3R} + \beta T_{8R} + X, \qquad (2.1)$$

ở đây T_{aL} (a = 1, 2, 3), T_{iR} (i = 1, 2, 3, ..., 8), và X lần lượt là các vi tử của nhóm $SU(2)_L$, $SU(3)_R$, và tích của nhóm $U(1)_X$. β có thể biểu diễn qua tham số điện tích q: $\beta = -(2q+1)/\sqrt{3}$. Trong mô hình đang xem xét, toán tử điện tích liên hệ trực tiếp với tích B - L. Theo đó, $\frac{1}{2}(B - L) = \beta T_{8R} + X$. Do vậy, tùy thuộc vào tham số β (hoặc q), mô hình tự động cung cấp các ứng cử viên vật chất tối, chúng được xác định bởi đối xứng gián đoạn tàn dư W-parity với tích

$$P = (-1)^{3(B-L)+2s} = (-1)^{6(\beta T_{8R}+X)+2s}, \qquad (2.2)$$

tương tự như trong mô hình 3 - 3 - 1 - 1 [64,69,70,82–84].

Các fermion trong mô hình được sắp xếp như sau [28]:

$$\psi_{aL} = \begin{pmatrix} \nu_{aL} \\ e_{aL} \end{pmatrix} \sim \left(1, 2, 1, -\frac{1}{2}\right), \ \psi_{aR} = \begin{pmatrix} \nu_{aR} \\ e_{aR} \\ E_{aR}^{q} \end{pmatrix} \sim \left(1, 1, 3, \frac{q-1}{3}\right), \ (2.3)$$

$$Q_{3L} = \begin{pmatrix} u_{3L} \\ d_{3L} \end{pmatrix} \sim \left(3, 2, 1, \frac{1}{6}\right), \ Q_{3R} = \begin{pmatrix} u_{3R} \\ d_{3R} \\ J_{3R}^{q+\frac{2}{3}} \end{pmatrix} \sim \left(3, 1, 3, \frac{q+1}{3}\right), \ (2.4)$$

$$Q_{\alpha L} = \begin{pmatrix} u_{\alpha L} \\ u_{\alpha L} \end{pmatrix} \sim \left(3, 2, 1, \frac{1}{2}\right), \ Q_{\alpha R} = \begin{pmatrix} d_{\alpha R} \\ -u_{\alpha R} \end{pmatrix} \sim \left(3, 1, 3^*, -\frac{q}{2}\right), \ (2.5)$$

$$E_{aL}^{q} \sim (1, 1, 1, q), \ J_{3L}^{q+\frac{2}{3}} \sim \left(3, 1, 1, q+\frac{2}{3}\right), \ J_{\alpha L}^{-q-\frac{1}{3}} \sim \left(3, 1, 1, -q-\frac{1}{3}\right), \ (2.6)$$

ở đây a = 1, 2, 3 và $\alpha = 1, 2$ là các chỉ số thế hệ. Các con số trong ngoặc đơn lần lượt biểu thị số lượng tử tương ứng với nhóm thành phần trong 3-2-3-1.

Chúng tôi thấy rằng việc đề xuất thêm nhóm $SU(3)_R$ không chỉ dẫn đến sự xuất hiện của các neutrino phân cực phải trong mô hình, mang lại khối lượng nhỏ cho neutrino qua cơ chế seesaw, mà mô hình còn có thêm các lepton mới E_a và các quark lạ J_a . Thú vị là E_a và J_a có tích B - L bằng hai lần điện tích của chúng: $[B - L](E_a) = 2q$, $[B - L](J_3) = 2(q + 2/3)$, và $[B - L](J_\alpha) =$ 2(-q-1/3). Do đó, mô hình chứa một đối xứng W-parity không tầm thường và các hạt B - L sai gồm E, J và nhiều hạt khác. Chúng được gọi là W-particles và có thể là vật chất tối nếu $q \neq (2m-1)/6 = \pm 1/6, \pm 1/2, \pm 5/6, \pm 7/6, ...,$ với m là số nguyên [64, 69, 70, 82–84]. Ở đây, W-particles có $P = P^+$ hoặc P^- , với $P^{\pm} \equiv (-1)^{\pm (6q+1)} \neq 1$, trong khi các hạt còn lại gồm các hạt trong SM và một số hạt mới có P = 1 là các hạt thông thường. Nói riêng, mô hình với các giá trị điện tích thông thường $q = m/3 = 0, \pm 1/3, \pm 2/3, \pm 1, ...,$ chúng chứa đựng đối xứng W-parity giống như R-parity và W-particles như R-odd particles trong siêu đối xứng.

Với việc các fermion phân cực phải được sắp xếp trong biểu diễn cơ bản của $SU(3)_R$, khử dị thường $SU(3)_R$ yêu cầu số tam tuyến phải bằng số phản tam tuyến. Do đó, số thế hệ fermion phải là bội số của 3. Điều này tương tự như mô hình 3 - 3 - 1 [17,59]. Từ việc các quark phụ được đưa thêm vào để hoàn thiện các biểu diễn, điều kiện tiệm cận tự do QCD yêu cầu số thế hệ phải nhỏ hơn hoặc bằng 5. Như vậy, số thế hệ bằng 3 là phù hợp. Hơn nữa, các quark phân cực phải ở thế hệ thứ ba biến đổi khác so với hai thế hệ đầu. Điều này dẫn tới xuất hiện FCNCs ở gần đúng cây gây bởi các quark phân cực phải khi chúng tương tác với các trường vô hướng và gauge boson trung hòa mới. Đặc điểm này không có trong các mô hình 3 - 3 - 1 hay các lý thuyết trái-phải khác. Các mô hình 3 - 3 - 1 [15–22] và cả hai mô hình bất đối xứng trái-phải còn lại trong [28] là gây bởi các quark phân cực trái.

Để phá vỡ đối xứng chuẩn và sinh khối lượng phù hợp cho các hạt, các đa tuyến vô hướng được giới thiệu như sau:

$$S = \begin{pmatrix} S_{11}^{0} & S_{12}^{+} & S_{13}^{-q} \\ S_{21}^{-} & S_{22}^{0} & S_{23}^{-q-1} \end{pmatrix} \sim \left(1, 2, 3^{*}, -\frac{2q+1}{6}\right), \quad (2.7)$$

$$\phi = \begin{pmatrix} \phi_1^{\ q} \\ \phi_2^{-q-1} \\ \phi_3^0 \end{pmatrix} \sim \left(1, 1, 3, -\frac{2q+1}{3}\right), \tag{2.8}$$

$$\Xi = \begin{pmatrix} \Xi_{11}^{0} & \frac{\Xi_{12}^{-}}{\sqrt{2}} & \frac{\Xi_{13}^{q}}{\sqrt{2}} \\ \frac{\Xi_{12}^{-}}{\sqrt{2}} & \Xi_{22}^{--} & \frac{\Xi_{23}^{q-1}}{\sqrt{2}} \\ \frac{\Xi_{13}^{q}}{\sqrt{2}} & \frac{\Xi_{23}^{q-1}}{\sqrt{2}} & \Xi_{33}^{2q} \end{pmatrix} \sim \left(1, 1, 6, \frac{2(q-1)}{3}\right),$$
(2.9)

với VEV tương ứng,

$$\langle S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u & 0 & 0 \\ 0 & v & 0 \end{pmatrix},$$

$$\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ w \end{pmatrix}, \quad \langle \Xi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \Lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(2.10)$$

Như đã đề cập trong [28], nếu đưa thêm vào một tam tuyến vô hướng Δ thì các neutrino sẽ nhận khối lượng thông qua cả cơ chế seesaw loại I và loại II; nhưng nếu bỏ qua Δ thì các neutrino sẽ nhận khối lượng chỉ thông qua cơ chế seesaw loại I. Cả hai trường hợp này đều có thể đối chiếu với dữ liệu. Để đơn giản, chúng tôi không đưa Δ vào. W-fields bao gồm $\phi_{1,2}$, $S_{13,23}$, và $\Xi_{13,23}$. Các trường khác là các trường thông thường.

Đối xứng chuẩn của mô hình phá vỡ theo hai bước,

$$SU(3)_C \otimes SU(2)_L \otimes SU(3)_R \otimes U(1)_X$$

$$\downarrow w, \Lambda$$

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes P$$

$$\downarrow u, v$$

$$SU(3)_C \otimes U(1)_Q \otimes P.$$
(2.11)

Trong đó, VEV của ϕ (w) cung cấp khối lượng cho các lepton mới và các quark lạ, trong khi VEV của Ξ (Λ) cung cấp khối lượng Majorana cho các neutrino phân cực phải. Cả hai VEV w, Λ cung cấp khối lượng cho các gauge boson mới. Các VEV của S (u, v) cung cấp khối lượng cho các lepton mang điện thông thường, các quark, các gauge boson yếu, và khối lượng Dirac của các neutrino. Để rồi, khối lượng nhỏ neutrino nhận được qua cơ chế seesaw như đã đề cập ở trên. Ngoài ra, sau bước phá vỡ đối xứng thứ nhất, đối xứng gián đoạn tàn dư W-parity được xác định cùng với đối xứng SM do VEV Λ [64,69,70,82–84]. Lưu ý là w, u, v không phá vỡ B - L, ngược lại Λ phá vỡ đối xứng này và xác định khối lượng Majorana cũng như W-parity. Như vậy, khối lượng nhỏ của neutrino và tính bền của vật chất tối liên quan chặt chẽ với nhau. Chúng đều có nguồn gốc từ sự phá vỡ đối xứng chuẩn B - L. Để phù hợp với SM, chúng ta phải giả định rằng $u, v \ll w, \Lambda$.

Lagrangian toàn phần có dạng,

$$\mathcal{L} = \mathcal{L}_{\text{kinetic}} + \mathcal{L}_{\text{Yukawa}} - V_{\text{scalar}}, \qquad (2.12)$$

phần thứ nhất gồm các số hạng động năng và các tương tác chuẩn. Phần thứ hai và sau cùng lần lượt là Lagrangian Yukawa và thế vô hướng,

$$\mathcal{L}_{\text{Yukawa}} = h_{ab}^{l} \bar{\psi}_{aL} S \psi_{bR} + h_{ab}^{R} \bar{\psi}_{aR}^{c} \Xi^{\dagger} \psi_{bR} + h_{a3}^{q} \bar{Q}_{aL} S Q_{3R} + h_{a\beta}^{q} \tilde{Q}_{aL} S^{*} Q_{\beta R}$$

$$+ h_{ab}^{E} \bar{E}_{aL} \phi^{\dagger} \psi_{bR} + h_{33}^{J} \bar{J}_{3L} \phi^{\dagger} Q_{3R} + h_{\alpha\beta}^{J} \bar{J}_{\alpha L} \phi^{T} Q_{\beta R} + H.c., \qquad (2.13)$$

$$V_{\text{scalar}} = \mu_{S}^{2} \text{Tr}(S^{\dagger}S) + \lambda_{1S} [\text{Tr}(S^{\dagger}S)]^{2} + \lambda_{2S} \text{Tr}(S^{\dagger}SS^{\dagger}S) + \mu_{\Xi}^{2} \text{Tr}(\Xi^{\dagger}\Xi)$$

$$+ \lambda_{1\Xi} [\text{Tr}(\Xi^{\dagger}\Xi)]^{2} + \lambda_{2\Xi} \text{Tr}(\Xi^{\dagger}\Xi\Xi^{\dagger}\Xi) + \mu_{\phi}^{2} \phi^{\dagger} \phi + \lambda_{\phi} (\phi^{\dagger} \phi)^{2}$$

$$+ \lambda_{1} (\phi^{\dagger}S^{\dagger}S\phi) + \lambda_{2} \text{Tr}(S^{\dagger}S\Xi\Xi^{\dagger}) + \lambda_{3} (\phi^{\dagger}\Xi\Xi^{\dagger}\phi) + \lambda_{4} (\phi^{\dagger}\phi) \text{Tr}(S^{\dagger}S)$$

$$+ \lambda_{5} (\phi^{\dagger}\phi) \text{Tr}(\Xi^{\dagger}\Xi) + \lambda_{6} \text{Tr}(\Xi^{\dagger}\Xi) \text{Tr}(S^{\dagger}S) + (fS\phi^{*}S + H.c.), \qquad (2.14)$$

ở đây "Tr" là phép lấy vết. Chú ý rằng $\tilde{Q}_L \equiv i\sigma_2 Q_L$ biến đổi như 2* dưới $SU(2)_L$, tức là $\tilde{Q}_L \rightarrow U_L^* \tilde{Q}_L$. Cũng như thế, chúng tôi có $S \rightarrow U_L S U_R^{\dagger}$, $\Xi \rightarrow U_R \Xi U_R^T$, và $Q_{\alpha R} \rightarrow U_R^* Q_{\alpha R}$ dưới nhóm $SU(2)_L \otimes SU(3)_R$. Có thể thấy rằng thế hệ thứ ba của các quark tương tác với các vô hướng là khác so với hai thế hệ quark đầu tiên. Điều này không xẩy ra với các lepton cũng như không giống trong M3221. Theo như [28], các tham số trong thế vô hướng được giữ nguyên. Ngoài ra, các số hạng gắn với f, $\lambda_{1,2,3}$ được chúng tôi bổ sung, chúng đã bị bỏ qua trong nghiên cứu trước đây.

Phần gauge boson bao gồm hai W-fields là $X_R^{\pm q}$ và $Y_R^{\pm(q+1)}$ hay tương ứng là $\frac{1}{\sqrt{2}}(T_{4R} \pm iT_{5R})$ và $\frac{1}{\sqrt{2}}(T_{6R} \pm iT_{7R})$. Các gauge boson còn lại là trường thông thường. Tổng hợp tất cả W-fields, chúng tôi thấy rằng mô hình cung cấp các ứng cử viên vật chất tối nếu $q = 0, \pm 1$ (ứng cử viên phải có điện tích trung hòa). Trường hợp với q = 0, các ứng cử viên là E^0 hoặc X_R^0 hoặc một vài tổ hợp của ($\phi_1^0, S_{13}^0, \Xi_{13}^0$). Trường hợp với q = -1, các ứng cử viên là Y_R^0 hoặc một vài tổ hợp của (ϕ_2^0, S_{23}^0). Trường hợp với q = 1, ứng cử viên chỉ là Ξ_{23}^0 . Ứng cử viên vật chất tối phải là hạt lepton sai nhẹ nhất (LWP), chúng được xác định bởi W-parity.

2.2. Phần vô hướng

Chúng tôi khai triển các trường vô hướng trung hò
a $(S^o_{11},\,S^o_{22},\,\phi^o_3,\,\Xi^o_{11})$ quanh VEV như sau,

$$S = \begin{pmatrix} \frac{u+S_1+iA_1}{\sqrt{2}} & S_{12}^+ & S_{13}^{-q} \\ S_{21}^- & \frac{v+S_2+iA_2}{\sqrt{2}} & S_{23}^{-q-1} \end{pmatrix},$$
(2.15)

$$\phi = \begin{pmatrix} \phi_1^{-q} \\ \phi_2^{-q-1} \\ \frac{w+S_3+iA_3}{\sqrt{2}} \end{pmatrix}, \quad \Xi = \begin{pmatrix} \frac{\Lambda+S_4+iA_4}{\sqrt{2}} & \frac{\Xi_{12}}{\sqrt{2}} & \frac{\Xi_{13}}{\sqrt{2}} \\ \frac{\Xi_{12}}{\sqrt{2}} & \Xi_{22}^{--} & \frac{\Xi_{23}^{q-1}}{\sqrt{2}} \\ \frac{\Xi_{13}^q}{\sqrt{2}} & \frac{\Xi_{23}^q}{\sqrt{2}} & \frac{\Xi_{23}^q}{\sqrt{2}} \end{pmatrix}. \quad (2.16)$$

Để tìm điều kiện cực tiểu thế và phổ khối lượng phần vô hướng, chúng tôi khai triển các số hạng trong biểu thức thế và chỉ quan tâm tới những kết quả khai triển đến bậc hai của các trường thành phần.

$$\mu_S^2 \operatorname{Tr}(S^{\dagger}S) = \frac{\mu_S^2}{2} \left[u^2 + v^2 + 2(uS_1 + vS_2) + A_1^2 + A_2^2 + S_1^2 + S_2^2 + 2\left(S_{12}^+ S_{12}^- + S_{21}^+ S_{21}^- + S_{13}^q S_{13}^{-q} + S_{23}^{q+1} S_{23}^{-(q+1)}\right) \right], \quad (2.17)$$

$$\mu_{\phi}^{2}(\phi^{\dagger}\phi) = \frac{\mu_{\phi}^{2}}{2} \left[w^{2} + 2wS_{3} + A_{3}^{2} + S_{3}^{2} + 2\left(\phi_{1}^{q}\phi_{1}^{-q} + \phi_{2}^{q+1}\phi_{2}^{-(q+1)}\right) \right], \quad (2.18)$$

$$\mu_{\Xi}^{2} \operatorname{Tr}(\Xi^{\dagger}\Xi) = \frac{\mu_{\Xi}^{2}}{2} \left[\Lambda^{2} + 2\Lambda S_{4} + A_{4}^{2} + S_{4}^{2} + 2 \left(\Xi_{12}^{+} \Xi_{12}^{-} + \Xi_{13}^{q} \Xi_{13}^{-q} + \Xi_{22}^{++} \Xi_{22}^{--} + \Xi_{23}^{q-1} \Xi_{23}^{-(q-1)} + \Xi_{33}^{2q} \Xi_{33}^{-2q} \right) \right], \quad (2.19)$$

$$\lambda_{1S}[\text{Tr}(S^{\dagger}S)]^{2} = \frac{\lambda_{1S}}{4} \left[(u^{2} + v^{2})^{2} + 4(u^{2} + v^{2})(uS_{1} + vS_{2}) + 4(u^{2}S_{1}^{2} + v^{2}S_{2}^{2} + 2uvS_{1}S_{2}) + 2(u^{2} + v^{2})(A_{1}^{2} + A_{2}^{2} + S_{1}^{2} + S_{2}^{2}) + 4(u^{2} + v^{2}) \right] \times \left(S_{12}^{+}S_{12}^{-} + S_{21}^{+}S_{21}^{-} + S_{13}^{q}S_{13}^{-q} + S_{23}^{q+1}S_{23}^{-(q+1)} \right) + interaction \right], \quad (2.20)$$

$$\lambda_{2S} \operatorname{Tr}(S^{\dagger}SS^{\dagger}S) = \frac{\lambda_{2S}}{4} \left\{ (u^{4} + v^{4}) + 4(u^{3}S_{1} + v^{3}S_{2}) + 2u^{2}(3S_{1}^{2} + A_{1}^{2}) + 2v^{2}(3S_{2}^{2} + A_{2}^{2}) + 4 \left[(u^{2} + v^{2})(S_{21}^{+}S_{21}^{-} + S_{12}^{+}S_{12}^{-}) + uv(S_{12}^{+}S_{21}^{-} + S_{21}^{+}S_{12}^{-}) + u^{2}S_{13}^{q}S_{13}^{-q} + v^{2}S_{23}^{q+1}S_{23}^{-(q+1)} \right] + interaction \right\}, \quad (2.21)$$

$$\lambda_{\phi}(\phi^{\dagger}\phi)^{2} = \frac{\lambda_{\phi}}{4} \left[w^{4} + 4w^{3}S_{3} + 6w^{2}S_{3}^{2} + 2w^{2}A_{3}^{2} + 4w^{2} \left(\phi_{1}^{q}\phi_{1}^{-q} + \phi_{2}^{q+1}\phi_{2}^{-(q+1)} \right) + interaction \right], \quad (2.22)$$

$$\lambda_{1\Xi} [\text{Tr}(\Xi^{\dagger}\Xi)]^{2} = \frac{\lambda_{1\Xi}}{4} \left[\Lambda^{4} + 4\Lambda^{3}S_{4} + 6\Lambda^{2}S_{4}^{2} + 2\Lambda^{2}A_{4}^{2} + 4\Lambda^{2} \left(\Xi_{12}^{+}\Xi_{12}^{-} + \Xi_{13}^{q}\Xi_{13}^{-q} + \Xi_{22}^{++}\Xi_{22}^{--} + \Xi_{23}^{q-1}\Xi_{23}^{-(q-1)} + \Xi_{33}^{2q}\Xi_{33}^{-2q} \right) + interaction \right], \quad (2.23)$$

$$\lambda_{2\Xi} \operatorname{Tr}(\Xi^{\dagger}\Xi\Xi^{\dagger}\Xi) = \frac{\lambda_{2\Xi}}{4} \left[\Lambda^{4} + 4\Lambda^{3}S_{4} + 6\Lambda^{2}S_{4}^{2} + 2\Lambda^{2}A_{4}^{2} + 4\Lambda^{2}(\Xi_{12}^{+}\Xi_{12}^{-} + \Xi_{13}^{q}\Xi_{13}^{-q}) + interaction \right], \quad (2.24)$$

$$\lambda_{1}(\phi^{\dagger}S^{\dagger}S\phi) = \frac{\lambda_{1}}{2} \left[u^{2}\phi_{1}^{q}\phi_{1}^{-q} + w^{2}S_{13}^{q}S_{13}^{-q} + v^{2}\phi_{2}^{q+1}\phi_{2}^{-(q+1)} + w^{2}S_{23}^{q+1}S_{23}^{-(q+1)} + uw(\phi_{1}^{q}S_{13}^{-q} + S_{13}^{q}\phi_{1}^{-q}) + vw\left(\phi_{2}^{q+1}S_{23}^{-(q+1)} + S_{23}^{q+1}\phi_{2}^{-(q+1)}\right) \right]$$

+ interaction], (2.25)

$$\lambda_{2} \operatorname{Tr}(S^{\dagger}S\Xi\Xi^{\dagger}) = \frac{\lambda_{2}}{4} \left\{ u^{2}\Lambda^{2} + 2u^{2}\Lambda S_{4} + 2u\Lambda^{2}S_{1} + u^{2}(A_{4}^{2} + S_{4}^{2}) + \Lambda^{2}(A_{1}^{2} + S_{1}^{2}) + 4u\Lambda S_{1}S_{4} + u^{2}(\Xi_{12}^{+}\Xi_{12}^{-} + \Xi_{13}^{q}\Xi_{13}^{-q}) + v^{2}(\Xi_{12}^{+}\Xi_{12}^{-} + 2\Xi_{22}^{++}\Xi_{22}^{--} + \Xi_{23}^{q-1}\Xi_{23}^{-(q-1)}) + 2\Lambda^{2}S_{21}^{+}S_{21}^{-} + \Lambda\sqrt{2}\left[u(S_{12}^{+}\Xi_{12}^{-} + \Xi_{12}^{+}S_{12}^{-} + S_{13}^{q}\Xi_{13}^{-q} + \Xi_{13}^{q}S_{13}^{-q}) + v(S_{21}^{+}\Xi_{12}^{-} + \Xi_{12}^{+}S_{21}^{-})\right] + interaction \right\}, \quad (2.26)$$

$$\lambda_{3}(\phi^{\dagger}\Xi\Xi^{\dagger}\phi) = \frac{\lambda_{3}}{4} \left[2\Lambda^{2}\phi_{1}^{q}\phi_{1}^{-q} + w^{2} \left(\Xi_{13}^{q}\Xi_{13}^{-q} + \Xi_{23}^{q-1}\Xi_{23}^{-(q-1)} + 2\Xi_{33}^{2q}\Xi_{33}^{-2q} \right) + \Lambda w \sqrt{2}(\phi_{1}^{q}\Xi_{13}^{-q} + \Xi_{13}^{q}\phi_{1}^{-q}) + interaction \right], \quad (2.27)$$

$$\lambda_{4}(\phi^{\dagger}\phi)\operatorname{Tr}(S^{\dagger}S) = \frac{\lambda_{4}}{4} \left[(u^{2} + v^{2})w^{2} + 2w(u^{2} + v^{2})S_{3} + 2w^{2}(uS_{1} + vS_{2}) + (u^{2} + v^{2})(A_{3}^{2} + S_{3}^{2}) + w^{2}(A_{1}^{2} + A_{2}^{2} + S_{1}^{2} + S_{2}^{2}) + 4wuS_{1}S_{3} + 4wvS_{2}S_{3} + 2w^{2} \left(S_{12}^{+}S_{12}^{-} + S_{21}^{+}S_{21}^{-} + S_{13}^{q}S_{13}^{-q} + S_{23}^{q+1}S_{23}^{-(q+1)} \right) + 2(u^{2} + v^{2}) \left(\phi_{1}^{q}\phi_{1}^{-q} + \phi_{2}^{q+1}\phi_{2}^{-(q+1)} \right) + interaction \right], \quad (2.28)$$

$$\lambda_{5}(\phi^{\dagger}\phi)\operatorname{Tr}(\Xi^{\dagger}\Xi) = \frac{\lambda_{5}}{4} \left[w^{2}\Lambda^{2} + 2w^{2}\Lambda S_{4} + 2w\Lambda^{2}S_{3} + w^{2}(A_{4}^{2} + S_{4}^{2}) + \Lambda^{2}(A_{3}^{2} + S_{3}^{2}) + 4w\Lambda S_{3}S_{4} + 2w^{2} \left(\Xi_{12}^{+}\Xi_{12}^{-} + \Xi_{13}^{q}\Xi_{13}^{-q} + \Xi_{22}^{++}\Xi_{22}^{--} + \Xi_{23}^{q-1}\Xi_{23}^{-(q-1)} \right)$$

$$+ \Xi_{33}^{2q} \Xi_{33}^{-2q} + 2\Lambda^2 \left(\phi_1^q \phi_1^{-q} + \phi_2^{q+1} \phi_2^{-(q+1)} \right) + interaction \Big], \quad (2.29)$$

$$\lambda_{6} \operatorname{Tr}(\Xi^{\dagger}\Xi) \operatorname{Tr}(S^{\dagger}S) = \frac{\lambda_{6}}{4} \left[(u^{2} + v^{2})\Lambda^{2} + 2\Lambda^{2}(uS_{1} + vS_{2}) + 2\Lambda(u^{2} + v^{2})S_{4} + 4\Lambda S_{4}(uS_{1} + vS_{2}) + \Lambda^{2}(A_{1}^{2} + A_{2}^{2} + S_{1}^{2} + S_{2}^{2}) + (u^{2} + v^{2})(A_{4}^{2} + S_{4}^{2}) + 2(u^{2} + v^{2})\left(\Xi_{12}^{+}\Xi_{12}^{-} + \Xi_{13}^{q}\Xi_{13}^{-q} + \Xi_{22}^{++}\Xi_{22}^{--} + \Xi_{23}^{q-1}\Xi_{23}^{-(q-1)} + \Xi_{33}^{2}\Xi_{33}^{-2q}\right) + 2\Lambda^{2}\left(S_{12}^{+}S_{12}^{-} + S_{21}^{+}S_{21}^{-} + S_{13}^{q}S_{13}^{-q} + S_{23}^{q+1}S_{23}^{-(q+1)}\right) + interaction\right], \quad (2.30)$$

$$fS\phi^*S + H.c = -f\sqrt{2} \left[uvw + vwS_1 + uwS_2 + uvS_3 + u\left(A_2A_3 + S_2S_3 - \phi_2^{q+1}S_{23}^{-(q+1)} - S_{23}^{q+1}\phi_2^{-(q+1)}\right) + v\left(A_1A_3 + S_1S_3 - \phi_1^qS_{13}^{-q} - S_{13}^q\phi_1^{-q}\right) + w\left(S_1S_2 - A_1A_2 - S_{12}^+S_{21}^- - S_{21}^+S_{12}^-\right) + interaction.$$
(2.31)

Sau khi nhóm các số hạng cùng bậc theo các trường thành phần lại với nhau, chúng tôi tách thế vô hướng ra như sau:

$$V(S,\phi,\Xi) = V_{\min} + V_{\text{linear}} + V_{\text{mass}} + V_{\text{interaction}}.$$
 (2.32)

Trong đó, tất cả các tương tác chứa trong $V_{\text{interaction}}$. V_{min} là cực tiểu của thế, nó độc lập với các trường và chỉ đóng góp vào năng lượng chân không. V_{linear} gồm các số hạng bậc một theo các trường, bất biến chuẩn đòi hỏi $V_{\text{linear}} = 0$, từ đó chúng tôi nhận được các điều kiện cực tiểu thế.

$$\mu_{S}^{2}u + (\lambda_{1S} + \lambda_{2S})u^{3} - \sqrt{2}fvw + \frac{1}{2}u[2\lambda_{1S}v^{2} + \lambda_{4}w^{2} + (\lambda_{2} + \lambda_{6})\Lambda^{2}] = 0,$$

$$\mu_{S}^{2}v + (\lambda_{1S} + \lambda_{2S})v^{3} - \sqrt{2}fuw + \frac{1}{2}v(2\lambda_{1S}u^{2} + \lambda_{4}w^{2} + \lambda_{6}\Lambda^{2}) = 0,$$

$$\mu_{\phi}^{2}w + \lambda_{\phi}w^{3} - \sqrt{2}fuv + \frac{1}{2}w[\lambda_{4}(u^{2} + v^{2}) + \lambda_{5}\Lambda^{2}] = 0,$$

$$\mu_{\Xi}^{2} + (\lambda_{1\Xi} + \lambda_{2\Xi})\Lambda^{2} + \frac{1}{2}[(\lambda_{2} + \lambda_{6})u^{2} + \lambda_{\Xi S}v^{2} + \lambda_{5}w^{2}] = 0.$$
 (2.33)

 $V_{\rm mass}$ gồm các số hạng chứa bậc hai theo các trường thành phần. Nó có thể tách ra, $V_{\rm mass} = V_{\rm mass}^S + V_{\rm mass}^A + V_{\rm mass}^{\rm charged}$, trong đó hai số hạng đầu tiên lần lượt mô tả các trường vô hướng CP chẵn và CP lẻ, còn số hạng cuối chứa các trường vô hướng mang điện.

Sau khi sử dụng các điều kiện cực tiểu thế, chúng tôi xác định được,

$$V_{\text{mass}}^{S} = \frac{1}{2} \begin{pmatrix} S_{1} & S_{2} & S_{3} & S_{4} \end{pmatrix} M_{S}^{2} \begin{pmatrix} S_{1} & S_{2} & S_{3} & S_{4} \end{pmatrix}^{T}, \quad (2.34)$$

ở đây M_S^2 là ma trận như sau:

$$\begin{pmatrix} 2(\lambda_{1S} + \lambda_{2S})u^2 + \frac{\sqrt{2}fvw}{u} & 2\lambda_{1S}uv - \sqrt{2}fw & \lambda_4uw - \sqrt{2}fv & (\lambda_2 + \lambda_6)u\Lambda \\ 2\lambda_{1S}uv - \sqrt{2}fw & (M_S^2)_{22} & \lambda_4vw - \sqrt{2}fu & \lambda_6v\Lambda \\ \lambda_4uw - \sqrt{2}fv & \lambda_4vw - \sqrt{2}fu & 2\lambda_\phi w^2 + \frac{\sqrt{2}fuv}{w} & \lambda_5w\Lambda \\ (\lambda_2 + \lambda_6)u\Lambda & \lambda_6v\Lambda & \lambda_5w\Lambda & 2(\lambda_{1\Xi} + \lambda_{2\Xi})\Lambda^2 \end{pmatrix}$$

trong đó $(M_S^2)_{22} = 2(\lambda_{1S} + \lambda_{2S})v^2 - \lambda_{2S}u^2 + \frac{\lambda_2 u^2 \Lambda^2}{2(v^2 - u^2)}$. Chú ý rằng f là một tham số có thứ nguyên khối lượng,

$$f = -\frac{\lambda_{2S}uv}{\sqrt{2}w} - \frac{\lambda_2uv\Lambda^2}{2\sqrt{2}(u^2 - v^2)w},$$
(2.35)

điều này nhận được từ hai điều kiện cực tiểu thế đầu tiên trong (2.33). Bởi vì $u, v \ll w, \Lambda$ nên tham số f cỡ thang w, Λ . Ở gần đúng bậc một, $u, v \ll w, \Lambda, f$, ma trận khối lượng ở trên cho một trường vô hướng $H_1 = \frac{uS_1 + vS_2}{\sqrt{u^2 + v^2}}$ không khối lượng và ba trường vô hướng có khối lượng lớn:

$$\begin{split} H_2 &= \frac{-vS_1 + uS_2}{\sqrt{u^2 + v^2}}, \qquad m_{H_2}^2 = \frac{\lambda_2(u^2 + v^2)\Lambda^2}{2(v^2 - u^2)}, \\ H_3 &= c_{\varphi}S_3 - s_{\varphi}S_4, \qquad H_4 = s_{\varphi}S_3 + c_{\varphi}S_4, \\ m_{H_3}^2 &= \lambda_{\phi}w^2 + (\lambda_{1\Xi} + \lambda_{2\Xi})\Lambda^2 - \sqrt{[(\lambda_{1\Xi} + \lambda_{2\Xi})\Lambda^2 - \lambda_{\phi}w^2]^2 + \lambda_5^2w^2\Lambda^2}, \\ m_{H_4}^2 &= \lambda_{\phi}w^2 + (\lambda_{1\Xi} + \lambda_{2\Xi})\Lambda^2 + \sqrt{[(\lambda_{1\Xi} + \lambda_{2\Xi})\Lambda^2 - \lambda_{\phi}w^2]^2 + \lambda_5^2w^2\Lambda^2}, \end{split}$$

trong đó chúng tôi đặ
t $c_{\varphi}=\cos\varphi, s_{\varphi}=\sin\varphi,$ với

$$t_{2\varphi} = \frac{\lambda_5 w \Lambda}{(\lambda_{1\Xi} + \lambda_{2\Xi}) \Lambda^2 - \lambda_{\phi} w^2}.$$
 (2.36)

Ở gần đúng bậc tiếp theo, khối lượng các Higgs $m_{H_i}^2$ (i = 1, 2, 3, 4) được bổ đính các số hạng chứa u^2, v^2 . Đặc biệt, khối lượng của H_1 xấp xỉ là

$$m_{H_1}^2 = 2(\lambda_{1S} + \lambda_{2S})u^2 - \lambda_{2S}v^2.$$
(2.37)

Điều này cho thấy H_1 có thể đồng nhất là Higgs boson của SM. Còn lại, $H_{2,3,4}$ là các hạt mới với khối lượng cỡ thang w, Λ .

Đối với phần giả vô hướng, chúng tôi cũng xác định được,

$$V_{\text{mass}}^{A} = \frac{1}{2} \begin{pmatrix} A_{1} & A_{2} & A_{3} & A_{4} \end{pmatrix} M_{A}^{2} \begin{pmatrix} A_{1} & A_{2} & A_{3} & A_{4} \end{pmatrix}^{T}, \quad (2.38)$$

ở đây M_A^2 là ma trận như sau:

$$\begin{pmatrix} \frac{v^2[2\lambda_{2S}(v^2-u^2)-\lambda_2\Lambda^2)]}{2(u^2-v^2)} & \frac{uv[2\lambda_{2S}(v^2-u^2)-\lambda_2\Lambda^2]}{2(u^2-v^2)} & \frac{uv^2[2\lambda_{2S}(u^2-v^2)+\lambda_2\Lambda^2]}{2(u^2-v^2)w} & 0\\ \frac{uv[2\lambda_{2S}(v^2-u^2)-\lambda_2\Lambda^2]}{2(u^2-v^2)} & \frac{u^2[2\lambda_{2S}(v^2-u^2)-\lambda_2\Lambda^2]}{2(u^2-v^2)} & \frac{u^2v[2\lambda_{2S}(u^2-v^2)+\lambda_2\Lambda^2]}{2(u^2-v^2)w} & 0\\ \frac{uv^2[2\lambda_{2S}(u^2-v^2)+\lambda_2\Lambda^2]}{2(u^2-v^2)w} & \frac{u^2v[2\lambda_{2S}(u^2-v^2)+\lambda_2\Lambda^2]}{2(u^2-v^2)w} & \frac{u^2v^2[2\lambda_{2S}(v^2-u^2)-\lambda_2\Lambda^2]}{2(u^2-v^2)w^2} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ma trận khối lượng trên chỉ cho một trường giả vô hướng vật lý \mathcal{A} với khối lượng $m_{\mathcal{A}}^2$,

$$\mathcal{A} = \frac{vwA_1 + uwA_2 - uvA_3}{\sqrt{(u^2 + v^2)w^2 + u^2v^2}},$$

$$m_{\mathcal{A}}^2 = -\frac{[v^2w^2 + u^2(v^2 + w^2)][2\lambda_{2S}(u^2 - v^2) + \lambda_2\Lambda^2]}{2(u^2 - v^2)w^2},$$
 (2.39)

khối lượng này cỡ thang w, Λ . Còn lại là ba trường giả vô hướng không có khối lượng,

$$G_{Z} = \frac{-uA_{1} + vA_{2}}{\sqrt{u^{2} + v^{2}}}, \qquad G_{Z_{1}} = A_{4},$$
$$G_{Z_{1}'} = \frac{uv^{2}A_{1} + u^{2}vA_{2} + w(u^{2} + v^{2})A_{3}}{\sqrt{(u^{2} + v^{2})(u^{2}v^{2} + w^{2}u^{2} + w^{2}v^{2})}}, \qquad (2.40)$$

chúng lần lượt là các Goldstone boson bị hấp thụ bởi các gauge boson trung hòa Z, \mathcal{Z}_1 , và \mathcal{Z}'_1 .

Với phần vô hướng mang điện, các trường $\Xi_{22}^{\pm\pm}, \Xi_{23}^{\pm(q-1)}$, và $\Xi_{33}^{\pm 2q}$ không trộn. Bản thân chúng là các trường vật lý với khối lượng lần lượt là

$$m_{\Xi_{22}^{\pm\pm}}^2 = \frac{\lambda_2 (v^2 - u^2) - 2\lambda_{2\Xi} \Lambda^2}{2}, \qquad (2.41)$$

$$m_{\Xi_{23}^{\pm(q-1)}}^2 = \frac{\lambda_2(v^2 - 2u^2) + \lambda_3 w^2 - 4\lambda_{2\Xi}\Lambda^2}{4}, \qquad (2.42)$$

$$m_{\Xi_{33}^{\pm 2q}}^2 = \frac{\lambda_3 w^2 - \lambda_2 u^2 - 2\lambda_{2\Xi} \Lambda^2}{2}, \qquad (2.43)$$

các khối lượng này đều thuộc thang w, Λ . Các trường vô hướng mang điện còn lại trộn lẫn với nhau,
$$V_{\text{mass}}^{\text{charged}} \supset \left(\begin{array}{ccc} S_{12}^{+} & S_{21}^{+} & \Xi_{12}^{+} \end{array} \right) M_{C_{1}}^{2} \begin{pmatrix} S_{12}^{-} \\ S_{21}^{-} \\ \Xi_{12}^{-} \end{array} \right) + \left(\begin{array}{ccc} S_{13}^{q} & \phi_{1}^{q} & \Xi_{13}^{q} \end{array} \right) M_{C_{q}}^{2} \begin{pmatrix} S_{13}^{-q} \\ \phi_{1}^{-q} \\ \Xi_{13}^{-q} \end{array} \right) \\ + \left(\begin{array}{ccc} S_{23}^{(q+1)} & \phi_{2}^{(q+1)} \end{array} \right) M_{C_{(q+1)}}^{2} \begin{pmatrix} S_{23}^{-(q+1)} \\ \phi_{2}^{-(q+1)} \end{pmatrix} \right), \quad (2.44)$$

ở đây $M_{C_1}^2$, $M_{C_q}^2$, và $M_{C_{(q+1)}}^2$ lần lượt là ma trận khối lượng của các trường vô hướng tích điện đơn, q, và (q+1).

Trước tiên, chúng tôi có

$$M_{C_1}^2 = \begin{pmatrix} \frac{\lambda_2 u^2 \Lambda^2}{2(v^2 - u^2)} & \frac{\lambda_2 u v \Lambda^2}{2(v^2 - u^2)} & \frac{\lambda_2 u \Lambda}{2\sqrt{2}} \\ \frac{\lambda_2 u v \Lambda^2}{2(v^2 - u^2)} & \frac{\lambda_2 v^2 \Lambda^2}{2(v^2 - u^2)} & \frac{\lambda_2 u \Lambda}{2\sqrt{2}} \\ \frac{\lambda_2 u \Lambda}{2\sqrt{2}} & \frac{\lambda_2 u \Lambda}{2\sqrt{2}} & \frac{\lambda_2 (v^2 - u^2)}{4} \end{pmatrix}.$$
 (2.45)

Từ ma trận khối lượng này, chúng tôi nhận được một trường vô hướng vật lý tích điện đơn có khối lượng lớn cỡ thang w, Λ ,

$$H_5^{\pm} = \frac{\sqrt{2}u\Lambda S_{12}^{\pm} + \sqrt{2}v\Lambda S_{21}^{\pm} + (v^2 - u^2)\Xi_{12}^{\pm}}{\sqrt{2(u^2 + v^2)\Lambda^2 + (v^2 - u^2)^2}},$$

$$m_{H_5^{\pm}}^2 = \frac{\lambda_2}{4} \left[v^2 - u^2 + \frac{2(u^2 + v^2)\Lambda^2}{v^2 - u^2} \right].$$
 (2.46)

Hai trạng thái còn lại không có khối lượng,

$$G_{W_1}^{\pm} = \frac{-vS_{12}^{\pm} + uS_{21}^{\pm}}{\sqrt{u^2 + v^2}},$$

$$G_{W_2}^{\pm} = \frac{u(u^2 - v^2)S_{12}^{\pm} + v(u^2 - v^2)S_{21}^{\pm} + \sqrt{2}(u^2 + v^2)\Lambda\Xi_{12}^{\pm}}{\sqrt{(u^2 - v^2)^2(u^2 + v^2) + 2(u^2 + v^2)^2\Lambda^2}},$$
(2.47)

chúng lần lượt là các Goldstone boson bị hấp thụ bởi các gauge boson $W_1^\pm, W_2^\pm.$

Với các trường vô hướng tích điện q, chúng tôi có

$$M_{C_q}^2 = \begin{pmatrix} \frac{\sqrt{2}fvw}{u} + \frac{1}{2}(\lambda_1w^2 - \lambda_2\Lambda^2) & \sqrt{2}fv + \frac{\lambda_1uw}{2} & \frac{\lambda_2u\Lambda}{2\sqrt{2}} \\ \sqrt{2}fv + \frac{\lambda_1uw}{2} & \frac{1}{2}(\lambda_1u^2 + \lambda_3\Lambda^2 + \frac{2\sqrt{2}fuv}{w}) & \frac{\lambda_3w\Lambda}{2\sqrt{2}} \\ \frac{\lambda_2u\Lambda}{2\sqrt{2}} & \frac{\lambda_3w\Lambda}{2\sqrt{2}} & \frac{1}{4}(\lambda_3w^2 - \lambda_2u^2) \end{pmatrix}.$$

Từ đây, chúng tôi nhận được một trạng thái $G_X^{\pm q} = \frac{uS_{13}^{\pm q} - w\phi_1^{\pm q} + \sqrt{2}\Lambda \Xi_{13}^{\pm q}}{\sqrt{u^2 + w^2 + 2\Lambda^2}}$ không khối lượng, nó chính là Goldstone boson bị hấp thụ bởi gauge boson $X^{\pm q}$. Để

tìm các trạng thái còn lại, chúng tôi đặt,

$$H_{6}^{\prime \pm q} = \frac{wS_{13}^{\pm q} + u\phi_{1}^{\pm q}}{\sqrt{u^{2} + w^{2}}},$$

$$H_{7}^{\prime \pm q} = \frac{-\sqrt{2}u\Lambda S_{13}^{\pm q} + \sqrt{2}w\Lambda\phi_{1}^{\pm q} + (u^{2} + w^{2})\Xi_{13}^{\pm q}}{\sqrt{(u^{2} + w^{2})(u^{2} + w^{2} + 2\Lambda^{2})}},$$
(2.48)

chúng trực giao với $G_X^{\pm q}$. Các trường vật lý tương ứng là các tổ hợp của $H_6^{\prime \pm q}$ và $H_7^{\prime \pm q}$. Trạng thái và khối lượng của chúng được xác định:

$$H_{6}^{\pm q} = c_{\varphi_{q}} H_{6}^{\prime \pm q} - s_{\varphi_{q}} H_{7}^{\prime \pm q}, \qquad m_{H_{6}^{\pm q}}^{2} \simeq \frac{\lambda_{1} (u^{2} - v^{2}) w^{2} - \lambda_{2} u^{2} \Lambda^{2}}{2(u^{2} - v^{2})},$$
$$H_{7}^{\pm q} = s_{\varphi_{q}} H_{6}^{\prime \pm q} + c_{\varphi_{q}} H_{7}^{\prime \pm q}, \qquad m_{H_{7}^{\pm q}}^{2} \simeq \frac{\lambda_{3} (w^{2} + 2\Lambda^{2})}{4}, \qquad (2.49)$$

ở đây góc trộn lẫn giữa $H_6'^{\pm q}$ và $H_7'^{\pm q}$ được đặt là $\varphi_q,$

$$t_{2\varphi_q} \simeq \frac{2(\lambda_2 + \lambda_3)u\Lambda\sqrt{2(\Lambda^2 + w^2)}}{-2\lambda_1 w^3 + \lambda_3 w(w^2 + 2\Lambda^2) + \frac{2\lambda_2 w u^2 \Lambda^2}{u^2 - v^2}},$$
 (2.50)

nó là nhỏ do $u,v\ll w,\Lambda,$ tức là các trạng thái trộn rất ít.

Cuối cùng, còn lại hai trường vô hướng mang điện (q+1). Một trong số chúng không có khối lượng và được đồng nhất là Goldstone boson bị hấp thụ bởi gauge boson $Y^{\pm(q+1)}$,

$$G_Y^{\pm(q+1)} = \frac{-vS_{23}^{\pm(q+1)} + w\phi_2^{\pm(q+1)}}{\sqrt{v^2 + w^2}}.$$
(2.51)

Trường còn lại trực giao với nó và có khối lượng lớn cõ thang w, Λ ,

$$H_8^{\pm(q+1)} = \frac{wS_{23}^{\pm(q+1)} + v\phi_2^{\pm(q+1)}}{\sqrt{v^2 + w^2}},$$

$$m_{H_8^{\pm(q+1)}}^2 = -\frac{(v^2 + w^2)[(u^2 - v^2)(2\lambda_{2S}u^2 - \lambda_1w^2) + \lambda_2u^2\Lambda^2]}{2(u^2 - v^2)w^2}.$$
 (2.52)

Tóm lại, mô hình chứa 12 trường Higgs có khối lượng là $H_{1,2,3,4}^0$, H_5^{\pm} , $H_{6,7}^{\pm q}$, $H_8^{\pm(q+1)}$, $\Xi_{22}^{\pm\pm}$, $\Xi_{23}^{\pm(q-1)}$, và $\Xi_{33}^{\pm2q}$. Trong đó, H_1 được đồng nhất với Higgs boson SM và có khối lượng ở thang điện yếu, trong khi các Higgs boson khác là mới, nặng cỡ thang w, Λ . Ngoài ra, có 11 Goldstone boson không khối lượng, chúng tương ứng bị hấp thụ bởi 11 gauge boson có khối lượng (tính cả các trường liên hợp). Ở gần đúng bậc một, các trạng thái vật lý liên hệ với các trạng thái chuẩn như sau:

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \simeq \begin{pmatrix} c_{\alpha_1} & s_{\alpha_1} \\ -s_{\alpha_1} & c_{\alpha_1} \end{pmatrix} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}, \begin{pmatrix} H_3 \\ H_4 \end{pmatrix} \simeq \begin{pmatrix} c_{\varphi} & -s_{\varphi} \\ s_{\varphi} & c_{\varphi} \end{pmatrix} \begin{pmatrix} S_3 \\ S_4 \end{pmatrix},$$

$$\begin{pmatrix} A \\ G_Z \\ G_{Z_1} \\ G_{Z_1}^{+} \end{pmatrix} \simeq \begin{pmatrix} s_{\alpha_1} & c_{\alpha_1} & -\frac{u}{w}s_{\alpha_1} & 0 \\ -c_{\alpha_1} & s_{\alpha_1} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{v}{2w}s_{2\alpha_1} & \frac{u}{2w}s_{2\alpha_1} & 1 & 0 \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{pmatrix},$$

$$\begin{pmatrix} H_5^{\pm} \\ G_{W_1}^{\pm} \\ G_{W_2}^{\pm} \end{pmatrix} \simeq \begin{pmatrix} c_{\alpha_1} & s_{\alpha_1} & \frac{v^2 - u^2}{\sqrt{2}\sqrt{u^2 + v^2}\Lambda} \\ -s_{\alpha_1} & c_{\alpha_1} & 0 \\ \frac{u}{\sqrt{2}\Lambda}c_{2\alpha_1} & \frac{v}{\sqrt{2}\Lambda}c_{2\alpha_1} & 1 \end{pmatrix} \begin{pmatrix} S_{12}^{\pm} \\ S_{21}^{\pm} \\ \Xi_{12}^{\pm} \end{pmatrix},$$

$$\begin{pmatrix} G_X^{\pm q} \\ H_6^{\pm q} \\ H_7^{\pm q} \end{pmatrix} \simeq \begin{pmatrix} \frac{u}{w}s_{\alpha_2} & -s_{\alpha_2} & c_{\alpha_2} \\ c_{\varphi_q} & \frac{u}{w}c_{\varphi_q} - c_{\alpha_2}s_{\varphi_q} & -s_{\alpha_2}s_{\varphi_q} \\ s_{\varphi_q} - \frac{u}{w}c_{\alpha_2}c_{\varphi_q} & c_{\alpha_2}c_{\varphi_q} & s_{\alpha_2}c_{\varphi_q} \end{pmatrix} \begin{pmatrix} S_{13}^{\pm q} \\ \phi_1^{\pm q} \\ \Xi_{13}^{\pm q} \end{pmatrix},$$

$$\begin{pmatrix} G_Y^{\pm (q+1)} \\ H_8^{\pm (q+1)} \end{pmatrix} \simeq \begin{pmatrix} -\frac{v}{w} & 1 \\ 1 & \frac{v}{w} \end{pmatrix} \begin{pmatrix} S_{23}^{\pm (q+1)} \\ \phi_2^{\pm (q+1)} \end{pmatrix},$$

$$(2.53)$$

trong đó các góc trộn $\alpha_{1,2}$ đã được đưa vào, $t_{\alpha_1} = v/u$ và $t_{\alpha_2} = w/\sqrt{2}\Lambda$.

2.3. Phần gauge

Sau khi đối xứng chuẩn bị phá vỡ bởi VEV của các trường vô hướng, các gauge boson vật lý sẽ nhận khối lượng từ số hạng Lagrangian,

$$\mathcal{L}_{s} = \text{Tr}[(D_{\mu}S)^{\dagger}(D^{\mu}S) + (D_{\mu}\Xi)^{\dagger}(D^{\mu}\Xi)] + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi), \qquad (2.54)$$

ở đây các đạo hàm hiệp biến được xác định như sau:

$$D_{\mu}S = \partial_{\mu}S + ig_L \frac{\sigma_a}{2} A_{aL\mu}S - ig_R S \frac{\lambda_i}{2} A_{iR\mu} + ig_X X_S B_{\mu}S, \qquad (2.55)$$

$$D_{\mu}\Xi = \partial_{\mu}\Xi + ig_R \frac{\lambda_i}{2} A_{iR\mu}\Xi + ig_R \Xi \frac{\lambda_i^*}{2} A_{iR\mu} + ig_X X_{\Xi} B_{\mu}\Xi, \qquad (2.56)$$

$$D_{\mu}\phi = \partial_{\mu}\phi + ig_R \frac{\lambda_i}{2} A_{iR\mu}\phi + ig_X X_{\phi} B_{\mu}\phi.$$
(2.57)

Trong đó, σ_a và λ_i lần lượt là các ma trận Pauli và Gell-Mann. g_L , g_R , và g_X lần lượt là các hằng số tương tác của nhóm $SU(2)_L$, $SU(3)_R$, và $U(1)_X$. $X_{S,\Xi,\phi}$ lần lượt là tích $U(1)_X$ của các đa tuyến vô hướng.

Với các VEV của S, Ξ, ϕ như đã đề cập, chúng tôi nhận được Lagrangian khối lượng,

$$\begin{aligned} \mathcal{L}_{\text{mass}}^{\text{gauge}} &= \frac{g_L^2}{8} \left\{ \left[A_{3L}^{\mu} - t_R A_{3R}^{\mu} - \frac{t_R}{\sqrt{3}} A_{8R}^{\mu} - \frac{(1+2q)t_X}{3} B^{\mu} \right]^2 + 2 \left[W_L^{\mu+} W_{L\mu}^{-} \right. \\ &+ t_R^2 \left(W_R^{\mu+} W_{R\mu}^{-} + X_{R\mu}^q X_R^{-q\mu} \right) \right] \right\} u^2 + \frac{g_L^2}{8} \left\{ \left[A_{3L}^{\mu} - t_R A_{3R}^{\mu} + \frac{t_R}{\sqrt{3}} A_{8R}^{\mu} + \frac{(1+2q)t_X}{3} B^{\mu} \right]^2 \right. \\ &+ 2 \left[W_L^{\mu+} W_{L\mu}^{-} + t_R^2 \left(W_R^{\mu+} W_{R\mu}^{-} + Y_{R\mu}^{q+1} Y_R^{-(q+1)\mu} \right) \right] \right\} v^2 - \frac{g_L^2}{2} \left(W_{L\mu}^{-} W_R^{\mu+} + W_{L\mu}^{+} W_R^{\mu-} \right) t_R u v \\ &+ \frac{g_L^2}{2} \left\{ \left[t_R A_{3R}^{\mu} + \frac{t_R}{\sqrt{3}} A_{8R}^{\mu} + \frac{2t_X}{2} (q-1) B^{\mu} \right]^2 + t_R^2 \left(W_{R\mu}^{+} W_R^{-} + X_{R\mu}^q X_R^{-q\mu} \right) \right\} \Lambda^2 \\ &+ \frac{g_L^2}{18} \left\{ \left[\sqrt{3} t_R A_{8R}^{\mu} + t_X (1+2q) B^{\mu} \right]^2 + \frac{9}{2} t_R^2 \left(X_{R\mu}^q X_R^{-q\mu} + Y_{R\mu}^{q+1} Y_R^{-(q+1)\mu} \right) \right\} w^2, \end{aligned}$$

$$(2.58)$$

ở đây chúng tôi đã đặt $t_X = \frac{g_X}{g_L}$, $t_R = \frac{g_R}{g_L}$, và xác định được các trường gauge boson non-Hermitian như sau:

$$W_{L\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(A_{1L\mu} \mp i A_{2L\mu} \right), \qquad W_{R\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(A_{1R\mu} \mp i A_{2R\mu} \right),$$
$$X_{R\mu}^{\pm q} = \frac{1}{\sqrt{2}} \left(A_{4R\mu} \pm i A_{5R\mu} \right), \qquad Y_{R\mu}^{\pm (q+1)} = \frac{1}{\sqrt{2}} \left(A_{6R\mu} \pm i A_{7R\mu} \right). \tag{2.59}$$

Lagrangian khối lượng trong (2.58) có thể viết lại là

$$\mathcal{L}_{\text{mass}}^{\text{gauge}} = \frac{g_L^2 t_R^2}{4} (v^2 + w^2) Y_{R\mu}^{-(q+1)} Y_R^{(q+1)\mu} + \frac{g_L^2 t_R^2}{4} (u^2 + w^2 + 2\Lambda^2) X_{R\mu}^{-q} X_R^{q\mu} + \left(W_L^{\mu +} W_R^{\mu +} \right) M_W^2 \left(W_{L\mu}^{-} W_{R\mu}^{-} \right)^T + \frac{1}{2} \left(A_{3L}^{\mu} A_{3R}^{\mu} A_{8R}^{\mu} B^{\mu} \right) M_0^2 \left(A_{3L\mu} A_{3R\mu} A_{8R\mu} B_{\mu} \right)^T, \qquad (2.60)$$

trong đó M_W , M_o lần lượt là các ma trận khối lượng của các gauge boson W trái-phải và các gauge boson trung hòa.

Chúng tôi thấy rằng bản thân các gauge boson $X_{R\mu}^{\pm q}$ và $Y_{R\mu}^{\pm (q+1)}$ đã là các trường vật lý với khối lượng,

$$m_{X_R}^2 = \frac{g_R^2}{4}(u^2 + w^2 + 2\Lambda^2), \quad m_{Y_R}^2 = \frac{g_R^2}{4}(v^2 + w^2).$$
 (2.61)

Các gauge boson $W_{L,R}$ trộn lẫn với ma trận khối lượng là

$$M_W^2 = \frac{g_L^2}{4} \begin{pmatrix} u^2 + v^2 & -2t_R uv \\ -2t_R uv & t_R^2 (u^2 + v^2 + 2\Lambda^2) \end{pmatrix}.$$
 (2.62)

Chéo hóa ma trận này, chúng tôi nhận được hai trạng thái vật lý,

$$W_{1\mu}^{\pm} = c_{\xi} W_{L\mu}^{\pm} - s_{\xi} W_{R\mu}^{\pm}, \qquad W_{2\mu}^{\pm} = s_{\xi} W_{L\mu}^{\pm} + c_{\xi} W_{R\mu}^{\pm}, \tag{2.63}$$

ở đây ξ là góc trộn giữa W_L và W_R , $t_{2\xi} = \tan 2\xi = \frac{-4t_R uv}{2t_R^2 \Lambda^2 + (t_R^2 - 1)(u^2 + v^2)}$. Khối lượng tương ứng của các trạng thái vật lý này là

$$m_{W_1}^2 \simeq \frac{g_L^2}{4} \left[u^2 + v^2 - \frac{4t_R^2 u^2 v^2}{2t_R^2 \Lambda^2 + (t_R^2 - 1)(u^2 + v^2)} \right],$$

$$m_{W_2}^2 \simeq \frac{g_R^2}{4} \left[u^2 + v^2 + 2\Lambda^2 + \frac{4u^2 v^2}{2t_R^2 \Lambda^2 + (t_R^2 - 1)(u^2 + v^2)} \right].$$
(2.64)

Do điều kiện $u, v \ll w, \Lambda$ nên gauge boson W_1 có khối lượng nhỏ cỡ thang điện yếu (u, v). Nó được đồng nhất là gauge boson W của SM. Ngoài ra, W_2 là một gauge boson mang điện mới và nặng, có khối lượng tỷ lệ với thang Λ . Sự trộn lẫn của hai trường này là nhỏ do điều kiện ở trên.

Việc chéo hóa phần gauge boson trung hòa phức tạp hơn do tất cả bốn trường chuẩn đều trộn. Ma trận khối lượng được xác định như sau:

$$M_0^2 = \frac{g_L^2}{4} \begin{pmatrix} u^2 + v^2 & -t_R(u^2 + v^2) & -\frac{t_R}{\sqrt{3}}(u^2 - v^2) & \frac{\beta t_X}{\sqrt{3}}(u^2 - v^2) \\ -t_R(u^2 + v^2) & t_R^2(u^2 + v^2 + 4\Lambda^2) & \frac{t_R^2}{\sqrt{3}}(u^2 - v^2 + 4\Lambda^2) & m_{42}^2 \\ -\frac{t_R}{\sqrt{3}}(u^2 - v^2) & \frac{t_R^2}{\sqrt{3}}(u^2 - v^2 + 4\Lambda^2) & m_{33}^2 & m_{43}^2 \\ \frac{\beta t_X}{\sqrt{3}}(u^2 - v^2) & m_{42}^2 & m_{43}^2 & m_{44}^2 \end{pmatrix},$$

ở đây

$$\begin{split} m_{33}^2 &= \frac{t_R^2}{3} [u^2 + v^2 + 4(w^2 + \Lambda^2)], \\ m_{42}^2 &= -\frac{t_R t_X}{3} [\sqrt{3}\beta(u^2 - v^2 + 4\Lambda^2) + 12\Lambda^2], \\ m_{43}^2 &= -\frac{t_R t_X}{3} [\beta(u^2 + v^2 + 4w^2 + 4\Lambda^2) + 4\sqrt{3}\Lambda^2], \\ m_{44}^2 &= \frac{t_X^2}{3} [(u^2 + v^2 + 4w^2)\beta^2 + 4(\sqrt{3} + \beta)^2\Lambda^2]. \end{split}$$

Trên hết, từ ma trận này chúng tôi luôn nhận được một trị riêng bằng không (chính là khối lượng của photon) với trạng thái riêng tương ứng (chính là trường photon) như sau,

$$A_{\mu} = \frac{t_R t_X}{\sqrt{t_R^2 + t_X^2 (1 + \beta^2 + t_R^2)}} \left(A_{3L\mu} + \frac{1}{t_R} A_{3R\mu} + \frac{\beta}{t_R} A_{8R\mu} + \frac{1}{t_X} B_{\mu} \right), (2.65)$$

nó hoàn toàn không phụ thuộc vào các VEV, điều này là một hệ quả của điện tích bảo toàn [85]. Chúng tôi có thể xác định tương tác điện từ theo các bước trong [85] và rồi góc Weinberg (θ_W) được xác định,

$$s_W = \frac{t_R t_X}{\sqrt{t_R^2 + t_X^2 (1 + \beta^2 + t_R^2)}}.$$
(2.66)

Theo đó, trường photon được viết lại,

$$A_{\mu} = s_W A_{3L\mu} + c_W \left(\frac{t_W}{t_R} A_{3R\mu} + \beta \frac{t_W}{t_R} A_{8R\mu} + \frac{t_W}{t_X} B_{\mu} \right),$$
(2.67)

tại đây trong dấu quặc đơn là các trường liên quan tới siêu tích yếu $Y=T_{3R}+\beta T_{8R}+X.$

Gauge boson Z của SM trực giao với photon như thông thường,

$$Z_{\mu} = c_W A_{3L\mu} - s_W \left(\frac{t_W}{t_R} A_{3R\mu} + \beta \frac{t_W}{t_R} A_{8R\mu} + \frac{t_W}{t_X} B_{\mu} \right).$$
(2.68)

Mô hình đang xem xét chứa hai gauge boson trung hòa mới là Z_R và Z'_R , chúng trực giao với trường trong ngoặc (tức là trực giao với cả trường photon và trường Z). Theo đó, chúng được xác định là

$$Z'_{R\mu} = \frac{1}{\sqrt{t_R^2 + \beta^2 t_X^2}} \left(t_R A_{8R\mu} - \beta t_X B_\mu \right),$$

$$Z_{R\mu} = \frac{-(t_R^2 + \beta^2 t_X^2) A_{3R\mu} + \beta t_X^2 A_{8R\mu} + t_X t_R B_\mu}{\sqrt{(t_R^2 + \beta^2 t_X^2)[t_R^2 + (1 + \beta^2)t_X^2]}},$$
(2.69)

với $t_X = \frac{s_W t_R}{\sqrt{t_R^2 - (1 + t_R^2 + \beta^2) s_W^2}}$. Các trạng thái mới này phải nặng.

Tiếp theo, chúng tôi sẽ chuyển sang cơ sở mới của $A_{\mu}, Z_{\mu}, Z'_{R\mu}$, và $Z_{R\mu}$ bằng phép biến đổi $(A_{3L\mu} A_{3R\mu} A_{8R\mu} B_{\mu})^T = U(A_{\mu} Z_{\mu} Z'_{R\mu} Z_{R\mu})^T$, trong đó

$$U = \begin{pmatrix} s_W & c_W & 0 & 0 \\ \frac{s_W}{t_R} & -\frac{s_W t_W}{t_R} & 0 & -\frac{t_R^2 + \beta^2 t_X^2}{\sqrt{(t_R^2 + \beta^2 t_X^2)[t_R^2 + (1+\beta^2)t_X^2]}} \\ \frac{\beta s_W}{t_R} & -\frac{\beta s_W t_W}{t_R} & \frac{t_R}{\sqrt{t_R^2 + \beta^2 t_X^2}} & \frac{\beta t_X^2}{\sqrt{(t_R^2 + \beta^2 t_X^2)[t_R^2 + (1+\beta^2)t_X^2]}} \\ \frac{s_W}{t_X} & -\frac{s_W t_W}{t_X} & -\frac{\beta t_X}{\sqrt{t_R^2 + \beta^2 t_X^2}} & \frac{t_X t_R}{\sqrt{(t_R^2 + \beta^2 t_X^2)[t_R^2 + (1+\beta^2)t_X^2]}} \end{pmatrix}.$$
(2.70)

Tương ứng, ma trận khối lượng M_0^2 biến đổi thành

$$M_0^{\prime 2} = U^T M_0^2 U = \begin{pmatrix} 0 & 0 \\ 0 & M^{\prime 2} \end{pmatrix}.$$
 (2.71)

Theo đó, trường photon A_{μ} tách riêng và là trường vật lý không khối lượng, trong khi các trạng thái khác $(Z_{\mu}, Z'_{R\mu}, Z_{R\mu})$ trộn lẫn với ma trận khối lượng M'^2 được xác định như sau:

$$\frac{g_L^2}{4} \left(\begin{array}{ccc} \frac{u^2 + v^2}{c_W^2} & -\frac{(u^2 - v^2)\kappa c_W}{\sqrt{3}[t_R^2 + t_X^2(1 + \beta^2)]} & \frac{t_R(u^2 + v^2)\kappa c_W}{[t_R^2 + t_X^2(1 + \beta^2)]^{3/2}} \\ \frac{(v^2 - u^2)\kappa c_W}{\sqrt{3}[t_R^2 + t_X^2(1 + \beta^2)]} & \frac{(t_R^2 + \beta^2 t_X^2)^2(u^2 + v^2 + 4w^2) + 4\kappa'\Lambda^2}{3(t_R^2 + \beta^2 t_X^2)} & \frac{\kappa''(v^2 - u^2)}{\sqrt{3}} - \frac{4t_R^2\sqrt{\kappa'\Lambda^2}}{\sqrt{3}\kappa''} \\ \frac{t_R(u^2 + v^2)\kappa c_W}{[t_R^2 + t_X^2(1 + \beta^2)]^{3/2}} & \frac{\kappa''(v^2 - u^2)}{\sqrt{3}} - \frac{4t_R^2\sqrt{\kappa'\Lambda^2}}{\sqrt{3}\kappa''} & t_R^2\left(\frac{u^2 + v^2}{\kappa'''} + 4\kappa'''\Lambda^2\right) \end{array}\right),$$

ở đây chúng tôi đã đặt,

$$\kappa = [t_R^2 (1 + t_X^2) + (1 + \beta^2) t_X^2] \sqrt{t_R^2 + \beta^2 t_X^2}, \quad \kappa' = [t_R^2 + (\sqrt{3} + \beta) \beta t_X^2]^2,$$

$$\kappa'' = \frac{t_R (t_R^2 + \beta^2 t_X^2)}{\sqrt{t_R^2 + (1 + \beta^2) t_X^2}}, \quad \kappa''' = \frac{t_R^2 + (1 + \beta^2) t_X^2}{t_R^2 + \beta^2 t_X^2}.$$
(2.72)

Do điều kiện $u, v \ll w, \Lambda$ nên cột thứ nhất và dòng thứ nhất trong ma trận M'^2 chứa các phần tử nhỏ hơn nhiều so với các phần tử còn lại. Theo đó, chúng tôi có thể chéo hóa M'^2 bằng cách sử dụng gần đúng seesaw. Chúng tôi đưa vào cơ sở $(\mathcal{Z}_{\mu}, \mathcal{Z}'_{R\mu}, \mathcal{Z}_{R\mu})$ để tìm cách tách gauge boson nhẹ \mathcal{Z}_{μ} ra khỏi hai gauge boson nặng $\mathcal{Z}'_{R\mu}, \mathcal{Z}_{R\mu}$. Cơ sở này liên hệ với cơ sở trước $(Z_{\mu}, Z'_{R\mu}, Z_{R\mu})$ qua một phép biến đổi unitary như sau: $(Z_{\mu}, Z'_{R\mu}, Z_{R\mu})^T =$ $\mathcal{U}(\mathcal{Z}_{\mu}, \mathcal{Z}'_{R\mu}, \mathcal{Z}_{R\mu})^T$. Tương ứng, ma trận khối lượng M'^2 biến đổi thành

$$\mathcal{M'}^2 = \mathcal{U}^T M'^2 \mathcal{U} = \begin{pmatrix} m_{\mathcal{Z}}^2 & 0\\ 0 & \mathcal{M}_{2\times 2}^2 \end{pmatrix}.$$
 (2.73)

Theo gần đúng seesaw, chúng tôi nhận được

$$\mathcal{U} \simeq \begin{pmatrix} 1 & \epsilon_1 & \epsilon_2 \\ -\epsilon_1 & 1 & 0 \\ -\epsilon_2 & 0 & 1 \end{pmatrix},$$

$$m_{\mathcal{Z}}^2 \simeq \frac{g_L^2}{4} \left\{ \frac{u^2 + v^2}{c_W^2} + \frac{\epsilon_1 (u^2 - v^2) \kappa c_W}{\sqrt{3} [t_R^2 + t_X^2 (1 + \beta^2)]} - \frac{\epsilon_2 t_R^2 (u^2 + v^2) \kappa c_W}{[t_R^2 + t_X^2 (1 + \beta^2)]^{\frac{3}{2}}} \right\}, \qquad (2.74)$$

$$\mathcal{M}_{2\times2}^{2} \simeq \frac{g_{L}^{2}}{4} \left(\begin{array}{c} \frac{(t_{R}^{2} + \beta^{2} t_{X}^{2})^{2} (u^{2} + v^{2} + 4w^{2}) + 4\kappa'\Lambda^{2}}{3(t_{R}^{2} + \beta^{2} t_{X}^{2})} & \frac{\kappa''(v^{2} - u^{2})}{\sqrt{3}} - \frac{4t_{R}^{2} \sqrt{\kappa'}\Lambda^{2}}{\sqrt{3\kappa''}} \\ \frac{\kappa''(v^{2} - u^{2})}{\sqrt{3}} - \frac{4t_{R}^{2} \sqrt{\kappa'}\Lambda^{2}}{\sqrt{3\kappa''}} & t_{R}^{2} \left(\frac{u^{2} + v^{2}}{\kappa'''} + 4\kappa'''\Lambda^{2} \right) \end{array} \right), \quad (2.75)$$

ở đây $\epsilon_{1,2}$ được xác định là

$$\epsilon_{1} = \frac{\sqrt{3}\kappa c_{W}}{4\kappa'''} \left\{ \frac{-(u^{2}+v^{2})}{[t_{R}^{2}+\beta t_{X}^{2}(\sqrt{3}+\beta)][t_{R}^{2}+(1+\beta^{2})t_{X}^{2}]\Lambda^{2}} - \frac{(u^{2}-v^{2})}{(t_{R}^{2}+\beta^{2}t_{X}^{2})^{2}w^{2}+[t_{R}^{2}+(\sqrt{3}+\beta)\beta t_{X}^{2}]^{2}\Lambda^{2}} \right\}, \quad (2.76)$$

$$\epsilon_{2} = \frac{\kappa c_{W}}{4\kappa''} \left\{ \frac{u^{2} - v^{2}}{t_{R}[t_{R}^{2} + \beta t_{X}^{2}(\sqrt{3} + \beta)][t_{R}^{2} + t_{X}^{2}(1 + \beta^{2})]\Lambda^{2}} + \frac{u^{2} + v^{2}}{t_{R}[t_{R}^{2} + (1 + \beta^{2})t_{X}^{2}]^{2}\Lambda^{2}} \right\}.$$
 (2.77)

Chú ý là $\mathcal{M}_{2\times 2}^2$ mô tả hai trạng thái nặng: $\mathcal{Z}_R \simeq Z_R$ và $\mathcal{Z}'_R \simeq Z'_R$ trong gần đúng bậc một. Sự trộn lẫn giữa Z và các trạng thái nặng này là rất nhỏ, $\epsilon_1, \epsilon_2 \ll 1$ do $u, v \ll w, \Lambda$. Gauge boson \mathcal{Z}_{μ} được đồng nhất với gauge boson Z của SM với khối lượng $m_{\mathcal{Z}}^2 \simeq \frac{g_L^2}{4c_W^2} (u^2 + v^2)$.

Cuối cùng, các trạng thái \mathcal{Z}'_R và \mathcal{Z}_R vẫn trộn. Chéo hóa ma trận khối lượng của chúng, chúng tôi nhận được các trạng thái vật lý tương ứng,

$$\mathcal{Z}_1 = c_\epsilon \mathcal{Z}'_R - s_\epsilon \mathcal{Z}_R, \qquad \mathcal{Z}'_1 = s_\epsilon \mathcal{Z}'_R + c_\epsilon \mathcal{Z}_R, \qquad (2.78)$$

với khối lượng,

$$\begin{split} m_{\mathcal{Z}_{1}}^{2} &\simeq \frac{g_{L}^{2}}{6} \left\{ t_{R}^{2} (w^{2} + 4\Lambda^{2}) + t_{X}^{2} [\beta^{2} w^{2} + (\sqrt{3} + \beta)^{2} \Lambda^{2}] \right. \\ &- \sqrt{[t_{R}^{2} (w^{2} + 4\Lambda^{2}) + t_{X}^{2} (\beta^{2} w^{2} + (\sqrt{3} + \beta)^{2} \Lambda^{2})]^{2} - 12 t_{R}^{2} [t_{R}^{2} + (1 + \beta^{2}) t_{R}^{2}] w^{2} \Lambda^{2}} \right\}, \\ m_{\mathcal{Z}_{1}^{\prime}}^{2} &\simeq \frac{g_{L}^{2}}{6} \left\{ t_{R}^{2} (w^{2} + 4\Lambda^{2}) + t_{X}^{2} [\beta^{2} w^{2} + (\sqrt{3} + \beta)^{2} \Lambda^{2}] \right. \\ &+ \sqrt{[t_{R}^{2} (w^{2} + 4\Lambda^{2}) + t_{X}^{2} (\beta^{2} w^{2} + (\sqrt{3} + \beta)^{2} \Lambda^{2})]^{2} - 12 t_{R}^{2} [t_{R}^{2} + (1 + \beta^{2}) t_{R}^{2}] w^{2} \Lambda^{2}} \right\}, \end{split}$$

$$(2.79)$$

chúng đều cỡ thang w, Λ . Góc trộn
 ϵ giữa \mathcal{Z}'_R và \mathcal{Z}_R được xác định,

$$t_{2\epsilon} \simeq \frac{2\sqrt{3}t_R^2(t_R^2 + \beta^2 t_X^2)[t_R^2 + \beta(\beta + \sqrt{3})t_X^2]\Lambda^2}{\kappa''\left\{(t_R^2 + \beta^2 t_X^2)^2 w^2 - [2t_R^4 + (\sqrt{3} - \beta)^2 t_R^2 t_X^2 - (\sqrt{3} + \beta)^2 \beta^2 t_X^4]\Lambda^2\right\}}, \quad (2.80)$$

nói chung nó là hữu hạn do $w \sim \Lambda.$

Tóm lại, các gauge boson vật lý trung hòa liên hệ với các trường chuẩn ban đầu như sau: $(A_{3L} \ A_{3R} \ A_{8R} \ B)^T = V(A \ \mathcal{Z} \ \mathcal{Z}_1 \ \mathcal{Z}_1')^T$, với

$$V = U\mathcal{U}U_{\epsilon} \simeq UU_{\epsilon} = \begin{pmatrix} s_{W} & c_{W} & 0 & 0\\ \frac{s_{W}}{t_{R}} & -\frac{s_{W}^{2}}{t_{R}c_{W}} & \frac{\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}s_{\epsilon}s_{W}}{t_{R}t_{X}c_{W}} & -\frac{\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}c_{\epsilon}s_{W}}{t_{R}t_{X}c_{W}}\\ \frac{\beta s_{W}}{t_{R}} & -\frac{\beta s_{W}^{2}}{t_{R}c_{W}} & \frac{t_{R}^{2}c_{\epsilon}c_{W} - \beta t_{X}s_{\epsilon}s_{W}}{t_{R}c_{W}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} & \frac{t_{R}^{2}s_{\epsilon}c_{W} + \beta t_{X}c_{\epsilon}s_{W}}{t_{R}c_{W}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} \\ \frac{s_{W}}{t_{X}} & -\frac{s_{W}^{2}}{t_{X}c_{W}} & \frac{-\beta t_{X}c_{\epsilon}c_{W} - s_{\epsilon}s_{W}}{c_{W}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} & \frac{-\beta t_{X}s_{\epsilon}c_{W} + c_{\epsilon}s_{W}}{c_{W}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} \end{pmatrix}, (2.81)$$

ở đây $\mathcal{U} \simeq 1$ do $\epsilon_{1,2} \ll 1$, và

$$U_{\epsilon} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{\epsilon} & s_{\epsilon} \\ 0 & 0 & -s_{\epsilon} & c_{\epsilon} \end{pmatrix}.$$
 (2.82)

Trong các tính toán tiếp theo, chúng tôi sẽ sử dụng V như một gần đúng. Theo đó, $\mathcal{Z} = Z$, và \mathcal{Z}_1 , \mathcal{Z}'_1 trực tiếp liên hệ với Z'_R , Z_R bằng biểu thức (2.78) do $\mathcal{Z}_R = Z_R$ và $\mathcal{Z}'_R = Z'_R$.

2.4. Tương tác

2.4.1. Tương tác fermion-gauge boson

Tương tác chuẩn của các fermion xuất hiện từ phần Lagrangian,

$$\mathcal{L}_{f} = \bar{\Psi} i \gamma^{\mu} D_{\mu} \Psi$$
$$= \bar{\Psi} i \gamma^{\mu} \partial_{\mu} \Psi - g_{L} \bar{\Psi}_{L} \gamma^{\mu} (P_{L\mu}^{CC} + P_{L\mu}^{NC}) \Psi_{L} - g_{R} \bar{\Psi}_{R} \gamma^{\mu} (P_{R\mu}^{CC} + P_{R\mu}^{NC}) \Psi_{R},$$
$$(2.83)$$

ở đây đạo hàm hiệp biến là $D_{\mu} = \partial_{\mu} + ig_L T_{aL} A_{aL\mu} + ig_R T_{iR} A_{iR\mu} + ig_X X B_{\mu}$. Ngoài ra, các biểu thức liên quan đến các dòng mang điện và dòng trung hòa được xác định như sau,

$$P_{L}^{CC} = T_{1L}A_{1L} + T_{2L}A_{2L}, \qquad P_{L}^{NC} = T_{3L}A_{3L} + t_{X}X_{\Psi_{L}}B,$$

$$P_{R}^{CC} = \sum_{i=1,2,4,5,6,7} T_{iR}A_{iR}, \qquad P_{R}^{NC} = T_{3R}A_{3R} + T_{8R}A_{8R} + \frac{t_{X}}{t_{R}}X_{\Psi_{R}}B.$$
(2.84)

Trong đó, Ψ_L và Ψ_R lần lượt áp dụng cho tất cả các đa tuyến fermion phân cực trái và phân cực phải trong mô hình. Chú ý, sự tương tác của các fermion với các gluon là như thông thường. Chúng có thể xác định dễ dàng nên đã được bỏ qua ở đây.

Sử dụng (2.59), (2.63), và (2.83), chúng tôi tách được phần tương tác của các gauge boson vật lý mang điện với các fermion như sau:

$$\mathcal{L}_{CC} = -g_L \bar{\Psi}_L \gamma^{\mu} P_{L\mu}^{CC} \Psi_L - g_R \bar{\Psi}_R \gamma^{\mu} P_{R\mu}^{CC} \Psi_R$$

$$= -\frac{g_L}{\sqrt{2}} \left[c_{\xi} (\bar{\nu}_{aL} \gamma^{\mu} e_{aL} + \bar{u}_{aL} \gamma^{\mu} d_{aL}) W_{1\mu}^+ \right]$$

$$+ s_{\xi} (\bar{\nu}_{aL} \gamma^{\mu} e_{aL} + \bar{u}_{aL} \gamma^{\mu} d_{aL}) W_{2\mu}^+ \right]$$

$$- \frac{g_R}{\sqrt{2}} \left[-s_{\xi} (\bar{\nu}_{aR} \gamma^{\mu} e_{aR} + \bar{u}_{aR} \gamma^{\mu} d_{aR}) W_{1\mu}^+ \right]$$

$$+ c_{\xi} (\bar{\nu}_{aR} \gamma^{\mu} e_{aR} + \bar{u}_{aR} \gamma^{\mu} d_{aR}) W_{2\mu}^+$$

$$+ (\bar{E}_{aR} \gamma^{\mu} \nu_{aR} - \bar{d}_{\alpha R} \gamma^{\mu} J_{\alpha R} + \bar{J}_{3R} \gamma^{\mu} u_{3R}) X_{R\mu}^q$$

$$+ (\bar{E}_{aR} \gamma^{\mu} e_{aR} + \bar{u}_{\alpha R} \gamma^{\mu} J_{\alpha R} + \bar{J}_{3R} \gamma^{\mu} d_{3R}) Y_{R\mu}^{q+1} \right] + H.c.$$

$$= J_{1W}^{-\mu} W_{1\mu}^+ + J_{2W}^{-\mu} W_{2\mu}^+ + J_X^{-q\mu} X_{R\mu}^q + J_Y^{-(q+1)\mu} Y_{R\mu}^{q+1} + H.c., \qquad (2.85)$$

ở đây các dòng $J_{1W}^{-\mu}, J_{2W}^{-\mu}, J_X^{-q\mu}, J_Y^{-(q+1)\mu}$ lần lượt được xác định:

$$J_{1W}^{-\mu} = -\frac{g_L c_{\xi}}{\sqrt{2}} (\bar{\nu}_{aL} \gamma^{\mu} e_{aL} + \bar{u}_{aL} \gamma^{\mu} d_{aL}) + \frac{g_R s_{\xi}}{\sqrt{2}} (\bar{\nu}_{aR} \gamma^{\mu} e_{aR} + \bar{u}_{aR} \gamma^{\mu} d_{aR}),$$

$$J_{2W}^{-\mu} = -\frac{g_L s_{\xi}}{\sqrt{2}} (\bar{\nu}_{aL} \gamma^{\mu} e_{aL} + \bar{u}_{aL} \gamma^{\mu} d_{aL}) - \frac{g_R c_{\xi}}{\sqrt{2}} (\bar{\nu}_{aR} \gamma^{\mu} e_{aR} + \bar{u}_{aR} \gamma^{\mu} d_{aR}),$$

$$J_X^{-q\mu} = -\frac{g_R}{\sqrt{2}} (\bar{E}_{aR} \gamma^{\mu} \nu_{aR} - \bar{d}_{\alpha R} \gamma^{\mu} J_{\alpha R} + \bar{J}_{3R} \gamma^{\mu} u_{3R}),$$

$$J_Y^{-(q+1)\mu} = -\frac{g_R}{\sqrt{2}} (\bar{E}_{aR} \gamma^{\mu} e_{aR} + \bar{u}_{\alpha R} \gamma^{\mu} J_{\alpha R} + \bar{J}_{3R} \gamma^{\mu} d_{3R}).$$

(2.86)

Sử dụng các trạng thái gauge boson trung hòa vật lý đã được xác định bởi (2.81), các biểu thức $P_{L\mu}^{NC}, P_{R\mu}^{NC}$ được viết lại,

$$P_{L\mu}^{NC} = s_W Q_{\Psi_L} A_{\mu} + \frac{1}{c_W} (T_{3L} - s_W^2 Q_{\Psi_L}) Z_{\mu} + \frac{t_X (T_{3L} - Q_{\Psi_L})}{c_W \sqrt{t_R^2 + t_X^2 \beta^2}} \\ \times \left[(\beta t_X c_\epsilon c_W + s_\epsilon s_W) \mathcal{Z}_{1\mu} + (\beta t_X s_\epsilon c_W - c_\epsilon s_W) \mathcal{Z}_{1\mu}' \right], \\ t_R P_{R\mu}^{NC} = s_W Q_{\Psi_R} A_{\mu} - s_W t_W Q_{\Psi_R} Z_{\mu}$$

$$+ \left[\frac{c_W(t_X\beta c_\epsilon t_W + t_R^2 s_\epsilon) T_{3R} - t_W(\beta t_X c_\epsilon c_W + s_\epsilon s_W) Q_{\Psi_R}}{t_X^{-1} s_W \sqrt{t_R^2 + t_X^2 \beta^2}} \right] + c_\epsilon \sqrt{t_R^2 + t_X^2 \beta^2} T_{8R} \left] \mathcal{Z}_{1\mu} \\+ \left[\frac{c_W(t_X\beta s_\epsilon t_W - t_R^2 c_\epsilon) T_{3R} - t_W(\beta t_X s_\epsilon c_W - c_\epsilon s_W) Q_{\Psi_R}}{t_X^{-1} s_W \sqrt{t_R^2 + t_X^2 \beta^2}} \right] \\+ s_\epsilon \sqrt{t_R^2 + t_X^2 \beta^2} T_{8R} \left] \mathcal{Z}'_{1\mu}, \qquad (2.87)$$

ở đây $Q_{\Psi_L} = T_{3L} + X_{\Psi_L}$ và $Q_{\Psi_R} = T_{3R} + \beta T_{8R} + X_{\Psi_R}$. Theo đó, chúng tôi có phần tương tác của các gauge boson trung hòa vật lý với các fermion từ (2.83) như sau:

$$\begin{split} \mathcal{L}_{NC} &= -g_L \bar{\Psi}_L \gamma^{\mu} P_{L\mu}^{NC} \Psi_L - g_R \bar{\Psi}_R \gamma^{\mu} P_{R\mu}^{NC} \Psi_R \\ &= -g_L s_W \left(\bar{\Psi}_L \gamma^{\mu} Q_{\Psi_L} \Psi_L + \bar{\Psi}_R \gamma^{\mu} Q_{\Psi_R} \Psi_R \right) A_\mu \\ &- \frac{g_L}{c_W} \left[\bar{\Psi}_L \gamma^{\mu} \left(T_{3L} - s_W^2 Q_{\Psi_L} \right) \Psi_L - \bar{\Psi}_R \gamma^{\mu} s_W^2 Q_{\Psi_R} \Psi_R \right] Z_\mu \\ &- \frac{g_L}{c_W} \left\{ \bar{\Psi}_L \gamma^{\mu} \frac{t_X (T_{3L} - Q_{\Psi_L})}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X c_e c_W + s_e s_W) \Psi_L \right. \\ &+ \bar{\Psi}_R \gamma^{\mu} \left[\frac{[t_R^2 + t_X^2 (\beta^2 + 1)] s_e s_W + t_X^3 \beta c_e c_W}{t_X \sqrt{t_R^2 + t_X^2 \beta^2}} T_{3R} \right. \\ &+ \sqrt{t_R^2 + t_X^2 \beta^2} c_e c_W T_{8R} \\ &- \frac{t_X Q_{\Psi_R}}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X c_e c_W + s_e s_W) \right] \Psi_R \right\} \mathcal{Z}_{1\mu} \\ &- \frac{g_L}{c_W} \left\{ \bar{\Psi}_L \gamma^{\mu} \frac{t_X (T_{3L} - Q_{\Psi_L})}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X s_e c_W - c_e s_W) \Psi_L \right. \\ &+ \bar{\Psi}_R \gamma^{\mu} \left[\frac{-[t_R^2 + t_X^2 (\beta^2 + 1)] c_e s_W + t_X^3 \beta s_e c_W}{t_X \sqrt{t_R^2 + t_X^2 \beta^2}} T_{3R} \right. \\ &+ \sqrt{t_R^2 + t_X^2 \beta^2} s_e c_W T_{8R} \\ &- \frac{t_X Q_{\Psi_R}}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X s_e c_W - c_e s_W) \right] \Psi_R \right\} \mathcal{Z}_{1\mu} , \end{split}$$

với f biểu thị mọi fermion trong mô hình. Chúng tôi còn nhận được,

 $\mathcal{L}_{NC} = -g_L s_W Q(f) \bar{f} \gamma^\mu f A_\mu$

$$-\frac{g_L}{c_W} \left\{ \bar{f}_L \gamma^{\mu} [T_{3L}(f_L) - s_W^2 Q(f_L)] f_L - \bar{f}_R \gamma^{\mu} s_W^2 Q(f_R) f_R \right\} Z_{\mu} - \frac{g_L}{c_W} \left\{ \bar{f}_L \gamma^{\mu} \frac{t_X [T_{3L}(f_L) - Q(f_L)]}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X c_\epsilon c_W + s_\epsilon s_W) f_L + \bar{f}_R \gamma^{\mu} \left[\frac{[t_R^2 + t_X^2 (\beta^2 + 1)] s_\epsilon s_W + t_X^3 \beta c_\epsilon c_W}{t_X \sqrt{t_R^2 + t_X^2 \beta^2}} T_{3R}(f_R) + \sqrt{t_R^2 + t_X^2 \beta^2} c_\epsilon c_W T_{8R}(f_R) - \frac{t_X Q(f_R)}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X c_\epsilon c_W + s_\epsilon s_W) \right] f_R \right\} Z_{1\mu} - \frac{g_L}{c_W} \left\{ \bar{f}_L \gamma^{\mu} \frac{t_X [T_{3L}(f_L) - Q(f_L)]}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X s_\epsilon c_W - c_\epsilon s_W) f_L + \bar{f}_R \gamma^{\mu} \left[\frac{-[t_R^2 + t_X^2 (\beta^2 + 1)] c_\epsilon s_W + t_X^3 \beta s_\epsilon c_W}{t_X \sqrt{t_R^2 + t_X^2 \beta^2}} T_{3R}(f_R) + \sqrt{t_R^2 + t_X^2 \beta^2} s_\epsilon c_W T_{8R}(f_R) - \frac{t_X Q(f_R)}{\sqrt{t_R^2 + t_X^2 \beta^2}} (\beta t_X s_\epsilon c_W - c_\epsilon s_W) \right] f_R \right\} Z_{1\mu}^{\prime}.$$
(2.88)

Viết theo dạng thông thường,

$$\mathcal{L}_{NC} = -eQ(f)\bar{f}\gamma^{\mu}fA_{\mu} - \frac{g_{L}}{2c_{W}}\bar{f}\gamma^{\mu}[g_{V}^{Z}(f) - g_{A}^{Z}(f)\gamma_{5}]fZ_{\mu} - \frac{g_{L}}{2c_{W}}\bar{f}\gamma^{\mu}[g_{V}^{\mathcal{Z}_{1}}(f) - g_{A}^{\mathcal{Z}_{1}}(f)\gamma_{5}]f\mathcal{Z}_{1\mu} - \frac{g_{L}}{2c_{W}}\bar{f}\gamma^{\mu}[g_{V}^{\mathcal{Z}_{1}'}(f) - g_{A}^{\mathcal{Z}_{1}'}(f)\gamma_{5}]f\mathcal{Z}_{1\mu}',$$
(2.89)

trong đó $Q(f_L) = Q(f_R) = Q(f), e = g_L s_W$. Để rồi, chúng tôi nhận được các hằng số tương tác vector và giả vector,

$$\begin{split} g_{V}^{Z}(f) &= T_{3L}(f_{L}) - 2s_{W}^{2}Q(f), \qquad g_{A}^{Z}(f) = T_{3L}(f_{L}), \\ g_{V}^{\mathcal{Z}_{1}}(f) &= \frac{(\beta t_{X}c_{\epsilon}c_{W} + s_{\epsilon}s_{W})[T_{3L}(f_{L}) - 2Q(f)]}{t_{X}^{-1}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} \\ &+ \frac{s_{W}(t_{R}^{2}s_{\epsilon} + t_{X}t_{W}\beta c_{\epsilon})T_{3R}(f_{R})}{t_{X}^{-1}t_{W}^{2}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} + c_{\epsilon}c_{W}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}T_{8R}(f_{R}), \\ g_{A}^{\mathcal{Z}_{1}}(f) &= \frac{(\beta t_{X}c_{\epsilon}c_{W} + s_{\epsilon}s_{W})T_{3L}(f_{L})}{t_{X}^{-1}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} \\ &- \frac{s_{W}(t_{R}^{2}s_{\epsilon} + t_{W}t_{X}\beta c_{\epsilon})T_{3R}(f_{R})}{t_{X}^{-1}t_{W}^{2}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}} - c_{\epsilon}c_{W}\sqrt{t_{R}^{2} + t_{X}^{2}\beta^{2}}T_{8R}(f_{R}), \end{split}$$

$$g_{V,A}^{\mathcal{Z}_1'} = g_{V,A}^{\mathcal{Z}_1}(c_\epsilon \to s_\epsilon, \ s_\epsilon \to -c_\epsilon).$$
(2.90)

Số hạng đầu tiên trong (2.89) cho tương tác điện từ thông thường. Số hạng thứ hai trong (2.89) xác định dòng trung hòa gắn với gauge boson Z, kết quả này là phù hợp với SM. Tất cả các hằng số tương tác vector và giả vector của Z, Z_1 , Z'_1 với các fermion được tính toán chính xác và liệt kê lần lượt trong các bảng 2.1, 2.2, và 2.3. Lưu ý là các hằng số tương tác của Z'_1 có thể nhận được từ các hằng số tương tác tương ứng của Z_1 bằng cách thay thế $c_{\epsilon} \to s_{\epsilon}, s_{\epsilon} \to -c_{\epsilon}$.

f	$g_V^Z(f)$	$g_A^Z(f)$	f	$g_V^Z(f)$	$g_A^Z(f)$
ν_a	$\frac{1}{2}$	$\frac{1}{2}$	e_a	$-\frac{1}{2} + 2s_W^2$	$-\frac{1}{2}$
E_a	$-2s_W^2q$	0	u_a	$\frac{1}{2} - \frac{4}{3}s_W^2$	$\frac{1}{2}$
d_a	$-rac{1}{2}+rac{2}{3}s_W^2$	$-\frac{1}{2}$	J_{lpha}	$2s_W^2(q+\frac{1}{3})$	0
J_3	$-2s_W^2(q+\frac{2}{3})$	0			

Bảng 2.1: Hằng số tương tác của Z với các fermion.

2.4.2. Tương tác vô hướng-gauge boson

Tương tác của các vô hướng với các gauge boson nảy sinh từ (2.54). Không có tương tác mạnh cho các vô hướng vì chúng không có màu. Khai triển các trường vô hướng quanh VEV của chúng như trong (2.15) và (2.16). Thay thế các trạng thái vô hướng vật lý từ (2.53) và các trạng thái gauge boson vật lý từ (2.59), (2.63), và (2.81) vào Lagrangian như đã đề cập, chúng tôi nhận được tất cả các đỉnh tương tác giữa một gauge boson và hai vô hướng, một vô hướng và hai gauge boson, hai vô hướng và hai gauge boson. Tất cả các tương tác này được chúng tôi liệt kê trong Phụ lục A. Trong đó, các hệ số đỉnh tương tác đã được thêm hệ số đối xứng và số ảo (*i*). Đồng thời, ký hiệu $A \overleftarrow{\partial} B \equiv A(\partial B) - (\partial A)B$ thường xuyên được chúng tôi được sử dụng. Có thể thấy rằng, các tương tác trong SM giữa Higgs boson và các trường chuẩn đều nhận lại được ở gần đúng bậc một.

f	$g_V^{{\mathcal Z}_1}(f)$	$g_A^{\mathcal{Z}_1}(f)$
ν_a	$\frac{t_X[t_R^2 + \beta t_X^2(2\sqrt{3} + \beta)]c_\epsilon c_W + \sqrt{3}[t_R^2 + t_X^2(2 + \beta^2)]s_\epsilon s_W}{2\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xc_\epsilon c_W+\sqrt{3}s_\epsilon s_W)}{2\sqrt{3}t_X}$
e_a	$\frac{t_X[t_R^2 + \beta t_X^2(2\sqrt{3} + \beta)]c_\epsilon c_W - \sqrt{3}[t_R^2 + t_X^2(\beta^2 - 2)]s_\epsilon s_W}{2\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2 + t_X^2 \beta^2} (t_X c_{\epsilon} c_W - \sqrt{3} s_{\epsilon} s_W)}{2\sqrt{3} t_X}$
E_a	$\frac{-(t_R^2+\beta^2 t_X^2)c_\epsilon c_W-2\sqrt{3}qt_X(t_X\beta c_\epsilon c_W+s_\epsilon s_W)}{\sqrt{3}\sqrt{t_R^2+t_X^2\beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2 c_\epsilon c_W}}{\sqrt{3}}$
u_{lpha}	$\frac{-t_X [\sqrt{3} t_R^2 + \beta t_X^2 (2 + \sqrt{3}\beta)] c_\epsilon c_W + [3 t_R^2 + t_X^2 (3\beta^2 - 2)] s_\epsilon s_W}{6 t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2} (t_X c_\epsilon c_W - \sqrt{3} s_\epsilon s_W)}{2\sqrt{3} t_X}$
u_3	$\frac{t_X[\sqrt{3}t_R^2 + \beta t_X^2(\sqrt{3}\beta - 2)]c_{\epsilon}c_W + [3t_R^2 + t_X^2(3\beta^2 - 2)]s_{\epsilon}s_W}{6t_X\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xc_\epsilon c_W+\sqrt{3}s_\epsilon s_W)}{2\sqrt{3}t_X}$
d_{lpha}	$\frac{-t_X [\sqrt{3} t_R^2 + \beta t_X^2 (2 + \sqrt{3}\beta)] c_\epsilon c_W - [3 t_R^2 + t_X^2 (3\beta^2 + 2)] s_\epsilon s_W}{6 t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2} (t_X c_\epsilon c_W + \sqrt{3} s_\epsilon s_W)}{2\sqrt{3} t_X}$
d_3	$\frac{t_X[\sqrt{3}t_R^2 + \beta t_X^2(\sqrt{3}\beta - 2)]c_\epsilon c_W - [3t_R^2 + t_X^2(3\beta^2 + 2)]s_\epsilon s_W}{6t_X\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xc_\epsilon c_W-\sqrt{3}s_\epsilon s_W)}{2\sqrt{3}t_X}$
J_{α}	$\frac{[\sqrt{3}t_R^2 + \beta t_X^2 (2 + 6q + \sqrt{3}\beta)]c_{\epsilon}c_W + 2(1 + 3q)t_X s_{\epsilon}s_W}{3\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2c_\epsilon c_W}}{\sqrt{3}}$
J_3	$\frac{-\sqrt{3}(t_R^2+\beta^2 t_X^2)c_\epsilon c_W-2(2+3q)t_X(t_X\beta c_\epsilon c_W+s_\epsilon s_W)}{3\sqrt{t_R^2+t_X^2\beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2} c_\epsilon c_W}{\sqrt{3}}$

Bảng 2.2: Hằng số tương tác của \mathcal{Z}_1 với các fermion.

2.5. Hiệu ứng vật lý mới và các giới hạn

Trong [28], hiện tượng dư thừa diphoton 750 GeV đã được thảo luận. Do các tín hiệu này không còn xuất hiện trong các kết quả thăm dò gần đây ở lần chạy thứ hai của LHC nên thang vật lý mới phải đủ lớn (trên vài TeV). Tất nhiên, tham số điện tích q có thể được chọn như những giá trị thông thường. Trong phần này, chúng tôi sẽ tập trung vào một số hiệu ứng vật lý mới liên quan đến tham số ρ và FCNCs ở gần đúng cây. Từ đó, chúng tôi tìm giới hạn cho thang vật lý mới và các yếu tố ma trận trộn quark phân cực phải.

2.5.1. ρ và các tham số trộn lẫn

Vật lý mới đóng góp vào tham số ρ bắt đầu từ mức cây do sự trộn lẫn của các gauge boson SM (Z và W) với các gauge boson mới. Nó được xác định như sau,

f	$g_V^{\mathcal{Z}_1'}(f)$	$g_A^{\mathcal{Z}_1'}(f)$
ν_a	$\frac{t_X[t_R^2 + \beta t_X^2(2\sqrt{3} + \beta)]s_\epsilon c_W - \sqrt{3}[t_R^2 + t_X^2(2 + \beta^2)]c_\epsilon s_W}{2\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xs_\epsilon c_W-\sqrt{3}c_\epsilon s_W)}{2\sqrt{3}t_X}$
e_a	$\frac{t_X [t_R^2 + \beta t_X^2 (2\sqrt{3} + \beta)] s_\epsilon c_W + \sqrt{3} [t_R^2 + t_X^2 (\beta^2 - 2)] c_\epsilon s_W}{2\sqrt{3} t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xs_\epsilon c_W+\sqrt{3}c_\epsilon s_W)}{2\sqrt{3}t_X}$
E_a	$\frac{-(t_R^2+\beta^2 t_X^2)s_\epsilon c_W-2\sqrt{3}qt_X(t_X\beta s_\epsilon c_W-c_\epsilon s_W)}{\sqrt{3}\sqrt{t_R^2+t_X^2\beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2 s_\epsilon c_W}}{\sqrt{3}}$
u_{lpha}	$\frac{-t_X [\sqrt{3}t_R^2 + \beta t_X^2 (2 + \sqrt{3}\beta)] s_\epsilon c_W - [3t_R^2 + t_X^2 (3\beta^2 - 2)] c_\epsilon s_W}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2} (t_X s_\epsilon c_W + \sqrt{3} c_\epsilon s_W)}{2\sqrt{3} t_X}$
u_3	$\frac{t_X [\sqrt{3}t_R^2 + \beta t_X^2 (\sqrt{3}\beta - 2)]s_\epsilon c_W - [3t_R^2 + t_X^2 (3\beta^2 - 2)]c_\epsilon s_W}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xs_\epsilon c_W-\sqrt{3}c_\epsilon s_W)}{2\sqrt{3}t_X}$
d_{lpha}	$-\frac{-t_X[\sqrt{3}t_R^2+\beta t_X^2(2+\sqrt{3}\beta)]s_\epsilon c_W+[3t_R^2+t_X^2(3\beta^2+2)]c_\epsilon s_W}{6t_X\sqrt{t_R^2+t_X^2\beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2} (t_X s_\epsilon c_W - \sqrt{3} c_\epsilon s_W)}{2\sqrt{3} t_X}$
d_3	$=\frac{t_X[\sqrt{3}t_R^2+\beta t_X^2(\sqrt{3}\beta-2)]s_\epsilon c_W+[3t_R^2+t_X^2(3\beta^2+2)]c_\epsilon s_W}{6t_X\sqrt{t_R^2+t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}(t_Xs_\epsilon c_W+\sqrt{3}c_\epsilon s_W)}{2\sqrt{3}t_X}$
J_{α}	$\frac{[\sqrt{3}t_R^2 + \beta t_X^2 (2 + 6q + \sqrt{3}\beta)]s_{\epsilon}c_W - 2(1 + 3q)t_X c_{\epsilon}s_W}{3\sqrt{t_R^2 + t_X^2\beta^2}}$	$-\frac{\sqrt{t_R^2+t_X^2\beta^2}s_\epsilon c_W}{\sqrt{3}}$
J_3	$\frac{-\sqrt{3}(t_R^2 + \beta^2 t_X^2) s_\epsilon c_W - 2(2+3q) t_X (t_X \beta s_\epsilon c_W - c_\epsilon s_W)}{3\sqrt{t_R^2 + t_X^2 \beta^2}}$	$\frac{\sqrt{t_R^2 + t_X^2 \beta^2} s_\epsilon c_W}{\sqrt{3}}$

Bảng 2.3: Hằng số tương tác của \mathcal{Z}'_1 với các fermion.

$$\begin{split} \Delta\rho &\equiv \rho - 1 = \frac{m_{W_1}^2}{c_W^2 m_Z^2} - 1 \\ &\simeq \epsilon_2 \frac{t_R^2 c_W^3 \kappa}{[t_R^2 + t_X^2 (1+\beta^2)]^{3/2}} + \epsilon_1 \frac{(v^2 - u^2) c_W^3 \kappa}{\sqrt{3}(u^2 + v^2)[t_R^2 + t_X^2 (1+\beta^2)]} - \frac{2u^2 v^2}{(u^2 + v^2)\Lambda^2}, \end{split}$$
(2.91)

các đóng góp này bị giới hạn do $u,v\ll w,\Lambda.$

Từ khối lượng của W boson, chúng tôi có $u^2 + v^2 = (246 \text{ GeV})^2$. Ngoài ra, chúng tôi lấy $t_R = g_R/g_L = 1$, dẫn tới $t_X = s_W/\sqrt{1 - (2 + \beta^2)s_W^2}$. Lưu ý là $|\beta| < \sqrt{1/s_W^2 - 2} \simeq 1.5261$ do $s_W^2 \simeq 0.231$. Theo dữ liệu thực nghiệm [1], tham số ρ được giới hạn: $\rho = 1.0004 \pm 0.00024$ hay $0.00016 < \Delta \rho < 0.00064$, trong khi dự đoán của SM là $\rho = 1$. Sự sai khác này rất có thể là do đóng góp của vật lý mới. Dưới đây, chúng tôi vẽ đồ thị (nét gạch chấm) cho $\Delta \rho$ như một hàm của $\Lambda = w = 1-20$ TeV và u = 0-246 GeV trong ba trường hợp $\beta = -1/\sqrt{3}$, 0, và $1/\sqrt{3}$ tương ứng các hình 2.1, 2.2, và 2.3. Vùng tham số

Hình 2.1: Miền vật lý mới khả dĩ cho trường hợp $\beta = -1/\sqrt{3}$ với các giới hạn $0.00016 < \Delta \rho < 0.00064, \ \xi = \epsilon_1 = \epsilon_2 = \pm 10^{-3}.$

khả dĩ được bao bởi hai đường tương ứng với hai giá trị giới hạn của $\Delta \rho$.

Sự trộn lẫn của các gauge boson W, Z với các gauge boson mới cũng làm thay đổi các tương tác của W, Z với các fermion. Hiệu ứng vật lý mới này có thể chấp nhận được nếu áp đặt các tham số trộn ξ , $\epsilon_{1,2}$ trong khoảng 10^{-3} [1] (các tham số này rất nhỏ do điều kiện $u, v \ll w, \Lambda$). Trong hình 2.1, 2.2, và 2.3, chúng tôi sử dụng các yếu tố đầu vào ở trên và vẽ đồ thị (nét liền ứng với ϵ_1 , nét đứt ứng với ϵ_2 , và nét chấm chấm ứng với ξ) với $|\xi| = |\epsilon_{1,2}| = 10^{-3}$ trong hệ trục ($\Lambda = w, u$). Miền vật lý mới khả dĩ nằm trên ba đường này.

Kết hợp tất cả các giới hạn, miền vật lý mới khả dĩ nhận được là miền màu xanh trong các hình 2.1, 2.2, và 2.3 tương ứng ba trường hợp của β như đã đề cập. Theo đó, Λ ($w = \Lambda$) có giới hạn là 4.6 TeV < Λ < 13.7 TeV, 5.5 TeV < Λ < 16.3 TeV, và 6.6 TeV < Λ < 19.4 TeV tương ứng với $\beta = 1/\sqrt{3}$, 0, và $-1/\sqrt{3}$. Miền giới hạn cho thang điện yếu u ($v = \sqrt{(246 \text{ GeV})^2 - u^2}$) cũng hẹp lại, u < 246 GeV và u > 222.3, 215, và 210.4 GeV tương ứng với các giá trị của β như trên.

Nói riêng, các giới hạn cho thang $3-2-3-1~(w,\Lambda)$ nhận được từ tham

Hình 2.2: Miền vật lý mới khả dĩ cho trường hợp $\beta = 0$ với các giới hạn $0.00016 < \Delta \rho < 0.00064, \, \xi = \epsilon_1 = \epsilon_2 = \pm 10^{-3}.$

Hình 2.3: Miền vật lý mới khả dĩ cho trường hợp $\beta = 1/\sqrt{3}$ với các giới hạn $0.00016 < \Delta \rho < 0.00064, \, \xi = \epsilon_1 = \epsilon_2 = \pm 10^{-3}.$

số ρ phụ thuộc đáng kể vào thang điện yếu (u), thậm chí chúng có thể tiến tới không với một số giá trị cụ thể của u cùng các giá trị của β tương ứng. Tuy nhiên, điều này không dẫn tới chuyện đóng kín đối xứng 3-2-3-1ở thang điện yếu giống như trường hợp các mô hình
 3-3-1 đã được nghiên cứu trong [86]. Trong mô hình đang xem xét, mặc dù $\Delta \rho$ tỷ lệ với $\epsilon_{1,2}$ và $\xi \sim u v / \Lambda^2$ (với hệ số hữu hạn) ứng với sự trộn lẫn của Z với (Z_R, Z_R') và của W_L với W_R , vật lý mới không tách rời SM khi w, Λ tiến tới thang điện yếu hoặc thậm chí về không. Thật vậy, các hiệu ứng trộn này và do đó các đóng góp bổ đính vào hằng số tương tác của W, Z phân kỳ khi $(w, \Lambda) \to 0$ dọc theo đường giới hạn của $\Delta \rho$ như có thể thấy từ các hình vẽ cho $\epsilon_{1,2}$ và ξ (thậm chí dù các hiệu ứng trộn này triệt tiêu nhau trong biểu thức $\Delta \rho$). Rõ ràng, tính chất này cũng xẩy ra ở bổ đính vòng do đối xứng $SU(2)_{L+R}$, nhưng nếu có thêm vào cũng chỉ bảo vệ ρ khỏi các phân kỳ lớn do hiệu ứng khử hiệu dụng song không phải bất kỳ hiệu ứng trộn lẫn riêng lẻ nào. Thảo luận ở trên vẫn đúng với β bất kỳ và mọi liên hệ $w - \Lambda$. Như vậy, việc đóng kín đối xứng chuẩn mới ở thang điện yếu như đã xẩy ra với các mô hình 3-3-1 sẽ không áp dụng cho mô hình 3-2-3-1do sự đóng góp của nhiều gauge boson mới (không phải chỉ là một) vào tham số ρ .

Dễ dàng kiểm tra rằng khi (w, Λ) tiến tới vô cùng thì $\rho \to 1$ do $\epsilon_{1,2}$ và ξ , cũng như là các kết quả bổ đính của các gauge boson mới và các lưỡng tuyến vô hướng bị giới hạn bởi $(u^2, v^2)/(w^2, \Lambda^2)$. Các trường và khối lượng, cũng như các tương tác của SM đều nhận lại được. Do đó, mô hình 3 - 2 - 3 - 1có một giới hạn độc lập ở thang năng lượng cao cho (w, Λ) chứ không phải ở thang năng lượng thấp như đã phân tích ở trên.

Sự biến thiên của các hằng số tương tác chuẩn và các hằng số tương tác vô hướng theo thang năng lượng có thể xuất hiện một giới hạn trên cho thang phá vỡ 3 - 2 - 3 - 1, chẳng hạn như cực Landau mà tại đó một vài hằng số tương tác chuẩn tiến tới vô hạn hay ở thang giả bền với một vài hằng số tương tác vô hướng bị âm. Mô hình này dự đoán về góc Weinberg như sau:

$$s_W^2 = t_R^2 t_X^2 / [t_R^2 + t_X^2 (1 + \beta^2 + t_R^2)] < t_R^2 / (1 + \beta^2 + t_R^2), \qquad (2.92)$$

ở đây g_L và g_R cũng như $t_R = g_R/g_L$ thay đổi rất ít, trong khi g_X cũng như $t_X = g_X/g_L$ tăng thêm đáng kể khi thang năng lượng tăng. Do đó, mô hình tồn tại một cực Landau (M) tại đó $s^2_W(M) = t^2_R/(1+\beta^2+t^2_R) < 1$ hoặc $g_X(M) = \infty.$ Tất nhiên, điều kiện nhất quán của lý thuyết là
 $w, \Lambda < M.$ Để đơn giản, chúng tôi giả thiết $t_R=1,$ theo đó $s^2_W(M)=1/(2+\beta^2)$ mà vẫn không mất tính tổng quát ($t_R = 1$ là trường hợp có thể bởi đối xứng trái-phải tối thiểu). Theo điều kiện (2.92), $s^2_W(M)>s^2_W\simeq 0.231$ ở thang điện yếu, tức là $|\beta| < 1.5261$ hay-1.821 < q < 0.821.Khoảng giá trị này rất hẹp nhưng nó lại chứa nhiều giá trị điện tích cơ bản trong tự nhiên. Dù điện tích q là tùy ý trong khoảng này, mô hình chỉ dự đoán hai giá trị điện tích nguyên, q = 0, -1. Khi q trùng với các giới hạn q = -1.821 hoặc 0.821, cực Landau nằm ở thang điện yếu $M \sim v_{\text{weak}}$. Do vật lý mới không tách rời như đã trình bày nên mô hình trong trường hợp này là không phù hợp. Trường hợp các điện tích bán nguyên q = 0.5, -1.5 là gần với các giới hạn tương ứng, cực Landau tăng lên đáng kể $M \sim 10$ TeV, theo đó vật lý mới có thể được thăm dò bởi các máy gia tốc hiện nay. Trường hợp q = 0, -1/2, -1, cực Landau có thể cao hơn thang Planck. Các kết luận trên tương tự như trường hợp các mô hình 3-3-1đã nghiên cứu trong [87,88].

2.5.2. Dòng trung hòa thay đổi vị

Như chúng tôi đã trình bày ở trên, sau khi SSB, tương tác Yukawa sinh khối lượng cho các fermion. Do đó, chúng tôi có thể tách các số hạng khối lượng quark từ (2.13). Các quark lạ nhận khối lượng lớn ở thang w,

$$\mathcal{L}_{\text{mass}}^{J} = \bar{J}_{3L} \frac{h_{33}^{J} w}{\sqrt{2}} J_{3R} + \bar{J}_{\alpha L} \frac{h_{\alpha\beta}^{J} w}{\sqrt{2}} J_{\beta R} + H.c., \qquad (2.93)$$

chúng là các hạt vật lý và độc lập (không trộn với các quark thông thường). Tuy nhiên, các quark thông thường lại tự trộn lẫn với Lagrangian khối lượng được cho bởi:

$$\mathcal{L}_{\text{mass}}^{u,d} = -\sum_{a,b} \bar{u}_{aL} \mathcal{M}_{ab}^U u_{bR} - \sum_{a,b} \bar{d}_{aL} \mathcal{M}_{ab}^D d_{bR} + H.c., \qquad (2.94)$$

ở đây

$$\mathcal{M}^{U} = \{\mathcal{M}_{ab}^{U}\} = -\frac{1}{\sqrt{2}} \begin{pmatrix} h_{11}^{q}v & h_{12}^{q}v & h_{13}^{q}u \\ h_{21}^{q}v & h_{22}^{q}v & h_{23}^{q}u \\ h_{31}^{q}v & h_{32}^{q}v & h_{33}^{q}u \end{pmatrix}, \qquad (2.95)$$
$$\mathcal{M}^{D} = \{\mathcal{M}_{ab}^{D}\} = -\frac{1}{\sqrt{2}} \begin{pmatrix} h_{11}^{q}u & h_{12}^{q}u & h_{13}^{q}v \\ h_{21}^{q}u & h_{22}^{q}u & h_{23}^{q}v \\ h_{31}^{q}u & h_{32}^{q}u & h_{33}^{q}v \end{pmatrix}. \qquad (2.96)$$

Bằng cách áp dụng các biến đổi biunitary, chúng tôi có thể chéo hóa các ma trận khối lượng \mathcal{M}^U và \mathcal{M}^D ,

$$V_{dL}^{\dagger} \mathcal{M}^D V_{dR} = M^D, \quad V_{uL}^{\dagger} \mathcal{M}^U V_{uR} = M^U, \qquad (2.97)$$

trong đó M^U, M^D là các ma trận chéo và $V_{uL,R}, V_{dL,R}$ là các ma trận unitary. Các trạng thái vật lý và các trạng thái chuẩn liên hệ bởi:

$$d_{L,R} = V_{dL,R} d'_{L,R}, \qquad u_{L,R} = V_{uL,R} u'_{L,R}, \tag{2.98}$$

ở đây chúng tôi sử dụng các ký hiệu: các trạng thái chuẩn cho các quark trên là $u = (u_1, u_2, u_3)^T$, cho các quark dưới là $d = (d_1, d_2, d_3)^T$, và các trạng thái vật lý $u' = (u, c, t)^T$, $d' = (d, s, b)^T$. Ma trận CKM được xác định là $V_{\text{CKM}} = V_{uL}^{\dagger} V_{dL}$. Chú ý, mặc dù các ma trận khối lượng quark trên và quark dưới khác nhau chỉ bởi $u \neq v$, khối lượng thực tế của các quark có thể thu được bằng cách chọn các tham số phù hợp. Thậm chí nếu h_{ab}^q là chéo, chúng tôi chỉ cần $u \gg v$ và $h_{33}^q \gg h_{11,22}^q$. Khi đó, chỉ có hai khối lượng nhỏ không phù hợp tương ứng với u, c cũng như các góc trộn quark nhỏ, chúng có thể do bức xạ gây ra.

Điểm đặc biệt ở mô hình này là hai trong ba đa tuyến quark phân cực phải biến đổi khác với đa tuyến còn lại dưới nhóm $SU(3)_R$. Điều này gây nên FCNCs ở gần đúng cây gắn với các quark thông thường do hai nguyên nhân:

1. Các tương tác gauge (Z'_R) phân biệt các thế hệ fermion: Vị của các quark thông thường như $\{u_a\}$ và $\{d_a\}$ khác nhau trong T_{8R} cũng như các tích X (vị của tất cả các lepton như $\{\nu_a\}, \{e_a\}, \{E_a\}$ và vị của các quark lạ $\{J_\alpha\}$ không có đặc điểm này do các vị trái hoặc phải tương ứng trong mỗi nhóm là đồng nhất dưới mọi tích chuẩn trung hòa). Hơn nữa, cũng không có thay đổi vị liên quan đến $Q, T_{3L,R}$ vì mọi nhóm trái hoặc phải biến đổi như nhau dưới $Q, T_{3L,R}$. Do X lại liên hệ được với T_{8R} nên FCNCs gián tiếp chỉ gây bởi gauge boson trung hòa Z'_R nối với T_{8R} .

2. Các tương tác Higgs (H_2) phân biệt các thế hệ fermion: Mặc dù các lưỡng tuyến Higgs được hợp nhất trong S, FCNCs gắn với các quark thông thường vẫn xuất hiện do sự sắp xếp không nhất quán giữa các thế hệ quark dưới đối xứng chuẩn. Điều này có thể thấy từ các tương tác Yukawa giữa S và các quark. Tương tự như trường hợp trước, không có thay đổi vị gắn với các fermion khác cũng như các vô hướng trung hòa khác. Một tổ hợp của S_{11} và S_{22} chính là Higgs boson SM H_1 bảo toàn mọi vị do các tương tác Yuakwa của nó tỷ lệ với các ma trận khối lượng quark tương ứng. Tuy nhiên, trạng thái Higgs mới H_2 trực giao với H_1 thì lại thay đổi vị.

Trước tiên, chúng tôi xem xét FCNCs đến từ các tương tác giữa quark và vô hướng. Các số hạng Yukawa trong (2.13) vừa sinh khối lượng cho các quark vừa gây ra FCNCs gắn với phần quark trên và quark dưới,

$$\begin{split} \mathcal{L}_{\text{int}}^{u,d} &= h_{a3}^{q} \bar{d}_{aL} S_{22}^{0} d_{3R} + h_{a\beta}^{q} \bar{d}_{aL} S_{11}^{0} d_{\beta R} + h_{a3}^{q} \bar{u}_{aL} S_{11}^{0} u_{3R} + h_{a\beta}^{q} \bar{u}_{aL} S_{22}^{0} u_{\beta R} + H.c. \\ &= h_{a3}^{q} \bar{d}_{aL} \frac{uH_{2} + vH_{1}}{\sqrt{2(u^{2} + v^{2})}} d_{3R} + h_{a\beta}^{q} \bar{d}_{aL} \frac{uH_{1} - vH_{2}}{\sqrt{2(u^{2} + v^{2})}} d_{\beta R} \\ &+ h_{a3}^{q} \bar{u}_{aL} \frac{uH_{1} - vH_{2}}{\sqrt{2(u^{2} + v^{2})}} u_{3R} + h_{a\beta}^{q} \bar{u}_{aL} \frac{uH_{2} + vH_{1}}{\sqrt{2(u^{2} + v^{2})}} u_{\beta R} + H.c. \\ &= -\bar{d}'_{L} \frac{M^{D}}{\sqrt{(u^{2} + v^{2})}} d'_{R} H_{1} + \frac{v}{u} \bar{d}'_{L} \frac{M^{D}}{\sqrt{(u^{2} + v^{2})}} d'_{R} H_{2} \\ &- \bar{u}'_{L} \frac{M^{U}}{\sqrt{(u^{2} + v^{2})}} u'_{R} H_{1} - \frac{u}{v} \bar{u}'_{L} \frac{M^{U}}{\sqrt{(u^{2} + v^{2})}} u'_{R} H_{2} \\ &- \frac{\sqrt{u^{2} + v^{2}}}{u^{2}} \bar{d}'_{iL} (V_{dL}^{\dagger} V_{uL})_{ik} (M^{U})_{km} (V_{uR}^{*})_{3m} (V_{dR})_{3j} d'_{jR} H_{2} \end{split}$$

$$+\frac{\sqrt{u^2+v^2}}{v^2}\bar{u}'_{iL}(V_{uL}^{\dagger}V_{dL})_{ik}(M^D)_{km}(V_{dR}^*)_{3m}(V_{uR})_{3j}u'_{jR}H_2 + H.c.$$
(2.99)

Có thể thấy rằng Higgs boson H_1 liên kết với các quark, thậm chí là các lepton mang điện, tương tự như Higgs boson trong SM, đây là một đặc điểm tốt để công nhận mô hình này [89–92]. H_2 là Higgs boson mới và nặng, nó làm thay đổi vị quark và được biểu thị qua các yếu tố khác không ngoài đường chéo ($i \neq j$) trong hai số hạng cuối của (2.99). Do đó, FCNCs ở gần đúng cây có thể xuất hiện do sự đóng góp của H_2 . Theo thường lệ, chúng tôi viết lại phần Lagrangian có liên quan,

$$\mathcal{L}_{\text{FCNC}}^{H_2} = \bar{d}'_{iL} \Gamma^d_{ij} d'_{jR} H_2 + \bar{u}'_{iL} \Gamma^u_{ij} u'_{jR} H_2 + H.c., \qquad (2.100)$$

ở đây

$$\Gamma_{ij}^{d} = -\frac{\sqrt{u^{2} + v^{2}}}{u^{2}} (V_{dL}^{\dagger} V_{uL})_{ik} (M^{U})_{km} (V_{uR}^{*})_{3m} (V_{dR})_{3j},$$

$$\Gamma_{ij}^{u} = \frac{\sqrt{u^{2} + v^{2}}}{v^{2}} (V_{uL}^{\dagger} V_{dL})_{ik} (M^{D})_{km} (V_{dR}^{*})_{3m} (V_{uR})_{3j}.$$
(2.101)

Thứ hai, chúng tôi xem xét FCNCs đến từ các tương tác giữa các fermion và gauge boson. Như chúng tôi đã đề cập, FCNCs gắn với Z'_R là do thế hệ thứ ba của các quark biến đổi khác so với hai thế hệ đầu tiên dưới đối xứng chuẩn. Ở đây, FCNCs xuất hiện trong phần quark phân cực phải và với các gauge boson chuẩn A_{8R} và B, chúng lần lượt nối với T_{8R} và X. Vì $X = Q - T_{3L} - T_{3R} - \beta T_{8R}$ nên nguồn gốc của FCNCs chỉ là T_{8R} . Thực vậy, xem xét Lagrangian tương tác của các gauge boson trung hòa với các fermion, sử dụng biểu thức X, chúng tôi thu được phần tương tác có liên quan,

$$\mathcal{L}_{8} = -\sum_{a=1}^{3} \bar{Q}_{aR} \gamma^{\mu} T_{8R} Q_{aR} (g_{R} A_{8R\mu} - \beta g_{X} B_{\mu})$$

$$= -g_{L} \sqrt{t_{R}^{2} + \beta^{2} t_{X}^{2}} \sum_{a=1}^{3} \bar{Q}_{aR} \gamma^{\mu} T_{8R} Q_{aR} Z'_{R\mu}$$

$$\supset -g_{L} \sqrt{t_{R}^{2} + \beta^{2} t_{X}^{2}} (\bar{u}_{R} \gamma^{\mu} T_{u} u_{R} + \bar{d}_{R} \gamma^{\mu} T_{d} d_{R}) Z'_{R\mu}$$

$$= -g_{L} \sqrt{t_{R}^{2} + \beta^{2} t_{X}^{2}} \left(\bar{u}'_{R} \gamma^{\mu} (V_{uR}^{\dagger} T_{u} V_{uR}) u'_{R} + \bar{d}'_{R} \gamma^{\mu} (V_{dR}^{\dagger} T_{d} V_{dR}) d'_{R} \right) Z'_{R\mu},$$
(2.102)

ở đây $T_u = T_d = \frac{1}{2\sqrt{3}} \text{diag}(-1, -1, 1)$ bao gồm các giá trị T_{8R} cho vị các quark trên hoặc dưới. Ở gần đúng cây, FCNCs gắn với Z'_R nhận được bởi

$$\mathcal{L}_{\text{FCNC}}^{Z'_R} = -\Theta_{ij}^{Z'_R} \bar{q}'_{iR} \gamma^{\mu} q'_{jR} Z'_{R\mu}$$
(2.103)

với $i\neq j,$ ở đây q' biểu thị cho u'hoặc d', và $\Theta_{ij}^{Z'_R}$ xác định là

$$\Theta_{ij}^{Z'_R} = \frac{g_L}{\sqrt{3}} \sqrt{t_R^2 + \beta^2 t_X^2} (V_{qR}^*)_{3i} (V_{qR})_{3j}.$$
(2.104)

Tiếp theo, chúng tôi tính toán các đóng góp của vật lý mới vào sự trộn lẫn meson gián tiếp gây bởi vô hướng trung hòa H_2 và gauge boson trung hòa Z'_R . Với trường hợp trộn K^0 - \bar{K}^0 , chúng tôi nhận được phần Lagrangian hiệu dụng sau khi nhóm H_2 và Z'_R ra ngoài,

$$\mathcal{L}_{\text{effective}}^{\Delta S=2} = -\frac{(\Theta_{12}^{Z'_R})^2}{m_{Z'_R}^2} (\bar{d}_R \gamma^\mu s_R)^2 + \frac{(\Gamma_{12}^d)^2}{m_{H_2}^2} (\bar{d}_L s_R)^2 + \frac{(\Gamma_{21}^{d*})^2}{m_{H_2}^2} (\bar{d}_R s_L)^2 + \frac{\Gamma_{21}^{d*} \Gamma_{12}^d}{m_{H_2}^2} (\bar{d}_L s_R) (\bar{d}_R s_L) + \frac{\Gamma_{21}^{d*} \Gamma_{12}^d}{m_{H_2}^2} (\bar{d}_R s_L) (\bar{d}_L s_R). \quad (2.105)$$

Từ đó, đóng góp của vật lý mới vào tham số trộn K^0 - \bar{K}^0 hay hiệu khối lượng Δm_K được xác định:

$$\Delta m_K = 2 \operatorname{Re} \langle \bar{K}^0 | - \mathcal{L}_{\text{eff}}^{\Delta S=2} | K^0 \rangle.$$
(2.106)

Sử dụng các kết quả trong [93],

$$\begin{split} \langle \bar{K}^{0} | (\bar{d}_{R} \gamma^{\mu} s_{R})^{2} | K^{0} \rangle &= \langle \bar{K}^{0} | (\bar{d}_{L} \gamma^{\mu} s_{L})^{2} | K^{0} \rangle = \frac{1}{3} m_{K} f_{K}^{2}, \\ \langle \bar{K}^{0} | (\bar{d}_{L} s_{R})^{2} | K^{0} \rangle &= \langle \bar{K}^{0} | (\bar{d}_{R} s_{L})^{2} | K^{0} \rangle = -\frac{5}{24} \left(\frac{m_{K}}{m_{s} + m_{d}} \right)^{2} m_{K} f_{K}^{2}, \\ \langle \bar{K}^{0} | (\bar{d}_{L} s_{R}) (\bar{d}_{R} s_{L}) | K^{0} \rangle &= \langle \bar{K}^{0} | (\bar{d}_{R} s_{L}) (\bar{d}_{L} s_{R}) | K^{0} \rangle \\ &= \left[\frac{1}{24} + \frac{1}{4} \left(\frac{m_{K}}{m_{s} + m_{d}} \right)^{2} \right] m_{K} f_{K}^{2}, \end{split}$$

tham số trộn Δm_K nhận được là

$$\Delta m_K = \operatorname{Re}\left\{\frac{2}{3}\frac{(\Theta_{12}^{Z'_R})^2}{m_{Z'_R}^2} + \frac{5}{12}\left(\frac{(\Gamma_{21}^{d*})^2}{m_{H_2}^2} + \frac{(\Gamma_{12}^d)^2}{m_{H_2}^2}\right)\left(\frac{m_K}{m_s + m_d}\right)^2\right\}$$

$$-\frac{\Gamma_{21}^{d*}\Gamma_{12}^{d}}{m_{H_2}^2} \left[\frac{1}{6} + \left(\frac{m_K}{m_s + m_d} \right)^2 \right] \right\} m_K f_K^2. \quad (2.107)$$

Tương tự, chúng tôi nhận được các tham số trộn Δm_{B_d} và $\Delta m_{B_s},$

$$\Delta m_{B_d} = \operatorname{Re} \left\{ \frac{2}{3} \frac{(\Theta_{13}^{Z'_R})^2}{m_{Z'_R}^2} + \frac{5}{12} \left(\frac{(\Gamma_{31}^{d*})^2}{m_{H_2}^2} + \frac{(\Gamma_{13}^d)^2}{m_{H_2}^2} \right) \left(\frac{m_{B_d}}{m_b + m_d} \right)^2 - \frac{\Gamma_{31}^{d*} \Gamma_{13}^d}{m_{H_2}^2} \left[\frac{1}{6} + \left(\frac{m_{B_d}}{m_b + m_d} \right)^2 \right] \right\} m_{B_d} f_{B_d}^2, \quad (2.108)$$

$$\Delta m_{B_s} = \operatorname{Re} \left\{ \frac{2}{3} \frac{(\Theta_{23}^{Z'_R})^2}{m_{Z'_R}^2} + \frac{5}{12} \left(\frac{(\Gamma_{32}^{d*})^2}{m_{H_2}^2} + \frac{(\Gamma_{23}^d)^2}{m_{H_2}^2} \right) \left(\frac{m_{B_s}}{m_b + m_s} \right)^2 - \frac{\Gamma_{32}^{d*} \Gamma_{23}^d}{m_{H_2}^2} \left[\frac{1}{6} + \left(\frac{m_{B_s}}{m_b + m_s} \right)^2 \right] \right\} m_{B_s} f_{B_s}^2. \quad (2.109)$$

Bây giờ chúng tôi tiến hành tính số các tham số trộn Δm_K và $\Delta m_{B_{d,s}}$ bằng cách sử dụng các giá trị sau (các giá trị khối lượng đều dùng đơn vị MeV) [1,94,95]:

$$m_d = 4.73, \ m_s = 93.4, \ m_b = 4190, \ m_t = 173 \times 10^3, \ f_K = 156.1,$$

 $m_K = 497.614, \ f_{B_d} = 188, \ m_{B_d} = 5279.5, \ f_{B_s} = 225, \ m_{B_s} = 5366.3,$
 $(V_{\rm CKM})_{31} = 0.00886, \ (V_{\rm CKM})_{32} = 0.0405, \ (V_{\rm CKM})_{33} = 0.99914.$ (2.110)

Theo các kết quả ở trên cho thang điện yếu, chúng tôi lấy u = 230 GeV, và rồi v thu được từ $u^2 + v^2 = (246 \text{ GeV})^2$. Hơn nữa, $t_R = 1$, $t_X = s_W/\sqrt{1 - (2 + \beta^2)s_W^2}$, và $s_W^2 = 0.231$ như đã được sử dụng trước đây. Với các giá trị của β ở trên ($\beta = 0, \pm 1/\sqrt{3}$), t_X và $\Theta_{ij}^{Z'_R}$ thay đổi rất ít. Do vậy, chúng tôi lấy $|\beta| = 1/\sqrt{3}$ cho các tính toán tiếp theo. Chúng tôi có $g_L = \sqrt{4\pi\alpha/s_W^2}$, với $\alpha = 1/128$. Đối với ma trận trộn quark phân cực phải V_{qR} (q = u, d), các yếu tố cho đóng góp vào các tham số trộn meson $\Delta m_{K,B_d,B_s}$ là (V_{uR})₃₃, (V_{dR})₃₁, (V_{dR})₃₂, và (V_{dR})₃₃. Vì $\Delta m_{K,B_d,B_s}$ phụ thuộc vào (V_{dR})₃₁ và (V_{dR})₃₂ là như nhau, một giả thiết có thể là (V_{dR})₃₁ = (V_{dR})₃₂ $\equiv V_{dR}$ mà vẫn không mất tính tổng quát. Theo đó, (V_{dR})²₃₃ $= 1 - 2V_{dR}^2$ do tính unitarity. Chúng tôi cũng ký hiệu (V_{uR})₃₃ $\equiv V_{uR}$ và chọn $m_{H_2} = m_{Z'_R} \equiv M$ cho đơn giản. Mgọi là thang vật lý mới và cho đóng góp vào các quá trình thay đổi vị. Các đóng góp của SM vào các hiệu khối lượng meson được cho bởi [36,37],

$$(\Delta m_K)_{\rm SM} = 0.467 \times 10^{-2}/ps, \quad (\Delta m_{B_d})_{\rm SM} = 0.528/ps,$$

 $(\Delta m_{B_s})_{\rm SM} = 18.3/ps,$ (2.111)

trong khi các giá trị thu được từ thực nghiệm [36,37],

$$(\Delta m_K)_{\text{Exp}} = 0.5292 \times 10^{-2}/ps, \quad (\Delta m_{B_d})_{\text{Exp}} = 0.5055/ps,$$

 $(\Delta m_{B_s})_{\text{Exp}} = 17.757/ps.$ (2.112)

Trong mô hình đang xem xét, các hiệu khối lượng meson được xác định,

$$(\Delta m_{K,B_d,B_s})_{\text{tot}} = (\Delta m_{K,B_d,B_s})_{\text{SM}} + \Delta m_{K,B_d,B_s}.$$
 (2.113)

Các số hạng phía sau (2.113) là do các đóng góp của vật lý mới như đã thu được ở trên. Chúng tôi lưu ý, liên quan đến các hiệu khối lượng meson $B_{d,s}$ và K, mô hình còn có thể có các giản đồ hộp do các đóng góp của W_2^{\pm} , H_5^{\pm} , và thậm chí các hạt mới khác, nhưng các đóng góp này bị giới hạn do $u, v \ll w, \Lambda, f$. Hơn nữa, FCNCs đến từ các tương tác ở gần đúng cây với Z'_R và H_2 là lớn hơn so với các yếu tố đã đề cập ở bổ đính một vòng.

Các đóng góp toàn phần theo (2.113) sẽ được đối chiếu với các giá trị thực nghiệm. Chúng tôi sử dụng dữ liệu hiệu khối lượng kaon trong phạm vi sai số 30% do mức độ sai số lớn, và trong phạm vi 5% cho các hiệu khối lượng B-meson,

$$0.37044 \times 10^{-2}/ps < (\Delta m_K)_{\text{tot}} < 0.68796 \times 10^{-2}/ps, \qquad (2.114)$$

$$0.480225/ps < (\Delta m_{B_d})_{\text{tot}} < 0.530775/ps, \qquad (2.115)$$

$$16.8692/ps < (\Delta m_{B_s})_{\text{tot}} < 18.6449/ps.$$
(2.116)

Trong hình 2.4 và hình 2.5, chúng tôi vẽ đồ thị cho các hiệu khối lượng Δm_K , Δm_{B_d} , và Δm_{B_s} như là hàm của các yêu tố ma trận trộn quark phân cực phải (V_{uR}, V_{dR}) với thang vật lý mới lần lượt là M = 5 TeV và M = 10 TeV. Các giá trị M đã được chọn là phù hợp với các giới hạn trước đây. Vùng khả dĩ cho Δm_K là toàn bộ khung. Hai vùng tách biệt ứng với Δm_{B_d} . Một

Hình 2.4: Miền giới hạn (V_{uR}, V_{dR}) đến từ các hiệu khối lượng meson $\Delta m_{K,B_d,B_s}$ với thang vật lý mới M = 5 TeV.

Hình 2.5: Miền giới hạn (V_{uR}, V_{dR}) đến từ các hiệu khối lượng meson $\Delta m_{K,B_d,B_s}$ với thang vật lý mới M = 10 TeV.

Hình 2.6: Miền giới hạn (M, V_{dR}) đến từ các hiệu khối lượng meson $\Delta m_{K,B_d,B_s}$ với $V_{uR} = 0.05$.

Hình 2.7: Miền giới hạn (M, V_{dR}) đến từ các hiệu khối lượng meson $\Delta m_{K,B_d,B_s}$ với $V_{uR} = 0.1.$

Hình 2.8: Miền giới hạn (M, V_{dR}) đến từ các hiệu khối lượng meson $\Delta m_{K,B_d,B_s}$ với $V_{uR} = 0.15$.

vùng thuộc nửa phía dưới ứng với Δm_{B_s} . Do đó, vùng giá trị tham số ứng với $\Delta m_{K,B_d,B_s}$ chỉ là vùng (tối nhất) ở góc phía dưới bên trái của mỗi hình. Từ các vùng khả dĩ, chúng tôi nhận được giới hạn cho các yếu tố ma trận trộn quark phân cực phải là $|V_{uR}| < 0.08$ và $|V_{dR}| < 0.0015$ với M = 5 TeV, trong khi $|V_{uR}| < 0.2$ và $|V_{dR}| < 0.003$ với M = 10 TeV.

Khi lần lượt xét $V_{uR} = 0.05$, 0.1, và 0.15, chúng tôi vẽ được các đồ thị cho Δm_K , Δm_{B_d} , và Δm_{B_s} như là hàm của (M, V_{dR}) tương ứng trong các hình 2.6, 2.7 và 2.8. Vùng tham số khả dĩ là vùng (tối nhất) ở góc phía trên bên trái của mỗi hình. Chúng tôi nhận được M > 2.8 TeV với $V_{uR} = 0.05$, M > 5.7 TeV với $V_{uR} = 0.1$, và M > 8.2 TeV với $V_{uR} = 0.15$. Tức là thang vật lý mới M thấp khi V_{uR} nhỏ và ngược lại.

Chúng tôi thấy rằng các giới hạn cho khối lượng H_2 và Z'_R phù hợp với thang vật lý mới được rút ra trong mục trước.

2.6. Kết luận chương 2

Chúng tôi đã chỉ ra rằng mô hình 3 - 2 - 3 - 1 tự nhiên cho FCNCs ở gần đúng cây thông qua cả tương tác chuẩn và tương tác Yukawa như một hệ quả của sự thiếu nhất quán giữa các thế hệ fermion. Đối xứng chuẩn mới không chỉ tự động chứa các neutrino phân cực phải mà còn cho các hạt B - L sai, chúng mang lại khối lượng nhỏ cho neutrino và các ứng cử viên cho vật chất tối như một hệ quả của sự phá vỡ đối xứng chuẩn. Đặc biệt, W-parity tự nhiên thu được như một đối xứng chuẩn tàn dư, nó đảm bảo tính bền cho vật chất tối. Như vậy, tất cả đều nảy sinh từ nguyên tắc chuẩn.

Phần vô hướng được chéo hóa rõ ràng. Số lượng Goldstone boson là phù hợp với số gauge boson có khối lượng. Có 12 trường vô hướng vật lý, một trong số chúng là Higgs boson của SM, các trường khác là mới và nặng. Do điều kiện $u, v \ll w, \Lambda$ nên Higgs boson SM nhận khối lượng ở gần đúng bậc một cỡ thang điện yếu và nó có trộn lẫn chút ít với các Higgs boson trung hòa mới. Phần gauge boson cũng được chéo hóa rõ ràng. Mô hình có năm gauge boson mới và nặng là $\mathcal{Z}_1, \mathcal{Z}'_1, W_2^{\pm}, X_R^{\pm q}, Y_R^{\pm (q+1)}$, ngoài ra còn có các gauge boson SM là $A, \mathcal{Z}, W_1^{\pm}$. Các gauge boson trung hòa Z_L trộn rất ít với các gauge boson trung hòa mới Z_R và Z'_R , chúng cũng bị giới hạn bởi $u, v \ll w, \Lambda$.

Tất cả tương tác của các gauge boson với các fermion và các vô hướng đều đã được xác định. Các tương tác trong SM đều đã nhận lại được. Các tương tác mới đóng góp vai trò quan trọng: chúng làm thay đổi vị quark và xác định vật chất tối, ... Chúng tôi tập trung vào loại tác động thứ nhất gây ra bởi Z'_R và H_2 . Chúng tôi thu được các đóng góp của chúng vào các hiệu khối lượng meson trung hòa $\Delta m_{K,B_d,B_s}$. Điều này phụ thuộc vào khối lượng các hạt mới và các yếu tố ma trận trộn quark phân cực phải. Các hiệu ứng trộn cũng làm thay đổi tham số ρ và tương tác của các gauge boson W, Z, chúng được xác định qua các tham số trộn $\xi, \epsilon_1, \epsilon_2$. Cùng với các kết quả đo lường chính xác điện yếu, các tham số ρ , ξ , và $\epsilon_{1,2}$ xác định thang vật lý mới (giả thiết $w = \Lambda$) như sau: 4.6 TeV < Λ < 13.7 TeV, 5.5 TeV < Λ < 16.3 TeV, và 6.6 TeV < Λ < 19.4 TeV lần lượt với $\beta = 1/\sqrt{3}$, 0, và $-1/\sqrt{3}$. Chúng cũng thu hẹp thang điện yếu là u > 222.3, 215, và 210.4 GeV tương ứng với từng giá trị của β . Các hiệu khối lượng meson cũng chỉ ra rằng khi thang vật lý mới được cố định, các yếu tố ma trận trộn quark phân cực phải được giới hạn là $|V_{uR}| < 0.08$ và $|V_{dR}| < 0.0015$ nếu M = 5 TeV, trong khi $|V_{uR}| < 0.2$ và $|V_{dR}| < 0.003$ nếu M = 10 TeV. Trong trường hợp cố định các giá trị $V_{uR} = 0.05$, 0.1, và 0.15, chúng tôi nhận được M > 2.8 TeV, M > 5.7 TeV, và M > 8.2 TeV tương ứng, ở đây V_{dR} là để tự do. Tóm lại, cả hai loại giới hạn là phù hợp và thang vật lý mới phải nằm trong khoảng 5–10 TeV.

CHƯƠNG 3. HIỆN TƯỢNG LUẬN TRONG MÔ HÌNH 3 – 4 – 1 TỐI THIỂU VỚI NEUTRINO PHÂN CỰC PHẢI

Trong chương này, chúng tôi trình bày mô hình 3 - 4 - 1 tối thiểu với neutrino phân cực phải. Từ sự sắp xếp các fermion, phần gauge boson, các dòng, và nhất là thế Higgs sẽ được chúng tôi thảo luận chi tiết. Ngoài ra, chúng tôi cũng xem xét các kênh rã của W boson và muon, từ đó tìm giới hạn cho một vài tham số trong mô hình. Nhưng trước tiên, chúng tôi kiểm tra điều kiện khử dị thường của các mô hình 3 - 4 - 1 và phân tích mô hình 3 - 4 - 1với điện tích bất kỳ của các lepton mới. Các kết quả chính của chương này đã được chúng tôi công bố tại Phys. Rev. D **94**, 015007, 2016.

3.1. Mô hình 3-4-1 tổng quát

3.1.1. Khử dị thường và lượng fermion

Dối với các mô hình được xây dựng từ nhóm chuẩn $\mathrm{SU}(3)_C \otimes \mathrm{SU}(3)_L \otimes$ U(1)_N, các điều kiện khử dị thường đã được thảo luận chi tiết trong [60,96]. Tương tự như vậy, với các mô hình xây dựng từ nhóm chuẩn $\mathrm{SU}(3)_C \otimes \mathrm{SU}(4)_L \otimes$ U(1)_X (3-4-1) thì các dị thường sau đây phải triệt tiêu: i) $[SU(3)_C]^2 \otimes U(1)_X$, ii) $[SU(4)_L]^3$, iii) $[SU(4)_L]^2 \otimes U(1)_X$; iv) $[\mathrm{Grav}]^2 \otimes U(1)_X$; và v) $[U(1)_X]^3$. Khác với các nghiên cứu khử dị thường cho các mô hình 3 – 3 – 1 [60,73,96], chúng tôi sẽ khai thác liên hệ giữa toán tử điện tích và các vi tử chéo của đối xứng chuẩn $SU(4)_L$ để chứng minh rằng năm điều kiện khử dị thường sẽ rút gọn chỉ còn lại hai điều kiện: $[SU(4)_L]^3$ và $[SU(4)_L]^2 \otimes U(1)_X$. Với mô hình 3-4-1 tổng quát, toán tử điện tích có dạng,

$$Q = T_3 + bT_8 + cT_{15} + X, (3.1)$$

trong đó hệ số 1 đứng trước T_3 để đảm bảo rằng SM là mô hình rút gọn của mô hình đang xem xét: $SU(2)_L \otimes U(1)_Y \subset SU(4)_L \otimes U(1)_X$.

Các lepton được xếp vào tứ tuyến,

$$f_{aL} = (\nu_a, l_a, E_a^q, E_a^{\prime q'})_L^T, \quad a = e, \mu, \tau, \qquad (3.2)$$

ở đây q và q' là điện tích của các lepton mới. Sử dụng (3.1) và (3.2) chúng tôi nhận được,

$$b = \frac{-2q-1}{\sqrt{3}}, \ c = \frac{q-3q'-1}{\sqrt{6}}, \ X_{f_{aL}} = \frac{q+q'-1}{4}, \tag{3.3}$$

hoặc

$$q = -\frac{1}{2} - \frac{\sqrt{3}b}{2}, \ q' = -\frac{1}{2} - \frac{b}{2\sqrt{3}} - \frac{\sqrt{2}c}{\sqrt{3}}, \ X_{f_{aL}} = -\frac{1}{2} - \frac{b}{2\sqrt{3}} - \frac{c}{2\sqrt{6}}.$$
 (3.4)

Trước khi thảo luận về vấn đề khử dị thường, chúng tôi lưu ý các biểu diễn fermion trong mô hình 3 - 4 - 1 đều là tam tuyến $SU(3)_C$, tứ tuyến (phản tứ tuyến) $SU(4)_L$, và đơn tuyến. Tất cả các đơn tuyến không đóng góp vào dị thường nên chúng tôi sẽ bỏ qua chúng. Ma trận biểu diễn của các vi tử tương ứng với tam tuyến $SU(3)_C$ được đặt là T_C^a (a = 1, 2, ..., 8), với tứ tuyến (phản tứ tuyến) $SU(4)_L$ là $T_L^a(\bar{T}_L^a)$, a = 1, 2, ..., 15.

Xét mô hình 3 - 4 - 1 với M và N lần lượt là số thế hệ của các lepton và các quark. Ngoài ra, gọi số tứ tuyến $SU(4)_L$ của các thế hệ quark là K. Để đơn giản, chúng tôi giả thiết tất cả các lepton phân cực trái đều được xếp vào tứ tuyến. Đối với phần lepton,

$$f_{iL} = (\nu_{iL}, l_{iL}, E^q_{iL}, E^{\prime q'}_{iL})^T \sim (1, 4, X_{f_L}), \quad i = 1, 2, ..., M,$$
$$\nu_{iR} \sim (1, 1, 0), \ l_{iR} \sim (1, 1, -1), \ E^q_{iR} \sim (1, 1, q), \ E^{\prime q'}_{iR} \sim (1, 1, q'). \tag{3.5}$$

Ó đây các lepton phân cực trái đã được tổng quát hóa từ (3.2). Như trong các mô hình 3 - 3 - 1 [15–22], các tham số b và c liên hệ chặt chẽ với q và q';

trong [97,98], các tham số b và c đã được sử dụng, còn ở đây chúng tôi chỉ sử dụng q và q'. Lưu ý rằng ν_{iR} là tùy chọn, E_{iR}^q và $E_{iR}^{q'}$ có thể không xuất hiện trong trường hợp mô hình 3 - 4 - 1 tối thiểu. Nếu các lepton phân cực trái được xếp vào phản tứ tuyến thì các tham số b và c lần lượt sẽ được thay thế bằng -b và -c.

Với phần quark,

$$Q_{mL} = (u_{mL}, d_{mL}, T_{mL}, T'_{mL})^T \sim (3, 4, X_{q_L}), \qquad m = 1, 2, ..., K,$$

$$Q_{nL} = (d_{nL}, -u_{nL}, D_{nL}, D'_{nL})^T \sim (3, 4^*, X_{\bar{q}_L}), \qquad n = K + 1, ..., N,$$

$$u_{pR} \sim (3, 1, 2/3), \ d_{pR} \sim (3, 1, -1/3), \qquad p = 1, 2, ..., N,$$

$$T_{mR} \sim (3, 1, X_{T_R}), \ T'_{mR} \sim (3, 1, X_{T'_R}),$$

$$D_{nR} \sim (3, 1, X_{D_R}), \ D'_{nR} \sim (3, 1, X_{D'_R}).$$

(3.6)

Trước tiên, chúng tôi xem xét dị thường của $[SU(4)_L]^3$. Mỗi tứ tuyến 4_L hoặc phản tứ tuyến 4_L^* của nhóm $SU(4)_L$ sẽ đóng góp một lượng $\mathcal{A}^{abc}(4_L) =$ $\operatorname{Tr}(T_L^a\{T_L^b, T_L^c\})$ hoặc $\mathcal{A}^{abc}(4_L^*) = \operatorname{Tr}(\bar{T}_L^a\{\bar{T}_L^b, \bar{T}_L^c\})$, trong đó a, b, và c nghĩa là ba gauge boson $SU(4)_L$ liên quan tới các giản đồ tam giác. Vì $\mathcal{A}^{abc}(4_L) =$ $-\mathcal{A}^{abc}(4_L^*)$ nên tổng đóng góp vào dị thường $[SU(4)_L]^3$ có thể viết như sau:

$$\mathcal{A}^{abc}(4_L) \left(\sum_{Q_{mL}, f_{iL}} 4_L - \sum_{Q_{nL}} 4_L^* \right) = \mathcal{A}^{abc}(4_L) \left(n_{4_L} - n_{4_L^*} \right), \qquad (3.7)$$

với n_{4_L} và $n_{4_L^*}$ lần lượt là số tứ tuyến và phản tứ tuyến của fermion. Điều này có nghĩa là dị thường trên chỉ bị khử nếu số tứ tuyến bằng với số phản tứ tuyến, tức là

$$M + 6K = 3N, (3.8)$$

hệ số 3 xuất hiện bởi vì các quark là tam tuyến với $SU(3)_C$ còn các lepton lại là đơn tuyến với $SU(3)_C$. Từ đây, nếu cho M = N thì M = N = 3K, tức là số thế hệ phải là bội của 3.

Tiếp theo, chúng tôi xem xét dị thường của $[SU(4)_L]^2 \otimes U(1)_X$. $[SU(4)_L]^2$ cho đóng góp như nhau với tứ tuyến và phản tứ tuyến, $\text{Tr}[T^a T^b] = \text{Tr}[\bar{T}^a \bar{T}^b] = \delta_{ab}/2$, trong đó *a* và *b* liên quan đến hai gauge boson $SU(4)_L$. Do đó, dị thường này bị khử nếu tổng tất cả tích X của các đa tuyến $SU(4)_L$ bằng không,

$$\sum_{f_{iL},Q_{pL}} X_L = M X_{f_L} + 3K X_{q_L} + 3(N - K) X_{\bar{q}_L} = 0, \qquad (3.9)$$

trong đó X_L biểu thị cho tích $U(1)_X$ của một tứ tuyến (phản tứ tuyến) phân cực trái bất kỳ trong mô hình.

Bây giờ chúng tôi quay lại dị thường $[SU(3)_C]^2 \otimes U(1)_X$. Trường hợp này tương tự trường hợp của $[SU(4)_L]^2 \otimes U(1)_X$, nhưng lúc này chỉ các tam tuyến quark $SU(3)_C$ mới cho đóng góp. Điều kiện khử dị thường này là

$$\sum_{Q_{mL}} 4X_{q_L} + \sum_{Q_{nL}} 4X_{\bar{q}_L} - \sum_{q_R} X_{q_R} = 0, \qquad (3.10)$$

ở đây X_{q_R} và X_{q_L,\bar{q}_L} lần lượt là tích $U(1)_X$ của các quark phân cực phải q_R đơn tuyến của nhóm $SU(4)_L$, và các quark phân cực trái $Q_{m_L}(Q_{n_L})$ - tứ tuyến (phản tứ tuyến) của nhóm $SU(4)_L$. Hệ số 4 xuất hiện trong (3.10) là do phải tính cả bốn thành phần của mọi tứ tuyến (phản tứ tuyến) $SU(4)_L$. Dấu trừ có nghĩa là các fermion phân cực trái và các fermion phân cực phải cho đóng góp trái ngược nhau. Bởi vì tất cả q_R là đơn tuyến của $SU(4)_L \otimes U(1)_X$ nên tích $U(1)_X$ của chúng luôn bằng với điện tích q_{q_R} , dẫn đến $\sum_{q_R} X_{q_R} = \sum_{q_R} q_{q_R}$. Mặt khác, từ định nghĩa toán tử điện tích Q ở (3.1), chúng tôi suy ra

$$\sum_{Q_{mL}} 4X_{q_L} = \sum_{Q_{mL}} \operatorname{Tr} \left(X_L \times I_4 \right) = \sum_{Q_{mL}} \operatorname{Tr}[Q],$$

trong đó Tr[Q] nghĩa là tổng điện tích của tất cả các thành phần trong tứ tuyến Q_{mL} . Lưu ý, chúng tôi đã sử dụng tính chất không vết của các vi tử nhóm $SU(4)_L$: Tr $(T^a) = 0$. Tính toán giống như trên cho trường hợp các phản tứ tuyến quark, điều kiện (3.10) có thể viết lại thông qua điện tích của các quark phân cực trái và các quark phân cực phải,

$$\sum_{Q_{pL}} \sum_{i=1}^{4} q_{q_L} - \sum_{q_R} q_{q_R} = 0, \qquad (3.11)$$

ở đây tổng đầu tiên là tính cho tất cả các tứ tuyến (phản tứ tuyến) quark $SU(4)_L$ và cả các thành phần của chúng. Phương trình (3.11) luôn đúng bởi

vì với mọi quark thì thành phần phân cực trái và phân cực phải của nó có điện tích như nhau.

Các thảo luận ở trên về việc khử dị thường $[SU(3)_C]^2 \otimes U(1)_X$ có thể áp dụng cho trường hợp khử dị thường $[\text{Grav}]^2 \otimes U(1)_X$, nhưng các điện tích phải tính cho tất cả các thành phần trong các đa tuyến $SU(3)_C$ và $SU(4)_L$ của tất cả các quark và các lepton. Việc chứng minh đóng góp bằng không của phần quark là khá đơn giản trong khi với phần lepton thì phức tạp hơn. Mặc dù sự có mặt của các neutrino phân cực phải là tùy ý nhưng do chúng là các lepton trung hòa nên không cho đóng góp vào dị thường này. Nếu các lepton mang điện phân cực phải được xếp vào các thành phần trong tứ tuyến (phản tứ tuyến) thì điện tích của chúng phải được lấy liên hợp điện tích. Khi đó, so với lepton phân cực trái cùng loại thì điện tích của nó bị đổi dấu. Vì vậy, tổng đóng góp vào dị thường đang xét vẫn bằng không.

Việc khử dị thường $[U(1)_X]^3$ có liên quan đến giản đồ tam giác với ba gauge boson B'' được biểu thị qua điều kiện dưới đây:

$$\sum_{F_L} X_{F_L}^3 - \sum_{F_R} X_{F_R}^3 = 0, \qquad (3.12)$$

trong đó F_L và F_R là các thành phần bất kỳ của fermion (quark và lepton) trong các biểu diễn của đối xứng chuẩn $SU(3)_C$ và $SU(4)_L$. Do đó, phép lấy tổng tính cho tất cả các thành phần của các biểu diễn này. Bởi vì tích X và điện tích liên hệ với nhau qua (3.1) nên chúng tôi có thể viết vế trái của (3.12) như là một hàm của điện tích. Do tất cả các fermion phân cực phải là đơn tuyến của $SU(4)_L$, $X_{F_R} = q_{F_R}$ nên

$$\sum_{F_R} X_{F_R}^3 = \sum_{F_R} q_{F_R}^3.$$
 (3.13)

Ngược lại, tất cả các fermion phân cực trái là tứ tuyến (phản tứ tuyến), chúng tôi có thể viết số hạng phân cực trái trong (3.12) như là một tổng của tất cả các tứ tuyến (phản tứ tuyến) fermion, tức là

$$\sum_{F_L} X_{F_L}^3 = \sum_{4_L, 4_L^*} 4X_{F_L}^3.$$
(3.14)

Quay trở lại biểu thức của toán tử điện tích, chúng tôi ký hiệu Q_{F_L} là toán tử điện tích của tứ tuyến (phản tứ tuyến) fermion phân cực trái và đặt $T^{(3,8,15)} \equiv T^3 + bT^8 + cT^{15}$, tích X của mỗi biểu diễn 4_L có thể viết như sau:

$$X_{F_{L}}I_{4} = Q_{F_{L}} - T^{(3,8,15)} \Rightarrow (X_{F_{L}}I_{4})^{3} = \left(Q_{F_{L}} - T^{(3,8,15)}\right)^{3}$$

$$\Rightarrow \operatorname{Tr}\left[X_{F_{L}}^{3}I_{4}\right] = \operatorname{Tr}\left[Q_{F_{L}}^{3}\right] - 3\operatorname{Tr}\left[Q_{F_{L}}T^{(3,8,15)}(Q_{F_{L}} - T^{(3,8,15)})\right] - \operatorname{Tr}\left[\left(T^{(3,8,15)}\right)^{3}\right]$$

$$\Rightarrow 4X_{F_{L}}^{3} = \operatorname{Tr}\left[Q_{F_{L}}^{3}\right] - 3\operatorname{Tr}\left[\left(T^{(3,8,15)} + X_{F_{L}}I_{4}\right)T^{(3,8,15)}X_{F_{L}}I_{4}\right] - \operatorname{Tr}\left[\left(T^{(3,8,15)}\right)^{3}\right]$$

$$= \operatorname{Tr}\left[Q_{F_{L}}^{3}\right] - 3X_{F_{L}}\operatorname{Tr}\left[\left(T^{(3,8,15)}\right)^{2}\right] - \operatorname{Tr}\left[\left(T^{(3,8,15)}\right)^{3}\right], \quad (3.15)$$

trong đó chúng tôi đã sử dụng tính chất là cả Q và $T^{(3,8,15)}$ đều chéo nên chúng giao hoán với nhau, và $T^{(3,8,15)}$ là không vết. Chú ý rằng $4X_{F_L}^3$ là đóng góp của bốn thành phần trong một tứ tuyến. Vậy đóng góp vào $[U(1)_X]^3$ của các tứ tuyến là

$$\sum_{4_L} X_{F_L}^3 = \sum_{F_L} q_{F_L}^3 - 3 \sum_{4_L} X_{F_L} \left[(T^{(3,8,15)})^2 \right] - n_{4_L} \operatorname{Tr} \left[\left(T^{(3,8,15)} \right)^3 \right].$$
(3.16)

Chứng minh tương tự cho trường hợp các phản tứ tuyến với các vi tử $\overline{T}^a = -T^a$, (a = 3, 8, 15) và $\overline{T}^{(3,8,15)} = -T^{(3,8,15)}$. Điều này chứng tỏ rằng $\operatorname{Tr}\left[\left(\overline{T}^{(3,8,15)}\right)^2\right] = \operatorname{Tr}\left[\left(T^{(3,8,15)}\right)^2\right], \operatorname{Tr}\left[\left(\overline{T}^{(3,8,15)}\right)^3\right] = -\operatorname{Tr}\left[\left(T^{(3,8,15)}\right)^3\right].$

Như vậy có thể viết (3.12) ở dạng mới:

$$\left(\sum_{F_L} q_{F_L}^3 - \sum_{F_R} q_{F_R}^3\right) - 3\operatorname{Tr}\left[(T^{(3,8,15)})^2 \right] \sum_{4_L,4_L^*} X_{F_L} - \operatorname{Tr}\left[\left(T^{(3,8,15)} \right)^3 \right] \left(n_{4_L} - n_{4_L^*} \right) = 0. \quad (3.17)$$

Phương trình (3.17) được thỏa mãn như một hệ quả của hai điều kiện khử dị thường (3.7) và (3.9). Phương trình (3.9) cũng có nghĩa là tổng điện tích của tất cả các fermion phân cực trái bằng không.

Tóm lại, điều kiện khử dị thường của các mô hình 3 - 4 - 1 như sau: (i) số tứ tuyến fermion bằng với số phản tứ tuyến fermion và (ii) tổng điện tích của tất cả các fermion phân cực trái bằng không.

Các mô hình 3 – 4 – 1 được chúng tôi quan tâm ở đây đều thỏa mãn hai điều kiện này.
3.1.2. Tương tác Yukawa và khối lượng fermion

Do các lepton được sắp xếp là

$$f_{aL} = (\nu_a, l_a, E_a^q, E_a'^{q'})_L^T \sim \left(1, 4, \frac{q+q'-1}{4}\right),$$

$$l_{aR} \sim (1, 1, -1), \qquad E_{aR}^q \sim (1, 1, q), \qquad E_{aR}'^{q'} \sim (1, 1, q'), \qquad (3.18)$$

khối lượng của $E_a^{\prime q^\prime}$ nhận được từ tương tác Yukawa,

$$-L_{\text{Yukawa}}^{E'} = h_{ab}^{E'} \bar{f}_{aL} \Phi_1 E_{bR}^{\prime q'} + \text{H.c.}, \qquad (3.19)$$

trong đó

$$\Phi_1 \sim \left(1, 4, \frac{q - 3q' - 1}{4}\right) = \left(\Phi_1^{(-q')}, \Phi_1^{(-q'-1)}, \Phi_1^{(q-q')}, \Phi_1^0\right)^T.$$
(3.20)

Do vậy, nếu Φ^0_1 có VEV là $\frac{V}{\sqrt{2}}$ thì $E_a'^{q'}$ nhận khối lượng từ ma trận,

$$(m_{E'})_{ab} = h_{ab}^{E'} \frac{V}{\sqrt{2}}.$$
 (3.21)

Khối lượng của E^q_a nhận được từ số hạng tương tác Yukawa,

$$-L_{\text{Yukawa}}^{E} = h_{ab}^{E} \bar{f}_{aL} \Phi_2 E_{bR}^{q} + \text{H.c.}, \qquad (3.22)$$

ở đây

$$\Phi_2 \sim \left(1, 4, -\frac{1+3q-q'}{4}\right) = \left(\Phi_2^{(-q)}, \Phi_2^{(-q-1)}, \Phi_2^0, \Phi_2^{(q'-q)}\right)^T .$$
(3.23)

Vì vậy, nếu Φ^0_2 có VEV là $\frac{\omega}{\sqrt{2}}$ thì E^q_a nhận khối lượng từ ma trận,

$$(m_E)_{ab} = h_{ab}^E \frac{\omega}{\sqrt{2}} \,. \tag{3.24}$$

Cuối cùng, khối lượng của các lepton thông thường đến từ số hạng tương tác Yukawa như sau:

$$-L^l_{\text{Yukawa}} = h^l_{ab} \bar{f}_{aL} \Phi_3 l_{bR} + \text{H.c.}, \qquad (3.25)$$

ở đây

$$\Phi_3 \sim \left(1, 4, \frac{3+q+q'}{4}\right) = \left(\Phi_3^{(+)}, \Phi_3^0, \Phi_3^{(q+1)}, \Phi_3^{(q'+1)}\right)^T.$$
(3.26)

Nếu Φ^0_3 có VEV là $\frac{v}{\sqrt{2}}$ thì ma trận khối lượng liên quan tới khối lượng của các lepton l_a là

$$(m_l)_{ab} = h^l_{ab} \frac{v}{\sqrt{2}}.$$
 (3.27)

Bây giờ chúng tôi chuyển sang phần quark,

$$Q_{3L} = (u_3, d_3, T, T')_L^T \sim \left(3, 4, \frac{5 + 3(q + q')}{12}\right),$$

$$u_{3R} \sim (3, 1, 2/3), \quad d_{3R} \sim (3, 1, -1/3),$$

$$T_R \sim \left(3, 1, \frac{2 + 3q}{3}\right), \quad T'_R \sim \left(3, 1, \frac{2 + 3q'}{3}\right).$$
(3.28)

Quark u_3 nhận khối lượng thông qua tương tác Yukawa,

$$-L_{\text{Yukawa}}^{t} = h^{t} \bar{Q}_{3L} \Phi_{4} u_{3R} + \text{H.c.}, \qquad (3.29)$$

ở đây

$$\Phi_4 \sim \left(1, 4, \frac{q+q'-1}{4}\right) = \left(\Phi_4^0, \Phi_4^-, \Phi_4^{(q)}, \Phi_4^{(q')}\right)^T.$$
(3.30)

Nếu Φ_4^0 có VEV là $\frac{u}{\sqrt{2}}$ thì số hạng khối lượng của u_3 là

$$m_{u_3} = h^t \frac{u}{\sqrt{2}} \,. \tag{3.31}$$

Các số hạng Yukawa khác liên quan tới Q_{3L} là

$$-L_{\text{Yukawa}}^{g3} = h^b \bar{Q}_{3L} \Phi_3 d_{3R} + h^T \bar{Q}_{3L} \Phi_2 T_R + h^{T'} \bar{Q}_{3L} \Phi_1 T_R' + \text{H.c.}, \quad (3.32)$$

các tương tác này cho ba khối lượng:

$$m_{d_3} = h^b \frac{v}{\sqrt{2}}, \quad m_T = h^T \frac{\omega}{\sqrt{2}}, \quad m_{T'} = h^{T'} \frac{V}{\sqrt{2}}.$$
 (3.33)

Hai thế hệ quark khác là

$$Q_{\alpha L} = (d_{\alpha}, -u_{\alpha}, D_{\alpha}, D'_{\alpha})_{L}^{T} \sim \left(3, 4^{*}, -\frac{1+3(q+q')}{12}\right), \quad \alpha = 1, 2,$$

$$u_{\alpha R} \sim (3, 1, 2/3), \quad d_{\alpha R} \sim (3, 1, -1/3),$$

$$D_{\alpha R} \sim \left(3, 1, -\frac{1+3q}{3}\right), \quad D'_{\alpha R} \sim \left(3, 1, -\frac{1+3q'}{3}\right).$$
(3.34)

Các số hạng Yukawa có liên quan là

$$-L_{\text{Yukawa}}^{12} = h_{\alpha\beta}^{d2} \bar{Q}_{\alpha L} \Phi_4^{\dagger} d_{\beta R} + h_{\alpha\beta}^{u2} \bar{Q}_{\alpha L} \Phi_3^{\dagger} u_{\beta R} + h_{\alpha\beta}^{D2} \bar{Q}_{\alpha L} \Phi_2^{\dagger} D_{\beta R} + h_{\alpha\beta}^{D'2} \bar{Q}_{\alpha L} \Phi_1^{\dagger} D'_{\beta R} + \text{H.c.}, \quad (3.35)$$

từ đó chúng tôi thu được,

$$(m_{d_2})_{\alpha\beta} = h_{\alpha\beta}^{d_2} \frac{u}{\sqrt{2}}, \qquad (m_{u_2})_{\alpha\beta} = -h_{\alpha\beta}^{u_2} \frac{v}{\sqrt{2}}, (m_{D_2})_{\alpha\beta} = h_{\alpha\beta}^{D_2} \frac{\omega}{\sqrt{2}}, \qquad (m_{D_2'})_{\alpha\beta} = h_{\alpha\beta}^{D'2} \frac{V}{\sqrt{2}}.$$
(3.36)

Chúng tôi nhấn mạnh rằng nếu tất cả các fermion (trừ neutrino) có các thành phần phân cực phải thì chỉ cần bốn tứ tuyến Higgs là đủ. Ngoài ra, vì tổng tích X của bốn tứ tuyến Higgs là triệt tiêu nên trong biểu thức thế Higgs luôn tồn tại số hạng phản đối xứng $\epsilon_{ijkl} \Phi_1^i \Phi_2^j \Phi_3^k \Phi_4^l$.

3.1.3. Khối lượng gauge boson

Khối lượng các gauge boson sinh ra từ số hạng động năng hiệp biến của các trường Higgs,

$$L_{\text{Higgs}} = \sum_{i=1}^{4} \left(D^{\mu} \langle \Phi_i \rangle \right)^{\dagger} D_{\mu} \langle \Phi_i \rangle .$$
(3.37)

Đạo hàm hiệp biến được xác định là

$$D_{\mu} = \partial_{\mu} - ig \sum_{a=1}^{15} A_{a\mu} T_{a} - ig' X B_{\mu}'' T_{16}$$

$$\equiv \partial_{\mu} - ig P_{\mu}^{NC} - ig P_{\mu}^{CC}, \qquad (3.38)$$

ở đây g, g' và $A_{a\mu}, B''_{\mu}$ lần lượt là các hằng số tương tác và các trường chuẩn của nhóm $SU(4)_L$ và $U(1)_X$. Với tứ tuyến, $T_{16} = \frac{1}{2\sqrt{2}} \text{diag}(1, 1, 1, 1)$, và phần liên quan đến các dòng trung hòa là

$$P_{\mu}^{NC} = \frac{1}{2} \operatorname{diag} \left(A_3 + \frac{A_8}{\sqrt{3}} + \frac{A_{15}}{\sqrt{6}} + Xt \frac{B''}{\sqrt{2}}, -A_3 + \frac{A_8}{\sqrt{3}} + \frac{A_{15}}{\sqrt{6}} + Xt \frac{B''}{\sqrt{2}}, -\frac{2A_8}{\sqrt{3}} + \frac{A_{15}}{\sqrt{6}} + Xt \frac{B''}{\sqrt{2}}, -\frac{3A_{15}}{\sqrt{6}} + Xt \frac{B''}{\sqrt{2}} \right)_{\mu}, \quad (3.39)$$

ở đây chỉ số không thời gian của các trường chuẩn đã được chúng tôi viết tắt cho gọn và $t \equiv g'/g$. Phần liên quan đến các dòng mang điện là

$$P_{\mu}^{CC} = \frac{1}{2} \sum_{a} \lambda_a A_{a\mu}; \qquad a = 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & W^{+} & W_{13}^{-q} & W_{14}^{-q'} \\ W^{-} & 0 & W_{23}^{-(1+q)} & W_{24}^{-(1+q')} \\ W_{13}^{q} & W_{23}^{(1+q)} & 0 & W_{34}^{(q-q')} \\ W_{14}^{q'} & W_{24}^{(1+q')} & W_{34}^{-(q-q')} & 0 \end{pmatrix}_{\mu}, \quad (3.40)$$

trong đó chúng tôi đã đặt $\sqrt{2} W_{13}^{\mu} \equiv A_1^{\mu} - i A_3^{\mu}$ và tương tự với các phần tử khác. Chỉ số trên biểu thị điện tích của các gauge boson. Chúng tôi lưu ý là phần này không phụ thuộc vào tích X của các tứ tuyến.

Tóm lại, với cấu trúc chân không của các trường Higgs như sau:

$$\langle \Phi_1 \rangle = \left(0, 0, 0, \frac{V}{\sqrt{2}} \right)^T, \quad \langle \Phi_2 \rangle = \left(0, 0, \frac{\omega}{\sqrt{2}}, 0 \right)^T,$$

$$\langle \Phi_3 \rangle = \left(0, \frac{v}{\sqrt{2}}, 0, 0 \right)^T, \quad \langle \Phi_4 \rangle = \left(\frac{u}{\sqrt{2}}, 0, 0, 0 \right)^T,$$
(3.41)

khối lượng của các gauge boson non-Hermitian (mang điện) được xác định:

$$m_{W}^{2} = \frac{g^{2}(v^{2} + u^{2})}{4}, \ m_{W_{13}}^{2} = \frac{g^{2}(u^{2} + \omega^{2})}{4}, \ m_{W_{23}}^{2} = \frac{g^{2}(v^{2} + \omega^{2})}{4}, m_{W_{14}}^{2} = \frac{g^{2}(u^{2} + V^{2})}{4}, \ m_{W_{24}}^{2} = \frac{g^{2}(v^{2} + V^{2})}{4}, \ m_{W_{34}}^{2} = \frac{g^{2}(\omega^{2} + V^{2})}{4}.$$
(3.42)

Để phù hợp với quá trình SSB, các thang năng lượng nên tuân theo thứ tự: $V \gg \omega \gg u, v.$ Từ (3.42) chúng tôi nhận được:

$$u^2 + v^2 = v_{SM}^2 = (246 \text{ GeV})^2.$$
 (3.43)

* Gauge boson trung hòa

Sử dụng phương trình (3.39) và các đa tuyến Higgs, chúng tôi nhận được,

$$M_{\text{mass}}^{2NG} = \frac{g^2}{4} \left[u^2 \left(A_3 + \frac{A_8}{\sqrt{3}} + \frac{A_{15}}{\sqrt{6}} + X_{\Phi_4} t \frac{B''}{\sqrt{2}} \right)^2 + v^2 \left(-A_3 + \frac{A_8}{\sqrt{3}} + \frac{A_{15}}{\sqrt{6}} + X_{\Phi_3} t \frac{B''}{\sqrt{2}} \right)^2 + \omega^2 \left(-\frac{2A_8}{\sqrt{3}} + \frac{A_{15}}{\sqrt{6}} + X_{\Phi_2} t \frac{B''}{\sqrt{2}} \right)^2 + V^2 \left(-\frac{3A_{15}}{\sqrt{6}} + X_{\Phi_1} t \frac{B''}{\sqrt{2}} \right)^2 \right].$$
(3.44)

Trong cơ sở $(A_{3\mu}, A_{8\mu}, A_{15\mu}, B''_{\mu})$, biểu thức ma trận khối lượng tương ứng được xác định:

$$M_{\text{mass}}^{2NG} = \frac{g^2}{4} \begin{pmatrix} u^2 + v^2 & \frac{1}{\sqrt{3}}(u^2 - v^2) & \frac{1}{\sqrt{6}}(u^2 - v^2) & M_{14} \\ & \frac{1}{3}(u^2 + v^2 + 4\omega^2) & \frac{1}{3\sqrt{2}}(u^2 + v^2 - 2\omega^2) & M_{24} \\ & & \frac{1}{6}(u^2 + v^2 + \omega^2 + 9V^2) & M_{34} \\ & & & M_{44} \end{pmatrix}, (3.45)$$

trong đó

$$M_{14} = \frac{t}{\sqrt{2}} (X_{\Phi_4} u^2 - X_{\Phi_3} v^2), \ M_{24} = \frac{t}{\sqrt{6}} (X_{\Phi_4} u^2 + X_{\Phi_3} v^2 - 2X_{\Phi_2} \omega^2),$$

$$M_{34} = \frac{t}{2\sqrt{3}} (X_{\Phi_4} u^2 + X_{\Phi_3} v^2 + X_{\Phi_2} \omega^2 - 3X_{\Phi_1} V^2),$$

$$M_{44} = \frac{t^2}{2} (X_{\Phi_4}^2 u^2 + X_{\Phi_3}^2 v^2 + X_{\Phi_2}^2 \omega^2 + X_{\Phi_1}^2 V^2).$$
(3.46)

Theo giả định ở trên, quá trình SSB diễn ra theo các bước,

$$SU(4)_L \otimes U(1)_X \xrightarrow{V} SU(3)_L \otimes U(1)_N \xrightarrow{\omega} SU(2)_L \otimes U(1)_Y \xrightarrow{u,v} U(1)_Q.$$

Điều này sẽ được sử dụng để xây dựng mối liên hệ giữa các hằng số tương tác và tích U(1) của nhóm $SU(4)_L \otimes U(1)_X$ và nhóm $SU(2)_L \otimes U(1)_Y$ trong SM. Tương ứng với mỗi bước phá võ, các trạng thái gauge boson trung hòa sẽ biến đổi như sau:

$$SU(4)_L \otimes U(1)_X \xrightarrow{A_3, A_8, A_{15}, B''} SU(3)_L \otimes U(1)_N$$

$$\xrightarrow{A_3, A_8, B', Z''_4} SU(2)_L \otimes U(1)_Y \xrightarrow{A_3, B, Z'_3, Z'_4} U(1)_Q : A, Z, Z'_3, Z'_4. \quad (3.47)$$

Ở bước phá vỡ đầu tiên, chỉ có VEV $V\neq 0$ dẫn đến kết quả $M^{2NG}_{\rm mass}\to M^2_{43}=M^{2NG}_{\rm mass}|_{w=v=u=0}.$ Cụ thể,

Biến đổi C_{43} liên hệ cơ sở trước và sau phá vỡ: $(A_3, A_8, A_{15}, B'')^T = C_{43}^T \times$

 $(A_3,A_8,B^\prime,Z_4^{\prime\prime})^T.$ C_{43} có dạng:

$$C_{43} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{43} & s_{43} \\ 0 & 0 & -s_{43} & c_{43} \end{pmatrix},$$
(3.49)

với

$$c_{43} = \frac{ct}{\sqrt{8 + c^2 t^2}}, \quad s_{43} = \frac{2\sqrt{2}}{\sqrt{8 + c^2 t^2}}.$$
 (3.50)

Sau bước này, chỉ có A_{15} và B'' trộn lẫn với nhau tạo nên gauge boson $U(1)_N$ của nhóm $SU(3)_L \otimes U(1)_N$ và được đặt là B'. Hơn nữa, trường hợp c = 0 dẫn tới $c_{43} = 0$ và $s_{43} = 1$, điều này có nghĩa là $SU(4)_L$ tách biệt với $U(1)_X$. Khi chéo hóa ma trận khối lượng M_{43}^2 , chúng tôi thu được: $M_{43d}^2 = C_{43}M_{43}^2C_{43}^T =$ diagonal $\left(0, 0, 0, \frac{3V^2}{2s_{43}^2}\right)$, tức là ba giá trị khối lượng bằng không và một giá trị khối lượng khác không.

Cũng như vậy, bước phá võ thứ hai từ $SU(3)_L \otimes U(1)_N \to SU(2)_L \otimes U(1)_Y$ có thể được thực hiện bằng biến đổi C_{32} : $(A_3, A_8, B', Z''_4)^T = C^T_{32} \times (A_3, B, Z''_3, Z''_4)^T$, ở đây Z''_3 và Z''_4 lúc này là các trạng thái riêng không khối lượng. Biểu thức ma trận khối lượng bây giờ là $M^{2NG}_{\text{mass}} \to M^2_{42} = M^{2NG}_{\text{mass}}|_{v=u=0}$. Cơ sở mới liên hệ với cơ sở ban đầu: $(A_3, A_8, A_{15}, B'')^T = C^T_{42} \times (A_3, B, Z''_3, Z''_4)^T$. Theo đó, $C_{42} = C_{32}.C_{43}$. Các phép biến đổi này được xác định là

$$C_{32} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{32} & s_{32} & 0 \\ 0 & -s_{32} & c_{32} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, C_{42} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{32} & c_{43}s_{32} & s_{43}s_{32} \\ 0 & -s_{32} & c_{43}c_{32} & s_{43}c_{32} \\ 0 & 0 & -s_{43} & c_{43} \end{pmatrix}, (3.51)$$

ở đây

$$s_{32} = \frac{2\sqrt{2}}{\sqrt{b^2 t^2 s_{43}^2 + 8}} = \frac{\sqrt{8 + c^2 t^2}}{\sqrt{8 + (b^2 + c^2)t^2}},$$

$$c_{32} = \frac{bt s_{43}}{\sqrt{b^2 t^2 s_{43}^2 + 8}} = \frac{bt}{\sqrt{8 + (b^2 + c^2)t^2}}.$$
(3.52)

Sau hai bước phá vỡ, biểu thức ma trận khối lượng bây giờ:

nó chứa hai trị riêng bằng không tương ứng với các gauge boson A_3 và B của nhóm đối xứng SM $SU(2)_L \otimes U(1)_Y$. Hai trạng thái Z''_3 và Z''_4 vẫn chưa phải là các trạng thái riêng nhưng chúng tách khỏi các gauge boson của SM.

Để tìm liên hệ giữa các hằng số tương tác của các nhóm, chúng tôi xét sự thay đổi của trạng thái B_{μ} liên quan đến phần trung hòa trong đạo hàm hiệp biến sau các bước phá vỡ:

$$D_{\text{neutral}\mu}^{(41)} = \partial_{\mu} - ig \left(A_{3\mu}T^{3} + A_{8\mu}T^{8} + A_{15\mu}T^{15} + tXB_{\mu}^{\prime\prime}T^{16} \right)$$

$$\rightarrow D_{\text{neutral}\mu}^{(21)} = \partial_{\mu} - ig \left(A_{3\mu}T^{3} + c_{32}B_{\mu}T^{8} + c_{43}s_{32}B_{\mu}T^{15} + tXs_{43}s_{32}B_{\mu}T^{16} \right)$$

$$= \partial_{\mu} - ig A_{3\mu}T^{3} - \frac{igtB_{\mu} \left(bT^{8} + cT^{15} + XI_{4} \right)}{\sqrt{8 + (b^{2} + c^{2})t^{2}}}, \qquad (3.54)$$

ở đây tất cả $A_{8,15}$ và B'' được thay thế bởi B dựa theo (3.51). Đồng nhất $D^{(21)}_{\mu}$ trong (3.54) với đạo hàm hiệp biến được định nghĩa trong SM, chúng tôi rút ra được hằng số tương tác g của của nhóm $SU(4)_L$ cũng là hằng số tương tác của nhóm $SU(2)_L$. Hai phương trình quan trọng nữa là

$$\frac{gt}{\sqrt{8+(b^2+c^2)t^2}} = g_1, \qquad \frac{\widehat{Y}}{2} = bT^8 + cT^{15} + XI_4, \qquad (3.55)$$

trong đó g_1 và \widehat{Y} là hằng số tương tác và toán tử siêu tích yếu của nhóm chuẩn $U(1)_Y$ trong SM. Phương trình thứ hai trong (3.55) là phù hợp với sự đồng nhất của \widehat{Y} từ định nghĩa của toán tử điện tích (3.1). Hơn nữa, cũng có thể thấy rằng $\widehat{N} \equiv cT^{15} + X$ và $b \equiv \beta/\sqrt{3}$ là các mối liên hệ giữa các tham số được định nghĩa trong các nhóm chuẩn $SU(4)_L \otimes U(1)_X$ và $SU(3)_L \otimes U(1)_N$.

Từ $g_1/g = s_W/c_W$ (với $s_W^2 \simeq 0.231$), chúng tôi nhận được:

$$t = \frac{g'}{g} = \frac{2\sqrt{2}s_W}{\sqrt{1 - (1 + b^2 + c^2)s_W^2}} \,. \tag{3.56}$$

Có thể nhận thấy rằng tỉ số t của hai hằng số tương tác là đối xứng với biến đổi từ q sang q'. Thật vậy, sử dụng (3.3), công thức ở trên có thể viết theo q và q' như sau:

$$t = \frac{2\sqrt{2}s_W}{\sqrt{1 - \left[q + q' - qq' + \frac{3}{2}(1 + q^2 + q'^2)\right]s_W^2}} \,. \tag{3.57}$$

Với $s_W^2 = 0.25$, từ (3.57) chúng tôi nhận được một sự giàng buộc cho điện tích của các leptons mới E_a^q và $E_a'^{q'}$,

$$q + q' - qq' + \frac{3}{2}(1 + q^2 + q'^2) \le 4.$$
(3.58)

Biểu thức ma trận khối lượng (3.53) có thể chéo hóa bằng một ma trận C'_{32} , việc này cho chúng tôi hai trị riêng khối lượng Z'_3 và Z'_4 trong bước thứ hai của quá trình phá võ. Trong khi phá võ từ $SU(2)_L \otimes U(1)_Y$ về $U(1)_Q$ được thực hiện bởi ma trận biến đổi như đã biết là C_{21} ,

$$C_{21} = \begin{pmatrix} s_W & c_W & 0 & 0 \\ c_W & -s_W & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad C'_{32} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_\alpha & s_\alpha \\ 0 & 0 & -s_\alpha & c_\alpha \end{pmatrix}, \quad (3.59)$$

trong đó $c_{\alpha}=\cos\alpha$ và $s_{\alpha}=\sin\alpha$ thỏa mãn

$$t_{2\alpha} = \frac{4\sqrt{2}s_{43}s_{32}\left(c_{43}s_{43}bt - 1\right)w^2}{8s_{43}^2w^2 - s_{32}^2\left[(c_{43}s_{43}bt - 1)^2w^2 + 9V^2\right]}.$$
(3.60)

Khi ấy chúng tôi có $M_{42d}^2 = C_{32}' M_{42}^2 C_{32}'^T = \text{diag}(0, 0, m_{Z_3'}^2, m_{Z_4'}^2),$

$$m_{Z'_{3}}^{2} = \frac{g^{2}}{4} \left[\frac{3s_{\alpha}^{2}V^{2}}{2s_{43}^{2}} + \frac{\left[2\sqrt{2}c_{\alpha}s_{43} + s_{\alpha}s_{32}\left(bs_{43}c_{43}t - 1\right)\right]^{2}w^{2}}{6s_{43}^{2}s_{32}^{2}} \right],$$

$$m_{Z'_{4}}^{2} = \frac{g^{2}}{4} \left[\frac{3c_{\alpha}^{2}V^{2}}{2s_{43}^{2}} + \frac{\left[2\sqrt{2}s_{\alpha}s_{43} - c_{\alpha}s_{32}\left(bs_{43}c_{43}t - 1\right)\right]^{2}w^{2}}{6s_{43}^{2}s_{32}^{2}} \right].$$
 (3.61)

Biến đổi toàn phần sau tất cả các bước phá vỡ là $C = C_{21}.C'_{32}.C_{32}.C_{43}$. Tương ứng, ma trận khối lượng phần gauge boson trung hòa sẽ là

$$M_{41}^2 = C.M_{\text{mass}}^{2NG}.C^T = \text{diag}(0, 0, m_{Z'_3}^2, m_{Z'_4}^2) + \delta M_{41}^2, \qquad (3.62)$$

ở đây δM_{41}^2 là một ma trận 4 × 4 có đặc điểm $(\delta M_{41}^2)_{ij} = \mathcal{O}(m_W^2)$ với i, j = 1, 2, 3, 4. Hơn nữa, $(\delta M_{41}^2)_{i1} = (\delta M_{41}^2)_{1i} = 0$ với i = 1, 2, 3, 4, và $(\delta M_{41}^2)_{22} = m_Z^2$. Chúng tôi có thể xem như ma trận M_{41}^2 đã được chéo hóa. Với phép biến đổi toàn phần C, chúng tôi có sự liên hệ giữa cơ sở ban đầu $(A_3, A_8, A_{15}, B'')^T$ và cơ sở vật lý $(A, Z, Z_3, Z_4)^T$,

$$A_{\mu} = s_{W}A_{3\mu} + c_{W} \left(c_{32}A_{8\mu} + c_{43}s_{32}A_{15\mu} + s_{43}s_{32}B_{\mu}^{\prime\prime} \right),$$

$$Z_{\mu} \simeq c_{W}A_{3\mu} - s_{W} \left(c_{32}A_{8\mu} + c_{43}s_{32}A_{15\mu} + s_{43}s_{32}B_{\mu}^{\prime\prime} \right),$$

$$Z_{3\mu} \simeq Z_{3\mu}^{\prime} = -s_{32}c_{\alpha}A_{8\mu} + (c_{43}c_{32}c_{\alpha} - s_{43}s_{\alpha})A_{15\mu} + (s_{43}c_{32}c_{\alpha} + c_{43}s_{\alpha})B_{\mu}^{\prime\prime},$$

$$Z_{4\mu} \simeq Z_{4\mu}^{\prime} = s_{32}s_{\alpha}A_{8\mu} - (c_{43}c_{32}s_{\alpha} + s_{43}c_{\alpha})A_{15\mu} + (c_{43}c_{\alpha} - s_{43}c_{32}s_{\alpha})B_{\mu}^{\prime\prime}.$$
(3.63)

Từ những trình bày ở trên, trong phần Higgs của mô hình, chúng tôi nhận thấy rằng:

- 1. Nếu $q, q' \neq 0, q, q' \neq -1$ và $q \neq q'$ thì phần Higgs là nhỏ nhất, nó chỉ có bốn trường Higgs trung hòa.
- 2. Trường hợp q = q' = 0 đã được xem xét trong [99], phần Higgs gồm có mười trường Higgs trung hòa và ba gauge trung hòa non-Hermitian. Trường hợp này là cực kỳ phức tạp.
- 3. Trường hợp q = q' = -1 đã được xem xét trong [97–103].
- 4. Trường hợp q = 0, q' = 1 đã được xem xét trong [20, 29, 104, 105].
- 5. Trường hợp q = -1, q' = 0 đã được xem xét trong [104, 105].
- 6. Các mô hình $SU(4)_L \otimes U(1)_X$ với lượng Higgs ít hơn đã được trình bày trong [106, 107].

Cuối cùng, chúng tôi tóm tắt lại quá trình SSB. Ở bước phá vỡ đối xứng đầu tiên thông qua V, chỉ có các trường sau nhận khối lượng: các fermion bao gồm các lepton lạ E'_a , các quark T' và D'_{α} ; và các gauge boson W_{34} , Z'_4 . Ở bước thứ hai của quá trình SSB thông qua ω , tất cả các fermion lạ còn lại nhận khối lượng. Các gauge boson mang điện trong góc phải trên cùng của ma trận gauge boson non-Hermitian (3.40) và Z'_3 nhận khối lượng. Cuối cùng, bước phá vỡ còn lại thông qua u và v, tất cả các fermion và các gauge boson của SM nhận khối lượng.

Tiếp theo, chúng tôi trình bày mô hình 3-4-1 với các giá trị điện tích của thành phần thứ ba và thứ tư trong tứ tuyến lepton là q = 1, q' = 0. Mô hình này tương tự các mô hình 3-4-1 đã được xây dựng đầu tiên [20,29].

3.2. Mô hình 3-4-1 tối thiểu với neutrino phân cực phải

3.2.1. Mô hình

Trong mô hình này, các lepton được sắp xếp như sau:

$$f_{aL} = (\nu_a, l_a, l_a^c, \nu_a^c)_L^T \sim (1, 4, 0), \qquad a = e, \mu, \tau, \qquad (3.64)$$

ở đây chúng tôi lưu ý rằng $\nu_L^c \equiv (\nu_R)^c$ và liên hợp điện tích của f_{aL} : $f_{aR}^c \equiv (f_{aL})^c = (\nu_{aR}^c, l_{aR}^c, l_{aR}, \nu_{aR})^T$.

Một thế hệ quark được xếp vào tứ tuyến,

$$Q_{3L} = (u_3, d_3, T, T')_L^T \sim (3, 4, 2/3),$$

$$u_{3R} \sim (3, 1, 2/3), \qquad d_{3R} \sim (3, 1, -1/3),$$

$$T_R \sim (3, 1, 5/3), \qquad T'_R \sim (3, 1, 2/3).$$
(3.65)

Các quark lạ có điện tích: $q_T = 5/3$, $q_{T'} = 2/3$. Hai thế hệ quark còn lại được xếp vào các phản tứ tuyến,

$$Q_{\alpha L} = (d_{\alpha}, -u_{\alpha}, D_{\alpha}, D'_{\alpha})_{L}^{T} \sim (3, 4^{*}, -1/3), \qquad \alpha = 1, 2,$$

$$u_{\alpha R} \sim (3, 1, 2/3), \qquad d_{\alpha R} \sim (3, 1, -1/3),$$

$$D_{\alpha R} \sim (3, 1, -4/3), \qquad D'_{\alpha R} \sim (3, 1, -1/3).$$
(3.66)

Các quark lạ ở đây có điện tích: $q_{D_{\alpha}}=-4/3,\,q_{D'_{\alpha}}=-1/3.$

Áp dụng biểu thức (3.1) cho (3.64), chúng tôi nhận được:

$$b = -\sqrt{3}, \quad c = 0, \quad X_{f_{aL}} = 0.$$
 (3.67)

Để rồi toán tử điện tích cho tứ tuyến có dạng:

$$Q = \text{diag}(X, -1 + X, 1 + X, X).$$
(3.68)

Cho quá trình SSB, chúng tôi cần bốn tứ tuyến Higgs là

$$\chi = \left(\chi_1^0, \chi_2^-, \chi_3^+, \chi_4^0\right)^T \sim (1, 4, 0),$$

$$\phi = \left(\phi_1^-, \phi_2^{--}, \phi_3^0, \phi_4^-\right)^T \sim (1, 4, -1),$$

$$\rho = \left(\rho_1^+, \rho_2^0, \rho_3^{++}, \rho_4^+\right)^T \sim (1, 4, 1),$$

$$\eta = \left(\eta_1^0, \eta_2^-, \eta_3^+, \eta_4^0\right)^T \sim (1, 4, 0).$$
(3.69)

Trong [102], phần Higgs chỉ gồm ba tứ tuyến Higgs, nhưng để sinh khối lượng cho các lepton mang điện và neutrino, các toán tử hiệu dụng năm chiều và chín chiều đã được sử dụng. Ở đây chúng tôi theo hướng của phiên bản gốc [20,29].

Các tương tác Yukawa cho phần quark là

$$-L^{q}_{\text{Yukawa}} = h^{t} \bar{Q}_{3L} \eta u_{3R} + h^{b} \bar{Q}_{3L} \rho d_{3R} + h^{T} \bar{Q}_{3L} \phi T_{R} + h^{T'} \bar{Q}_{3L} \chi T'_{R}$$
$$+ h^{d2}_{\alpha\beta} \bar{Q}_{\alpha L} \eta^{\dagger} d_{\beta R} + h^{u2}_{\alpha\beta} \bar{Q}_{\alpha L} \rho^{\dagger} u_{\beta R} + h^{D2}_{\alpha\beta} \bar{Q}_{\alpha L} \phi^{\dagger} D_{\beta R}$$
$$+ h^{D'2}_{\alpha\beta} \bar{Q}_{\alpha L} \chi^{\dagger} D'_{\beta R} + \text{H.c.}$$
(3.70)

Nếu phần Higgs có cấu trúc VEV là

$$\langle \chi \rangle = \left(0, 0, 0, \frac{V}{\sqrt{2}} \right)^T, \quad \langle \phi \rangle = \left(0, 0, \frac{\omega}{\sqrt{2}}, 0 \right)^T,$$

$$\langle \rho \rangle = \left(0, \frac{v}{\sqrt{2}}, 0, 0 \right)^T, \quad \langle \eta \rangle = \left(\frac{u}{\sqrt{2}}, 0, 0, 0 \right)^T, \quad (3.71)$$

thì các quark sẽ nhận khối lượng như bên dưới:

$$m_{u_{3}} = h^{t} \frac{u}{\sqrt{2}}, \qquad m_{d_{3}} = h^{b} \frac{v}{\sqrt{2}}, \qquad m_{T} = h^{T} \frac{\omega}{\sqrt{2}}, \qquad m_{T'} = h^{T'} \frac{V}{\sqrt{2}}, (m_{d_{2}})_{\alpha\beta} = h^{d_{2}}_{\alpha\beta} \frac{u}{\sqrt{2}}, \qquad (m_{u_{2}})_{\alpha\beta} = -h^{u_{2}}_{\alpha\beta} \frac{v}{\sqrt{2}}, (m_{D_{2}})_{\alpha\beta} = h^{D_{2}}_{\alpha\beta} \frac{\omega}{\sqrt{2}}, \qquad (m_{D'_{2}})_{\alpha\beta} = h^{D'_{2}}_{\alpha\beta} \frac{V}{\sqrt{2}}.$$
(3.72)

Đến lúc này, các lepton vẫn chưa có khối lượng. Để sinh khối lượng cho các lepton từ các tương tác Yukawa, chúng tôi căn cứ vào tích $\bar{f}_{aL} f_{bR}^c \sim 6_A \oplus 10_S^*$.

Nếu sử dụng phản lục tuyến thì ma trận khối lượng lepton sẽ bất đối xứng, dẫn đến một lepton vẫn không có khối lượng. Bởi vậy, chúng tôi đưa thêm vào thập tuyến:

$$H' \sim (1, \mathbf{10}, 0) = \begin{pmatrix} H_1^0 & H_1^- & H_2^+ & H_2^0 \\ H_1^- & H_1^{--} & H_3^0 & H_3^- \\ H_2^+ & H_3^0 & H_2^{++} & H_4^+ \\ H_2^0 & H_3^- & H_4^+ & H_4^0 \end{pmatrix}.$$
 (3.73)

Lagrangian bất biến chuẩn của thập tuyến được cho bởi:

$$L_0^{H'} = \text{Tr}\left[(D_\mu H')^{\dagger} D^\mu H' \right] - V.$$
 (3.74)

Chúng tôi sẽ chỉ ra rằng lượng Higgs viết trong (3.73) nên được xem xét lại. Thật vậy, khi xét phần động năng của H' trong (3.74),

$$L_{\text{kinetic}}^{H'} = \text{Tr} \left[(\partial_{\mu} H')^{\dagger} \partial^{\mu} H' \right]$$

= $\partial_{\mu} H_{1}^{0*} \partial^{\mu} H_{1}^{0} + \partial_{\mu} H_{4}^{0*} \partial^{\mu} H_{4}^{0} + \partial_{\mu} H_{1}^{++} \partial^{\mu} H_{1}^{--} + \partial_{\mu} H_{2}^{++} \partial^{\mu} H_{2}^{--}$
+ $2 (\partial_{\mu} H_{2}^{0*} \partial^{\mu} H_{2}^{0} + \partial_{\mu} H_{3}^{0*} \partial^{\mu} H_{3}^{0} + \partial_{\mu} H_{1}^{+} \partial^{\mu} H_{1}^{-}$
+ $\partial_{\mu} H_{2}^{+} \partial^{\mu} H_{2}^{-} + \partial_{\mu} H_{3}^{+} \partial^{\mu} H_{3}^{-} + \partial_{\mu} H_{4}^{+} \partial^{\mu} H_{4}^{-}).$ (3.75)

Hệ số 2 ở dòng thứ hai của (3.75) chỉ ra rằng các trường không thuộc đường chéo chính trong (3.74) phải được xác định lại:

$$H' \to H = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}H_1^0 & H_1^- & H_2^+ & H_2^0 \\ H_1^- & \sqrt{2}H_1^{--} & H_3^0 & H_3^- \\ H_2^+ & H_3^0 & \sqrt{2}H_2^{++} & H_4^+ \\ H_2^0 & H_3^- & H_4^+ & \sqrt{2}H_4^0 \end{pmatrix}.$$
 (3.76)

Như thế, chúng tôi sẽ có

$$\operatorname{Tr}\left[(H)^{\dagger}H\right] = H_{1}^{0*}H_{1}^{0} + H_{4}^{0*}H_{4}^{0} + H_{2}^{0*}H_{2}^{0} + H_{3}^{0*}H_{3}^{0} + H_{1}^{++}H_{1}^{--} + H_{2}^{++}H_{2}^{--} + H_{1}^{+}H_{1}^{-} + H_{2}^{+}H_{2}^{-} + H_{3}^{+}H_{3}^{-} + H_{4}^{+}H_{4}^{-}.$$
 (3.77)

Trong tất cả các tính toán tiếp theo, chúng tôi sẽ chỉ sử dụng H.

Tương tác Yukawa cho lepton được xác định:

$$-L_{\text{Yukawa}}^{l} = h_{ab}^{l} \bar{f}_{aL} H f_{bR}^{c} + \text{H.c.}$$

$$= \frac{h_{ab}^{l}}{\sqrt{2}} \left[\bar{\nu}_{aL} \left(\sqrt{2} \nu_{bR}^{c} H_{1}^{0} + l_{bR}^{c} H_{1}^{-} + l_{bR} H_{2}^{+} + \nu_{bR} H_{2}^{0} \right)$$

$$+ \bar{l}_{aL} \left(\nu_{bR}^{c} H_{1}^{-} + \sqrt{2} l_{bR}^{c} H_{1}^{--} + l_{bR} H_{3}^{0} + \nu_{bR} H_{3}^{-} \right)$$

$$+ \bar{l}_{aL}^{c} \left(\nu_{bR}^{c} H_{2}^{+} + l_{bR}^{c} H_{3}^{0} + \sqrt{2} l_{bR} H_{2}^{++} + \nu_{bR} H_{4}^{+} \right)$$

$$+ \bar{\nu}_{aL}^{c} \left(\nu_{bR}^{c} H_{2}^{0} + l_{bR}^{c} H_{3}^{-} + l_{bR} H_{4}^{+} + \sqrt{2} \nu_{bR} H_{4}^{0} \right) \right] + \text{H.c.} \quad (3.78)$$

Như thông thường, giả sử các trường Higgs trung hòa được khai triển:

$$H_3^0 = \frac{v' + R_{H_3^0} - iI_{H_3^0}}{\sqrt{2}}, \qquad H_2^0 = \frac{\epsilon + R_{H_2^0} - iI_{H_2^0}}{\sqrt{2}}, \qquad (3.79)$$

h

$$\langle H \rangle = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & \epsilon \\ 0 & 0 & v' & 0 \\ 0 & v' & 0 & 0 \\ \epsilon & 0 & 0 & 0 \end{pmatrix}.$$
 (3.80)

Các lepton mang điện nhận khối lượng được cho bởi:

$$(m_l)_{ab} = \frac{h_{ab}^l}{\sqrt{2}} \langle H_3^0 \rangle = \frac{h_{ab}^l v'}{2} \,.$$
 (3.81)

Các neutrino nhận khối lượng Dirac nhờ $\langle H_2^0 \rangle$:

$$(m_{\nu})_{ab} = \frac{h_{ab}^{l}}{\sqrt{2}} \langle H_{2}^{0} \rangle = \frac{h_{ab}^{l} \epsilon}{2}.$$
 (3.82)

Khối lượng Majorana của neutrino sẽ nhận được thông qua $\langle H_1^0 \rangle$ và $\langle H_4^0 \rangle$.

Lưu ý rằng các tham số trộn lẫn giữa các lepton mang điện rất bé, trong khi giữa các neutrino là lớn, ma trận trong (3.82) phải được sửa đổi. Hy vọng rằng các hiệu chỉnh sẽ cho sự trộn lẫn phù hợp với các dữ liệu thực nghiệm hiện nay [1]. Đây sẽ là hướng nghiên cứu sắp tới của chúng tôi.

Một điều rõ ràng là có các tương tác vi phạm vị lepton (LFV) trong (3.78). Toán tử số lepton được xây dựng từ các vi tử chéo như sau:

$$L = \alpha T_3 + \beta T_8 + \gamma T_{15} + \mathcal{L}. \tag{3.83}$$

Tổng quát, chúng tôi giả thiết rằng các lepton mới E và E' lần lượt nhận số lepton là l và l',

$$f_{aL} = (\nu_a, l_a, E_a, E'_a)_L^T, \quad a = e, \mu, \tau.$$
(3.84)

Áp dụng biểu thức (3.83) cho (3.84), chúng tôi nhận được:

$$\alpha = 0, \ \mathcal{L}_{f_{aL}} = \frac{1}{2} + \frac{1}{4}(l+l'), \ \beta = \frac{2(1-l)}{\sqrt{3}}, \ \gamma = \frac{2+l-3l'}{\sqrt{6}}.$$
 (3.85)

Sự triệt tiêu của hệ số α là hệ quả của việc số lepton được bảo toàn trong SM. Như vậy,

$$L = \frac{2(1-l)}{\sqrt{3}}T_8 + \frac{2+l-3l'}{\sqrt{6}}T_{15} + \mathcal{L}.$$
 (3.86)

Công thức trên là hữu ích cho các hướng mở rộng đưa thêm các đối xứng gián đoạn như A_4, S_3, \dots

Với mô hình đang được xem xét, các tứ tuyến lepton trong (3.64) chứa l_a^c và ν_a^c với số lepton là -1. Chúng tôi có

$$\beta = \frac{4}{\sqrt{3}}, \quad \gamma = \frac{2\sqrt{6}}{3}.$$
 (3.87)

Do đó, toán tử số lepton trong mô hình 3-4-1 tối thiểu với neutrino phân cực phải có dạng là

$$L = \frac{4}{\sqrt{3}} \left(T_8 + \frac{1}{\sqrt{2}} T_{15} \right) + \mathcal{L} \,. \tag{3.88}$$

Công thức này là một sự mở rộng của mô hình 3 - 3 - 1 [108]. Cho tứ tuyến, toán tử này sẽ có dạng:

$$L = \operatorname{diag}\left(1 + \mathcal{L}, 1 + \mathcal{L}, -1 + \mathcal{L}, -1 + \mathcal{L}\right).$$
(3.89)

Các trường với số lepton khác không được chúng tôi liệt kê trong các bảng 3.1, 3.2, và 3.3.

3.2.2. Phần gauge

Tiếp theo, chúng tôi chuyển sang phần gauge boson. Đóng góp của thập tuyến H vào khối lượng các gauge boson xác định từ phần Lagrangian,

$$\mathcal{L}_{\text{mass}}^{H} = \text{Tr}[(D_{\mu}\langle H \rangle)^{\dagger} (D^{\mu}\langle H \rangle)]$$

Đa tuyến	X	ϕ	η	ρ	H	Q_{3L}	$Q_{\alpha L}$
Tích \mathcal{B}	0	0	0	0	0	1/3	1/3
Tích \mathcal{L}	1	1	-1	-1	0	-1	1
Đa tuyến	u_{aR}	d_{aR}	T_R	T'_R	$D_{\alpha R}$	$D'_{\alpha R}$	f_{aL}
Tích ${\cal B}$	1/3	1/3	1/3	1/3	1/3	1/3	0
Tích \mathcal{L}	0	0	-2	-2	2	2	0

Bảng 3.1: Tích \mathcal{B} và \mathcal{L} của các đa tuyến trong mô hình 3-4-1 tối thiểu với neutrino phân cực phải.

Trường	χ^0_1	χ_2^-	ϕ_1^-	$\phi_2^{}$	ρ_3^{++}	$ ho_4^+$	η_3^+
L	2	2	2	2	-2	-2	-2
Trường	η_4^0	H_1^0	H_4^0	H_1^+	H_4^+	H_{1}^{++}	H_{2}^{++}
	-2	2	-2	-2	-2	-2	-2

Bảng 3.2: Số lepton L khác không của các trường Higgs trong mô hình 3-4-1 tối thiểu với neutrino phân cực phải.

$$= g^{2} \operatorname{Tr}[(P^{CC}_{\mu}\langle H \rangle)^{\dagger}(P^{\mu CC}\langle H \rangle) + (P^{NC}_{\mu}\langle H \rangle)^{\dagger}(P^{\mu NC}\langle H \rangle)], \quad (3.90)$$

ở đây

$$D_{\mu} = \partial_{\mu} - ig \sum_{a=1}^{15} A_{a\mu} T_a - ig' X B_{\mu}'' T_{16}$$

$$\equiv \partial_{\mu} - ig P_{\mu}$$

$$\equiv \partial_{\mu} - ig P_{\mu}^{NC} - ig P_{\mu}^{CC}.$$
 (3.91)

Như một hệ quả của tính đối xứng hai tứ tuyến [85], chúng tôi có

$$(P_{\mu}H)_{ij} = (P_{\mu})_i^k H_{kj} + (P_{\mu})_j^k H_{ki}.$$
(3.92)

Cho các khối lượng gauge boson, ta cần phải tính

$$(P_{\mu}\langle H\rangle)_{ij} = (P_{\mu})_i^k \langle H\rangle_{kj} + (P_{\mu})_j^k \langle H\rangle_{ki}.$$
(3.93)

Trường	l_a	$ u_a$	Т	T'	D_{α}	D'_{lpha}
L	1	1	-2	-2	2	2

Bảng 3.3: Số lepton L khác không của các fermion trong mô hình 3 - 4 - 1 tối thiểu với neutrino phân cực phải.

Trước tiên, khối lượng của các gauge boson mang điện xác định qua

$$P_{\mu}^{CC} = \frac{1}{2} \sum_{a} \lambda_{a} A_{a}, \quad a = 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & W'^{+} & Y'^{-} & N^{0} \\ W'^{-} & 0 & U^{--} & X'^{-} \\ Y'^{+} & U^{++} & 0 & K'^{+} \\ (N^{0})^{*} & X'^{+} & K'^{-} & 0 \end{pmatrix}_{\mu}, \quad (3.94)$$

trong đó chúng tôi đã đặt $\sqrt{2}W_{\mu}^{'+} \equiv A_{1\mu} - iA_{2\mu}, Y^{'-} \equiv W_{13}^{-}, X^{'-} \equiv W_{24}^{-}, K^{'+} \equiv W_{34}^{+}, U^{--} \equiv W_{23}^{--}, \text{và } N^0 \equiv W_{14}^0.$

Khối lượng của gauge boson tích điện đôi $U^{\pm\pm}$ và gauge boson trung hòa non-Hermitian N^0 lần lượt là

$$m_{U^{\pm\pm}}^2 = \frac{g^2(\omega^2 + v^2 + 4v'^2)}{4}, \qquad m_{N^0}^2 = \frac{g^2(V^2 + u^2 + 4\epsilon^2)}{4}, \qquad (3.95)$$

ở đây các gauge boson N^0 và N^{0*} không trộn với các gauge boson trung hòa Hermitian khác. Biểu thức ma trận khối lượng của các gauge boson tích điện đơn viết trong cơ sở $(W^{'\pm}, K^{'\pm}, X^{'\pm}, Y^{'\pm})^T$ như sau:

$$M_{G^{\pm}}^{2} = \frac{g^{2}}{4} \begin{pmatrix} v^{2} + u^{2} + v^{\prime\prime2} & 2v'\epsilon & 0 & 0 \\ & w^{2} + V^{2} + v^{\prime\prime2} & 0 & 0 \\ & & v^{2} + V^{2} + v^{\prime\prime2} & 2v'\epsilon \\ & & & u^{2} + w^{2} + v^{\prime\prime2} \end{pmatrix}, \quad (3.96)$$

với $v''^2 \equiv v'^2 + \epsilon^2$. Trong giới hạn $\epsilon = 0$, kết quả ở trên là giống các kết quả nhận được trong [29] (sự khác biệt duy nhất liên quan tới v'' do trong [29] các tác giả đã không xác định lại thập tuyến). Tuy nhiên, do tất cả các yếu tố không thuộc đường chéo trong ma trận (3.96) tỷ lệ với tích $v'\epsilon$, nghĩa là chúng nhỏ hơn rất nhiều so với các yếu tố thuộc đường chéo chính. Vì thế, các trị riêng khối lượng của các gauge boson tích điện đơn trong mô hình đang xem xét có thể coi như đồng nhất với các kết quả trong [29].

Các trạng thái vật lý nhận được là

$$W_{\mu} = \cos\theta W'_{\mu} - \sin\theta K'_{\mu}, \qquad K_{\mu} = \sin\theta W'_{\mu} + \cos\theta K'_{\mu}, \qquad (3.97)$$

trong đó góc trộn θ được xác định,

$$\tan 2\theta = \frac{4v'\epsilon}{V^2 + \omega^2 - u^2 - v^2} \,. \tag{3.98}$$

Với sự trộn lẫn X - Y, chúng tôi nhận được các trạng thái vật lý,

$$Y_{\mu} = \cos \theta' Y'_{\mu} - \sin \theta' X'_{\mu}, \qquad X_{\mu} = \sin \theta' Y'_{\mu} + \cos \theta' X'_{\mu}, \qquad (3.99)$$

góc trộn θ' được xác định là

$$\tan 2\theta' = \frac{4v'\epsilon}{V^2 - \omega^2 - u^2 + v^2}.$$
 (3.100)

Các trạng thái vật lý trên nhận khối lượng như sau:

$$m_{W^{\pm}}^{2} \simeq \frac{g^{2}}{4} (v^{2} + u^{2} + v''^{2}), \qquad m_{K^{\pm}}^{2} \simeq \frac{g^{2}}{4} (V^{2} + w^{2} + v''^{2}),$$
$$m_{X^{\pm}}^{2} \simeq \frac{g^{2}}{4} (V^{2} + v^{2} + v''^{2}), \qquad m_{Y^{\pm}}^{2} \simeq \frac{g^{2}}{4} (w^{2} + u^{2} + v''^{2}). \tag{3.101}$$

Từ (3.101), chúng tôi có thể đồng nhất,

$$v^2 + u^2 + v''^2 \simeq v_{\rm SM}^2 = (246 \,{\rm GeV})^2 \,,$$
 (3.102)

và thu được các giàng buộc về khối lượng của các gauge boson tích điện đơn,

$$|m_K^2 - m_X^2| \le m_Y^2$$
, $|m_K^2 - m_X^2 - m_Y^2| \le m_W^2$. (3.103)

So sánh (3.98) với (3.100), chúng tôi thấy rằng góc trộn giữa hạt nhẹ nhất W và hạt nặng nhất K là nhỏ hơn góc trộn X - Y. Góc trộn này khá nhỏ và có thể được giới hạn từ bề rộng rã W boson (như trong mô hình 3 - 3 - 1 tiết kiệm [41,65,66,109,110]).

Từ quan điểm thực nghiệm, cách tính gần đúng như các bài báo trước đây [29,100], $V = \omega$, gây ra khó khăn trong việc phân biệt các bilepton X và

Y. Vì vậy, chúng tôi giả thiết $V \gg \omega$. Chú ý rằng $U^{\pm\pm}$ và Y^{\pm} là tương tự các gauge boson tích điện đơn trong M331 [16–18], còn N^0 và X^{\pm} có vai trò tương tự như trong ν 331 [15, 19–22]. Gauge boson tích điện đơn nặng nhất K^{\pm} là hoàn toàn mới chỉ liên kết với các quark lạ và các lepton phân cực phải (thấy rõ trong mục 3.2.3). Trong mô hình chúng tôi đang xem xét (cũng như trong bài báo của Voloshin [71]), các hạt tương tự trong M331 nhẹ hơn các hạt tương ứng trong ν 331 [biểu thức (3.95) và (3.101)]. Với các mô hình 3-4-1 được xây dựng đầu tiên [20,29], kết quả ở trên là ngược lại.

Chuyển sang phần gauge boson trung hòa, trong cơ sở $(A_{3\mu}, A_{8\mu}, A_{15\mu}, B''_{\mu})$, biểu thức ma trận khối lượng của các gauge boson trung hòa M^{2NG}_{mass} xác định như sau:

$$\frac{g^2}{4} \begin{pmatrix} u^2 + v^2 + v''^2 & \frac{1}{\sqrt{3}}(u^2 - v^2 + v''^2) & \frac{1}{\sqrt{6}}(u^2 - v^2 - 2v''^2) & -\frac{t}{\sqrt{2}}v^2 \\ & \frac{1}{3}(u^2 + v^2 + 4\omega^2 + v''^2) & \frac{1}{3\sqrt{2}}(u^2 + v^2 - 2\omega^2 - 2v''^2) & \frac{t}{\sqrt{6}}(v^2 + 2\omega^2) \\ & & \frac{1}{6}(u^2 + v^2 + \omega^2 + 9V^2 + 4v''^2) & \frac{t}{2\sqrt{3}}(v^2 - \omega^2) \\ & & & \frac{t^2}{2}(v^2 + \omega^2) \end{pmatrix}$$

Ma trận khối lượng trên thỏa mãn $\text{Det}(M_{\text{mass}}^{2NG}) = 0$, điều này tương ứng sự tồn tại của một trạng thái không khối lượng chính là photon.

Các trị riêng khối lượng của ma trận này có thể được xác định từ trường hợp tổng quát. Với trường hợp cụ thể này, chúng tôi có

$$s_{43} = 1, \ c_{43} = 0, \ s_{32} = \frac{2\sqrt{2}}{\sqrt{8+3t^2}}, \ c_{32} = \frac{-\sqrt{3}t}{\sqrt{8+3t^2}},$$
$$t_{2\alpha} = \frac{2\sqrt{8+3t^2}w^2}{9V^2 - (7+3t^2)w^2}.$$
(3.104)

Ma trận biến đổi C_{41} thỏa mãn $(A, Z, Z'_3, Z'_4)^T = C_{41} \times (A_3, A_8, A_{15}, B'')^T$ bây giờ sẽ có dạng,

$$C_{41} = \begin{pmatrix} s_W & c_W c_{32} & 0 & c_W s_{32} \\ c_W & -s_W c_{32} & 0 & -s_W s_{32} \\ 0 & -c_\alpha s_{32} & -s_\alpha & c_\alpha c_{32} \\ 0 & s_\alpha s_{32} & -c_\alpha & -s_\alpha c_{32} \end{pmatrix}.$$
 (3.105)

Biểu thức ma trận trong cơ sở mới là

$$M_{41}^{2NG} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ m_Z^2 & m_{23}^2 & m_{24}^2 \\ & & m_{Z'_3}^2 & m_{34}^2 \\ & & & & m_{Z'_4}^2 \end{pmatrix},$$
(3.106)

ở đây

$$m_{Z}^{2} = \frac{g^{2}(v^{2} + u^{2} + v''^{2})}{4c_{W}^{2}} = \frac{m_{W}^{2}}{c_{W}^{2}},$$

$$m_{Z_{3}'}^{2} = \frac{g^{2}}{24} \left[9s_{\alpha}^{2}V^{2} + \left(s_{\alpha} - c_{\alpha}\sqrt{8 + 3t^{2}}\right)^{2}w^{2} \right] + \frac{g^{2}}{24} \left[\left(\sqrt{2}c_{\alpha}s_{32} + s_{\alpha}\right)^{2}u^{2} + \left(s_{\alpha} + \frac{(3t^{2} + 4)c_{\alpha}s_{32}}{2\sqrt{2}}\right)^{2}v^{2} + 2\left(\sqrt{2}s_{\alpha} - c_{\alpha}s_{32}\right)^{2}v''^{2} \right],$$

$$m_{Z_{4}'}^{2} = \frac{g^{2}}{24} \left[9c_{\alpha}^{2}V^{2} + \left(c_{\alpha} + s_{\alpha}\sqrt{8 + 3t^{2}}\right)^{2}w^{2} \right] + \frac{g^{2}}{24} \left[\left(c_{\alpha} - \sqrt{2}s_{\alpha}s_{32}\right)^{2}u^{2} \right]$$

$$(3.107)$$

$$+\left(c_{\alpha} - \frac{(3t^{2} + 4)s_{\alpha}s_{32}}{2\sqrt{2}}\right)^{2}v^{2} + 2\left(\sqrt{2}c_{\alpha} + s_{\alpha}s_{32}\right)^{2}v^{\prime\prime2}\bigg],\qquad(3.109)$$

$$m_{23}^{2} = \frac{g^{2}}{4} \left[\left(\frac{c_{\alpha}(3 - 2c_{W}^{2})}{c_{W}^{2}\sqrt{3(1 - 4s_{W}^{2})}} + \frac{s_{\alpha}}{\sqrt{6}c_{W}} \right) v^{2} - \left(\frac{c_{\alpha}\sqrt{1 - 4s_{W}^{2}}}{c_{W}^{2}\sqrt{3}} + \frac{s_{\alpha}}{\sqrt{6}c_{W}} \right) u^{2} + \left(-\frac{c_{\alpha}\sqrt{1 - 4s_{W}^{2}}}{c_{W}^{2}\sqrt{3}} + \frac{\sqrt{2}s_{\alpha}}{\sqrt{3}c_{W}} \right) v''^{2} \right] \sim \mathcal{O}(m_{W}^{2}),$$
(3.110)

$$m_{24}^2 = \frac{g^2}{4} \left[\frac{c_\alpha (v^2 - u^2 + 2v''^2)}{\sqrt{6}c_W} + \frac{s_\alpha \left[(4c_W^2 - 3)(u^2 + v''^2) + (2c_W^2 - 3)v^2 \right]}{c_W^2 \sqrt{3(4c_W^2 - 3)}} \right]$$

$$\sim \mathcal{O}(m_W^2),$$
 (3.111)

$$m_{34}^2 = \frac{g^2}{24} \left[\frac{c_{2\alpha}}{\sqrt{3t^2 + 8}} \left[4(u^2 - 2v''^2) + (3t^2 + 4)v^2 \right] + \frac{s_{2\alpha}}{2(3t^2 + 8)} \left[(3t^2 - 8)u^2 - (8 + 21t^2 + 9t^4)v^2 + 4(3t^2 + 4)v''^2 \right] \right] \sim \mathcal{O}(m_W^2).$$
(3.112)

Chúng tôi thấy rằng tất cả các yếu tố không nằm trên đường chéo chính thuộc bậc $\mathcal{O}(m_W^2)$. Do đó, chúng nhỏ hơn rất nhiều so với $m_{Z'_3}^2$ và $m_{Z'_4}^2$, nghĩa là hai giá trị này có thể xem như các trị riêng của ma trận (3.106). Hơn nữa, đóng góp lớn nhất vào $m_Z^2 = (M_{41}^{2NG})_{22}$ trong ma trận chéo sau cùng tỷ lệ

với $m_W^2 \times \mathcal{O}(\frac{u^2+v^2}{V^2+w^2})$ cũng là rất nhỏ. Tóm lại, ma trận (3.106) có thể xem như là ma trận chéo với các trị riêng tương ứng là các yếu tố trên đường chéo chính và ma trận C_{41} là một mối liên hệ giữa cơ sở đầu và cơ sở cuối của các gauge boson trung hòa.

3.2.3. Các dòng

Từ phần Lagrangian $L_{\text{fermion}} = i \sum_{f} \bar{f} \gamma^{\mu} D_{\mu} f$, chúng tôi nhận được tương tác của các gauge boson mang điện với các lepton,

$$\begin{split} L_{\text{leptons}} &= \frac{g}{\sqrt{2}} \left[\bar{\nu}_{aL} \gamma^{\mu} \left(W_{\mu}^{'+} l_{aL} + Y_{\mu}^{'-} l_{aL}^{c} + N_{\mu}^{0} \nu_{aL}^{c} \right) \right. \\ &+ \bar{l}_{aL} \gamma^{\mu} \left(U_{\mu}^{--} l_{aL}^{c} + X_{\mu}^{'-} \nu_{aL}^{c} \right) + \bar{l}_{aL}^{c} \gamma^{\mu} K_{\mu}^{'+} \nu_{aL}^{c} \right] + \text{H.c.} \\ &= \frac{g}{\sqrt{2}} \left[\bar{\nu}_{aL} \gamma^{\mu} \left(W_{\mu}^{'+} l_{aL} + N_{\mu}^{0} \nu_{aL}^{c} \right) - \bar{l}_{aR} \gamma^{\mu} Y_{\mu}^{'-} \nu_{aR}^{c} \right. \\ &+ \bar{l}_{aL} \gamma^{\mu} \left(U_{\mu}^{--} l_{aL}^{c} + X_{\mu}^{'-} \nu_{aL}^{c} \right) - \bar{\nu}_{aR} \gamma^{\mu} K_{\mu}^{'+} l_{aR} \right] + \text{H.c.} \\ &= \frac{g}{\sqrt{2}} \left[\bar{\nu}_{aL} \gamma^{\mu} N_{\mu}^{0} \nu_{aL}^{c} + \bar{l}_{aL} \gamma^{\mu} U_{\mu}^{--} l_{aL}^{c} \right. \\ &+ \bar{\nu}_{a} \gamma^{\mu} \left(c_{\theta} P_{L} + s_{\theta} P_{R} \right) l_{a} W_{\mu}^{+} + \bar{\nu}_{a} \gamma^{\mu} \left(s_{\theta} P_{L} - c_{\theta} P_{R} \right) l_{a} K_{\mu}^{+} \\ &+ \bar{l}_{a} \gamma^{\mu} \left(c_{\theta'} P_{L} - s_{\theta'} P_{R} \right) \nu_{a}^{c} X_{\mu}^{--} - \bar{l}_{a} \gamma^{\mu} \left(s_{\theta'} P_{L} + c_{\theta'} P_{R} \right) \nu_{a}^{c} Y_{\mu}^{--} \right] \\ &+ \text{H.c.}, \end{split}$$
(3.113)

ở đây chúng tôi đã sử dụng $\bar{l}_{aL}^c \gamma^{\mu} \nu_{aL}^c = -\bar{\nu}_{aR} \gamma^{\mu} l_{aR}$. Từ (3.113), chúng tôi thấy gauge boson mới K^{\pm} đóng vai trò tương tự W^{\pm} của SM nhưng thay vào là các lepton phân cực phải với dấu trừ trước hằng số tương tác g. Dòng phân cực phải này cũng xuất hiện trong [111]. Các gauge boson mang số lepton bằng 2 (được gọi là các gauge boson bilepton) gồm: $Y^{\pm}, N^0, U^{\pm\pm}$, và X^{\pm} .

Với các quark, chúng tôi có

$$L_{\text{quarks}} = \frac{g}{\sqrt{2}} \left[\bar{u}_{3L} \gamma^{\mu} \left(W_{\mu}^{'+} d_{3L} + Y_{\mu}^{'-} T_{L} + N_{\mu}^{0} T_{L}^{'} \right) + \bar{d}_{3L} \gamma^{\mu} \left(U_{\mu}^{--} T_{L} + X_{\mu}^{'-} T_{L}^{'} \right) + \bar{T}_{L} \gamma^{\mu} K_{\mu}^{'+} T_{L}^{'} + \bar{d}_{\alpha L} \gamma^{\mu} \left(-W_{\mu}^{'-} u_{\alpha L} + Y_{\mu}^{'+} D_{\alpha L} + N_{\mu}^{0*} D_{\alpha L}^{'} \right) + \bar{D}_{\alpha L} \gamma^{\mu} K_{\mu}^{'-} D_{\alpha L}^{'} - \bar{u}_{\alpha L} \gamma^{\mu} \left(U_{\mu}^{++} D_{\alpha L} + X_{\mu}^{'+} D_{\alpha L}^{'} \right) \right] + \text{H.c.}$$
(3.114)

Để thấy rõ sự trộn lẫn giữa các gauge boson tích điện đơn, chúng tôi viết lại biểu thức trên như sau:

$$-\mathcal{L}^{CC} = \frac{g}{\sqrt{2}} \left(J_W^{\mu-} W_{\mu}^{+} + J_K^{\mu-} K_{\mu}^{+} + J_X^{\mu-} X_{\mu}^{+} + J_Y^{\mu-} Y_{\mu}^{+} + J_N^{\mu0*} N_{\mu}^{0} + J_U^{\mu--} U_{\mu}^{++} + \text{H.c.} \right), \quad (3.115)$$

ở đây

$$J_W^{\mu-} = c_\theta (\bar{\nu}_{aL} \gamma^\mu l_{aL} + \bar{u}_{3L} \gamma^\mu d_{3L} - \bar{u}_{\alpha L} \gamma^\mu d_{\alpha L}) - s_\theta (-\bar{\nu}_{aR} \gamma^\mu l_{aR} + \bar{T}_L \gamma^\mu T'_L + \bar{D}'_{\alpha L} \gamma^\mu D_{\alpha L}), \qquad (3.116)$$

$$J_K^{\mu-} = c_\theta (-\bar{\nu}_{aR}\gamma^\mu l_{aR} + \bar{T}_L\gamma^\mu T'_L + \bar{D}'_{\alpha L}\gamma^\mu D_{\alpha L}) + s_\theta (\bar{\nu}_{aL}\gamma^\mu l_{aL} + \bar{u}_{3L}\gamma^\mu d_{3L} - \bar{u}_{\alpha L}\gamma^\mu d_{\alpha L}), \qquad (3.117)$$

$$J_X^{\mu-} = c_{\theta'} (\bar{\nu}_{aL}^c \gamma^{\mu} l_{aL} + \bar{T}'_L \gamma^{\mu} d_{3L} - \bar{u}_{\alpha L} \gamma^{\mu} D'_{\alpha L}) + s_{\theta'} (\bar{l}_{aL}^c \gamma^{\mu} \nu_{aL} + \bar{T}_L \gamma^{\mu} u_{3L} + \bar{d}_{\alpha L} \gamma^{\mu} D_{\alpha L}), \qquad (3.118)$$

$$J_{Y}^{\mu-} = c_{\theta'} (\bar{l}_{aL}^{c} \gamma^{\mu} \nu_{aL} + \bar{T}_{L} \gamma^{\mu} u_{3L} + \bar{d}_{\alpha L} \gamma^{\mu} D_{\alpha L}) - s_{\theta'} (\bar{\nu}_{aL}^{c} \gamma^{\mu} l_{aL} + \bar{T}_{L}' \gamma^{\mu} d_{3L} - \bar{u}_{\alpha L} \gamma^{\mu} D_{\alpha L}'), \qquad (3.119)$$

$$J_U^{\mu - -} = \bar{l}_{aL}^c \gamma^{\mu} l_{aL} + \bar{T}_L \gamma^{\mu} d_{3L} - \bar{u}_{\alpha L} \gamma^{\mu} D_{\alpha L}, \qquad (3.120)$$

$$J_N^{\mu 0*} = \bar{\nu}_{aL} \gamma^{\mu} \nu_{aL}^c + \bar{u}_{3L} \gamma^{\mu} T'_L + \bar{D}'_{\alpha L} \gamma^{\mu} d_{\alpha L}.$$
(3.121)

Chúng tôi lưu ý là trong các biểu thức này, tất cả các fermion là các trạng thái chuẩn. Trong thực tế, chúng nên được viết trong các trạng thái khối lượng. Khi ấy, ma trận CKM sẽ xuất hiện trong phần quark. Trong mô hình đang được xem xét, do có ma trận khối lượng neutrino Dirac nên ma trận trộn lẫn lepton $V_{\rm PMNS}$ sẽ xuất hiện trong $J_W^{\mu-}$. Theo đó, trong cơ sở khối lượng, dòng trong (3.116) có dạng mới,

$$J_W^{\mu-} = c_\theta \bar{\nu}_{iL} \gamma^\mu V_{\rm PMNS}^{ij} l_{jL} + s_\theta \bar{\nu}_{iR} \gamma^\mu V_{\rm PMNS}^{ij} l_{jR} + \cdots .$$
(3.122)

Các dòng trung hòa trong đó có dòng điện từ là

$$-\mathcal{L}^{\rm NC} = e J^{\mu}_{em} A_{\mu} + \frac{g_4}{2c_W} \sum_{i=1}^3 Z^i_{\mu} \sum_f \{ \bar{f} \gamma^{\mu} [g^{(V)}(f)_{iV} - g^{(A)}(f)_{iA} \gamma_5] f \}, \ (3.123)$$

ở đây

$$e = g \sin \theta_W, \ t = \frac{g'}{g} = \frac{2\sqrt{2} \sin \theta_W}{\sqrt{1 - 4 \sin^2 \theta_W}},$$
 (3.124)

và $Z^{1,2,3}$ là các trạng thái riêng chính xác của ma trận (3.106), chúng có thể được đồng nhất là $Z^1 \simeq Z, Z^{2,3} \simeq Z'_{3,4}$.

Các dòng trung hòa tương tự như trong [29]. Giống như trong các mô hình 3-3-1 [112–115], mô hình đang được xem xét cũng cho FCNCs ở gần đúng cây gây bởi Z^2 và Z^3 .

Công thức (3.124) dẫn tới một hệ quả,

$$\sin^2 \theta_W < 0.25, \tag{3.125}$$

điều này là giống trong M331. Như đã đề cập trong (3.57), giàng buộc này cũng giống các phiên bản gốc [20, 29].

Với lượng hạt ở cả phần fermion và Higgs tương tự như trong [72], chúng tôi cho rằng khối lượng thống nhất cỡ $\mathcal{O}(10)$ TeV. Cực Landau có thể tương tự như trong M331 [87,88], vấn đề này sẽ được chúng tôi xem xét trong thời gian sắp tới. Chúng tôi lưu ý rằng một số điểm thú vị liên quan đến cực Landau của cả M331 và mô hình 3 - 4 - 1 đã được trình bày sơ qua trong [102].

3.2.4. Thế Higgs

Biểu thức thế tổng quát có thể được viết như sau:

$$V(\eta, \rho, \phi, \chi, H) = V(\eta, \rho, \phi, \chi) + V(H),$$

trong đó

$$V(\eta, \rho, \phi, \chi) = \mu_1^2 \eta^{\dagger} \eta + \mu_2^2 \rho^{\dagger} \rho + \mu_3^2 \phi^{\dagger} \phi + \mu_4^2 \chi^{\dagger} \chi$$
$$+ \lambda_1 (\eta^{\dagger} \eta)^2 + \lambda_2 (\rho^{\dagger} \rho)^2 + \lambda_3 (\phi^{\dagger} \phi)^2 + \lambda_4 (\chi^{\dagger} \chi)^2$$
$$+ (\eta^{\dagger} \eta) [\lambda_5 (\rho^{\dagger} \rho) + \lambda_6 (\phi^{\dagger} \phi) + \lambda_7 (\chi^{\dagger} \chi)]$$
$$+ (\rho^{\dagger} \rho) [\lambda_8 (\phi^{\dagger} \phi) + \lambda_9 (\chi^{\dagger} \chi)] + \lambda_9' (\phi^{\dagger} \phi) (\chi^{\dagger} \chi)$$
$$+ \lambda_{10} (\rho^{\dagger} \eta) (\eta^{\dagger} \rho) + \lambda_{11} (\rho^{\dagger} \phi) (\phi^{\dagger} \rho) + \lambda_{12} (\rho^{\dagger} \chi) (\chi^{\dagger} \rho)$$
$$+ \lambda_{13} (\phi^{\dagger} \eta) (\eta^{\dagger} \phi) + \lambda_{14} (\chi^{\dagger} \eta) (\eta^{\dagger} \chi) + \lambda_{15} (\chi^{\dagger} \phi) (\phi^{\dagger} \chi)$$

$$+ (f\epsilon^{ijkl}\eta_i\rho_j\phi_k\chi_l + \text{H.c.}), \qquad (3.126)$$

V(H)gồm phần bảo toàn số lepton (LNC) và phần vi phạm số lepton (LNV), cụ thể là

$$V(H) \equiv V_{\rm LNC} + V_{\rm LNV}, \qquad (3.127)$$

$$V_{\rm LNC} = \mu_5^2 {\rm Tr}(H^{\dagger}H) + \lambda_{16} {\rm Tr}[(H^{\dagger}H)^2] + \lambda_{17} [{\rm Tr}(H^{\dagger}H)]^2 + {\rm Tr}(H^{\dagger}H) [\lambda_{18}(\eta^{\dagger}\eta) + \lambda_{19}(\rho^{\dagger}\rho) + \lambda_{20}(\phi^{\dagger}\phi) + \lambda_{21}(\chi^{\dagger}\chi)] + \lambda_{22}(\chi^{\dagger}H)(H^{\dagger}\chi) + \lambda_{23}(\eta^{\dagger}H)(H^{\dagger}\eta) + \lambda_{24}(\rho^{\dagger}H)(H^{\dagger}\rho) + \lambda_{25}(\phi^{\dagger}H)(H^{\dagger}\phi) + [f_4\chi^{\dagger}H\eta^* + {\rm H.c.}], \qquad V_{\rm LNV} = f_2\chi^{\dagger}H\chi^* + f_3\eta^{\dagger}H\eta^* + \lambda_{26}{\rm Tr}(H^{\dagger}H)(\chi^{\dagger}\eta) + \lambda_{27}(\chi^{\dagger}H)(H^{\dagger}\eta) + {\rm H.c.} \qquad (3.128)$$

Trong các tính toán ở bên dưới cho phổ khối lượng Higgs, chúng tôi chỉ xem xét phần LNC của V(H). Điều kiện cực tiểu thế tương ứng sự triệt tiêu của các hệ số gắn với bậc một từng trường vô hướng của các Higgs boson trung hòa có VEV khác không, từ đó dẫn tới sáu phương trình:

$$\begin{split} \mu_{1}^{2} &= -\frac{1}{4u^{2}} \left[2\lambda_{16}\epsilon^{2}(v'^{2} - \epsilon^{2}) - \lambda_{22}\epsilon^{2}V^{2} + \lambda_{25}\epsilon^{2}w^{2} + \lambda_{24}\epsilon^{2}v^{2} + 2fVwvu \right] \\ &- \frac{1}{2} \left[\lambda_{18}v''^{2} + 2\lambda_{1}u^{2} + \lambda_{5}v^{2} + \lambda_{6}w^{2} + \lambda_{7}V^{2} \right], \\ \mu_{2}^{2} &= -\frac{1}{2} \left[2\lambda_{2}v^{2} + \lambda_{5}u^{2} + \lambda_{8}w^{2} + \lambda_{9}V^{2} + \frac{fwVu}{v} + \lambda_{19}v''^{2} + \frac{1}{2}\lambda_{24}v'^{2} \right], \\ \mu_{3}^{2} &= -\frac{1}{2} \left[2\lambda_{3}w^{2} + \lambda_{6}u^{2} + \lambda_{8}v^{2} + \lambda_{9}V^{2} + \frac{fuVv}{w} + \lambda_{20}v''^{2} + \frac{1}{2}\lambda_{25}v'^{2} \right], \\ \mu_{4}^{2} &= -\frac{1}{2} \left[2\lambda_{4}V^{2} + \lambda_{7}u^{2} + \lambda_{9}v^{2} + \lambda_{9}'w^{2} + \lambda_{21}v''^{2} \right] \\ &- \frac{1}{4V^{2}} \left[2fVwuv + 2\lambda_{16}\epsilon^{2}(v'^{2} - \epsilon^{2}) - \lambda_{23}\epsilon^{2}u^{2} + \lambda_{24}\epsilon^{2}v^{2} + \lambda_{25}\epsilon^{2}w^{2} \right], \\ \mu_{5}^{2} &= -\frac{1}{2} \left[\lambda_{16}v'^{2} + 2\lambda_{17}v''^{2} + \lambda_{18}u^{2} + (\lambda_{19} + \frac{\lambda_{24}}{2})v^{2} + \lambda_{20}w^{2} + \lambda_{21}V^{2} + \frac{\lambda_{25}w^{2}}{2} \right], \\ f_{4} &= \frac{\epsilon}{2Vu} \left[2\lambda_{16}(v'^{2} - \epsilon^{2}) - \lambda_{22}V^{2} - \lambda_{23}u^{2} + \lambda_{24}v^{2} + \lambda_{25}w^{2} \right]. \end{split}$$
(3.129)

Biểu thức ma trận khối lượng $\mathcal{M}^2_{\text{DCH}}$ của các Higgs boson tích điện đôi (DCH) trong cơ sở $(H_1^{\pm\pm}, H_2^{\pm\pm}, \rho_3^{\pm\pm}, \phi_2^{\pm\pm})^T$ là

$$\mathcal{M}_{\rm DCH}^{2} = \frac{1}{4} \begin{pmatrix} (\mathcal{M}_{\rm DCH}^{2})_{11} & 2\lambda_{16}v'^{2} & \sqrt{2}\lambda_{24}vv' & \sqrt{2}\lambda_{25}wv' \\ & (\mathcal{M}_{\rm DCH}^{2})_{22} & \sqrt{2}\lambda_{24}vv' & \sqrt{2}\lambda_{25}wv' \\ & & 2\lambda_{11}w^{2} - \frac{2fwVu}{v} & 2\lambda_{11}wv - 2fVu \\ & & & 2\lambda_{11}v^{2} - \frac{2fVvu}{w} \end{pmatrix}, (3.130)$$

ở đây $(\mathcal{M}_{\text{DCH}}^2)_{11} = 2\lambda_{16}v'^2 + \lambda_{24}v^2 - \lambda_{25}w^2$, $(\mathcal{M}_{\text{DCH}}^2)_{22} = 2\lambda_{16}v'^2 - \lambda_{24}v^2 + \lambda_{25}w^2$. Có thể dễ dàng thấy rằng det $\mathcal{M}_{\text{DCH}}^2 = 0$, do đó tồn tại hai Goldstone boson của các gauge boson $U^{\pm\pm}$. Chúng được xác định là

$$G_U^{\pm\pm} = \frac{\sqrt{2}v'H_1^{\pm\pm} - \sqrt{2}v'H_2^{\pm\pm} - v\rho^{\pm\pm} + w\phi^{\pm\pm}}{\sqrt{w^2 + v^2 + 4v'^2}}.$$
 (3.131)

Từ (3.130), chúng tôi còn nhận được ba Higgs boson vật lý, trong giới hạn $v'^2 \simeq 0$, chúng có khối lượng là

$$m_{h_{1}^{\pm\pm}}^{2} = \frac{1}{4} (\lambda_{24} v^{2} - \lambda_{25} w^{2}) = -m_{h_{2}^{\pm\pm}}^{2},$$

$$m_{h_{3}^{\pm\pm}}^{2} = \frac{w^{2} + v^{2}}{2} \left(\lambda_{11} - \frac{fVu}{wv} \right),$$
 (3.132)

ở đây $h_i^{\pm\pm}$, i = 1, 2, 3 là các trạng thái riêng tương ứng. Theo trên, trong giới hạn v' = 0 luôn tồn tại một giá trị âm $-|\frac{1}{4}(\lambda_{24}v^2 - \lambda_{25}w^2)|$, nghĩa là một biểu thức khối lượng âm ở gần đúng cây. Mặt khác, khi $v' \neq 0$, ma trận $\mathcal{M}_{\text{DCH}}^2$ cho các khối lượng ở bậc cây có mối liên hệ, $\text{Tr}(\mathcal{M}_{\text{DCH}}^2) = \sum_{i=1}^3 m_{h_i^{\pm\pm}}^2$, hay

$$m_{h_1^{\pm\pm}}^2 + m_{h_2^{\pm\pm}}^2 + m_{h_3^{\pm\pm}}^2 = \lambda_{16}v'^2 + \frac{w^2 + v^2}{2} \left(\lambda_{11} - \frac{fVu}{wv}\right).$$
(3.133)

Như một hệ quả của độ bền chân không, thế Higgs phải bị chặn dưới, $\lambda_{16} > 0$. Để rồi tổng của hai khối lượng DCH đầu tiên trong (3.133) là cỡ $\mathcal{O}(\lambda_{16}v'^2)$. Ngoài ra, do DCH là lời giải của phương trình det $(\mathcal{M}_{\text{DCH}}^2 - I_4 \times m_{h^{\pm\pm}}^2) = 0$, chúng tôi có liên hệ khác:

$$m_{h_{1}^{\pm\pm}}^{2}m_{h_{2}^{\pm\pm}}^{2}m_{h_{3}^{\pm\pm}}^{2} = -\frac{1}{16}(\lambda_{24}v^{2} - \lambda_{25}w^{2})^{2}\frac{w^{2} + v^{2} + 4v'^{2}}{2}\left(\lambda_{11} - \frac{fVu}{wv}\right).$$
(3.134)

Vế phải của (3.134) là không dương bởi vì hệ số $\left(\lambda_{11} - \frac{fVu}{wv}\right)$ có dấu dương như trong biểu thức khối lượng của DCH nặng $h_3^{\pm\pm}$. Như vậy, luôn có một biểu thức khối lượng âm của DCH ở bậc cây. Để thoát khỏi vấn đề này, lượng

 $|\lambda_{24}v^2 - \lambda_{25}w^2|$ nên rất nhỏ để các đóng góp bổ đính vòng có thể nâng khối lượng của DCH đạt giá trị dương. Tóm lại, tham số $|\lambda_{25}|$ nên rất nhỏ và mô hình dự đoán sự tồn tại các hạt DCH nhẹ.

Có 12 cặp Higgs tích điện đơn (SCH) hợp thành cơ sở ban đầu. Biểu thức ma trận khối lượng của các SCH gồm hai ma trận độc lập 6×6. Chúng được đặt là \mathcal{M}_{1sch}^2 và \mathcal{M}_{2sch}^2 với hai cơ sở nhỏ tương ứng là $(H_1^{\pm}, \phi_1^{\pm}, \eta_3^{\pm}, \chi_2^{\pm}, H_4^{\pm}, \rho_4^{\pm})^T$ và $(\phi_4^{\pm}, \chi_3^{\pm}, H_3^{\pm}, \eta_2^{\pm}, \rho_1^{\pm}, H_2^{\pm})^T$. Trong giới hạn $\epsilon = 0$, chúng được tách ra thành bốn ma trận độc lập 3×3:

$$\mathcal{M}_{1sch}^{2} = \frac{1}{4} \begin{pmatrix} \mathcal{M}_{1sch}^{\prime 2} & 0 \\ 0 & \mathcal{M}_{1sch}^{\prime \prime 2} \end{pmatrix}, \qquad \mathcal{M}_{2sch}^{2} = \frac{1}{4} \begin{pmatrix} \mathcal{M}_{2sch}^{\prime 2} & 0 \\ 0 & \mathcal{M}_{2sch}^{\prime \prime 2} \end{pmatrix}, \quad (3.135)$$

$$(\mathcal{M}_{1sch}^{\prime 2}) = \begin{pmatrix} \lambda_{23}u^{2} - \lambda_{25}w^{2} & \lambda_{25}wv' & \lambda_{23}uv' \\ 2\lambda_{13}u^{2} - \lambda_{25}v'^{2} - \frac{2fVvu}{w} & 2(\lambda_{13}wu - fVv) \\ 2\lambda_{13}w^{2} + \lambda_{23}v'^{2} - \frac{2fVwv}{u} \end{pmatrix}, \quad (3.135)$$

$$(\mathcal{M}_{1sch}^{\prime \prime 2}) = \begin{pmatrix} \lambda_{22}v'^{2} + 2\lambda_{12}v^{2} - \frac{2fwv}{v} & \lambda_{22}Vv' & 2(\lambda_{12}Vv - fwu) \\ \lambda_{22}V^{2} - \lambda_{24}v^{2} & \lambda_{24}vv' \\ & 2\lambda_{12}V^{2} - \lambda_{24}v'^{2} - \frac{2fVwu}{v} \end{pmatrix}, \quad (\mathcal{M}_{2sch}^{\prime \prime 2}) = \begin{pmatrix} 2\lambda_{15}V^{2} - \lambda_{25}v'^{2} - \frac{2fVvu}{w} & 2(\lambda_{15}Vw - fvu) & \lambda_{25}v'w \\ & 2\lambda_{15}w^{2} + \lambda_{22}v'^{2} - \frac{2fwvu}{v} & \lambda_{22}Vv' \\ & \lambda_{22}V^{2} - \lambda_{25}w^{2} \end{pmatrix}, \quad (\mathcal{M}_{2sch}^{\prime \prime 2}) = \begin{pmatrix} \lambda_{23}v'^{2} + 2\lambda_{10}v^{2} - \frac{2fVwv}{u} & 2(\lambda_{10}uv - fVw) & \lambda_{23}v'u \\ & 2\lambda_{10}u^{2} - \lambda_{24}v'^{2} - \frac{2fVuw}{v} & \lambda_{24}vv' \\ & & \lambda_{23}u^{2} - \lambda_{24}v^{2} \end{pmatrix}.$$

$$(\mathcal{M}_{2sch}^{\prime \prime 2}) = \begin{pmatrix} \lambda_{23}v'^{2} + 2\lambda_{10}v^{2} - \frac{2fVwv}{u} & 2(\lambda_{10}uv - fVw) & \lambda_{23}v'u \\ & 2\lambda_{10}u^{2} - \lambda_{24}v'^{2} - \frac{2fVuw}{v} & \lambda_{24}vv' \\ & \lambda_{23}u^{2} - \lambda_{24}v^{2} \end{pmatrix}.$$

$$(3.136)$$

Mỗi ma trận nhỏ ở trên chỉ có một trị riêng bằng không tương ứng trạng thái không khối lượng và hai trị riêng khác không. Các trạng thái không khối lượng là các Goldstone boson:

$$G_{1}^{\pm} = \frac{-v'H_{1}^{\pm} - w\phi_{1}^{\pm} + u\eta_{3}^{\pm}}{\sqrt{w^{2} + u^{2} + v'^{2}}}, \qquad G_{2}^{\pm} = \frac{-V\chi_{2}^{\pm} + v'H_{4}^{\pm} + v\rho_{4}^{\pm}}{\sqrt{V^{2} + v^{2} + v'^{2}}},$$
$$G_{3}^{\pm} = \frac{w\phi_{4}^{\pm} - V\chi_{3}^{\pm} + v'H_{3}^{\pm}}{\sqrt{V^{2} + w^{2} + v'^{2}}}, \qquad G_{4}^{\pm} = \frac{-u\eta_{2}^{\pm} + v\rho_{1}^{\pm} + v'H_{2}^{\pm}}{\sqrt{u^{2} + v^{2} + v'^{2}}}.$$
(3.137)

Trong giới hạn này, có thể dễ dàng đồng nhất $G_1^{\pm} \equiv G_Y^{\pm}, G_2^{\pm} \equiv G_X^{\pm}, G_3^{\pm} \equiv G_K^{\pm}$, và $G_4^{\pm} \equiv G_W^{\pm}$. Các Goldstone boson trên lần lượt bị hấp thụ bởi các gauge boson $Y^{\pm}, X^{\pm}, K^{\pm}, v$ à W^{\pm} .

Với $v' \neq 0$, các khối lượng cũng như là các trạng thái riêng có chút phức tạp. Các kết quả dưới đây xét trong giới hạn $v', \epsilon \to 0$. Trị riêng khối lượng của tám cặp SCH khác là

$$m_{h_{1}^{\pm}}^{2} = \frac{1}{4} (\lambda_{23}u^{2} - \lambda_{25}w^{2}), \qquad m_{h_{2}^{\pm}}^{2} = \frac{1}{4} (\lambda_{23}u^{2} - \lambda_{24}v^{2}), m_{h_{3}^{\pm}}^{2} = \frac{u^{2} + v^{2}}{2} \left(\lambda_{10} - \frac{fwV}{uv}\right), \qquad m_{h_{4}^{\pm}}^{2} = \frac{u^{2} + \omega^{2}}{2} \left(\lambda_{13} - \frac{fvV}{wu}\right), m_{h_{5}^{\pm}}^{2} = \frac{V^{2} + \omega^{2}}{2} \left(\lambda_{15} - \frac{fvu}{Vw}\right), \qquad m_{h_{6}^{\pm}}^{2} = \frac{V^{2} + v^{2}}{2} \left(\lambda_{12} - \frac{fwu}{Vv}\right), m_{h_{7}^{\pm}}^{2} = \frac{1}{4} \left(\lambda_{22}V^{2} - \lambda_{25}w^{2}\right), \qquad m_{h_{8}^{\pm}}^{2} = \frac{1}{4} \left(\lambda_{22}V^{2} - \lambda_{24}v^{2}\right), \qquad (3.138)$$

với các trạng thái riêng tương ứng như sau:

$$h_{1}^{\pm} \equiv H_{1}^{\pm}, \ h_{2}^{\pm} \equiv H_{2}^{\pm}, \ h_{3}^{\pm} = \frac{v\eta_{2}^{\pm} + u\rho_{1}^{\pm}}{\sqrt{u^{2} + v^{2}}}, \ h_{4}^{\pm} = \frac{u\phi_{1}^{\pm} + w\eta_{3}^{\pm}}{\sqrt{u^{2} + w^{2}}},$$
$$h_{5}^{\pm} = \frac{V\phi_{4}^{\pm} + w\chi_{3}^{\pm}}{\sqrt{V^{2} + w^{2}}}, \ h_{6}^{\pm} = \frac{v\chi_{2}^{\pm} + V\rho_{4}^{\pm}}{\sqrt{V^{2} + v^{2}}}, \ h_{7}^{\pm} \equiv H_{3}^{\pm}, \ h_{8}^{\pm} \equiv H_{4}^{\pm}.$$
(3.139)

Theo đó, mô hình dự đoán hai hạt SCH khá nhẹ là h_1^{\pm} và h_2^{\pm} bởi λ_{ij} cỡ $\mathcal{O}(1)$; $|\lambda_{25}w|$ là không quá lớn; và u, v' và v là ở thang điện yếu.

Có mười thành phần Higgs trung hòa trong cơ sở ban đầu. Ma trận khối lượng của các Higgs trung hòa lẻ CP là ma trận 10×10 . Ma trận này cho một trạng thái không khối lượng là $\text{Im}[H_3^0]$ ở gần đúng cây. Hơn nữa, phần còn lại tách thành hai ma trận độc lập là 4×4 và 5×5 , tương ứng với các cơ sở $(\text{Im}[\chi_1^0], \text{Im}[\eta_4^0], \text{Im}[H_4^0], \text{Im}[H_1^0])^T$ và $(\text{Im}[\rho_2^0], \text{Im}[\phi_3^0], \text{Im}[\chi_4^0], \text{Im}[\eta_1^0],$ $\text{Im}[H_2^0])^T$. Trong giới hạn $\epsilon = 0$, các Higgs boson vật lý được xác định:

$$H_{A_{1}} \equiv \operatorname{Im}[H_{2}^{0}], \ m_{A_{1}}^{2} = \frac{1}{4} \left(\lambda_{22} V^{2} + \lambda_{23} u^{2} - 2\lambda_{16} v'^{2} - \lambda_{24} v^{2} - \lambda_{25} w^{2} \right),$$

$$H_{A_{2}} \equiv \operatorname{Im}[H_{1}^{0}], \ m_{A_{2}}^{2} = \frac{1}{4} \left(2\lambda_{23} u^{2} - 2\lambda_{16} v'^{2} - \lambda_{24} v^{2} - \lambda_{25} w^{2} \right),$$

$$H_{A_{3}} \equiv \operatorname{Im}[H_{4}^{0}], \ m_{A_{3}}^{2} = \frac{1}{4} \left(2\lambda_{22} V^{2} - 2\lambda_{16} v'^{2} - \lambda_{24} v^{2} - \lambda_{25} w^{2} \right).$$
(3.140)

Phần còn lại là hai ma trận nhỏ 2×2 và 4×4 , chúng liên quan tới bốn Goldstone boson gồm G_{N^0} , G_{Z_i} (i = 1, 2, 3), và hai Higgs trung hòa lẻ CP có khối lượng,

$$\begin{pmatrix} G_{N_0} \\ H_{A_4} \end{pmatrix} = \begin{pmatrix} \frac{V}{\sqrt{V^2 + u^2}} & \frac{u}{\sqrt{V^2 + u^2}} \\ -\frac{u}{\sqrt{V^2 + u^2}} & \frac{V}{\sqrt{V^2 + u^2}} \end{pmatrix} \begin{pmatrix} \operatorname{Im}[\chi_1^0] \\ \operatorname{Im}[\eta_4^0] \end{pmatrix}, \quad (3.141)$$

$$\begin{pmatrix} G_{Z_1} \\ G_{Z_2} \\ G_{Z_3} \\ H_{A_5} \end{pmatrix} = \begin{pmatrix} -\frac{v}{\sqrt{v^2 + u^2}} & 0 & 0 & \frac{v}{\sqrt{v^2 + u^2}} \\ -\frac{vu^2}{\sqrt{A(v^2 + u^2)}} & 0 & \frac{\sqrt{v^2 + u^2}V}{\sqrt{A}} & -\frac{uv^2}{\sqrt{A(v^2 + u^2)}} \\ -\frac{V^2 u^2 v}{\sqrt{AB}} & \frac{\sqrt{Aw}}{\sqrt{B}} & -\frac{Vv^2 u^2}{\sqrt{AB}} & -\frac{V^2 v^2 u}{\sqrt{AB}} \\ \frac{Vwu}{\sqrt{B}} & \frac{Vvu}{\sqrt{B}} & \frac{wvu}{\sqrt{B}} & \frac{Vwv}{\sqrt{B}} \end{pmatrix} \begin{pmatrix} \mathrm{Im}[\rho_2^0] \\ \mathrm{Im}[\phi_3^0] \\ \mathrm{Im}[\chi_4^0] \\ \mathrm{Im}[\eta_1^0] \end{pmatrix},$$

ở đây $A = V^2 v^2 + u^2 (V^2 + v^2)$, $B = V^2 v^2 (w^2 + u^2) + w^2 u^2 (V^2 + v^2)$. Chúng tôi lưu ý là ba Goldstone boson bị hấp thụ bởi ba gauge boson Hermitian $Z_i (i = 1, 2, 3)$ là tổ hợp tuyến tính của các trạng thái không khối lượng G_{Z_i} ở trên. Nhưng G_{Z_1} đóng góp chính vào Goldstone boson của Z boson trong SM. Khối lượng của $H_{A_{4,5}}$ là

$$m_{A_4}^2 = \frac{V^2 + u^2}{2} \left(\lambda_{14} - \frac{fwv}{Vu} \right),$$

$$m_{A_5}^2 = -\frac{f}{2} \left[\frac{Vvu}{w} + w \left(\frac{Vv}{u} + \frac{u(V^2 + v^2)}{Vv} \right) \right].$$
(3.142)

Chúng tôi thấy điều kiện dương của khối lượng Higgs trung hòa lẻ CP H_{A_5} chỉ ra rằng f < 0. Ngoài ra, mô hình cũng cho một Higgs boson trung hòa lẻ CP nhẹ là H_{A_2} .

Trong phần Higgs trung hòa chẵn CP, biểu thức ma trận khối lượng tách thành hai ma trận nhỏ 4 × 4 và 6 × 6. Chúng được đặt là $\mathcal{M}_{1H^0}^2$ và $\mathcal{M}_{2H^0}^2$, tương ứng với hai cơ sở nhỏ là ($\operatorname{Re}[H_1^0]$, $\operatorname{Re}[H_4^0]$, $\operatorname{Re}[\chi_1^0]$, $\operatorname{Re}[\eta_4^0]$)^T và ($\operatorname{Re}[H_3^0]$, $\operatorname{Re}[\chi_4^0]$, $\operatorname{Re}[\phi_3^0]$, $\operatorname{Re}[\rho_2^0]$, $\operatorname{Re}[\eta_1^0]$, $\operatorname{Re}[H_2^0]$)^T. Một trị riêng khối lượng bằng không của $\mathcal{M}_{1H^0}^2$ ứng với Goldstone boson của N^{0*} boson. Ngoài ra, trong giới hạn $\epsilon = 0$, $\mathcal{M}_{1H^0}^2$ cho ba giá trị khối lượng khác không là

$$m_{h_1^0}^2 = \frac{1}{4} \left(2\lambda_{23}u^2 - \lambda_{24}v^2 - 2\lambda_{16}v'^2 - \lambda_{25}w^2 \right), \ m_{h_2^0}^2 = \frac{V^2 + u^2}{2} \left(\lambda_{14} - \frac{fwv}{Vu} \right), m_{h_3^0}^2 = \frac{1}{4} \left(2\lambda_{22}V^2 - \lambda_{24}v^2 - 2\lambda_{16}v'^2 - \lambda_{25}w^2 \right).$$
(3.143)

Các trạng thái riêng có khối lượng (h_1^0, h_3^0, h_3^0) và Goldstone boson $G_{N^{0*}}$ trong trường hợp này là

$$\begin{aligned} h_1^0 &\equiv \operatorname{Re}[H_1^0], \quad h_3^0 &\equiv \operatorname{Re}[H_4^0], \\ \begin{pmatrix} G_{N^{0*}} \\ h_2^0 \end{pmatrix} &= \begin{pmatrix} -\frac{V}{\sqrt{V^2 + u^2}} & \frac{u}{\sqrt{V^2 + u^2}} \\ \frac{u}{\sqrt{V^2 + u^2}} & \frac{V}{\sqrt{V^2 + u^2}} \end{pmatrix} \begin{pmatrix} \operatorname{Re}[\chi_1^0] \\ \operatorname{Re}[\eta_4^0] \end{pmatrix}. \quad (3.144) \end{aligned}$$

Trong khi hai trạng thái cuối nặng cỡ thang phá vỡ của $SU(3)_L$ và $SU(4)_L$ thì Higgs boson đầu tiên có thể nhẹ do $|\lambda_{25}w^2|$ không quá lớn như đã thảo luận ở trên. Bởi vậy, nó có thể là Higgs boson của SM.

Với ma trận khối lượng thứ hai $\mathcal{M}_{2H^0}^2$, dễ dàng kiểm tra rằng det $\mathcal{M}_{2H^0}^2 \neq$ 0. Nhưng nếu v' = 0, $\mathcal{M}_{2H^0}^2$ có một trị riệng bằng không. Hơn nữa, nếu v' = v = u = 0, $\mathcal{M}_{2H^0}^2$ có hai trị riệng bằng không, tức là có thể có hai Higgs boson trung hòa chẵn CP nhẹ. Theo đó, một trong số chúng có thể đồng nhất với Higgs SM. Như vậy, phần Higgs của mô hình đang xem xét là đáng tin cậy. Đóng góp chính vào bốn Higgs boson nặng là

$$m_{h_4^0}^2 = -fwV, \qquad m_{h_5^0}^2 = \frac{1}{4} \left(\lambda_{22} V^2 - \lambda_{25} w^2 \right),$$

$$m_{h_{6,7}^0}^2 = \lambda_3 w^2 + \lambda_4 V^2 \pm \sqrt{(\lambda_4 V^2 - \lambda_3 w^2)^2 + \lambda_9'^2 w^2 V^2}. \tag{3.145}$$

Tóm lại, mô hình mà chúng tôi đang xem xét dự đoán nhiều Higgs boson với khối lượng cỡ TeV mà ngày nay các máy thăm dò có thể phát hiện. Ngoài ra, nghiên cứu ở trên có thể áp dụng cho các mô hình mà ở đó thập tuyến $10_S H$ chưa đưa vào.

3.2.5. W boson và các giới hạn

Mục đích của chúng tôi trong phần này là tìm giới hạn cho các tham số của mô hình. Từ sự trộn lẫn của các gauge boson tích điện đơn, chúng tôi có một vài điểm đặc biệt liên quan đến W boson của SM.

1. Trong mô hình đang xem xét, W boson có các kênh rã chính thông thường giống như trong SM:

$$W^{-} \rightarrow l \tilde{\nu}_{l} \ (l = e, \mu, \tau),$$

$$\searrow \quad u^{c}d, u^{c}s, u^{c}b, (u \rightarrow c). \tag{3.146}$$

Hơn nữa, do sự trộn lẫn W - K, W boson có các kênh rã khác liên quan tới phần lepton phân cực phải, cụ thể là

$$W^- \to l_R \tilde{\nu}_{lR} \ (l = e, \mu, \tau). \tag{3.147}$$

Ở mức cây cho phần điện yếu và mức ba vòng cho đóng góp của tương tác mạnh, các bề rộng rã nhận được tương tự trường hợp mô hình 3 - 3 - 1 tiết kiệm [41,65,66,109]. Theo đó, kết quả bề rộng rã toàn phần cho quá trình W boson rã thành các fermion là

$$\Gamma_W^{\text{tot}} = 1.04 \frac{\alpha M_W}{2s_W^2} (1 - s_\theta^2) + \frac{\alpha M_W}{4s_W^2}.$$
 (3.148)

Với dữ liệu gần đây về gauge boson W^{\pm} [1]: $\alpha(m_Z) \simeq 1/128$, $m_W = 80.385 \pm 0.015$ GeV, $\Gamma_W^{\text{tot}} = 2.085 \pm 0.042$ GeV, chúng tôi thu được giới hạn trên liên quan đến góc trộn θ là $s_{\theta} \leq 0.19$. Giới hạn trên này lớn hơn so với kết quả trong [41,65,66,109] ($s_{\theta} \leq 0.08$).

2. Cũng trong mô hình này, muon có cả kênh rã chính và kênh rã sai:

$$\mu^- \to e^- + \tilde{\nu}_e + \nu_\mu, \quad \mu^- \to e^- + \nu_e + \tilde{\nu}_\mu, \quad (3.149)$$

chúng lần lượt tương ứng với hai giản đồ trong hình 3.1. Vì thế, bề rộng

Hình 3.1: Giản đồ Feynman cho đóng góp vào rã muon với kênh rã chính (hình bên trái) và kênh rã sai (hình bên phải).

rã toàn phần của muon được xác định: $\Gamma_{\mu}^{\text{total}} = \Gamma(\mu^- \to e^- + \tilde{\nu}_e + \nu_{\mu}) + \Gamma(\mu^- \to e^- + \tilde{\nu}_{\mu} + \nu_e).$

Bề rộng rã với kênh rã chính được chúng tôi tính toán như trong phụ lục B. Kết quả thu được là

$$\Gamma(\mu^- \to e^- + \tilde{\nu}_e + \nu_\mu) = \frac{g^4 m_\mu^5}{6144\pi^2} \left(\frac{1}{m_W^4} + \frac{1}{m_K^4}\right).$$
(3.150)

Với kênh rã sai, kết quả là hoàn toàn tương tự. Mặt khác, tỷ số nhánh

của kênh rã sai: ${\rm Br}(\mu\to e\,\nu_e\,\bar\nu_\mu)<0.012$ dẫn tới giàng buộc sau đây:

$$\begin{aligned} & \frac{\frac{1}{m_X^4} + \frac{1}{m_Y^4}}{\frac{1}{m_W^4} + \frac{1}{m_K^4} + \frac{1}{m_X^4} + \frac{1}{m_Y^4}} < 0.012 \\ & \text{hay} \quad \frac{1}{m_X^4} + \frac{1}{m_Y^4} - 0.012 \left(\frac{1}{m_K^4} + \frac{1}{m_X^4} + \frac{1}{m_Y^4}\right) < \frac{0.012}{m_W^4}. (3.151) \end{aligned}$$

Xét giới hạn $V \gg w$ tức là $1/m_K^4, 1/m_X^4 \ll 1/m_Y^4$, chúng tôi nhận được giới hạn dưới của $m_Y: m_Y > m_W \times \sqrt[4]{82.333} \simeq 242$ GeV. Kết quả này phù hợp với [116]. Trong trường hợp $V \simeq w$ tức là $m_X^2 \simeq m_Y^2 \simeq m_K^2/2$, giới hạn chúng tôi thu được là chặt chẽ hơn: $m_Y > m_W \times \sqrt[4]{164.417} \simeq 287$ GeV.

3. Sự chuyển hóa µ − e: Dòng mang điện trong mô hình đang xem xét có dạng tương tự như trong [116–119]. Do đó, các kết quả như sự chuyển hóa µ − e là tương tự. Đặc biệt, khối lượng của bilepton tích điện đôi U^{±±} thỏa mãn m_{U^{±±}} ≥ 135 GeV [118]. Mặc dù kết quả này nhận được là với nhóm SU(3)_L nhưng vẫn có thể chấp nhận với nhóm SU(4)_L do chúng có các hằng số tương tác chuẩn như nhau. Giới hạn này là không chặt chẽ bằng giới hạn đến từ kênh rã muon sai.

3.3. Kết luận chương 3

Chúng tôi đã chỉ ra rằng điều kiện khử dị thường của các mô hình 3-4-1là (i) số tứ tuyến fermion bằng với số phản tứ tuyến fermion và (ii) tổng điện tích của tất cả các fermion phân cực trái bằng không.

Chúng tôi đã phân tích mô hình 3 - 4 - 1 với điện tích bất kỳ của các lepton mới. Nếu tất cả các fermion (trừ các neutrino) có thành phần phân cực phải thì chỉ cần bốn tứ tuyến Higgs là đủ để các fermion nhận khối lượng qua tương tác Yukawa, SSB diễn ra và mô hình cho phổ gauge boson phù hợp.

Chúng tôi đã trình bày mô hình 3-4-1 tối thiểu với neutrino phân cực phải. Khác biệt so với các công trình trước [20,29], tại đây với việc thêm vào một VEV khác không mới cho một thành phần Higgs trung hòa trong thập tuyến H, một vài điểm thú vị xuất hiện: (i) các neutrino nhận khối lượng Dirac ở bậc cây; ii) sự trộn lẫn giữa các gauge boson tích điện đơn dẫn tới xuất hiện thêm một đóng góp mới vào bề rộng rã của W boson, điều này giống như đã chỉ ra trong mô hình 3 - 3 - 1 tiết kiệm. Với các dữ liệu gần đây về W boson, kết quả nhận được cho giới hạn góc trộn là rộng hơn. Mô hình cũng dự đoán sự tồn tại của nhiều bilepton cũng như các tương tác LFV. Giống như trong các mô hình 3 - 3 - 1, nhiều hạt trong số các bilepton này đóng góp vào các quá trình LFV như rã muon sai và chuyển hóa $\mu - e$. Nếu thang phá vỡ $SU(4)_L$ lớn hơn nhiều thang phá vỡ $SU(3)_L$ thì giới hạn dưới của thang phá vỡ $SU(3)_L$ giống như đã chỉ ra trong các mô hình 3 - 3 - 1. Ngược lại, nếu hai thang phá vỡ này xấp xỉ nhau, giới hạn dưới của m_Y là 242 và 287 GeV tương ứng với hai trường hợp. Chúng tôi cũng nhận được toán tử số lepton và số lepton của các trường trong mô hình.

Như M331, mô hình 3 – 4 – 1 tối thiểu với neutrino phân cực phải cho một giới hạn trên của sin góc Weinberg là $\sin^2 \theta_W < 0.25$.

Phần Higgs đã được chúng tôi nghiên cứu khá chi tiết. Trong giới hạn số lepton bảo toàn, phần Higgs chứa đựng tất cả các Goldstone boson không khối lượng tương ứng với các gauge boson có khối lượng và Higgs boson SM. Mô hình dự đoán nhiều Higgs boson với khối lượng cỡ TeV mà ngày nay các máy thăm dò có thể phát hiện. Hơn nữa, nghiên cứu ở trên có thể áp dụng cho các mô hình 3 - 4 - 1 mà ở đó thập tuyến $10_S H$ chưa đưa vào.

KẾT LUẬN CHUNG

Trong luận án này, chúng tôi đã trình bày mô hình 3 - 2 - 3 - 1 và mô hình 3 - 4 - 1 tối thiểu với neutrino phân cực phải. Các điều kiện khử dị thường, sự sắp xếp các fermion dưới nhóm đối xứng chuẩn, phần vô hướng, phần gauge, và các dòng đều đã được chúng tôi phân tích. Tất cả các hạt và các tương tác của SM đều nhận lại được. Các hạt mới và các tương tác mới cho đóng góp vào một số quá trình đã biết. Đối chiếu với dữ liệu thực nghiệm, chúng tôi thu được giới hạn cho một vài tham số trong hai mô hình. Ngoài ra, vấn đề số thế hệ fermion, khối lượng neutrino, và vật chất tối cũng đã được chúng tôi thảo luận.

Mô hình 3-2-3-1 dự đoán năm gauge boson mới gồm $\mathcal{Z}_1, \mathcal{Z}'_1, W_2^{\pm}, X_R^{\pm q}, Y_R^{\pm(q+1)}$, và 11 Higgs boson mới gồm $H_{2,3,4}^0, \mathcal{A}^0, H_5^{\pm}, H_{6,7}^{\pm q}, H_8^{\pm(q+1)}, \Xi_{22}^{\pm\pm}, \Xi_{23}^{\pm(q-1)}, \Xi_{33}^{\pm2q}$. Giữa Higgs boson SM và các Higgs boson trung hòa mới cũng như giữa các gauge boson SM và các gauge boson mới có sự trộn lẫn với các góc trộn rất nhỏ. Theo đó, vật lý mới cho đóng góp vào tham số ρ . Qua khảo sát ρ và các tham số trộn lẫn, chúng tôi nhận được miền giới hạn của thang vật lý mới là 5–10 TeV. Kết quả này phù hợp với việc không còn quan sát thấy hiện tượng dư thừa diphoton.

Các hạt mới và các tương tác mới thay đổi các vị quark và cho đóng góp vào các hiệu khối lượng meson trung hòa $\Delta m_{K,B_d,B_s}$. Theo đó, nếu thang vật lý mới là 5 TeV, chúng tôi nhận được giới hạn cho các yếu tố ma trận trộn quark phân cực phải là $|V_{uR}| < 0.08$ và $|V_{dR}| < 0.0015$. Tương tự, $|V_{uR}| < 0.2$ và $|V_{dR}| < 0.003$ khi thang vật lý mới là 10 TeV.

Mô hình 3-2-3-1 không chỉ giải thích được số thế hệ fermion là 3,

khối lượng nhỏ của neutrino, mà nó còn cho các ứng cử viên vật chất tối. Đặc biệt, mô hình chứa đối xứng chuẩn gián đoạn tàn dư W-parity đảm bảo tính bền cho vật chất tối. Tất cả các kết quả nhận được đều rất tự nhiên.

Mô hình 3-4-1 tối thiểu với neutrino phân cực phải dự đoán các gauge boson mới gồm $Z'_3, Z'_4, K^{\pm}, X^{\pm}, Y^{\pm}, U^{\pm\pm}, N^0, N^{0*}$, và nhiều Higgs boson mới. Xem xét sự trộn lẫn giữa các gauge boson tích điện đơn, W - K, kết hợp với dữ liệu gần đây về W boson, chúng tôi nhận được giới hạn trên cho góc trộn là lớn hơn so với các kết quả trước đây. Mô hình cũng dự đoán sự tồn tại của nhiều bilepton và các tương tác LFV. Nhiều bilepton đóng góp vào các quá trình LFV như rã muon sai. Xem xét các quá trình này, chúng tôi nhận được giới hạn dưới cho khối lượng gauge boson mới m_Y là 242 và 287 GeV tùy theo quan hệ giữa các thang phá vỡ $SU(4)_L$ và $SU(3)_L$. Ngoài ra, mô hình cũng cho một giới hạn của sin góc Weinberg, $\sin^2 \theta_W < 0.25$.

Trong giới hạn số lepton bảo toàn, phần Higgs của mô hình 3-4-1 tối thiểu với neutrino phân cực phải chứa tất cả các Goldstone boson tương ứng với các gauge boson có khối lượng và Higgs boson SM.

Mô hình 3 - 4 - 1 tối thiểu với neutrino phân cực phải có thể giải quyết vấn đề số thế hệ fermion, khối lượng neutrino.

Như vậy, hai mô hình được trình bày trong luận án là hai mô hình mở rộng hợp lý và rất có thể cho các kết quả tin cậy. Việc tiếp tục đi sâu nghiên cứu các hướng mở rộng này để giải quyết các vấn đề đang tồn tại là khả thi và cần thiết.

NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN

- Chúng tôi đã chỉ ra rằng mô hình 3 2 3 1 và mô hình 3 4 1 tối thiểu với neutrino phân cực phải chứa phổ các hạt gauge boson, Higgs boson, và các dòng hợp lý. Tất cả các hạt và các tương tác SM đều đã được đồng nhất.
- 2. Chúng tôi đã chỉ ra rằng mô hình 3-2-3-1 tự nhiên cho FCNCs ở gần đúng cây thông qua tương tác chuẩn và Yukawa. Đối xứng chuẩn mới cho phép giải thích số thế hệ fermion là 3, khối lượng nhỏ của neutrino, và cung cấp các ứng cử viên cho vật chất tối.
- 3. Chúng tôi đã xác định được giới hạn cho thang vật lý mới trong mô hình 3-2-3-1 và các yếu tố của ma trận trộn quark phân cực phải.
- 4. Chúng tôi đã phân tích mô hình 3 4 1 với điện tích bất kỳ của các lepton mới. Các điều kiện khử dị thường đã được thảo luận chính xác.
- 5. Chúng tôi đã trình bày mô hình 3 4 1 tối thiểu với neutrino phân cực phải và thu được các kết quả thú vị: các neutrino nhận khối lượng Dirac ở bậc cây; có sự trộn lẫn giữa các gauge boson tích điện đơn; có sự tồn tại của nhiều bilepton và các tương tác LFV. Đặc biệt, ngoại trừ mô hình 3 4 1 siêu đối xứng, thế Higgs có chứa thập tuyến lần đầu tiên được chúng tôi trình bày.

DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ

- 1. H. N. Long, L. T. Hue, and D. V. Loi, *Electroweak theory based on* $SU(4)_L \otimes U(1)_X$ gauge group, Phys. Rev. D **94**, 015007, 2016.
- P. V. Dong and D. T. Huong, D. V. Loi, N. T. Nhuan, N. T. K. Ngan, *Phenomenology of the* SU(3)_C⊗SU(2)_L⊗SU(3)_R⊗U(1)_X gauge model, Phys. Rev. D **95**, 075034, 2017.

TÀI LIỆU THAM KHẢO

- K. A. Olive *et al.* (Particle Data Group), *Review of Particle Physics*, Chin. Phys. C 38, 090001, 2014.
- [2] V. Khachatryan et al. (CMS and LHCb Collaborations), Observation of the rare B⁰_s → μ⁺μ⁻ decay from the combined analysis of CMS and LHCb data, Nature (London) **522**, 68, 2015.
- [3] R. Aaij et al. (LHCb Collaboration), Angular analysis of the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decay using 3 fb⁻¹ of integrated luminosity, J. High Energy Phys. 02, 104, 2016.
- [4] R. Aaij et al. (LHCb Collaboration), Angular analysis and differential branching fraction of the decay B⁰_s → φμ⁺μ⁻, J. High Energy Phys. 09, 179, 2015.
- [5] R. Aaij et al. (LHCb Collaboration), Test of lepton universality using $B^+ \to K^+ l^+ l^-$ decays, Phys. Rev. Lett. **113**, 151601, 2014.
- [6] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, Global analysis of b → sll anomalies, J. High Energy Phys. 06, 092, 2016.
- [7] J. C. Pati and A. Salam, Lepton number as the fourth "color", Phys. Rev. D 10, 275, 1974.
- [8] R. N. Mohapatra and J. C. Pati, Gauge symmetry and an "isoconjugate" model of CP violation, Phys. Rev. D 11, 566, 1975.
- R. N. Mohapatra and J. C. Pati, "Natural" left-right symmetry, Phys. Rev. D 11, 2558, 1975.
- [10] G. Senjanović and R. N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12, 1502, 1975.
- [11] G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B153, 334, 1979.
- [12] P. Minkowski, $\mu \to e\gamma$ at a rate of one out of 10^9 muon decays?, Phys. Lett. **67B**, 421, 1977.
- [13] R. N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44, 912, 1980.
- [14] R. N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23, 165, 1981.
- [15] M. Singer, J. W. F. Valle, and J. Schechter, Canonical neutral current predictions from the weak electromagnetic gauge group SU(3) × U(1), Phys. Rev. D 22, 738, 1980.
- [16] F. Pisano and V. Pleitez, SU(3)⊗U(1) model for electroweak interactions, Phys. Rev. D 46, 410, 1992.
- [17] P. H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69, 2889, 1992.
- [18] R. Foot, O. F. Hernandez, P. Pisano and V. Pleitez, Lepton masses in an $SU(3)_L \otimes U(1)_N$ gauge model, Phys. Rev. D 47, 4158, 1993.
- [19] J. C. Montero, F. Pisano, and V. Pleitez, Neutral currents and Glashow-Iliopoulos-Maian mechanism in SU(3)_L × U(1)_N models for electroweak interactions, Phys. Rev. D 47, 2918, 1993.
- [20] R. Foot, H. N. Long, and T. A. Tran, $SU(3)_L \otimes U(1)_N$ and $SU(4)_L \otimes U(1)_N$ gauge models with right-handed neutrinos, Phys. Rev. D 50, R34, 1994.

- [21] H. N. Long, $SU(3)_C \otimes SU(3)_L \otimes U(1)_N$ model with right-handed neutrinos, Phys. Rev. D 53, 437, 1996.
- [22] H. N. Long, $SU(3)_L \otimes U(1)_N$ model for right-handed neutrino neutral currents, Phys. Rev. D 54, 4691, 1996.
- [23] J. Beringer et al., Review of Particle Physics, Physics. Rev. D 86, 010001, 2012.
- [24] Gianfaranco Bertone, Dan Hooper, Joseph Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405, 279-390, 2005.
- [25] P.V. Dong, H. N. Long, Neutrino masses and lepton flavor violation in the 3-3-1 model with right-handed neutrinos, Phys. Rev. D 77, 057302, 2008.
- [26] H. N. Long and N. Q. Lan, Self-interacting dark matter and Higgs bosons in the SU(3)_C ⊗ SU(3)_L ⊗ U(1)_N model with right handed neutrinos, Europhys. Lett. 64, 571, 2003.
- [27] P. V. Dong, N. T. K. Ngan, D.V. Soa, Simple 3 3 1 model and implication for dark matter, Phys. Rev. D 90, 075019, 2014.
- [28] D. T. Huong and P. V. Dong, Left-right asymmetry and 750 GeV diphoton excess, Phys. Rev. D 93, 095019, 2016.
- [29] F. Pisano and V. Pleitez, $SU(4)_L \otimes U(1)_N$ model for the electroweak interactions, Phys. Rev. D 51, 3865, 1995.
- [30] Adrian Palcu, Dimension-five effective operators in electroweak $SU(4)_L \otimes U(1)_N$ gauge models, Phys. Rev. D 85, 113010, 2012.
- [31] Sheldon L. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22, 579, 1961.
- [32] Steven Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264, 1967.

- [33] David J. Gross and Frank Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30, 1343, 1973.
- [34] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon picture, Phys. Lett. B 47, 365, 1973.
- [35] H. David Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30, 1346, 1973.
- [36] Thomas Jubb, Matthew Kirk, Alexander Lenz, Gilberto Tetlalmatzi-Xolocotzi, On the ultimate precision of meson mixing observables, Nucl. Phys. B915, 431, 2017.
- [37] A. J. Buras and F. De Fazio, 331 models facing the tensions in ΔF = 2 processes with the Impact on ε'/ε, B_s → μ⁺μ⁻ and B → K^{*}μ⁺μ⁻, J. High Energy Phys. 08, 115, 2016.
- [38] Steven Weinberg, The Quantum Theory of Fields: Volume 2, Modern Applications, Cambridge University Press, 2005.
- [39] Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81, 1562, 1998.
- [40] S. Fukuda et al., [Super-Kamiokande Collaboration], Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, Phys. Rev. Lett. 85, 3999, 2000.
- [41] P. V. Dong, H. N. Long, D. T. Nhung, and D. V. Soa, $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ model with two Higgs triplets, Phys. Rev. D 73, 035004, 2006.
- [42] A. D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh.Eksp.Teor.Fiz. 5, 32–35, 1967.
- [43] G. Beall, M. Bander, and A. Soni, Constraint on the mass scale of a leftright symmetric electroweak theory from the K_L - K_S mass difference, Phys. Rev. Lett. 48, 848, 1982.

- [44] R. N. Mohapatra, G. Senjanović, and M. Tran, Strangeness changing processes and the limit on the right-handed gauge boson mass, Phys. Rev. D 28, 546, 1983.
- [45] G. Ecker and W. Grimus, CP violation and left-right symmetry, Nucl. Phys. B258, 328, 1985.
- [46] J.-M. Frere, J. Galand, A. Le Yaouanc, L. Oliver, O. Pène, and J. C. Raynal, $K^0 \bar{K}^0$ in the $SU(2)_L \times SU(2)_R \times U(1)$ model of CP violation, Phys. Rev. D 46, 337, 1992.
- [47] M. E. Pospelov, FCNCs in left-right symmetric theories and constraints on the right-handed scale, Phys. Rev. D 56, 259, 1997.
- [48] A. Maiezza, M. Nemevšek, F. Nesti, and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82, 055022, 2010.
- [49] A. Crivellin, Effects of right-handed charged currents on the determinations of |V_{ub}| and |V_{cb}|, Phys. Rev. D 81, 031301, 2010.
- [50] A. J. Buras, K. Gemmler, and G. Isidori, Quark flavour mixing with right-handed currents: An effective theory approach, Nucl. Phys. B843, 107, 2011.
- [51] M. Blanke, A. J. Buras, K. Gemmler, and T. Heidsieck, ΔF = 2 observables and B → X_qγ decays in the left-right model: Higgs particles striking back, J. High Energy Phys. 03, 024, 2012.
- [52] G. Aad et al. (ATLAS Collaboration), Search for resonances decaying to photon pairs in 3.2 fb⁻¹ of p p collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Report No. ATLAS-CONF-2015-081.
- [53] V. Khachatryan et al. (CMS Collaboration), Search for new physics in high mass diphoton events in proton-proton collisions at 13 TeV, Report No. CMS-PAS-EXO-15-004.

- [54] F. F. Deppisch, C. Hati, S. Patra, P. Pritimita, and U. Sarkar, Implications of the diphoton excess on left-right models and gauge unification, Phys. Lett. B 757, 223, 2016.
- [55] C. Hati, Explaining the diphoton excess in alternative left-right symmetric model, Phys. Rev. D 93, 075002, 2016.
- [56] C.-H. Chen and T. Nomura, Phenomenology of an $SU(2)_1 \otimes SU(2)_2 \otimes U(1)_Y$ model at the LHC, Phys. Rev. D **95**, 015015, 2017.
- [57] G. Aad et al. (ATLAS Collaboration), Search for scalar diphoton resonances with 15.4 fb⁻¹ of data collected at $\sqrt{s} = 13$ TeV in 2015 and 2016 with the ATLAS detector, Report No. ATLAS-CONF-2016-059.
- [58] V. Khachatryan et al. (CMS Collaboration), Search for resonant production of high mass photon pairs using 12.9 fb⁻¹ of proton-proton collisions at √s = 13 TeV and combined interpretation of searches at 8 and 13 TeV, Report No. CMS-PAS-EXO-16-027.
- [59] P. V. Dong, H. N. Long, Electric charge quantization in $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ models, Int. J. Mod. Phys. A **21**, 6677, 2006.
- [60] R. A. Diaz, R. Martinez, F. Ochoa, SU(3)_C ⊗ SU(3)_L ⊗U(1)_X models for β arbitrary and families with mirror fermions, Phys. Rev. D 72, 035018, 2005.
- [61] C. A. de S. Pires, O. P. Ravinez, Electric charge quantization in a chiral bilepton gauge model, Phys. Rev. D 58, 035008, 1998.
- [62] A. Doff and F. Pisano, Charge quantization in the largest leptoquark bilepton chiral electroweak scheme, Mod. Phys. Lett. A 14, 1133, 1999.
- [63] A. Doff and F. Pisano, Quantization of electric charge, the neutrino, and generation universality, Phys. Rev. D 63, 097903, 2001.
- [64] P. V. Dong and T. D. Tham, H. T. Hung, 3 3 1 1 model for dark matter, Phys. Rev. D 87, 115003, 2013.

- [65] P. V. Dong and D. T. Huong, Tr. T. Huong, H. N. Long, Fermion masses in the economical 3 – 3 – 1 mode, Phys. Rev. D 74, 053003, 2006.
- [66] P. V. Dong and H. N. Long, The economical $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ model, Adv. High Energy Phys. **2008**, 739492, 2008.
- [67] J. G. Ferreira Jr, P. R. D. Pinheiro, C. A. de S. Pires, and P. S. Rodrigues da Silva, Minimal 3-3-1 model with only two Higgs triplets, Phys. Rev. D 84, 095019, 2011.
- [68] M. B. Tully and G. C. Joshi, Generating neutrino mass in the 3-3-1 model, Phys. Rev. D 64, 011301(R).
- [69] P. V. Dong and D. T. Huong, F. S. Queiroz, N. T. Thuy, *Phenomenology of the* 3 3 1 1 *model*, Phys. Rev. D 90, 075021, 2014.
- [70] D. T. Huong and P. V. Dong, C. S. Kim and N. T. Thuy, Inflation and leptogenesis in the 3 – 3 – 1 – 1 model, Phys. Rev. D 91, 055023, 2015.
- [71] M. B. Voloshin, On compatibility of small mass with large magnetic moment of neutrino, Sov. J. Nucl. Phys. 48, 512, 1988.
- [72] Fayyazuddin, Riazuddin, SU(4) unification of electroweak interactions, Phys. Rev. D 30, 1041, 1984.
- [73] A. Doff and F. Pisano, Minimal extended flavor groups, matter fields chiral representations, and the flavor question, Mod. Phys. Lett. A 15, 1471, 2000.
- [74] A. Doff and F. Pisano, Quantization of electric charge, the neutrino, and generation universality, Phys. Rev. D 63, 097903, 2001.
- [75] F. Pisano, J. A. Silva-Sobrinho, M.D. Tonasse, Neutrinos and electromagnetic gauge invariance, Phys. Lett. B 388, 338, 1996.
- [76] F. Pisano, S.Shelly Sharma, Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions, Phys. Rev. D 57, 5670, 1998.

- [77] L. A. Sanchez, F. A. Perez, and W. A. Ponce, $SU(3)_C \otimes SU(4)_L \otimes U(1)_X$ model for three families, Eur. Phys. J. C **35**, 259, 2004.
- [78] A. E. Bernardini, The gauge boson masses for a minimal $SU(4)_{(EW)} \otimes U(1)_{(B-l)}$ model for electroweak interactions with left-right symmetry, J. Phys. G **32**, 2313, 2006.
- [79] Fayyazuddin, Electroweak unification of quarks and leptons in a gauge group $SU(3)_C \otimes SU(4) \otimes U(1)_X$, Int. J. Mod. Phys. A **27**, 1250117, 2012.
- [80] D. Cogollo, Muon anomalous magnetic moment in a $SU(4) \otimes U(1)_N$ model, Int. J. Mod. Phys. A **30**, 1550038, 2015.
- [81] M. C. Rodriguez, A supersymmetric 3 4 1 model, Int. J. Mod. Phys.
 A 22, 6147, 2007.
- [82] P. V. Dong, Unifying the electroweak and B L interactions, Phys. Rev. D 92, 055026, 2015.
- [83] P. V. Dong and D. T. Si, *Kinetic mixing effect in the* 3-3-1-1 *model*, Phys. Rev. D 93, 115003, 2016.
- [84] D. T. Huong and P. V. Dong, Neutrino masses and superheavy dark matter in the 3-3-1-1 model, Eur. Phys. J. C 77, 204, 2017.
- [85] P. V. Dong and H. N. Long, $U(1)_Q$ invariance and $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ models with β arbitrary, Eur. Phys. J. C 42, 325, 2005.
- [86] A. G. Dias, J. C. Montero and V. Pleitez, Closing the $SU(3)_L \otimes U(1)_X$ symmetry at the electroweak scale, Phys. Rev. D **73**, 113004, 2006.
- [87] A. G. Dias, R. Martinez, V. Pleitez, Concerning the Landau pole in 3-3-1 models, Eur. Phys. J. C 39, 101, 2005.
- [88] A. G. Dias, Evading the few TeV perturbative limit in 3-3-1 models, Phys. Rev. D 71, 015009, 2005.

- [89] G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1, 2012.
- [90] S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30, 2012.
- [91] G. Aad et al. (ATLAS Collaboration), Measurements of the Higgs boson production and decay rates and coupling strengths using p p collision data at √s = 7 and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76, 6, 2016.
- [92] S. Chatrchyan et al. (CMS Collaboration), Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Report No. CMS-PAS-HIG-14-009.
- [93] F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B477, 321, 1996.
- [94] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014, arXiv:1412.7515 [hep-ex].
- [95] A. J. Buras, F. De Fazio, J. Girrbach, R. Knegjens, and M. Nagai, The anatomy of neutral scalars with FCNCs in the flavour precision era, J. High Energy Phys. 06, 111, 2013.
- [96] R. A. Diaz, R. Martinez, and F. Ochoa, Scalar sector of the $SU(3)_C \otimes$ $SU(3)_L \otimes U(1)_X$ model, Phys. Rev. D 69, 095009, 2004.
- [97] W. A. Ponce, L. A. Sanchez, Systematic study of the $SU(3)_C \otimes SU(4)_L \otimes U(1)_X$ gauge symmetry, Mod. Phys. Lett. A **22**, 435, 2007.

- [98] L. A. Sanchez, L. A. Wills-Toro, and J. I. Zuluaga, SU(4)_L⊗U(1)_X threefamily model for the electroweak interaction, Phys. Rev. D 77, 035008, 2008.
- [99] W. A. Ponce and D. A. Gutierrez, L. A. Sanchez, $SU(3)_C \otimes SU(4)_L \otimes U(1)_X$ without exotic electric charges, Phys. Rev. D 69, 055007, 2004.
- [100] D. Cogollo, Exotic leptons: Collider and muon magnetic moment constraints, Int. J. Mod. Phys. A 30, 1550187, 2015.
- [101] J. L. Nisperuza and L. A. Sanchez, *Effects of quark family nonuniver*sality in $SU(3)_C \otimes SU(4)_L \otimes U(1)_X$ modes, Phys. Rev. D 80, 035003, 2009.
- [102] A. G. Dias, P. R. D. Pinheiro, C. A. de S. Pires, P. S. R. da Silva, A compact 341 model at TeV scale, Ann. Phys. (Amsterdam) 349, 232, 2014.
- [103] Riazuddin, Fayyazuddin, $SU(4)_L \times U(1)_X$ model for electroweak unification and sterile neutrinos, Eur. Phys. J. C 56, 389, 2008.
- [104] A. Jaramillo and L. A. Sanchez, Flavor changing neutral currents, CP violation, and implications for some rare decays in a $SU(4)_L \otimes U(1)_X$ extension of the standard model, Phys. Rev. D 84, 115001, 2011.
- [105] S. Villada and L. A. Sanchez, Phenomenology of a three-family model with gauge symmetry SU(3)_C ⊗ SU(4)_L ⊗ U(1)_X, J. Phys. G 36, 115002, 2009.
- [106] S-h. Nam, K.Y. Lee, Y. Y. Keum, $SU(4)_L \times U(1)_X$ models with little Higgs mechanism, Phys. Rev. D 82, 105027, 2010.
- [107] K. Y. Lee, S.-h. Nam, LHC Phenomenology of Z' and Z'' bosons in the $SU(4)_L \times U(1)_X$ little Higgs model, J. Phys. G 42, 125003, 2015.

- [108] D. Chang and H. N. Long, Interesting radiative patterns of neutrino mass in an SU(3)_C ⊗SU(3)_L ⊗U(1)_X model with right-handed neutrinos, Phys. Rev. D 73, 053006, 2006.
- [109] P. V. Dong and H. N. Long, H. T. Hung, Question of Peccei-Quinn symmetry and quark masses in the economical 3 - 3 - 1 model, Phys. Rev. D 86, 033002, 2012.
- [110] W. A. Ponce and Y. Giraldo, L. A. Sanchez, Minimal scalar sector of 3-3-1 models without exotic electric charges, Phys. Rev. D 67, 075001, 2003.
- [111] A. A. Machado and F. Pisano, Charged right-handed currents in the leptoquark-bilepton flavordynamics chiral models, Mod. Phys. Lett. A 14, 2223, 1999.
- [112] D. Dumm, F. Pisano, V. Pleitez, Flavor changing neutral currents in $SU(3) \otimes U(1)$ models, Mod. Phys. Lett. A **09**, 1609, 1994.
- [113] J. T. Liu, Generation nonuniversality and flavor-changing neutral currents in the SU(3)_C × SU(3)_L × U(1)_X model, Phys. Rev. D 50, 542, 1994.
- [114] A. C. B. Machado, J. C. Montero, and V. Pleitez, *Flavor-changing neutral currents in the minimal* 3 3 1 model revisited, Phys. Rev. D 88, 113002, 2013.
- [115] H. N. Long and V. T. Van, Quark family discrimination and flavourchanging neutral currents in the $SU(3)_C \otimes SU(3)_L \otimes U(1)$ model with right-handed neutrinos, J. Phys. G 25, 2319, 1999.
- [116] F. Cuypers and S. Davidson, Bileptons: present limits and future prospects, Eur. Phys. J. C 2, 503, 1998.
- [117] P. H. Frampton and B. H. Lee, SU(15) grand unification, Phys. Rev. Lett. 64, 619, 1990.

- [118] H. Fujii, Y. Mimura, K. Sasaki, and T. Sasaki, Muonium hyperfine structure and the decay μ⁺ → e⁺+ν
 _e+ν_μ in models with dilepton gauge bosons, Phys. Rev. D 49, 559, 1994.
- [119] V. Pleitez, Remark on the muonium to antimuonium conversion in a 3-3-1 model, Phys. Rev. D 61, 057903, 2000.
- [120] H. K. Dreiner, H. E. Haber, S. P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494, 1, 2010.

PHỤ LỤC A. TƯỞNG TÁC VÔ HƯỚNG-GAUGE BOSON

Trong phần này, chúng tôi liệt kê hệ số đỉnh tương tác giữa các gauge boson và các vô hướng trong mô hình 3 - 2 - 3 - 1. Các bảng A1; A2, A3; A4; A5; A6; A7, A8, A9, A10; A11, A12, A13, A14, A15, A16; A17, A18, A19, A20, A21, A22 tương ứng với các kiểu đỉnh khác nhau.

Đỉnh	Hệ số	Đỉnh	Hệ số				
$X_{R\mu}^{+q} \mathcal{A} \overleftrightarrow{\partial}^{\mu} H_6^{-q}$	$\frac{ig_R c_{\varphi_q} s_{\alpha_1}}{2}$	$X_{R\mu}^{+q} \mathcal{A} \overleftrightarrow{\partial}^{\mu} H_7^{-q}$	$\frac{ig_Rs_{\alpha_1}s_{\varphi_q}}{2}$				
$X_{R\mu}^{+q}H_1\overleftrightarrow{\partial}^{\mu}H_6^{-q}$	$\frac{-g_R c_{\alpha_1} c_{\varphi_q}}{2}$	$X_{R\mu}^{+q}H_1\overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$\frac{-g_R c_{\alpha_1} (w s_{\varphi_q} - u c_{\alpha_2} c_{\varphi_q})}{2w}$				
$X_{R\mu}^{+q}H_2\overleftrightarrow{\partial}^{\mu}H_6^{-q}$	$\frac{g_R c_{\varphi_q} s_{\alpha_1}}{2}$	$X_{R\mu}^{+q}H_2\overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$\frac{-g_R s_{\alpha_1} (u c_{\alpha_2} c_{\varphi_q} - w s_{\varphi_q})}{2w}$				
$X_{R\mu}^{+q}H_6^q \overleftrightarrow{\partial}^{\mu} \Xi_{33}^{-2q}$	$g_R s_{lpha_2} s_{arphi_q}$	$X_{R\mu}^{+q}H_3\overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$\frac{g_R c_{\varphi q} (c_{\alpha_2} c_{\varphi} + \sqrt{2} s_{\alpha_2} s_{\varphi})}{2}$				
$X_{R\mu}^{+q}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_5^+$	$\frac{g_R s_{\alpha_1}}{\sqrt{2}}$	$X_{R\mu}^{+q}H_4\overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$\frac{g_R c_{\varphi_q}(c_{\alpha_2} s_{\varphi} - \sqrt{2} c_{\varphi} s_{\alpha_2})}{2}$				
$X_{R\mu}^{+q}H_5^{-}\overleftrightarrow{\partial}^{\mu}\Xi_{23}^{1-q}$	$\frac{-g_R(v^2-u^2)}{2\sqrt{u^2+v^2}\Lambda}$	$X_{R\mu}^{+q}H_7^q \overleftrightarrow{\partial}^{\mu} \Xi_{33}^{-2q}$	$-g_R c_{arphi_q} s_{lpha_2}$				
$Y_{R\mu}^{1+q} \Xi_{22}^{} \overleftrightarrow{\partial}^{\mu} \Xi_{23}^{1-q}$	$-g_R$	$Y_{R\mu}^{1+q} \Xi_{23}^{q-1} \overleftrightarrow{\partial}^{\mu} \Xi_{33}^{-2q}$	$-g_R$				
$Y_{R\mu}^{1+q}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}\mathcal{A}$	$\frac{-ig_R c_{\alpha_1}}{2}$	$Y_{R\mu}^{1+q}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_1$	$\frac{g_R s_{\alpha_1}}{2}$				
$Y_{R\mu}^{1+q}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_2$	$\frac{g_R c_{\alpha_1}}{2}$	$Y_{R\mu}^{1+q}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_3$	$rac{-g_R v c_{arphi}}{2w}$				
$Y_{R\mu}^{1+q}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_4$	$rac{-g_R v s_{arphi}}{2w}$	$Y_{R\mu}^{1+q}H_5^{-\overleftrightarrow{\partial}\mu}H_6^{-q}$	$rac{-g_R c_{lpha_1} c_{arphi_q}}{\sqrt{2}}$				
$W_{2\mu}^+ H_6^q \overleftrightarrow{\partial}^{\mu} H_8^{-1-q}$	$\frac{g_L s_\xi c_{\varphi_q}}{\sqrt{2}}$	$W_{1\mu}^+ H_5^- \overleftrightarrow{\partial}^{\mu} \mathcal{A}$	$\frac{i(g_L c_{\xi} + g_R s_{\xi} s_{2\alpha_1})}{2}$				
$W_{1\mu}^+ H_5^- \overleftrightarrow{\partial}^\mu H_1$	$\frac{g_R s_\xi c_{2\alpha_1}}{2}$	$W_{1\mu}^+ H_5^- \overleftrightarrow{\partial}^\mu H_2$	$\frac{-(g_Rs_\xi s_{2\alpha_1}-g_Lc_\xi)}{2}$				
$W_{1\mu}^+ H_5^- \overleftrightarrow{\partial}^\mu H_3$	$\frac{-g_R(v^2-u^2)s_\xi s_\varphi}{2s\sqrt{u^2+v^2}\Lambda}$	$W_{1\mu}^+ H_5^- \overleftrightarrow{\partial}^\mu H_4$	$\frac{-g_R(u^2-v^2)s_\xi c_\varphi}{2t\sqrt{u^2+v^2}\Lambda}$				
$W_{1\mu}^+ H_6^q \overleftrightarrow{\partial}^{\mu} H_8^{-1-q}$	$\frac{2\sqrt{u^{a}+v^{A}}}{\frac{g_{L}c_{\xi}c_{\varphi_{q}}}{\sqrt{2}}}$	$W_{2\mu}^+ H_5^- \overleftrightarrow{\partial}^{\mu} \mathcal{A}$	$\frac{i(g_L s_{\xi} - g_R c_{\xi} s_{2\alpha_1})}{2}$				
$W_{1\mu}^{+}\Xi_{22}^{}\overleftrightarrow{\partial}^{\mu}H_{5}^{+}$	$\frac{-g_R(u^2-v^2)s_\xi}{\sqrt{2}\sqrt{u^2+v^2}\Lambda}$	$W_{1\mu}^{+}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}H_{6}^{-q}$	$\frac{-g_R s_{\alpha_2} s_\xi s_{\varphi_q}}{\sqrt{2}}$				
$W_{1\mu}^{+}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}H_{7}^{-q}$	$\frac{g_R s_\xi c_{\varphi_q} s_{\alpha_2}}{\sqrt{2}}$	$W_{2\mu}^+ \Xi_{22}^{} \overleftrightarrow{\partial}^{\mu} H_5^+$	$\frac{-g_R(v^2-u^2)c_\xi}{\sqrt{2}\sqrt{u^2+v^2}\Lambda}$				
$W_{2\mu}^{+}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}H_{6}^{-q}$	$\frac{g_R c_\xi s_{\varphi_q} s_{\alpha_2}}{\sqrt{2}}$	$W_{2\mu}^{+}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}H_{7}^{-q}$	$\frac{-g_R c_\xi c_{\varphi q} s_{\alpha_2}}{\sqrt{2}}$				
$W_{2\mu}^+ H_5^- \overleftrightarrow{\partial}^{\mu} H_2$	$\frac{g_L s_{\xi} + g_R c_{\xi} s_{2\alpha_1}}{2}$	$W_{2\mu}^+ H_5^- \overleftrightarrow{\partial}^{\mu} H_3$	$\frac{-g_R(u^2-v^2)c_\xi s_\varphi}{2\sqrt{u^2+v^2}\Lambda}$				
$W_{2\mu}^+ H_5^- \overleftrightarrow{\partial}^{\mu} H_4$	$\frac{-g_R(v^2-u^2)c_\xi c_\varphi}{2\sqrt{u^2+v^2}\Lambda}$	$Y_{R\mu}^{1+q}H_5^{-}\overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$\frac{-g_R(v^2-u^2)c_{\varphi_q}s_{\alpha_2}}{2\sqrt{u^2+v^2}\Lambda}$				
$W_{2\mu}^+ H_5^- \overleftrightarrow{\partial}^{\mu} H_1$	$\frac{-g_R c_\xi c_{2\alpha_1}}{2}$		$\frac{-g_R(ws_{\varphi_q} - uc_{\alpha_2}c_{\varphi_q})c_{\alpha_1}}{\sqrt{2}w}$				
$X_{R\mu}^{+q}H_{3}\overleftarrow{\partial}$	$\gamma^{\mu}H_6^{-q}$	$-g_R[w(c_{\alpha_2}c_{\varphi}+$	$\frac{\overline{2}s_{\alpha_2}s_{\varphi})s_{\varphi_q} - uc_{\varphi_q}c_{\varphi}]}{2w}$				
$X_{R\mu}^{+q}H_4\overleftarrow{\partial}$	$\gamma_{\mu}H_{6}^{-q}$	$-g_R[w(c_{\alpha_2}s_{\varphi}-$	$\frac{\overline{2s_{\alpha_2}}c_{\varphi})s_{\varphi_q} - uc_{\varphi_q}s_{\varphi}]}{2w}$				
$W_{1\mu}^+ H_7^q \overleftrightarrow{\partial}^{\mu}$	${}^{\iota}H_{8}^{-1-q}$	$\frac{-[(g_L u c_{\xi} + g_R v s_{\xi}) c_{\alpha_2} c_{\varphi_q} - g_L w c_{\xi} s_{\varphi_q}]}{\sqrt{2}w}$					
$W_{2\mu}^+ H_7^q \overleftrightarrow{\partial}^{\mu}$	${}^{\iota}H_{8}^{-1-q}$	$-[(g_L us_{\xi} - g_R vc_{\xi}$	$\frac{1}{\sqrt{2}w} \frac{1}{\sqrt{2}w} \frac{1}$				

Bảng A1. Tương tác của một gauge boson tích điện với hai trường vô hướng.

Đỉnh	Hệ số
$A_{\mu}\Xi_{22}^{}\overleftrightarrow{\partial}^{\mu}\Xi_{22}^{++}$	$2g_Ls_W$
$A_{\mu}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}\Xi_{23}^{1-q}$	$-g_L(q-1)s_W$
$A_{\mu} \Xi_{33}^{2q} \overleftarrow{\partial}^{\mu} \Xi_{33}^{-2q}$	$-2g_Lqs_W$
$A_{\mu}H_{5} \stackrel{\frown}{\longrightarrow} H_{5}^{+}$	$g_L s_W$
$A_{\mu}H_{6}^{q}\overleftarrow{\partial}^{\mu}H_{6}^{-q}$	$-g_L q s_W$
$A_{\mu}H_{7}^{q}\overleftarrow{\partial}^{\mu}H_{7}^{-q}$	$-g_L qs_W$
$A_{\mu}H_{8}^{-1-q} \overset{\circ}{\partial}'^{\mu}H_{8}^{1+q} \xrightarrow{\leftrightarrow}$	$g_L(1+q)s_W$
$Z_{\mu}H_{2} \stackrel{\circ}{\partial} \stackrel{\mu}{\to} \mathcal{A}$	$\frac{-ig_L}{2c_W}$
$Z_{\mu}H_5^{-}\partial'^{\mu}H_5^+$	$\frac{g_L c_2 W}{2c_W}$
$Z_{\mu}H_{6}^{q}\overleftrightarrow{\partial}^{\mu}H_{6}^{-q}$	$\frac{-g_L[2qc_{2W}+\sqrt{3\beta}-c_2\varphi_q]}{4c_W}$
$Z_{\mu}H_{6}^{q}\overleftrightarrow{\partial}^{\mu}H_{7}^{-q}$	$\frac{-g_L c \varphi_q \left[u c \alpha_2 c \varphi_q - w s \varphi_q \right]}{2 w c_W}$
$Z_{\mu}H_7^q \overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$g_L q s_W t_W$
$Z_{\mu}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_8^{1+q}$	$\frac{-g_L[q - (1 + q)c_{2W}]}{2c_W}$
$Z_{\mu}\Xi_{22}^{}\overleftrightarrow{\partial}^{\mu}\Xi_{22}^{++}$	$-2g_Ls_Wt_W$
$Z_{\mu}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}\Xi_{23}^{1-q}$	$-g_L(1-q)s_Wt_W$
$Z_{\mu}\Xi_{33}^{-2q}\overleftrightarrow{\partial}^{\mu}\Xi_{33}^{2q}$	$-2g_Lqs_Wt_W$
$\mathcal{Z}_{1\mu}H_1\overleftrightarrow{\partial}^{\mu}\mathcal{A}$	$\frac{-ig_L\sqrt{t_R^2+t_X^2\beta^2c_\epsilon s_{2\alpha_1}}}{2\sqrt{2}}$
$\mathcal{Z}_{1\mu}H_2\overleftrightarrow{\partial}^{\mu}\mathcal{A}$	$\frac{ig_L\sqrt{t_R^2+t_X^2\beta^2}[\sqrt{3s_\epsilon}t_W-t_Xc_{2\alpha_1}c_\epsilon]}{2\sqrt{2}}$
$\mathcal{Z}_{1\mu}H_{3}\overleftrightarrow{\partial}^{\mu}\mathcal{A}$	$rac{ig_L u \sqrt{t_R^2 + t_X^2 eta^2 s_{lpha_1} c_\epsilon c_arphi}}{2}$
$\mathcal{Z}_{1\mu}H_4\overleftrightarrow{\partial}^{\mu}\mathcal{A}$	$\frac{\frac{\sqrt{3w}}{t_R^2 + t_R^2\beta^2} s_{\alpha_1} c_{\epsilon} s_{\varphi}}{\frac{i g_L u \sqrt{t_R^2 + t_R^2\beta^2} s_{\alpha_1} c_{\epsilon} s_{\varphi}}{\frac{1}{2}}$
$\mathcal{Z}_{1} = H_{z}^{-} \overleftrightarrow{\partial}^{\mu} H_{z}^{+}$	$\frac{-g_L \sqrt{t_R^2 + t_X^2 \beta^2} [t_X c_{2\alpha_1} c_{\epsilon} - \sqrt{3} s_{\epsilon} t_W]}{-g_L \sqrt{t_R^2 + t_X^2 \beta^2} [t_X c_{2\alpha_1} c_{\epsilon} - \sqrt{3} s_{\epsilon} t_W]}$
$\mathcal{Z}_{1\mu} = \mathcal{Z}_{5} \oplus \mathcal{Z}_{5} \oplus \mathcal{Z}_{5}$	$\frac{2\sqrt{3}t_X}{-g_L[3t_X\beta s_\epsilon t_W - (2t_B^2 - t_X^2\beta^2)c_\epsilon]}$
$\mathcal{Z}_{1\mu}\Pi_6$ O Π_6	$2\sqrt{3}\sqrt{t_R^2 + t_X^2\beta^2}$
$\mathcal{Z}_{1\mu}H_6^q \overleftrightarrow{\partial}^{\mu}H_7^{-q}$	$-\frac{g_{L}s_{2\varphi q}\left[(\sqrt{3t_{R}^{2}-t_{X}^{2}\beta(2q-2+3c_{2\alpha_{2}}))c_{\epsilon}t_{X}+(3t_{X}^{2}-(3t_{R}^{2}+4(1+q+q^{2})t_{X}^{2})c_{2\alpha_{2}})s_{\epsilon}t_{W}\right]}{12t_{Y}\sqrt{t_{R}^{2}+t_{Y}^{2}\beta^{2}}}$
	$g_L u \sqrt{t_R^2 + t_X^2 \beta^2 c_{\alpha_2}} [\sqrt{3s_\epsilon t_W} - t_X c_\epsilon]$
$a \leftrightarrow a$	$\frac{1}{2\sqrt{3}t_Xw} = \frac{2\sqrt{3}t_Xw}{\left[(\sqrt{3}t_D^2 + t_Y^2)\left(4q - 1 + 3c_2\phi_{0}\right)\right)c_ft_Y + (6qt_Y^2 + (3t_D^2 + 4(1+q+q^2)t_Y^2)c_2\phi_{0}\right)s_ft_W}\right]$
$\mathcal{Z}_{1\mu}H_7^q \partial^{\mu}H_7^{-q}$	$5L((+R+X+(1++2d_2))(+X+(+1+Y+X+2d_2))(+K+(+1+Y+X+2d_2)))(+K+(+1+X+X+2d_2))(+K+(+1+X+X+2d_2))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+X+2d_2)))(+K+(+1+X+2d_2)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))(+K+(+1+X+A)))((+K+(+1+X+A))))((+K+(+1+X+A))))((+K+(+1+X+A))))))((+K+(+K+X+A))))((+K+(+K+K+A))))))))))))))((+K+(+K+(+K+K+A))))))))))$
$\mathcal{Z}_{1\mu}H_8^{-1-q}\overleftrightarrow{\partial}^{\mu}H_8^{1+q}$	$\frac{-g_L[(2t_R^2 - t_X^2\beta^2)c_\epsilon - 3t_X\beta s_\epsilon t_W]}{\sqrt{2}}$
a = - u = + +	$g_{L}[(3t_{P}^{2}+2(2q(q+1)-1)t_{Y}^{2})s_{\epsilon}t_{W}-(\sqrt{3}t_{P}^{2}-2(q-1)t_{Y}^{2}\beta)c_{\epsilon}t_{X}]$
$\mathcal{Z}_{1\mu}\Xi_{22} O \stackrel{\mu}{=} \Xi_{22}^{++}$	$\frac{1}{2^{1-R}} \frac{1}{\sqrt{t_R^2 + t_X^2 \beta^2}} \frac{1}{\sqrt{t_R^2 + t_X^2 \beta^2}}$
$\mathcal{Z}_{1\mu}\Xi_{23}^{q-1}\overleftrightarrow{\partial}^{\mu}\Xi_{23}^{1-q}$	$\frac{g_L[(\sqrt{3}t_R^2 + 4(q-1)\beta t_X^2)c_\epsilon t_X + (3t_R^2 + 2(q(5+2q)-1)t_X^2)s_\epsilon t_W]}{6t_Y\sqrt{t_R^2 + t_Y^2\beta^2}}$
$\mathcal{Z}_{1\mu}\Xi_{33}^{-2q}\overleftrightarrow{\partial}^{\mu}\Xi_{33}^{2q}$	$\frac{-2g_L[(\sqrt{3}t_R^2 + (q-1)\beta t_X^2)c_\epsilon + 3qt_Xs_\epsilon t_W]}{2\sqrt{(2+2)^2}}$
σ' II $^{\mu}$	$-ig_L\sqrt{t_R^2+t_X^2eta^2}s_{2lpha_1}s_\epsilon$
$\mathcal{Z}_{1\mu}H_1 \ \mathcal{O} \cap \mathcal{A}$	$-ia_{1}\sqrt{t^{2}+t^{2}-\beta^{2}}[t_{1}x_{2}c_{2}-s_{2}+\sqrt{3}c_{3}t_{3}x_{4}]$
${\cal Z}_{1\mu}^{\prime} H_2 \dot{\partial}^{\prime\mu} {\cal A}$	$\frac{2\sqrt{3}t_X}{2\sqrt{3}t_X}$
$\mathcal{Z}_{1\mu}' H_3 \overleftrightarrow{\partial}^{\mu} \mathcal{A}$	$\frac{ig_L u \sqrt{t_R^2 + t_X^2 \beta^2 c_\varphi s_{\alpha_1} s_\epsilon}}{\sqrt{3}w}$
${\cal Z}_{1\mu}^{\prime} H_4 \overleftrightarrow{\partial}^{\mu} {\cal A}$	$rac{ig_L u \sqrt{t_R^2 + t_X^2 eta^2} s_arphi s_{lpha_1} s_\epsilon}{\sqrt{3}w}$
$\mathcal{Z}_{1\mu}^{\prime}H_5^{-}\overleftrightarrow{\partial}^{\mu}H_5^+$	$\frac{-g_L\sqrt{t_R^2+t_X^2\beta^2}[t_Xc_{2\alpha_1}s_\epsilon+\sqrt{3}c_\epsilon t_W]}{2\sqrt{3}t_X}$

Bảng A2. Tương tác của một gauge boson trung hòa với hai trường vô hướng.

Đỉnh	Hệ số
$\mathcal{Z}_{1\mu}' H_6^q \overleftrightarrow{\partial}^{\mu} H_6^{-q}$	$\frac{g_L[(2t_R^2 - t_X^2\beta^2)s_\epsilon + 3t_X\beta c_\epsilon t_W]}{2\sqrt{3}\sqrt{t_R^2 + t_X^2\beta^2}}$
$\mathcal{Z}_{1\mu}^{\prime}H_{6}^{q}\overleftrightarrow{\partial}^{\mu}H_{7}^{-q}$	$\frac{g_L s_{2\varphi_q} [(\sqrt{3}t_R^2 - t_X^2 \beta (2q - 2 + 3c_{2\alpha_2}))s_\epsilon t_X - (3t_X^2 - (3t_R^2 + 4(1 + q + q^2)t_X^2)c_{2\alpha_2})c_\epsilon t_W]}{12t_1 - \sqrt{t_R^2 + t_R^2 - q_2^2}}$
	$-\frac{g_L u \sqrt{t_R^2 + t_X^2 \beta^2 c_{\alpha_2}} [\sqrt{3}c_e t_W + t_X s_e]}{2}$
$\mathcal{Z}'_{1,\mu}H^q_{\pi}\overleftrightarrow{\partial}^{\mu}H^{-q}_{\pi}$	$\frac{2\sqrt{3}t_Xw}{g_L[(\sqrt{3}t_R^2 + t_X^2\beta(4q - 1 + 3c_{2\alpha_2}))s_\epsilon t_X - (6qt_X^2 + (3t_R^2 + 4(1 + q + q^2)t_X^2)c_{2\alpha_2})c_\epsilon t_W]}$
$\mathcal{Z}' H^{-1-q} \overleftrightarrow{\partial}^{\mu} H^{1+q}$	$\frac{{}^{6t}_X\sqrt{t_R^2+t_X^2\beta^2}}{-g_L[3t_X\beta c_\epsilon t_W+(2t_R^2-t_X^2\beta^2)s_\epsilon]}$
$\mathcal{L}_{1\mu} \mathcal{L}_{8} \longrightarrow \mathcal{L}_{8}$	$\frac{2\sqrt{3}\sqrt{t_R^2 + t_X^2\beta^2}}{-g_L[(3t_P^2 + 2(2q(q+1)-1)t_Y^2)c_{\epsilon}t_W + (\sqrt{3}t_P^2 - 2(q-1)t_Y^2\beta)s_{\epsilon}t_X]}$
$\mathcal{Z}_{1\mu} \Xi_{22} \partial^{\mu} \Xi_{22}^{++}$	$\frac{-1}{3} \frac{1}{2} 1$
$\mathcal{Z}_{1\mu}^{\prime}\Xi_{23}^{q-1}{\partial}^{\prime}{}^{\mu}\Xi_{23}^{1-q}$	$\frac{g_{L}((\sqrt{3t_{R}+4}(q-1)\beta t_{X}))\epsilon\epsilon t_{X} - (3t_{R}+2(q(3+2q)-1)t_{X})t_{\epsilon}\epsilon t_{W})}{\epsilon^{-2}}$
$\mathcal{Z}_{1\mu}^{\prime}\Xi_{33}^{-2q}\overleftrightarrow{\partial}^{\mu}\Xi_{33}^{2q}$	$\frac{-2g_L[(\sqrt{3}t_R^2 + (q-1)\beta t_X^2)s_\epsilon - 3qt_X c_\epsilon t_W]}{3\sqrt{t_R^2 + t_X^2\beta^2}}$

Bảng A3. Tương tác của một gauge boson trung hòa với hai trường vô hướng (tiếp).

Đỉnh	Hô số	Đỉnh	Hà số
Diiii	110, 50	Diiii	
$H_1 X^q X^{-q}$	$\frac{ig_R uc_{\alpha_1}}{2}$	$H_1 W_1^+ W_1^-$	$\frac{ig_L[u^2+v^2+2t_Ruvs_{2\xi}]}{2\sqrt{2+2}}$
$H_1 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 v s_{\alpha_1}}{2}$	$H_1 W_1^+ W_2^-$	$\frac{ig_L^2[(1-t_R^2)(u^2+v^2)s_{2\xi}-4t_Ruvc_{2\xi}]}{4\sqrt{u^2+v^2}}$
$\Xi_{33}^{-2q} X^q X^q$	$i\sqrt{2}g_R^2\Lambda$	$H_1 W_2^+ W_2^-$	$\frac{ig_L g_R[t_R(u^2+v^2)-2uvs_{2\xi}]}{2\sqrt{u^2+v^2}}$
$H_2 X^q X^{-q}$	$\frac{-ig_R^2 u s_{\alpha_1}}{2}$	$H_2 W_1^+ W_1^-$	$\frac{ig_L g_R (u^2 - v^2) s_{2\xi}}{2\sqrt{u^2 + v^2}}$
$H_2 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 v c_{\alpha_1}}{2}$	$H_2 W_1^+ W_2^-$	$\frac{ig_L g_R (v^2 - u^2) c_{2\xi}}{2\sqrt{u^2 + v^2}}$
$\mathcal{A}W_1^+W_2^-$	$\frac{g_L g_R (u^2 - v^2)}{2\sqrt{u^2 + v^2}}$	$H_2 W_2^+ W_2^-$	$\frac{ig_L g_R (v^2 - u^2) s_{2\xi}}{2\sqrt{u^2 + v^2}}$
$H_3 X^q X^{-q}$	$\frac{ig_R^2(wc_{\varphi}-2\Lambda s_{\varphi})}{2}$	$H_3 W_1^+ W_1^-$	$-ig_R^2\Lambda s_\xi^2 s_arphi$
$H_3Y^{1+q}Y^{-1-q}$	$rac{ig_R^2 w c_{arphi}}{2}$	$H_3 W_1^+ W_2^-$	$ig_R^2\Lambda c_\xi s_\xi s_arphi$
$\Xi_{22}^{++}W_1^-W_1^-$	$i\sqrt{2}g_R^2\Lambda s_\xi^2$	$H_3 W_2^+ W_2^-$	$-ig_R^2\Lambda s_arphi$
$H_4 X^q X^{-q}$	$rac{ig_R^2(ws_arphi+2\Lambda c_arphi)}{2}$	$H_4 W_1^+ W_1^-$	$ig_R^2\Lambda s_\xi^2 c_arphi$
$H_4 Y^{1+q} Y^{-1-q}$	$rac{ig_R^2 w s_arphi}{2}$	$H_4 W_1^+ W_2^-$	$-ig_R^2\Lambda c_\xi s_\xi c_arphi$
$\Xi_{22}^{++}W_1^-W_2^-$	$-i\sqrt{2}g_R^2\Lambda c_\xi s_\xi$	$H_4 W_2^+ W_2^-$	$ig_R^2\Lambda c_arphi$
$\Xi_{22}^{++}W_2^-W_2^-$	$i\sqrt{2}g_R^2\Lambda$	$\Xi_{23}^{1-q}W_1^-X^q$	$-ig_R^2\Lambda s_{m \xi}$
$H_5^- X^{-q} Y^{1+q}$	$\frac{ig_R^2 v s_{\alpha_1}}{\sqrt{2}}$	$H_8^{1+q}W_1^-X^{-q}$	$\frac{-ig_Lg_R[uc_{\xi}+t_Rvs_{\xi}]}{\sqrt{2}}$
$H_7^q W_1^+ Y^{-1-q}$	$-ig_R^2\Lambda s_{\alpha_2}c_{\varphi_q}s_{\xi}$	$H_6^q W_1^+ Y^{-1-q}$	$-\frac{ig_Lg_R[t_Rs_{\xi}(wc_{\alpha_2}s_{\varphi_q}-uc_{\varphi_q})-vc_{\xi}c_{\varphi_q}]}{\sqrt{2}}$
$H_7^q W_2^+ Y^{-1-q}$	$ig_R^2\Lambda s_{lpha_2}c_\xi c_{\varphi_q}$	$H_{6}^{q}W_{2}^{+}Y^{-1-q}$	$-\frac{ig_Lg_R[t_Rc_{\xi}(uc_{\varphi_q}-wc_{\alpha_2}s_{\varphi_q})-vs_{\xi}c_{\varphi_q}]}{\sqrt{2}}$
$\Xi_{23}^{1-q}W_2^-X^q$	$ig_R^2\Lambda c_\xi$	$H_8^{1+q}W_2^{-}X^{-q}$	$\frac{ig_Lg_R[t_Rvc_{\xi}-us_{\xi}]}{\sqrt{2}}$

Bảng A4. Tương tác của một trường vô hướng với hai gauge boson tích điện.

Đỉnh	Hệ số
$H_{5}^{-}W_{1}^{+}Z$	$\frac{ig_Lg_R(u^2-v^2)s_{\xi}}{\sqrt{2-z^2}}$
H^-W^+	$\frac{2c_W\sqrt{u^2+v^2}}{-ig_L^2c_\epsilon[6uv(t_R^2+t_X^2\beta^2)c_\xi-t_R(3t_R^2(u^2-3v^2)+t_X^2(3(1-4q^2)v^2+\sqrt{3}(5-2q)u^2\beta))s_\xi]}$
$m_5 w_1 \mathcal{L}_1$	$\frac{1}{6\sqrt{3}\sqrt{(u^2+v^2)(t_R^2+t_X^2\beta^2)}}$
	$+\frac{ig_Lg_R[3t_R^2+(7+4q+4q^2)t_X^2](u^2-v^2)s_\epsilon s_\xi t_W}{c_t}$
$u = u u + \sigma l$	$-ig_L^2 s_{\epsilon} [6uv(t_R^2 + t_X^2 \beta^2)c_{\epsilon} - t_R(3t_R^2(u^2 - 3v^2) + t_X^2(3(1 - 4q^2)v^2 + \sqrt{3}(5 - 2q)u^2 \beta))s_{\epsilon}]$
$H_5 W_1 Z_1$	$\frac{1}{6\sqrt{3}\sqrt{(u^2+v^2)(t_R^2+t_X^2\beta^2)}}$
	$-\frac{ig_Lg_R[3t_R^2 + (7 + 4q + 4q^2)t_X^2](u^2 - v^2)c_\epsilon s_\xi t_W}{\sqrt{2}}$
	$\frac{6t_X}{(u^2+v^2)(t_R^2+t_X^2\beta^2)}$
$H_{5}^{-}W_{2}^{+}Z$	$\frac{\frac{(g_L g_R(v-u-r))\xi_{\ell}}{2c_W \sqrt{u^2 + v^2}}}{2c_W \sqrt{u^2 + v^2}}$
$H_5^- W_2^+ \mathcal{Z}_1$	$-\frac{-ig_L^2c_\epsilon[6uv(t_R^2+t_X^2\beta^2)s_\xi+t_R(3t_R^2(u^2-3v^2)+t_X^2(3(1-4q^2)v^2+\sqrt{3}(5-2q)u^2\beta))c_\xi]}{\sqrt{(2-2q^2+1)^2}}$
° -	$6\sqrt{3}\sqrt{(u^2+v^2)(t_R^2+t_X^2\beta^2)}$ $ia_La_D[3t_D^2+(7+4a+4a^2)t_L^2](u^2-v^2)_{8-CC}t_W$
	$-\frac{\frac{g_L g_R (0 g_R + (1 + 14 + 14) g_X)(a - 1) g_\ell g_\ell g_\ell g_\ell g_\ell}{6 t_X \sqrt{(u^2 + v^2)(t_R^2 + t_X^2 \beta^2)}}$
H^W^+Z'	$-ig_L^2 s_{\epsilon} [6uv(t_R^2 + t_X^2 \beta^2) s_{\xi} + t_R(3t_R^2(u^2 - 3v^2) + t_X^2(3(1 - 4q^2)v^2 + \sqrt{3}(5 - 2q)u^2 \beta))c_{\xi}]$
$m_5 m_2 \omega_1$	$6\sqrt{3}\sqrt{(u^2+v^2)(t_R^2+t_X^2\beta^2)}$
	$+\frac{ig_Lg_R[3t_R^2+(7+4q+4q^2)t_X^2](u^2-v^2)c_\epsilon c_\xi t_W}{c_\ell \sqrt{(2+2)(u^2+u^2)(u^2+u^2)(u^2+u^2)}}$
$\mathbf{H}^{\mathbf{q}}$ $\mathbf{V} = \mathbf{q} \cdot \mathbf{q}$	${}^{6t_X}\sqrt{(u^2+v^2)(t_R^2+t_X^2\beta^2)} \ {}^{ig_Lg_Ruc_{\varphi_R}}$
$H_6^q X^{-q} Z$	$-\frac{2c_W}{2c_W}$
$H_6^q X^{-q} \mathcal{Z}_1$	$\frac{ig_L g_R s_\epsilon [5u(\iota_R + \iota_X \beta)c_{\varphi_q} - 2(5\iota_R + 4(1 + q + q)\iota_X)wc_{\alpha_2} s_{\varphi_q}]\iota_W}{6t_{X^*} \sqrt{t^2 + t^2 \beta^2}}$
	$\frac{\partial r_X \sqrt{r_R + r_X \beta}}{ig_L g_R c_\epsilon [u(t_R^2 + t_X^2 \beta^2) c_{\varphi_q} + 2\sqrt{3}t_X^2 w\beta c_{\alpha_2} s_{\varphi_q}]}$
	$-\frac{1}{2\sqrt{3}\sqrt{t_R^2+t_X^2\beta^2}}$
$H^q_{\epsilon} X^{-q} \mathcal{Z}'_1$	$\underbrace{ig_L g_R c_{\epsilon} [2(3t_R^2 + 4(1 + q + q^2)t_X^2) w c_{\alpha_2} s_{\varphi_q} - 3u(t_R^2 + t_X^2 \beta^2) c_{\varphi_q}] t_W}_{\sqrt{q}}$
0 1	$\frac{6t_X\sqrt{t_R^2+t_X^2\beta^2}}{(t_R^2+t_R^2+t_R^2)^2}$
	$-\frac{ig_L g_R s_\epsilon [u(t_R+t_X \beta))c_{\varphi_q}+2\sqrt{3}t_X w_\beta c_{\alpha_2} s_{\varphi_q}]}{2\sqrt{3}\sqrt{t^2+t^2/\beta^2}}$
$H^q Y^{-q} \Lambda$	$ig_Lg_Rqus_W[ws_{arphi q} - uc_{lpha_2}c_{arphi q}]$
$H_7 X - A$ $H_7 V - a Z$	$rac{2w}{ig_L g_R u(qc_{2W}-q-2)[ws_{arphi_q}-uc_{lpha_2}c_{arphi_q}]}$
$H_7^1 X^{-q} Z$	$\frac{4wc_W}{4wc_W}$
$H_7^q X^{-q} \mathcal{Z}_1$	$\frac{ig_L g_R w c_{\alpha_2} c_{\varphi_q} [v_X \beta c_{\epsilon} + (v_R + q(1+q+q)v_X) s_{\epsilon} v_W]}{3t_{Y_1} \sqrt{t_2^2 + t_2^2 \beta^2}}$
$u^{q}v^{-q}z'$	$ig_Lg_Rwc_{\alpha_2}c_{\varphi_q}[3t_X^3\beta s_\epsilon - (3t_R^2 + 4(1+q+q^2)t_X^2)c_\epsilon t_W]$
$\Pi_7 \Lambda ^{-1} \mathcal{L}_1$	$\frac{3t_X\sqrt{t_R^2+t_X^2\beta^2}}{3t_X\sqrt{t_R^2+t_X^2\beta^2}}$
$H_8^{-1-q}Y^{1+q}Z$	$\frac{ig_L g_R v}{2c_W}$
$u^{-1-q}v^{1+q} \sigma$	$-ig_Lg_Rv\sqrt{t_R^2+t_X^2}eta^2[t_Xc_\epsilon+\sqrt{3}t_Ws_\epsilon]$
$\pi_8 I \rightarrow Z_1$	$\frac{2\sqrt{3}t_X}{\sqrt{2}+2}$
$H_8^{-1-q}Y^{1+q}\mathcal{Z}_1'$	$\frac{ig_Lg_Rv\sqrt{t_R^2+t_X^2\beta^2[\sqrt{3}t_Wc_\epsilon-t_Xs_\epsilon]}}{2\sqrt{3}t_W}$
	- v 30 X

Bảng A5. Tương tác của một trường vô hướng với một trường gauge boson mang điện và một gauge boson trung hòa.

Đỉnh	Hệ số
H_1ZZ	$rac{ig_L^2\sqrt{u^2+v^2}}{2c_{zy}^2}$
H_1ZZ_1	$\frac{ig_L^2\sqrt{t_R^2 + t_X^2\beta^2}[(v^2 - u^2)c_{\epsilon}t_X - \sqrt{3}(u^2 + v^2)s_{\epsilon}t_W]}{\sqrt{2}}$
11	$\frac{2\sqrt{3}c_W t_X \sqrt{u^2 + v^2}}{iq_T^2 \sqrt{t_Z^2 + t_X^2 \beta^2} [(v^2 - u^2)s_{\epsilon} t_X + \sqrt{3}(u^2 + v^2)c_{\epsilon} t_W]}$
$H_1ZZ'_1$	$\frac{-2\sqrt{3}c_W t_X \sqrt{u^2 + v^2}}{2\sqrt{3}c_W t_X \sqrt{u^2 + v^2}}$
$H_1 \mathcal{Z}_1 \mathcal{Z}_1$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[2\sqrt{3}u^2s_{2\epsilon}t_Xt_W + (u^2 + v^2)(t_Xc_{\epsilon} - \sqrt{3}s_{\epsilon}t_W)^2]}{6t_{-\star}^2\sqrt{(u^2 + v^2)}}$
$H_1 \mathcal{Z}_1 \mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[\sqrt{3}t_Xc_{2\epsilon}(v^2 - u^2)t_W + s_\epsilon c_\epsilon(u^2 + v^2)(t_X^2 - 3t_W^2)]}{6t_*^2 + \sqrt{v_*^2 + v_*^2}}$
$H_1 \mathcal{Z}_1' \mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[2\sqrt{3}v^2s_{2\epsilon}t_Xt_W + (u^2 + v^2)(t_Xs_{\epsilon} - \sqrt{3}c_{\epsilon}t_W)^2]}{v^2\sqrt{(u^2 + v^2)}}$
	$rac{\mathrm{bt}_X^{} \sqrt{(u^2+v^2)}}{ig_L^2 uv \sqrt{t_P^2+t_X^2 eta^2} c_\epsilon}$
$H_2 Z Z_1$	$\frac{\frac{2}{\sqrt{3}c_W\sqrt{u^2+v^2}}}{\sqrt{3}c_W\sqrt{u^2+v^2}}$
U. 77!	$ig_L^2 uv \sqrt{t_R^2 + t_X^2 eta^2} s_\epsilon$
$\Pi_2 \mathbb{Z} \mathbb{Z}_1$	$\sqrt{3}c_W\sqrt{u^2+v^2}$
$H_2 \mathcal{Z}_1 \mathcal{Z}_1$	$rac{-ig_L^2 uv(t_R^2 + t_X^2 eta^2) s_{2\epsilon} t_W}{\sqrt{2} t_R}$
11 7 7	$\sqrt{3t_X\sqrt{u^2+v^2}} ig_L^2uv(t_R^2+t_X^2eta^2)c_{2\epsilon}t_W$
$\pi_2 \mathcal{Z}_1 \mathcal{Z}_1$	$\frac{1}{\sqrt{3}t_X\sqrt{u^2+v^2}}$
$H_2 \mathcal{Z}_1' \mathcal{Z}_1'$	$rac{ig_L^2 uv(t_R^2+t_X^2eta^2)s_{2\epsilon}t_W}{\sqrt{2}}$
$H_3 \mathcal{Z}_1 \mathcal{Z}_1$	$\frac{i2g_L^2c_\epsilon^2[3(t_R^2+t_X^2\beta^2)^2wc\varphi^{-}(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)^2\Lambda s_{\varphi}]}{(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)^2\Lambda s_{\varphi}]}$
-	$\frac{9(t_R^2 + t_X^2 \beta^2)}{i2q_I^2 \Lambda s_{\omega} t_W [(9(q+1)^2 t_Y^4 - (3t_P^2 + (1+q+4q^2)t_Y^2)^2) s_{2\epsilon} t_X - \sqrt{3}(3t_P^2 + 4(1+q+q^2)t_Y^2)^2 s_{\epsilon}^2 t_W]}$
	$+\frac{12}{9\sqrt{3}t_X^2(t_R^2+t_X^2\beta^2)}$
$H_3 \mathcal{Z}_1 \mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)wc_{\varphi}s_{2\epsilon}}{2} + \frac{i2g_L^2[(3t_R^2 + (1 + q + 4q^2)t_X^2)^2 - 9(q + 1)^2t_X^4]\Lambda c_{2\epsilon}s_{\varphi}t_W}{2\sqrt{2}t_{2\epsilon}(q^2 + q^2)^2}$
1	$\frac{9\sqrt{3t_X(t_R^2 + t_X^2\beta^2)}}{iq_t^2\Lambda s_{2\epsilon}s_{2\epsilon}[(\sqrt{3t_R^2 - 2(q-1)t_Y^2\beta^2}t_Y^2 - (3t_R^2 + 4(1+q+q^2)t_Y^2)^2t_W^2]}$
	$-\frac{9t_{L}^{2}(t_{R}^{2}+t_{L}^{2}\beta^{2})}{9t_{X}^{2}(t_{R}^{2}+t_{X}^{2}\beta^{2})}$
$H_3 \mathcal{Z}_1' \mathcal{Z}_1'$	$\frac{i2g_L^2 s_{\epsilon}^2 [3(t_R^2 + t_X^2 \beta^2)^2 w c_{\varphi} - (\sqrt{3}t_R^2 - 2(q-1)t_X^2 \beta)^2 \Lambda s_{\varphi}]}{2(t_R^2 + t_R^2 \beta^2)}$
1 1	$\frac{9(t_R^{-} + t_X^{-} \beta^{-})}{i2q_T^2 \Lambda s_{i2} t_W [(9(q+1)^2 t_Y^4 - (3t_P^2 + (1+q+4q^2)t_Y^2)^2) s_{2\ell} t_X + \sqrt{3}(3t_P^2 + 4(1+q+q^2)t_Y^2)^2 c_{\ell}^2 t_W]}$
	$\frac{-\frac{1}{2}}{9\sqrt{3}t_X^2(t_R^2+t_X^2\beta^2)}$
$H_4 Z_1 Z_1$	$\frac{i2g_L^2c_\epsilon^2[3(t_R^2+t_X^2\beta^2)^2ws_{\varphi}+(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)^2\Lambda c_{\varphi}]}{2(t_R^2+t_R^2\beta^2)}$
	$\frac{9(t_R^+ t_X^- \beta^2)}{i2q_T^2 \Lambda c_{(2} t_W} [(9(q+1)^2 t_Y^4 - (3t_P^2 + (1+q+4q^2)t_Y^2)^2) s_{2\epsilon} t_X - \sqrt{3}(3t_P^2 + 4(1+q+q^2)t_Y^2)^2 s_{\epsilon}^2 t_W]$
	$\frac{-\underbrace{-}_{2}\underbrace{-}_{2}\underbrace{-}_{2}\underbrace{-}_{1}\underbrace{-}_{1}\underbrace{-}_{1}\underbrace{-}_{2}\underbrace{-}_{2}\underbrace{-}_{1}\underbrace{-}_{2}\underbrace{-\underbrace{-}_{2}\underbrace{-}_{2}\underbrace{-}_{2}\underbrace{-\underbrace{-}_{2}\underbrace{-\underbrace{-}}_{2}\underbrace{-}\\-\underbrace{-}\\{-}\underbrace{-}\\{-}\underbrace{-}\\-\underbrace{-}\\{-}\underbrace{-}\\{-}\underbrace{-}\\-\underbrace{-}\\{-}\underbrace{-}\underbrace{-}\\{-}\underbrace{-}\\-\underbrace{-}\\{-}\underbrace{-}\underbrace{-}\\{-}\underbrace{-}\\{-}\underbrace{-}\\{-}\underbrace{-}\underbrace{-}\\{-}\underbrace{-}\underbrace{-}\\{-}\underbrace{-}\underbrace{-}\underbrace{-}\\{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace{-}\underbrace$
$H_4 \mathcal{Z}_1 \mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)ws_{\varphi}s_{2\epsilon}}{2} - \frac{i2g_L^2[(3t_R^2 + (1 + q + 4q^2)t_X^2)^2 - 9(q + 1)^2t_X^4]\Lambda c_{2\epsilon}c_{\varphi}t_W}{2\sqrt{2}}$
Ŧ	$\frac{9\sqrt{3t_X(t_R^2 + t_X^2\beta^2)}}{[q_I^2\Lambda s_{2\epsilon}c_{\omega}[(\sqrt{3}t_R^2 - 2(q-1)t_Y^2\beta)^2 t_Y^2 - (3t_R^2 + 4(1+q+q^2)t_Y^2)^2 t_W^2]}$
	$+\frac{g_{L}}{g_{L}} + \frac{g_{L}}{g_{L}} + \frac{g_{L}}{$
$H_4 \mathcal{Z}_1' \mathcal{Z}_1'$	$\frac{i2g_L^2 s_{\epsilon}^2 [3(t_R^2 + t_X^2 \beta^2)^2 w s_{\varphi} + (\sqrt{3}t_R^2 - 2(q-1)t_X^2 \beta)^2 \Lambda c_{\varphi}]}{2(t_R^2 + t_R^2 \beta^2)^2 (q-1)t_X^2 \beta^2 \Lambda c_{\varphi}]}$
1 1	$\frac{9(t_R^2 + t_X^2 \beta^2)}{i_2 q_I^2 \Lambda c_{\omega} t_W [(9(q+1)^2 t_Y^4 - (3t_P^2 + (1+q+4q^2)t_Y^2)^2) s_{2\epsilon} t_X + \sqrt{3}(3t_P^2 + 4(1+q+a^2)t_Y^2)^2 c_z^2 t_W]}$
	$+\frac{2L-r}{9\sqrt{3}t_X^2(t_R^2+t_X^2\beta^2)}$

Bảng A6. Tương tác của một trường vô hướng và hai gauge boson trung hòa.

Đỉnh	Hệ số	Đỉnh	Hệ số
$H_1 H_1 W_1^- W_1^+$	$\frac{ig_L^2[1+t_R^2-(t_R^2-1)c_{2\xi}+2t_Rs_{2\alpha_1}s_{2\xi}]}{4}$	$_{H_1H_2X^qX^{-q}}$	$\frac{-ig_R^2s_{2\alpha_1}}{4}$
$H_1 H_1 W_1^- W_2^+$	$\frac{-ig_L^2[2t_Rc_{2\xi}s_{2\alpha_1}+(t_R^2-1)s_{2\xi}]}{4}$	$_{H_1H_1X^qX^{-q}}$	$\frac{ig_R^2 c_{\alpha_1}^2}{c_{\alpha_1}^2}$
$H_1 H_1 W_2^- W_2^+$	$\frac{ig_L^2[1+t_R^2+(t_R^2-1)c_{2\xi}-2t_Rs_{2\alpha_1}s_{2\xi}]}{2}$	$H_1 H_1 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 s_{\alpha_1}^2}{2}$
$H_2 H_2 W_1^- W_1^+$	$\frac{ig_L^2[1+t_R^2-(t_R^2-1)c_{2\xi}-2t_Rs_{2\alpha_1}s_{2\xi}]}{2}$	$H_1 H_2 W_1^- W_1^+$	$\frac{ig_Lg_Rc_2\alpha_1s_2\xi}{2}$
$H_2 H_2 W_1^- W_2^+$	$2\frac{ig_{L}^{2}[t_{R}c_{2\xi}s_{2\alpha_{1}}-(t_{R}^{2}-1)c_{\xi}s_{\xi}]}{2}$	$H_1 H_2 W_1^- W_2^+$	$\frac{-ig_Lg_Rc_{2\alpha_1}c_{2\xi}}{2}$
$H_2 H_2 W_2^- W_2^+$	$\frac{ig_L^2\left[1+t_R^2+(t_R^2-1)c_{2\xi}+2t_Rs_{2\alpha_1}s_{2\xi}\right]}{4}$	$H_1 H_2 W_2^- W_2^+$	$\frac{-ig_Lg_Rc_2\alpha_1s_2\xi}{2}$
$_{H_1H_6^qW_1^+Y^{-1-q}}$	$\frac{-ig_Lg_Rc\varphi_q\left[2s\alpha_1c\xi+t_Rc\alpha_1s\xi\right]}{2\sqrt{2}}$	$H_1 H_2 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 s_2 \alpha_1}{4}$
$H_1 H_6^q W_2^+ Y^{-1-q}$	$\frac{ig_Lg_Rc_{\varphi_q}[t_Rc_{\alpha_1}c_{\xi}-2s_{\alpha_1}s_{\xi}]}{2\sqrt{2}}$	$H_2 H_2 X^q X^{-q}$	$\frac{ig_R^2 s_{\alpha_1}^2}{2}$
$_{H_1H_7^qW_1^+Y^{-1-q}}$	$\frac{ig_Lg_R(t_Rc_{\alpha_1}s_{\xi}+2s_{\alpha_1}c_{\xi})(uc_{\alpha_2}c_{\varphi_q}-ws_{\varphi_q})}{2\sqrt{2}w}$	$H_2 H_2 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 c_{\alpha_1}^2}{2}$
$H_1 H_7^q W_2^+ Y^{-1-q}$	$\frac{ig_Lg_R(t_Rc_{\alpha_1}c_{\xi}-2s_{\alpha_1}s_{\xi})(ws\varphi_q-uc_{\alpha_2}c\varphi_q)}{2\sqrt{2}w}$	$H_3 H_3 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 c_{\varphi}^2}{2}$
${}^{H_2H_6^qW_1^+Y^{-1-q}}$	$\frac{ig_Lg_Rc_{\varphi q}\left[t_Rs_{\alpha_1}s_{\xi}-2c_{\alpha_1}c_{\xi}\right]}{2\sqrt{2}}$	$H_3 H_3 W_1^- W_1^+$	$ig_R^2 s_\xi^2 s_\varphi^2$
$H_2 H_6^q W_2^+ Y^{-1-q}$	$\frac{-ig_Lg_Rc\varphi_q[t_Rs\alpha_1c_{\xi}+2c\alpha_1s_{\xi}]}{2\sqrt{2}}$	$H_3 H_3 W_1^- W_2^+$	$\frac{-ig_R^2s_{2\xi}s_{\varphi}^2}{2}$
$H_2 H_7^q W_1^+ Y^{-1-q}$	$\frac{ig_Lg_R(t_Rs_{\alpha_1}s_{\xi}-2c_{\alpha_1}c_{\xi})(ws\varphi_q-uc_{\alpha_2}c\varphi_q)}{2\sqrt{2}w}$	$H_3 H_3 W_2^- W_2^+$	$ig_R^2 s_{\varphi}^2$
$H_2 H_7^q W_2^+ Y^{-1-q}$	$\frac{ig_Lg_R(t_Rs_{\alpha_1}c_{\xi}+2c_{\alpha_1}s_{\xi})(uc_{\alpha_2}c_{\varphi_q}-ws_{\varphi_q})}{2\sqrt{2}w}$	$H_3H_3X^qX^{-q}$	$\frac{ig_R^2(3-c_{2\varphi})}{4}$
$H_3 H_6^q W_1^+ Y^{-1-q}$	$\frac{ig_R^2 s_{\xi}[c_{\varphi}(wc_{\alpha_2} s_{\varphi_q} - uc_{\varphi_q}) - \sqrt{2}ws_{\alpha_2} s_{\varphi} s_{\varphi_q}]}{2\sqrt{2}w}$	$H_3 H_4 W_1^- W_1^+$	$\frac{-ig_R^2 s_\xi^2 s_2 \varphi}{2}$
$H_3 H_6^q W_2^+ Y^{-1-q}$	$\frac{ig_R^2 c_{\xi} [\sqrt{2}w s_{\alpha_2} s_{\varphi} s_{\varphi_q} - c_{\varphi} (w c_{\alpha_2} s_{\varphi_q} - u c_{\varphi_q})]}{2\sqrt{2}w}$	$H_3 H_4 W_1^- W_2^+$	$\frac{ig_R^2 s_2 \xi^{s_2} \varphi}{4}$
$H_3 H_7^q W_1^+ Y^{-1-q}$	$\frac{ig_R^2 c\varphi_q s_{\xi}(\sqrt{2}s\alpha_2 s\varphi - c\alpha_2 c\varphi)}{2\sqrt{2}}$	$H_3 H_4 W_2^- W_2^+$	$\frac{-ig_R^2s_2\varphi}{2}$
$H_3 H_7^q W_2^+ Y^{-1-q}$	$\frac{ig_R^2 c_{\varphi q} c_{\xi} (c_{\alpha_2} c_{\varphi} - \sqrt{2} s_{\alpha_2} s_{\varphi})}{2\sqrt{2}}$	$H_3H_4X^qX^{-q}$	$\frac{-ig_R^2s_2\varphi}{4}$
$H_4 H_6^q W_1^+ Y^{-1-q}$	$\frac{ig_R^2 s_{\xi}[s_{\varphi}(wc_{\alpha_2}s_{\varphi_q} - uc_{\varphi_q}) + \sqrt{2}ws_{\alpha_2}c_{\varphi}s_{\varphi_q}]}{2\sqrt{2}w}$	$H_3H_4Y^{1+q}Y^{-1-q}$	$\frac{ig_R^2 s_2 \varphi}{4}$
${}^{H_4H_6^qW_2^+Y^{-1-q}}$	$\frac{ig_R^2 c_{\xi}[s_{\varphi}(uc_{\varphi_q} - wc_{\alpha_2}s_{\varphi_q}) - \sqrt{2}ws_{\alpha_2}c_{\varphi}s_{\varphi_q}]}{2\sqrt{2}w} -$	$H_4 H_4 Y^{1+q} Y^{-1-q}$	$\frac{ig_R^2 s_\varphi^2}{2}$
$H_4 H_7^q W_1^+ Y^{-1-q}$	$\frac{-ig_R^2 c_{\varphi q} s_{\xi} (c_{\alpha_2} s_{\varphi} + \sqrt{2} s_{\alpha_2} c_{\varphi})}{2\sqrt{2}}$	$H_4 H_4 W_1^- W_1^+$	$ig_R^2 s_\xi^2 c_\varphi^2$
$H_4 H_7^q W_2^+ Y^{-1-q}$	$\frac{ig_R^2 c_{\varphi q} c_{\xi} (c_{\alpha 2} s_{\varphi} + \sqrt{2} s_{\alpha 2} c_{\varphi})}{2\sqrt{2}}$	$H_4 H_4 W_1^- W_2^+$	$\frac{-ig_R^2 s_{2\xi} c_{\varphi}^2}{2}$
$H_5^{-}H_7^{q}W_1^{+}X^{-q}$	$\frac{ig_Lg_Rc_\xi s\alpha_1[uc\alpha_2c\varphi_q - ws\varphi_q]}{w}$	$H_4 H_4 W_2^- W_2^+$	$ig_R^2 c_{\varphi}^2$
$H_4H_5^{-}X^{-q}Y^{1+q}$	$rac{ig_R^2(v^2-u^2)c_{oldsymbol{arphi}}}{2\sqrt{2}\sqrt{u^2+v^2}\Lambda}$	$H_5^+ H_5^- X^q X^{-q}$	$\frac{ig_R^2 s_{\alpha_1}^2}{2}$
$H_5^- H_7^q W_2^+ X^{-q}$	$\frac{ig_Lg_Rs_\xi s_{\alpha_1}[uc_{\alpha_2}c_{\varphi_q}-ws_{\varphi_q}]}{w}$	$H_4 H_4 X^q X^{-q}$	$\frac{ig_R^2(c_{2\varphi}+3)}{4}$
$H_5^- H_6^q W_2^+ X^{-q}$	$-ig_Lg_Rs_\xi c\varphi_qs_{\alpha_1}$	$H_1H_5^- X^{-q}Y^{1+q}$	$\frac{ig_R^2}{2\sqrt{2}}$
$H_3H_5^{-}X^{-q}Y^{1+q}$	$rac{ig_R^2(u^2-v^2)s_{arphi}}{2\sqrt{2}\sqrt{u^2+v^2}\Lambda}$	$H_5^+ H_5^- W_1^+ W_1^-$	$\frac{ig_L^2}{2}$
$H_5^+ H_5^- W_1^+ W_2^-$	$\frac{ig_L^2(1-t_R^2)s_{2\xi}}{4}$	$H_5^+ H_5^- W_2^+ W_2^-$	$\frac{ig_R^2}{2}$
$H_5^- H_5^- W_1^+ W_1^+$	$ig_Lg_Rs_{2lpha_1}s_{2\xi}$	$H_5^- H_5^- W_1^+ W_2^+$	$-ig_Lg_Rc_2\xi^{s_2\alpha_1}$
$H_5^- H_5^- W_2^+ W_2^+$	$-ig_Lg_Rs_2lpha_1s_2\xi$	$H_7^q H_7^{-q} W_2^{-} W_2^+$	$\frac{ig_R^2}{2^2}$
$H_5^- H_6^q W_1^+ X^{-q}$	$-ig_Lg_Rc_\xi c_\varphi q^s \alpha_1$	$H_5^+ H_5^- Y^{1+q} Y^{-1-q}$	$\frac{ig_R c_{\overline{\alpha}_1}}{2}$
$H_5^- H_6^{-q} W_1^+ X^q$	$\frac{\frac{-\iota g_R s_\xi c \varphi_q c \alpha_1}{2}}{2}$	$H_5^- H_6^{-q} W_2^+ X^q$	$\frac{{}^{ig_R c_\xi c \varphi_q c_{\alpha_1}}}{2}$

Bảng A7. Tương tác của hai trường vô hướng và hai gauge boson mang điện.

Hệ số	$\frac{-ig_R^2 v c_{\varphi s\xi}}{2\sqrt{2}w}$	$rac{ig_R^2 v c_{arphi} c_{\xi}}{2\sqrt{2}w}$	$\frac{-ig_R^2 v s_{\varphi} s_{\xi}}{2\sqrt{2}w}$	$\frac{ig_R^2 v s_\varphi c_\xi}{2\sqrt{2}w}$	$ig_R^2 s_\xi^2$	ig_R^2	$-ig_R^2 c_{\xi} s_{\xi}$	ig_R^2	$rac{ig_R^2 c_{lpha_1}^2}{2}$	$i2g_R^2$	$rac{i g_R^2 s_{lpha 1}^2}{2}$	$\frac{-g_L g_R s_{2\alpha_1}}{2}$	$-i\sqrt{2}g_R^2s_\varphi$	$i\sqrt{2}g_R^2 c_{\varphi}$	$-i\sqrt{2}g_R^2s_{\varphi}s_{\xi}^2$	$i\sqrt{2}g_R^2 c_{\varphi} s_{\xi}^2$
${ m Dinh}$	$H_3 H_8^{-1-q} W_1^+ X^q$	$H_3 H_8^{-1-q} W_2^+ X^q$	$H_4 H_8^{-1-q} W_1^+ X^q$	$H_4 H_8^{-1-q} W_2^+ X^q$	$\Xi^{++}_{22}\Xi^{}_{22}W^+_1W^1$	$\Xi_{22}^{++}\Xi_{22}^{}Y^{1+q}Y^{-1-q}$	$\Xi^{++}_{22}\Xi^{}_{22}W^{+}_{1}W^{-}_{2}$	$\Xi^{++}_{22}\Xi^{}_{22}W^+_2W^2$	${\cal A}{\cal A}Y^{-1-q}Y^{1+q}$	$\Xi_{23}^{1-q}\Xi_{23}^{q-1}Y^{1+q}Y^{-1-q}$	$\mathcal{A}\mathcal{A}X^{q}X^{-d}$	${\cal A}H_2 W_1^+ W_2^-$	$H_3 \Xi_{33}^{-2q} X^q X^q$	$H_4 \Xi_{33}^{-2q} X^q X^q$	$H_3 \Xi_{22}^{++} W_1^- W_1^-$	$H_4\Xi_{22}^{++}W_1^-W_1^-$
Hệ số	$rac{ig_R^2(uc_{lpha_2}c_{arphi q}-ws_{arphi q})c_{lpha_1}s_{\xi}}{2w}$	$+ \frac{i3g_R^4(u^2-v^2)s_{\xi}c_{\varphi q}s_{\alpha 2}}{2\sqrt{2}\sqrt{u^2+v^2}\Lambda}$	$rac{ig_R^{\star}(ws_{arphi_q}-uc_{lpha_2}c_{arphi_q})c_{lpha_1}c_{\xi}}{2w}$	$-rac{i 3g_R^2 (u^2-v^2) c_\xi c_{arphi q} s_{lpha 2}}{2\sqrt{2}\sqrt{u^2+v^2} \Lambda}$	$\frac{-ig_Lg_R(2c_{\alpha_1}c_{\xi}+t_Rs_{\alpha_1}s_{\xi})}{2\sqrt{2}}$	$\frac{ig_Lg_R(t_Rs_{\alpha_1}c_{\xi}-2c_{\alpha_1}s_{\xi})}{2\sqrt{2}}$	$\frac{ig_Lg_R(2s_{\alpha_1}c_{\xi}-t_Rc_{\alpha_1}s_{\xi})}{2\sqrt{2}}$	$\frac{ig_Lg_R(t_Rc_{\alpha_1}c_{\xi}+2s_{\alpha_1}s_{\xi})}{2\sqrt{2}}$	$\frac{ig_L^2 \left[1 + t_R^2 - (t_R^2 - 1)c_{2\xi} + 2t_R s_{2\alpha_1} s_{2\xi}\right]}{4}$	$\frac{ig_L^2 \left[1 + t_R^2 + (t_R^2 - 1)c_{2\xi} - 2t_R s_{2\alpha_1} s_{2\xi}\right]}{4}$	$\frac{ig_L^2[(1-t_R^2)s_{2\xi}-2t_Rs_{2\alpha_1}c_{2\xi}]}{4}$	$\frac{gLgR^{C2\alpha_1}}{2}$	$\frac{g_L g_R c_{\varphi_q} \left[2 c_{\alpha_1} c_{\xi} + t_R s_{\alpha_1} s_{\xi} \right]}{2\sqrt{2}}$	$\frac{g_L g_R c_{\varphi_q} \left[2 c_{\alpha_1} s_{\xi} - t_R s_{\alpha_1} c_{\xi} \right]}{2\sqrt{2}}$	$\frac{-g_L g_R u c_{\alpha_2} c_{\varphi_q} \left[c_{\alpha_1} c_{\xi} + t_R s_{\alpha_1} s_{\xi} \right]}{w \sqrt{2}}$	$+ \frac{g_L g_R [2 c_{\alpha_1} c_{\xi} + t_R s_{\alpha_1} s_{\xi}] s_{\varphi_q}}{2\sqrt{2}}$
${ m Dinh}$	$H_5^-H_7^-{}^qW_1^+X^q$		$H_5^- H_7^- ^{-q} W_2^+ X^q$		$H_1 H_8^{-1-q} W_1^+ X^q$	$H_1 H_8^{-1-q} W_2^+ X^q$	$H_2 H_8^{-1-q} W_1^+ X^q$	$H_2 H_8^{-1-q} W_2^+ X^q$	${\cal A}{\cal A}W_1^+W_1^-$	${\cal A}{\cal A}W_2^+W_2^-$	${\cal A}{\cal M} W_1^+ W_2^-$	${\cal A}H_1W_1^+W_2^-$	$\mathcal{A}H_6^q W_1^+ Y^{-1-q}$	${\cal A}H_6^q W_2^+ Y^{-1-q}$	${\cal A} H^q_7 W_1^+ Y^{-1-q}$	

Bảng A8. Tương tác của hai trường vô hướng và hai gauge boson mang điện (tiếp).

Hệ số	$rac{ig_R^2s_{2\xi}s_{\varphi}}{\sqrt{2}}$	$rac{-\iota g_R s_2 \xi c_{arphi}}{\sqrt{2}}$	ig_R^2	ig_R^2	$rac{ig_L^2 s_{2\xi}}{4}$	$rac{ig_R^2}{2}$	$i2g_R^2$	$rac{-ig_R^2 s_{2\xi}}{4}$	$rac{ig_R^2}{2}$	$rac{ig_R^2 c_\xi}{\sqrt{2}}$	$rac{ig_R^2 c_{\xi}}{\sqrt{2}}$	$i\sqrt{2}g_R^2 c_{\varphi}$	$-ig_R^2 c_{\varphi} s_{\xi}$	$ig_R^2 c_arphi c_\xi$	$\frac{ig_{R}^{2}(v^{2}\!-\!u^{2})}{2\sqrt{u^{2}\!+\!v^{2}}\Lambda}$	$-ig_Lg_Rc_{lpha_1}s_\xi$	$\frac{i3g_R^2 c_{\xi} (v^2 - u^2)}{2\sqrt{2}\sqrt{u^2 + v^2}\Lambda}$
${ m Dinh}$	$H_3 \Xi_{22}^{++} W_1^- W_2^-$	$H_4 \Xi_{22}^{++} W_1^- W_2^-$	$\Xi_{33}^{2q}\Xi_{33}^{-2q}X^{q}X^{-q}$	$\Xi_{33}^{2q}\Xi_{33}^{-2q}Y^{1+q}Y^{-1-q}$	$H_8^{1+q} H_8^{-1-q} W_1^+ W_2^-$	$H_8^{1+q}H_8^{-1-q}X^qX^{-q}$	$\Xi_{22}^{}\Xi_{33}^{-2q}Y^{1+q}Y^{1+q}$	$\Xi_{23}^{1-q}\Xi_{23}^{q-1}W_1^+W_2^-$	$\Xi_{23}^{1-q}\Xi_{23}^{q-1}X^qX^{-q}$	$\Xi_{22}^{}\Xi_{23}^{1-q}W_2^+X^q$	$\Xi_{23}^{1-q}\Xi_{33}^{2q}W_2^{-}X^{-q}$	$H_4 \Xi_{22}^{++} W_2^{-} W_2^{-}$	$H_4 \Xi_{23}^{1-q} W_1^- X^q$	$H_4 \Xi_{23}^{1-q} W_2^- X^q$	$H_5^-\Xi_{22}^{++}X^qY^{-1-q}$	$H_5^- H_8^{-1-q} W_2^+ Y^{1+q}$	$H_5^-\Xi_{23}^{1-q}W_2^-Y^{1+q}$
Hệ số	$\frac{g_Lg_Ruc_{\alpha_2}c_{\varphi_q}[t_Rs_{\alpha_1}c_{\xi}-c_{\alpha_1}s_{\xi}]}{w\sqrt{2}}$	$+\frac{\frac{9L9K[2\alpha_{1}3\xi^{-1}K^{3}\alpha_{1}\xi]^{3}\varphi_{q}}{2\sqrt{2}}$	$\frac{-g_L g_R[t_R c_{\alpha_1} s_{\xi} + 2s_{\alpha_1} c_{\xi}]}{2\sqrt{2}}$	$\frac{g_Lg_R[t_Rc_{\alpha_1}c_{\xi}-2s_{\alpha_1}s_{\xi}]}{2\sqrt{2}}$	$\frac{ig_L^2}{2}$	$\frac{ig_L^2(v^2t_R^2c_{\xi}^2\!+\!w^2s_{\xi}^2)}{2w^2}$	$\frac{ig_R^2}{2}$	$rac{ig_R^2 s_\xi^2}{2}$	$rac{ig_R^2}{2}$	$rac{-ig_R^2s_\xi}{\sqrt{2}}$	$\frac{-ig_R^2 s_\xi}{\sqrt{2}}$	$-i\sqrt{2}g_R^2s_{arphi}$	$ig_R^2 s_\xi s_\varphi$	$-ig_R^2 c_\xi s_\varphi$	$rac{ig_R^2(v^2-u^2)}{\sqrt{u^2+v^2}\Lambda}$	$-ig_Lg_Rc_{lpha_1}c_{\xi}$	$\frac{i3g_R^2 s_{\xi}(u^2 - v^2)}{2\sqrt{2}\sqrt{u^2 + v^2}\Lambda}$
Đỉnh	${\cal A} H^q_7 W^+_2 Y^{-1-q}$		${\cal A}H_8^{-1-q}W_1^+X^q$	${\cal A}H_8^{-1-q}W_2^+X^q$	$H_8^{1+q} H_8^{-1-q} W_1^+ W_1^-$	$H_8^{1+q}H_8^{-1-q}W_2^+W_2^{-}$	$H_8^{1+q}H_8^{-1-q}Y^{1+q}Y^{-1-q}$	$\Xi_{23}^{1-q}\Xi_{23}^{q-1}W_1^+W_1^-$	$\Xi_{23}^{1-q}\Xi_{23}^{q-1}W_2^+W_2^-$	$\Xi_{22}^{}\Xi_{23}^{1-q}W_1^+X^q$	$\Xi_{23}^{1-q}\Xi_{33}^{2q}W_1^-X^{-q}$	$H_3 \Xi_{22}^{++} W_2^- W_2^-$	$H_3 \Xi_{23}^{1-q} W_1^- X^q$	$H_3 \Xi_{23}^{1-q} W_2^- X^q$	$H_5^- \Xi_{33}^{-2q} X^q Y^{1+q}$	$H_5^- H_8^{-1-q} W_1^+ Y^{1+q}$	$H_5^- \Xi_{23}^{1-q} W_1^- Y^{1+q}$

(tiếp)
điện
mang
boson
gauge
hai
và
hướng
VÔ
trường
hai
của
tác
Tương
9.
Ā
Зåп£

Dînh Hệ số	$\frac{1}{4} R^{1+q} X^{q} Y^{-1-q} \left[\frac{i g_R^2 v c_{\alpha_2} c_{\varphi_q}}{2w} \right]$	$\left {-1 - q \over 8} W_2^- Y^{1+q} \right = \left {i g_R^2 s_{\alpha_1} c_\xi \over 2} \right $	$23^{1-q} X^q Y^{-1-q}$ $\frac{i 3g_R^2 c_{\varphi q} s_{\alpha 2}}{2}$	$\Xi_{22}^{}Y^{1+q}W_2^+$ $-i\sqrt{2}g_R^2c_{\xi}s_{\alpha_2}s_{\varphi_q}$	$\Xi_{22}^{}Y^{1+q}W_2^+ \qquad i\sqrt{2}g_R^2 c_{\varphi_q} s_{\alpha_2} c_{\xi}$	$\left \frac{-2q}{33}Y^{1+q}W_2^{-} \right = \frac{-ig_R^2 c_\xi s_{\alpha_2} s_{\varphi_q}}{\sqrt{2}}$	$\left \frac{-2q}{33}Y^{1+q}W_{2}^{-}\right = \frac{ig_{R}^{2}c_{S}s_{\alpha2}c_{\varphi q}}{\sqrt{2}}$	$H_7^{-q} W_1^{-} W_1^+ \qquad \frac{ig_L^2 (uc_{\alpha_2} c_{\varphi_q} - ws_{\varphi_q})^2}{2w^2}$	$H_7^{-q} W_1^{-m} W_2^+ \qquad \frac{ig_L^2 (1+t_R^2) c_{\varphi_q} s_{2\xi} (w s_{\varphi_q} - u c_{\alpha_2} c_{\varphi_q})}{4w}$	$H_7^{-q} W_2^{-} W_2^+ \left \begin{array}{c} ig_L^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \right \\ \frac{ig_L^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - t_R^2 - ws_{\varphi})]c_{\varphi q}(uc_{\alpha 2}c_{\varphi q} - ws_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - t_R^2 - ws_{\varphi}]}{4w} \\ \frac{ig_R^2[t_R^2 - ws_{\varphi}]}{4w} \\ \frac{ig_R^2[t_R^2 - t_R^2 - ws_{\varphi}]}{4w} \\ \frac{ig_R^2[t_R^2 - ws_{\varphi}]}{4w} \\ ig_R^2[t_R^$	$H_7^{-q} W_1^{-} W_1^+ \left \begin{array}{c} ig_L^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \right \\ \frac{ig_L^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 + 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ \frac{ig_R^2[t_R^2 - 1 + (t_R^2 - 1)c_{2\xi}]c_{\varphi q}(ws_{\varphi q} - uc_{\alpha_2}c_{\varphi})}{4w} \\ ig_R^2[t_R$	$\left \frac{-qY^{1+qY-1-q}}{2} \right $	$H_7^{-q}X^q X^{-q} \qquad \qquad -i 3g_R^2 s_2^2 s_{2\varphi_q}}{\frac{-i 3g_R^2 s_2^2 s_{2\varphi_q}}{4}}$	$\left \frac{-qY^{1+qY-1-q}}{2w} \right = \left \frac{ig_R^2 c_{\alpha_2} c_{\varphi_q} [w c_{\alpha_2} s_{\varphi_q} - w c_{\varphi_q}]}{2w} \right $
Hệ số	$\left[\frac{g_R^2 v(uc \varphi_q - wc \alpha_2 s \varphi_q)}{2w^2}\right] H_7^{-q} H_7$	$\frac{-ig_R^2 s_{\alpha_1} s_{\xi}}{2} \qquad H_5^+ H$	$\frac{-i3g_R^2 s_{\alpha_2} s_{\varphi_q}}{2} \qquad \qquad H_7^q \Xi$	$i\sqrt{2}g_R^2 s_{\xi} s_{\alpha_2} s_{\varphi_q} \mid H_6^{-q_1}$	$-i\sqrt{2}g_R^2 c_{\varphi_q} s_{\alpha_2} s_{\xi} \mid H_7^{-q_q}$	$\frac{ig_R^2 \xi^s \alpha_2 s \varphi_q}{\sqrt{2}} \qquad H_6^q \Xi$	$\frac{-ig_R^2 \varepsilon_{S\alpha_2} c_{\varphi_q}}{\sqrt{2}} \qquad H_7^q \Xi$	$\left \frac{ig_L^2}{2} \right H_T^q$	$\frac{ig_R^2 s_q^2}{2} \qquad \qquad H_6^q$	$\begin{array}{c c} -ig_R^2 s_{2\xi} \\ \hline H_6^{-1} \end{array} H_6^{-1} $	$\frac{ig_L^2 s_{2\xi}}{4} \qquad \qquad H_6^q$	$\left rac{i g_R^2}{2} ight H_6^q H_6$	$\frac{ig_R^2 [5-3c_{2\alpha_2}]}{4} \qquad H_6^q$	$rac{ig_R^2 s_{lpha 2}^2}{2} \qquad H_6^q H_r$
${ m Dinh}$	$H_6^{-q}H_8^{1+q}X^qY^{-1-q}$	$H_5^+ H_8^{-1-q} W_1^- Y^{1+q}$	$H_6^q \Xi_{23}^{1-q} X^q Y^{-1-q}$	$H_6^{-q} \Xi_{22}^{} Y^{1+q} W_1^+$	$H_7^{-q} \Xi_{22}^{} Y^{1+q} W_1^+$	$H_6^q \Xi_{33}^{-2q} Y^{1+q} W_1^{-}$	$H_7^q \Xi_{33}^{-2q} Y^{1+q} W_1^{-}$	$H_6^q H_6^{-q} W_1^{-} W_1^{+}$	$H_6^q H_6^{-q} W_2^{-} W_2^{+}$	$H_7^q H_7^{-q} W_1^- W_2^+$	$H_6^q H_6^{-q} W_1^{-} W_2^{+}$	${}^{b-X}{}^{b}X{}^{b-9}H{}^{9}_{b}H$	${}^{b-X}{}^{b}X{}^{b-L}H{}^{L}_{b}H$	$H^q_7 H^{-q}_7 Y^{1+q} Y^{-1-q}$

Bảng A10. Tương tác của hai trường vô hướng và hai gauge boson mang điện (tiếp).

Đỉnh	Hệ số
$\mathcal{A}H_5^-W_1^+A$	$-g_L^2 s_W (c_{\xi} + t_R s_{2\alpha_1} s_{\xi}) 0.5$
$\mathcal{A}H_5^-W_2^+A$	$-g_L^2 s_W(s_{\xi} - t_R s_{2\alpha_1} c_{\xi}) 0.5$
$\mathcal{A}H_5^-W_1^+Z$	$g_L^2(c_{\xi}s_W t_W - t_R c_W s_{2\alpha_1} s_{\xi})0.5$
$\mathcal{A}H_5^-W_2^+Z$	$g_L^2(s_\xi s_W t_W + t_R c_W s_{2\alpha_1} c_\xi) 0.5$
$\mathcal{A}H_5^-W_1^+\mathcal{Z}_1$	$\frac{g_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 c_\xi(t_X c_W c_{2\alpha_1} c_\epsilon - \sqrt{3} s_W s_\epsilon)}}{2\sqrt{3} t_X c_W}$
$\mathcal{A}H_5^-W_2^+\mathcal{Z}_1$	$\frac{g_L^2 \sqrt{t_R^2 + t_X^2 \beta^2} s_{\xi}(t_X c_W c_{2\alpha_1} c_{\epsilon} - \sqrt{3} s_W s_{\epsilon})}{2\sqrt{3} t_X c_W}$
$\mathcal{A}H_5^-W_1^+\mathcal{Z}_1'$	$\frac{g_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 c_\xi(t_X c_W c_{2\alpha_1} s_\epsilon + \sqrt{3} s_W c_\epsilon)}}{2\sqrt{3} t_W c_W}$
$\mathcal{A}H_5^-W_2^+\mathcal{Z}_1'$	$\frac{g_L^2 \sqrt{t_R^2 + t_X^2 \beta^2} s_{\xi}(t_X c_W c_{2\alpha_1} s_{\epsilon} + \sqrt{3} s_W c_{\epsilon})}{2\sqrt{3} t_X c_W}$
$H_1 H_5^- W_1^+ A$	$ig_L g_R c_{2\alpha_1} s_\xi s_W 0.5$
$H_1 H_5^- W_2^+ A$	$-ig_Lg_Rc_{2lpha_1}c_\xi s_W 0.5$
$H_1 H_5^- W_1^+ Z$	$ig_Lg_Rc_Wc_{2lpha_1}s_{\xi}0.5$
$H_1 H_5^- W_2^+ Z$	$-ig_Lg_Rc_Wc_{2lpha_1}c_{\xi}0.5$
$H_1H_5^-W_1^+\mathcal{Z}_1$	$\frac{-ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2} c_\epsilon (t_R s_\xi + s_2 \alpha_1 c_\xi)}{2\sqrt{3}}$
$H_1H_5^-W_2^+\mathcal{Z}_1$	$\frac{ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 c_\epsilon (t_R c_\xi - s_2 \alpha_1 s_\xi)}}{2\sqrt{3}}$
$H_1H_5^-W_1^+\mathcal{Z}_1'$	$\frac{-ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 s_\epsilon} (t_R s_\xi + s_2 \alpha_1 c_\xi)}{2\sqrt{3}}$
$H_1H_5^-W_2^+\mathcal{Z}_1'$	$\frac{ig_L^2\sqrt{t_R^2+t_X^2\beta^2s_\epsilon(t_Rc_\xi-s_{2\alpha_1}s_\xi)}}{2\sqrt{3}}$
$H_2 H_5^- W_1^+ A$	$ig_L^2 s_W(c_\xi - t_R s_{2\alpha_1} s_\xi) 0.5$
$H_2H_5^-W_2^+A$	$ig_L^2 s_W(s_\xi + t_R s_{2\alpha_1} c_\xi) 0.5$
$H_2 H_5^- W_1^+ Z$	$-ig_L^2(t_Rc_Ws_{2\alpha_1}s_\xi+c_\xi s_Wt_W)0.5$
$H_2 H_5^- W_2^+ Z$	$ig_L^2(t_R c_W s_{2\alpha_1} c_\xi - s_\xi s_W t_W)0.5$
$H_2H_5^-W_1^+\mathcal{Z}_1$	$\frac{ig_L^2\sqrt{t_R^2+t_X^2\beta^2}c_\xi(\sqrt{3}s_Ws_\epsilon-t_Xc_Wc_{2\alpha_1}c_\epsilon)}}{2\sqrt{3}t_Xc_W}$
$H_2H_5^-W_2^+\mathcal{Z}_1$	$\frac{ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 s_\xi (\sqrt{3s_W s_\epsilon} - t_X c_W c_2 \alpha_1 c_\epsilon)}}{2\sqrt{3} t_X c_W}$
$H_2H_5^-W_1^+\mathcal{Z}_1'$	$\frac{-ig_L^2\sqrt{t_R^2+t_X^2\beta^2}c_{\xi}(t_Xc_Wc_{2\alpha_1}s_{\epsilon}+\sqrt{3}s_Wc_{\epsilon})}{2\sqrt{3}t_Xc_W}$
$H_2 H_5^- W_2^+ \mathcal{Z}_1'$	$\frac{-ig_L^2\sqrt{t_R^2+t_X^2\beta^2}s_\xi(t_Xc_Wc_{2\alpha_1}s_\epsilon+\sqrt{3}s_Wc_\epsilon)}{2\sqrt{2}t}$
$H_3H_5^-W_1^+A$	$\frac{ig_Lg_R(u^2-v^2)s_Ws_\xi s\varphi}{ig_Lg_R(u^2-v^2)s_Ws_\xi s\varphi}$
$H_{\alpha}H^{-}W^{+}A$	$\frac{2\sqrt{u^2+v^2\Lambda}}{ig_Lg_R(v^2-u^2)c_\xi^sW^s\varphi}$
$11311_5 \\ 112 \\ 122 \\ 123 \\ $	$\frac{2\sqrt{u^2+v^2}\Lambda}{ig_{L}g_{R}(v^2-u^2)s_{W}s_{c}s_{\omega}t_{W}}$
$H_3H_5 W_1 Z$	$\frac{2\sqrt{u^2+v^2}\Lambda}{2\sqrt{u^2+v^2}\Lambda}$
$H_3H_5^-W_2^+Z$	$\frac{2}{2\sqrt{u^2 + v^2}\Lambda} = \frac{2\sqrt{u^2 + v^2}\Lambda}{2\sqrt{u^2 + v^2}\Lambda}$
$H_3H_5^-W_1^+\mathcal{Z}_1$	$\frac{ig_L g_R (v^2 - u^2) s_\xi s_\varphi [2(\sqrt{3t_R^2 - 2(q-1)\beta t_X^2}) c_\epsilon t_X + 3(t_R^2 + (2+\beta^2)t_X^2) s_\epsilon t_W]}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2} \sqrt{u^2 + v^2} \Lambda}$
$H_3H_5^-W_2^+\mathcal{Z}_1$	$\frac{ig_L g_R (u^2 - v^2) c_{\xi} s_{\varphi} [2(\sqrt{3t_R^2 - 2(q-1)\beta t_X^2}) c_{\epsilon} t_X + 3(t_R^2 + (2+\beta^2) t_X^2) s_{\epsilon} t_W]}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2} \sqrt{u^2 + v^2} \Lambda}$
$H_3H_5^-W_1^+\mathcal{Z}_1'$	$\frac{ig_L g_R (v^2 - u^2) s_{\xi} s_{\varphi} [2(\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) s_{\epsilon} t_X - 3(t_R^2 + (2+\beta^2) t_X^2) c_{\epsilon} t_W]}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2} \sqrt{u^2 + v^2} \Lambda}$
$H_3H_5^-W_2^+\mathcal{Z}_1'$	$\frac{ig_L g_R (u^2 - v^2) c_{\xi} s_{\varphi} [2(\sqrt{3}t_R^{2^*} - 2(q-1)\beta t_X^2) s_{\epsilon} t_X - 3(t_R^2 + (2+\beta^2) t_X^2) c_{\epsilon} t_W]}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2} \sqrt{u^2 + v^2} \Lambda}$
$H_4 H_5^- W_1^+ A$	$\frac{ig_L g_R (v^2 - u^2) s_\xi c \varphi s_W}{(v^2 - u^2) s_\xi c \varphi s_W}$
$H^{-} = + W^{-} Z$	$\frac{2\sqrt{u^2+v^2\Lambda}}{i3g_Lg_R(v^2-u^2)s_Wc_\xi t_W}$
$m_5 \equiv_{22} w_2 Z$	$\sqrt{2}\sqrt{u^2+v^2}\Lambda$

Bảng A11. Tương tác của hai trường vô hướng với một gauge boson mang điện và một gauge boson trung hòa.

Đỉnh	Hệ số
$H_4 H_5^- W_2^+ A$	$\frac{ig_Lg_R(u^2-v^2)c_\xi c\varphi s_W}{\sqrt{2}}$
- 0 2	$2\sqrt{u^2+v^2\Lambda}$
$H_4 H_5^- W_1^+ Z$	$\frac{ig_L g_R (u-v) s_W s_{\xi} c_{\varphi} v_W}{2\sqrt{u^2 + u^2} \Lambda}$
$u = u^{+} a$	$ig_L g_R (v^2 - u^2) c_\xi c_\varphi s_W t_W$
$H_4H_5 W_2 Z$	$\overline{2\sqrt{u^2+v^2}\Lambda}$
$H_4 H_5^- W_1^+ Z_1$	$\frac{ig_Lg_R(u^2-v^2)s_{\xi}c_{\varphi}[(2\sqrt{3}t_R^2-4(q-1)\beta t_X^2)c_{\epsilon}t_X+(3t_R^2+(7+4q+4q^2)t_X^2)s_{\epsilon}t_W]}{\sqrt{2}}$
0 1	$\frac{6t_X\sqrt{t_R^2+t_X^2}\beta^2\sqrt{u^2+v^2}\Lambda}{(2\sqrt{2}t_R^2-4(n-1))^{2}t_R^2}$
$H_4H_5^-W_2^+\mathcal{Z}_1$	$\frac{ig_L g_R(v - u) c_\xi c_\varphi((2\sqrt{3}c_R - 4(q-1)\beta c_X)c_\ell c_X + (3c_R + (1+4q+4q-)c_X)s_\ell c_W)}{6t_{K''} \sqrt{t^2 + t^2 \beta^2} \sqrt{u^2 + u^2} \Lambda}$
	$ig_{L}g_{R}(u^{2}-v^{2})s_{f}c_{\varphi}[(2\sqrt{3}t_{R}^{2}-4(q-1)\beta t_{Y}^{2})s_{\epsilon}t_{X}-(3t_{R}^{2}+(7+4q+4q^{2})t_{Y}^{2})c_{\epsilon}t_{W}]$
$H_4H_5 W_1' Z_1'$	$\frac{1}{6t_X\sqrt{t_R^2+t_X^2\beta^2}\sqrt{u^2+v^2}\Lambda}$
$H_A H_{\Sigma}^- W_0^+ Z_1'$	$\underbrace{ig_Lg_R(v^2-u^2)c_\xi c_\varphi[(2\sqrt{3}t_R^2-4(q-1)\beta t_X^2)s_e t_X-(3t_R^2+(7+4q+4q^2)t_X^2)c_e t_W]}_{}$
452 -1	${}^{6t}X\sqrt{t_R^2+t_X^2\beta^2}\sqrt{u^2+v^2}\Lambda$
$H_1 H_6^{-q} X^q A$	$\frac{ig_Lg_Rqc\alpha_1c\varphi_qs_W}{c^2}$
$H_1 H_6^{-q} X^q Z$	$\frac{-ig_Lg_Rc_{\alpha_1}c\varphi_q\left[c_W+(1+q)s_Wt_W\right]}{2}$
$H_1 H_6^{-q} X^q \mathcal{Z}_1$	$\frac{-ig_Lg_Rc_{\alpha_1}c_{\varphi_q}[(t_R^2-2t_X^2\beta^2)c_\epsilon t_X-(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)s_\epsilon t_W]}{\sqrt{2}}$
-	$\frac{4\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}{[(t_R^2 - 2t_R^2\beta^2)s_R t_X + (\sqrt{3}t_R^2 - 2(a-1)t_R^2\beta)c_R t_W]}$
$H_1 H_6^{-q} X^q \mathcal{Z}_1'$	$\frac{-\frac{is_L s_R \cdot a_1 \cdot \varphi_q \left(\cdot \frac{R}{R} - \frac{i}{X} \right) \cdot e^{i \frac{1}{X} + \frac{i}{Y} \cdot \frac{1}{Y} \cdot \frac{1}{$
$H_1 H_{\pi}^{-q} X^q A$	$\frac{ig_Lg_Rqc_{\alpha_1}s_W(ws\varphi_q - uc_{\alpha_2}c\varphi_q)}{2}$
$H_1 H_{-}^{-q} X^q Z$	$\frac{ig_Lg_R(qc_{2W}-q-2)c_{\alpha_1}^{2w}(ws\varphi_q-uc_{\alpha_2}c\varphi_q)}{(ws\varphi_q-uc_{\alpha_2}c\varphi_q)}$
	$\frac{4wc_W}{ig_Lg_Bc_{\alpha_1}[uc_{\alpha_2}c_{\varphi_a} - ws_{\varphi_a}][(t_B^2 - 2t_Y^2\beta^2)c_{\epsilon}t_X - (\sqrt{3}t_B^2 - 2(q-1)\beta t_Y^2)s_{\epsilon}t_W]}$
$H_1H_7 \overset{q}{} X^q \mathcal{Z}_1$	$\frac{1}{4\sqrt{3}wt_X\sqrt{t_R^2+t_X^2\beta^2}}$
$H_1 H_{\pi}^{-q} X^q \mathcal{Z}_1'$	$\frac{ig_Lg_Rc_{\alpha_1}[uc_{\alpha_2}c_{\varphi_q}-ws_{\varphi_q}][(t_R^2-2t_X^2\beta^2)s_\epsilon t_X+(\sqrt{3}t_R^2-2(q-1)\beta t_X^2)c_\epsilon t_W]}{2}$
1 7 1	$\frac{4\sqrt{3}wt_X\sqrt{t_R^2+t_X^2\beta^2}}{-ig_Lg_Rg_Rg_Rg_Rg_Rg_Rg_Rg_Rg_Rg_Rg_Rg_Rg_Rg$
$H_2 H_6^{-q} X^q A$	$\frac{\frac{3}{3} \sum g_{R} 4 3 \alpha_{1} \cos \varphi_{q} \sin W}{2 \cos \varphi_{1} \sin \varphi_{1} \sin$
$H_2H_6^{-q}X^qZ$	$\frac{\frac{g_L g_R \sigma_1 + \varphi_q (v_W + (1+q) s_W v_W)}{(1+q) s_W (v_W)}}{\left[g_L g_R \sigma_1 + g_R$
${}^{H_2H_6^{-q}X^q}\mathcal{Z}_1$	$\frac{ig_Lg_Rs_{\alpha_1}c_{\varphi_q}\left[(t_R^2-2t_X^2\beta^2)c_\epsilon t_X-(\sqrt{3}t_R^2-2(q-1)\beta t_X^2)s_\epsilon t_W\right]}{4\sqrt{3}t_W}$
a = -a = a = a = b	$\frac{4\sqrt{3}t_X\sqrt{t_R+t_X\beta}}{ig_Lg_Rs_{\alpha_1}c_{\varphi_a}[(t_R^2-2t_X^2\beta^2)s_\epsilon t_X+(\sqrt{3}t_R^2-2(q-1)\beta t_X^2)c_\epsilon t_W]}$
$H_2H_6 X^{q}Z_1^{r}$	$\frac{1}{4\sqrt{3}t_X\sqrt{t_R^2+t_X^2\beta^2}}$
$H_2 H_7^{-q} X^q A$	$rac{ig_Lg_Rq_slpha_1s_W(uclpha_2carphi_q-wsarphi_q)}{2w}$
$H_2 H_7^{-q} X^q Z$	$\frac{ig_Lg_R(qc_{2W}-q-2)s_{\alpha_1}(uc_{\alpha_2}c_{\varphi_q}-ws_{\varphi_q})}{4wc_W}$
$H_0 H_{-}^{-q} X^q Z_1$	$\frac{ig_Lg_Rs_{\alpha_1}[ws_{\varphi_q}-uc_{\alpha_2}c_{\varphi_q}][(t_R^2-2t_X^2\beta^2)c_\epsilon t_X-(\sqrt{3}t_R^2-2(q-1)\beta t_X^2)s_\epsilon t_W]}{2}$
271	$4\sqrt{3}wt_X\sqrt{t_R^2+t_X^2\beta^2}$
$_{H_2H_7^{-q}X^q\mathcal{Z}_1'}$	$\frac{ig_Lg_Rs_{\alpha_1}[ws\varphi_q - uc\alpha_2 c\varphi_q][(t_R^2 - 2t_X^2\beta^2)s\epsilon t_X + (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2)c\epsilon t_W]}{4\sqrt{2} + \sqrt{2} + 2\sqrt{2}}$
a	$\frac{4\sqrt{3}w^{t}X\sqrt{t_{R}}+t_{X}\beta^{-}}{ig_{L}g_{R}q^{s}W[w(c_{\alpha2}c_{\varphi}+\sqrt{2}s_{\alpha2}s_{\varphi})s_{\varphi_{R}}-uc_{\varphi}c_{\varphi_{R}}]}$
$H_3H_6 q_X q_A$	$\frac{2}{2w} \frac{1}{2w} \frac$
$H_3H_6^{-q}X^qZ$	$\frac{2}{2w} = \frac{2}{2w} \frac{2}{2} $
$H_3H_6^{-q}X^q\mathcal{Z}_1$	$=\frac{\frac{1}{2}\sum_{k=1}^{n$
	$+ \frac{ig_Lg_Rc_\epsilon[\sqrt{2}w(\sqrt{3}t_R^2 - 8(q-1)t_X^2\beta)s_{\alpha_2}s_{\varphi}s_{\varphi}q - \sqrt{3}(t_R^2 + 4t_X^2\beta^2)c_{\varphi}(uc_{\varphi}q - wc_{\alpha_2}s_{\varphi}q)]}{(uc_{\varphi}q - wc_{\alpha_2}s_{\varphi}q)}$
	$+\frac{12w\sqrt{t_R^2+t_X^2\beta^2}}{12w^2}$
$H_{3}H_{6}^{-q}X^{q}Z_{1}^{\prime}$	$-\frac{-ig_Lg_Rc_\epsilon[\sqrt{6(3t_R^2+2(2+q+2q^2)t_X^2)ws_{\alpha_2}s_{\varphi}s_{\varphi}q}+(\sqrt{3t_R^2-2(2+q)t_X^2}\beta)c_{\varphi}(uc_{\varphi q}-wc_{\alpha_2}s_{\varphi q})]t_W}{\sqrt{2}+\sqrt{2}}$
-	$\frac{4\sqrt{3}t_X w \sqrt{t_R^2 + t_X^2 \beta^2}}{i a_L a_R s_c [\sqrt{2}w(\sqrt{3}t_R^2 - 8(a-1)t_R^2 \beta) s_{CR} s_R s_R s_R - \sqrt{3}(t_R^2 + 4t_R^2 \beta^2) C_C (u_{CR} - w_{CR} s_R s_R)]}$
	$+\frac{-\frac{1}{2}\sum_{R}\frac{1}{2}\sum_{R}\frac{1}{2}\sum_{R}\frac{1}{2}\sum_{R}\frac{1}{2}\sum_{q}$
$H_2 H_{-}^{-q} X^{q} A$	$\frac{-ig_Lg_Rqc\varphi_qs_W(c\alpha_2c\varphi+\sqrt{2}s\alpha_2s\varphi)}{(c\alpha_2c\varphi+\sqrt{2}s\alpha_2s\varphi)}$
$H_0 H^{-q} Y^{q} Z$	$\frac{ig_Lg_Rqc_{\varphi q}s_W(c_{\alpha_2}^2c_{\varphi}+\sqrt{2}s_{\alpha_2}s_{\varphi})t_W}{2}$
$m_{3}m_{7}$ Λ^{-2}	$ig_Lg_Rc\varphi_q c_{\alpha_2}c_{\varphi}[(\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)s_{\epsilon}t_W - (t_R^2 + 4t_X^2\beta^2)c_{\epsilon}t_X]$
H_3H_7 $X^{4}Z_1$	$\frac{1}{4\sqrt{3}t_X\sqrt{t_R^2+t_X^2\beta^2}}$
	$-\frac{ig_Lg_Rc_{\varphi q}s_{\alpha 2}s_{\varphi}[(\sqrt{3}t_R^2-8(q-1)\beta t_X^2)c_{\epsilon}t_X+3(3t_R^2+2(2+q+2q^2)t_X^2)s_{\epsilon}t_W]}{\sqrt{2}}$
	$6\sqrt{2}t_X\sqrt{t_R^2+t_X^2eta^2}$

Bảng A12. Tương tác của hai trường vô hướng với một gauge boson mang điện và một gauge boson trung hòa (tiếp).

Đỉnh	Hệ số
$H_3H_7^{-q}X^q\mathcal{Z}_1'$	$\frac{-ig_Lg_Rc_{\varphi q}c_{\alpha 2}c_{\varphi}[(\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)c_{\epsilon}t_W + (t_R^2 + 4t_X^2\beta^2)s_{\epsilon}t_X]}{(\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+$
	$\frac{4\sqrt{3}t_X\sqrt{t_R^2+t_X^2}\beta^2}{ig_Lg_Rc\varphi_qs_{\alpha_2}s_{\varphi}[(\sqrt{3}t_R^2-8(q-1)\beta t_X^2)s_{\epsilon}t_X-3(3t_R^2+2(2+q+2q^2)t_X^2)c_{\epsilon}t_W]}$
	$-\frac{1}{6\sqrt{2}t_X\sqrt{t_R^2+t_X^2\beta^2}}$
$H_4 H_6^{-q} X^q A$	$\frac{-ig_Lg_Rqs_W[uc\varphi_qs\varphi+w(\sqrt{2}c\varphi s\alpha_2-c\alpha_2s\varphi)s\varphi_q]}{2w}$
$H_4 H_6^{-q} X^q Z$	$\frac{ig_Lg_Rqs_W[uc\varphi_qs\varphi+w(\sqrt{2}c\varphi s\alpha_2-c\alpha_2s\varphi)s\varphi_q]t_W}{2w}$
$H_4 H_6^{-q} X^q \mathcal{Z}_1$	$\frac{-ig_L g_R c_{\varphi} s_{\alpha_2} s_{\varphi_q} [3(3t_R^2 + 2(2+q+2q^2)t_X^2)s_{\epsilon} t_W + (\sqrt{3}t_R^2 - 8(q-1)t_X^2\beta)c_{\epsilon} t_X]}{\sqrt{2}}$
- 0 -	$\frac{6\sqrt{2t}_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}}}{iq_{I}q_{R}s_{i0}[uc_{i02}-wc_{002}s_{i02}][(t_{P}^{2}+4t_{X}^{2}\beta^{2})c_{e}t_{Y}-(\sqrt{3}t_{P}^{2}-2(2+q)t_{X}^{2}\beta)s_{e}t_{W}]}$
	$-\frac{\frac{32547}{4\sqrt{3}t_X}\frac{1}{w}\sqrt{t_R^2+t_X^2\beta^2}}{4\sqrt{3}t_Xw}\sqrt{t_R^2+t_X^2\beta^2}$
$H_4 H_6^{-q} X^q \mathcal{Z}_1'$	$\frac{ig_L g_R c_{\varphi} s_{\alpha_2} s_{\varphi_q} [3(3t_R^2 + 2(2+q+2q^2)t_X^2)c_{\epsilon} t_W - (\sqrt{3}t_R^2 - 8(q-1)t_X^2\beta)s_{\epsilon} t_X]}{\sqrt{2}}$
	$\frac{6\sqrt{2}t_X\sqrt{t_R^2+t_X^2\beta^2}}{ig_Lg_Rs_{\varphi}[uc_{\varphi_q}-wc_{\alpha_2}s_{\varphi_q}][(t_R^2+4t_X^2\beta^2)s_{\epsilon}t_X+(\sqrt{3}t_R^2-2(2+q)t_X^2\beta)c_{\epsilon}t_W]}$
	$-\frac{2}{4\sqrt{3}t_Xw\sqrt{t_R^2 + t_X^2\beta^2}} - \frac{1}{4\sqrt{3}t_Xw\sqrt{t_R^2 + t_X^2\beta^2}} + \frac{1}{4\sqrt{3}t_Xw\sqrt{t_R^2 + t_X^2}} + \frac{1}{4\sqrt{3}t_Xwt_R^2 + t_X^2$
$H_4 H_7^{-q} X^q A$	$\frac{ig_Lg_Rqc_{\varphi q}s_W(\sqrt{2}s_{\alpha_2}c_{\varphi}-c_{\alpha_2}s_{\varphi})}{2}$
$H_4 H_7^{-q} X^q Z$	$\frac{ig_Lg_Rqc_{\varphi_q}s_W(c_{\alpha_2}s_{\varphi}-\sqrt{2}s_{\alpha_2}c_{\varphi})t_W}{2}$
$H_4 H_7^{-q} X^q \mathcal{Z}_1$	$\frac{ig_Lg_Rc_{\varphi q}c_{\epsilon}[\sqrt{2}(\sqrt{3}t_R^2 - 8(q-1)\beta t_2^2)c_{\varphi s\alpha_2} - \sqrt{3}(t_R^2 + 4t_X^2\beta^2)c_{\alpha_2}s_{\varphi}]}{\sqrt{2}}$
- 1 -	$\frac{12\sqrt{t_R^2 + t_X^2}\beta^2}{ig_L g_R c_{\ell_0,2} s_\ell [\sqrt{6}(3t_R^2 + 2(2+q+2q^2)t_X^2)c_{\ell_0} s_{\ell_0} + (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)c_{\ell_0} s_{\ell_0}]t_W}$
	$+\frac{4\sqrt{3}t_R}{4\sqrt{3}t_X}\sqrt{(t_R^2+t_X^2\beta^2)}$
$H_4 H_7^{-q} X^q \mathcal{Z}_1'$	$\frac{ig_Lg_Rc_{\varphi_q}s_{\epsilon}[\sqrt{2}(\sqrt{3}t_R^2 - 8(q-1)\beta t_X^2)c_{\varphi}s_{\alpha_2} - \sqrt{3}(t_R^2 + 4t_X^2\beta^2)c_{\alpha_2}s_{\varphi}]}{\sqrt{2}}$
	$\frac{12\sqrt{t_R^2 + t_X^2\beta^2}}{ig_L g_R c_{\varphi_R} c_\epsilon [\sqrt{6}(3t_R^2 + 2(2+q+2q^2)t_X^2)c_{\varphi_R} a_{Q_2} + (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)c_{\varphi_Q} s_{\varphi_Q}]t_W}$
	$-\frac{2}{4\sqrt{3}t_X\sqrt{(t_R^2+t_X^2\beta^2)}}$
$\mathcal{A}H_6^{-q}X^qA$	$\frac{g_L g_R q c \varphi_q s_W s_{\alpha_1}}{2}$
$\mathcal{A}H_6^{-q}X^qZ$	$\frac{g_L g_R (q_c_{2W} - q - 2) c_{\varphi_q} s_{\alpha_1}}{2 c_{\varphi_q} c_{\varphi_q} s_{\alpha_1}}$
$\mathcal{A}H_6^{-q}X^q\mathcal{Z}_1$	$\frac{-g_L g_R c_{\varphi_q} s_{\alpha_1} [(t_R^2 - 2t_X^2 \beta^2) c_{\epsilon} t_X - (\sqrt{3} t_R^2 - 2(q-1)\beta t_X^2) s_{\epsilon} t_W]}{4\sqrt{2} t_{eq} (t_R^2 - t_X^2 - t_X^2) (t_R^2 - t_X^2) ($
$\Lambda H^{-q} \mathbf{Y}^{q} \mathbf{Z}'$	$-g_L g_R c_{\varphi_q} s_{\alpha_1} [(t_R^2 - 2t_X^2 \beta^2) s_\epsilon t_X + (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) c_\epsilon t_W]$
\mathcal{A}_{6} \mathcal{A} \mathcal{L}_{1}	$\frac{4\sqrt{3}t_X\sqrt{t_R^2+t_X^2\beta^2}}{a_La\beta a_S}$
$\mathcal{A}H_7^{-q}X^qA$	$\frac{g_L g_R q_S \varphi_q s_W s_{\alpha_1}}{2}$
$\mathcal{A}H_7^{-q}X^qZ$	$\frac{g_L g_R s_{\alpha_1} (2uc_{\alpha_2} c \varphi_q + w(qc_{2W} - q - 2)s \varphi_q)}{4wc_W}$
$\mathcal{A}H_7^{-q}X^q\mathcal{Z}_1$	$\frac{g_L g_R s_{\alpha_1} [w s_{\varphi_q} ((t_R^* - 2t_X^* \beta^2) c_{\epsilon} t_X - (\sqrt{3} t_R^* - 2(q-1)\beta t_X^*) s_{\epsilon} t_W)]}{4\sqrt{3} w t_Y \sqrt{t_R^2 + t_Y^2 \beta^2}}$
	$-\frac{g_L g_R s_{\alpha_1}[w s_{\varphi_q}((t_R^2 - 2t_X^2 \beta^2) c_\epsilon t_X - (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) s_\epsilon t_W)]}{2}$
	$\frac{4\sqrt{3}wt_X}{t_R^2 + t_R^2} \frac{4\sqrt{3}wt_R}{t_R^2 + t_R^2} $
$\mathcal{A}H_7^{-q}X^q\mathcal{Z}_1'$	$=\frac{\frac{g_Lg_Rs_{\alpha_1}(2\omega(v_R^{-1}v_X^{-1}))(v_X^{-1}s_\ell^{-1}+v_R^{-1})(v_X^{-1}s_\ell^{-1}+v_R^{-1}s_\ell^{-1})}{4\sqrt{3}wt_X\sqrt{t_R^2+t_Y^2\beta^2}}$
	$-\frac{g_L g_R s_{\alpha_1} [w s_{\varphi_q}((t_R^2 - 2t_X^2 \beta^2) s_\epsilon t_X + (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) c_\epsilon t_W)]}{(q_R^2 - 2t_R^2 \beta^2) s_\epsilon t_X + (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) c_\epsilon t_W)]}$
$A II^{1+q} V^{-1-q} A$	$\frac{4\sqrt{3}wt_X\sqrt{t_R^2+t_X^2\beta^2}}{-g_L g_R (1+q)c_{\alpha_1} s_W}$
$\mathcal{A}H_8^{+1}Y^{-1}A$ $\mathcal{A}H^{1+q}V^{-1-q}Z$	$g_L g_R (q - (1+q)c_{2W} - 1)c_{\alpha_1}$
$\mathcal{A}H_8 = Y = Z$	$\frac{4c_W}{g_L g_R c_{\alpha 1} \left[(t_R^2 - 2t_Y^2 \beta^2) c_\ell t_X + (\sqrt{3}t_R^2 - 2(2+q)\beta t_Y^2) s_\ell t_W \right]}$
$\mathcal{A}H_8^{++q}Y^{-+-q}\mathcal{Z}_1$	$\frac{4\sqrt{3}t_X\sqrt{t_R^2+t_X^2\beta^2}}{\sqrt{3}t_X\sqrt{t_R^2+t_X^2\beta^2}}$
$\mathcal{A}H_8^{1+q}Y^{-1-q}\mathcal{Z}_1'$	$\frac{g_L g_R c_{\alpha_1} [(t_R^2 - 2t_X^2 \beta^2) s_\epsilon t_X - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]}{4\sqrt{3}t_W \sqrt{t_R^2 + t_R^2 \beta^2}}$
$H_1 H_8^{1+q} Y^{-1-q} A$	$\frac{i \sqrt{s} \sqrt{\sqrt{R} + \sqrt{X}}}{i g_L g_R (1+q) s_W s_{\alpha_1}}$
$H_1 H_0^{1+q} Y^{-1-q} Z$	$\frac{ig_Lg_Rs_{\alpha_1}(c_W^2 - qs_W^2)}{(c_W^2 - qs_W^2)}$
$H_1 H^{1+q} V^{-1-q} z$	$\frac{2c_W}{-ig_Lg_Rs_{\alpha_1}[(t_R^2 - 2t_X^2\beta^2)c_\epsilon t_X + (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)s_\epsilon t_W]}$
¹¹ 1 ¹¹ 8 ¹ ⁻ 2 ¹	$\frac{4\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}{\sqrt{t_R^2 + t_X^2\beta^2}}$
$H_1 H_8^{1+q} Y^{-1-q} \mathcal{Z}_1'$	$\frac{-ig_Lg_Rs_{\alpha_1}\lfloor(t_R^2t_X^-\beta^-)s_\epsilon t_X^(\sqrt{3}t_R^2(2+q)\beta t_X^-)c_\epsilon t_W\rfloor}{4\sqrt{3}t_X\sqrt{t_R^2+t_X^2\beta^2}}$

Bảng A13. Tương tác của hai trường vô hướng với một gauge boson mang điện và một gauge boson trung hòa (tiếp).

Đỉnh	Hệ số
$H_2 H_8^{1+q} Y^{-1-q} A$	$ig_Lg_R(1+q)s_Wc_{\alpha_1}0.5$
$H_2 H_8^{1+q} Y^{-1-q} Z$	$ig_Lg_Rc_{lpha_1}(c_W-qs_Wt_W)0.5$
$H_2 H_8^{1+q} Y^{-1-q} \mathcal{Z}_1$	$\frac{-ig_Lg_Rc_{\alpha_1}[(t_R^2 - 2t_X^2\beta^2)c_\epsilon t_X + (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)s_\epsilon t_W]}{4\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$H_2 H_8^{1+q} Y^{-1-q} \mathcal{Z}_1'$	$\frac{-ig_Lg_Rc_{\alpha_1}[(t_R^2 - 2t_X^2\beta^2)s_\epsilon t_X - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2)c_\epsilon t_W]}{4\sqrt{3}t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$H_3 H_8^{1+q} Y^{-1-q} A$	$rac{-ig_Lg_R(1+q)vs_Wc_{arphi}}{2w}$
$H_3 H_8^{1+q} Y^{-1-q} Z$	$rac{ig_Lg_R(1+q)vs_Wc_arphi t_W}{2w}$
$H_3H_8^{1+q}Y^{-1-q}\mathcal{Z}_1$	$\frac{-ig_L g_R v c_{\varphi}[(t_R^2 + 4t_X^2 \beta^2) c_{\epsilon} t_X + (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) s_{\epsilon} t_W]}{4\sqrt{3}w t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$
$H_3H_8^{1+q}Y^{-1-q}\mathcal{Z}_1'$	$\frac{-ig_L g_R v c_{\varphi}[(t_R^2 + 4t_X^2 \beta^2) s_{\epsilon} t_X - (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) c_{\epsilon} t_W]}{4\sqrt{3}w t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$
$H_4 H_8^{1+q} Y^{-1-q} A$	$-rac{ig_Lg_R(1+q)vs_Ws_{arphi}}{2w}$
$H_4 H_8^{1+q} Y^{-1-q} Z$	$\frac{ig_Lg_R(1+q)vs_Ws_{\varphi}t_W}{2w}$
$H_4 H_8^{1+q} Y^{-1-q} \mathcal{Z}_1$	$\frac{-ig_L g_R v s_{\varphi}[(t_R^2 + 4t_X^2 \beta^2) c_{\epsilon} t_X + (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) s_{\epsilon} t_W]}{4\sqrt{3}w t_X \sqrt{t_P^2 + t_X^2 \beta^2}}$
$H_4 H_8^{1+q} Y^{-1-q} \mathcal{Z}_1'$	$\frac{-ig_L g_R v s_{\varphi}[(t_R^2 + 4t_X^2 \beta^2) s_{\epsilon} t_X - (\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2) c_{\epsilon} t_W]}{4\sqrt{3}w t_X \sqrt{t_P^2 + t_Y^2 \beta^2}}$
$\Xi_{22}^{}\Xi_{23}^{1-q}Y^{1+q}A$	$ig_L g_R (q-3) s_W$
$\Xi_{22}^{}\Xi_{23}^{1-q}Y^{1+q}Z$	$ig_L g_R (3-q) s_W t_W$
$\Xi_{22}^{}\Xi_{23}^{1-q}Y^{1+q}\mathcal{Z}_{1}$	$\frac{ig_L g_R[(\sqrt{3}t_R^2 - 8(q-1)t_X^2\beta)c_{\epsilon}t_X - 3(3t_R^2 + 2(q(3+2q)-1)t_X^2)s_{\epsilon}t_W]}{6t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{22}^{}\Xi_{23}^{1-q}Y^{1+q}\mathcal{Z}_{1}'$	$\frac{ig_L g_R[(\sqrt{3}t_R^2 - 8(q-1)t_X^2\beta)s_\epsilon t_X + 3(3t_R^2 + 2(q(3+2q)-1)t_X^2)c_\epsilon t_W]}{6t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{33}^{2q}\Xi_{23}^{1-q}Y^{-1-q}A$	$ig_L g_R (3q-1)s_W$
$\Xi_{33}^{2q}\Xi_{23}^{1-q}Y^{-1-q}Z$	$ig_Lg_R(1-3q)s_Wt_W$
$\Xi_{33}^{2q}\Xi_{23}^{1-q}Y^{-1-q}\mathcal{Z}_{1}$	$\frac{-ig_L g_R[(5\sqrt{3}t_R^2 + 8(q-1)\beta t_X^2)c_\epsilon t_X + (3t_R^2 + 2(q(11+2q)-1)t_X^2)s_\epsilon t_W]}{6t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{33}^{2q}\Xi_{23}^{1-q}Y^{-1-q}\mathcal{Z}_{1}'$	$\frac{-ig_L g_R[(5\sqrt{3}t_R^2 + 8(q-1)\beta t_X^2)s_\epsilon t_X - (3t_R^2 + 2(q(11+2q)-1)t_X^2)c_\epsilon t_W]}{6\sqrt{3}t_X\sqrt{t_R^2 + t_Y^2\beta^2}}$
$H_5^- \Xi_{23}^{1-q} X^q A$	$\frac{ig_Lg_R(q-2)(v^2-u^2)s_W}{(v^2-u^2)s_W}$
$H_5^- \Xi_{23}^{1-q} X^q Z$	$\frac{2\sqrt{u^2+v^2\Lambda}}{\frac{ig_Lg_R(q-2)(u^2-v^2)s_Wt_W}{2\sqrt{u^2+v^2\Lambda}}}$
$H_5^- \Xi_{23}^{1-q} X^q \mathcal{Z}_1$	$\frac{ig_L g_R (v^2 - u^2) [(\sqrt{3}t_R^2 - 8(q-1)\beta t_X^2) c_\epsilon t_X - (3t_R^2 + 2(2q^2 + 5q-4)t_X^2) s_\epsilon t_W]}{12t_X \sqrt{u^2 + v^2} \Lambda_\lambda / t_P^2 + t_Y^2 \beta^2}$
$H_5^- \Xi_{23}^{1-q} X^q \mathcal{Z}_1'$	$\frac{ig_L g_R (v^2 - u^2) [(\sqrt{3}t_R^2 - 8(q-1)\beta t_X^2) s_\epsilon t_X + (3t_R^2 + 2(2q^2 + 5q - 4)t_X^2) c_\epsilon t_W]}{12t_X \sqrt{u^2 + v^2} \Lambda_\lambda / t_R^2 + t_s^2 \beta^2}$
$H_5^- \Xi_{22}^{++} W_1^- A$	$\frac{i3g_Lg_R(v^2-u^2)s_Ws_{\xi}}{\sqrt{2}\sqrt{u^2+v^2}\Lambda}$
$H_5^- \Xi_{22}^{++} W_1^- Z$	$rac{i 3 g_L g_R (u^2 - v^2) s_W s_\xi t_W}{\sqrt{2} \sqrt{u^2 + v^2} \Lambda}$
$H_5^- \Xi_{22}^{++} W_1^- Z_1$	$-\frac{ig_Lg_R(u^2-v^2)s_{\xi}[(2\sqrt{3}t_R^2-4(q-1)\beta t_X^2)c_{\epsilon}t_X-(3t_R^2+(4q^2+4q-5)t_X^2)s_{\epsilon}t_W]}{3\sqrt{2}t_X\sqrt{u^2+v^2}\Lambda\sqrt{t_R^2+t_Y^2}\beta^2}$
$H_5^- \Xi_{22}^{++} W_1^- Z_1'$	$ + \frac{ig_L g_R (u^2 - v^2) s_{\xi} [(2\sqrt{3}t_R^2 - 4(q-1)\beta t_X^2) s_{\epsilon} t_X + (3t_R^2 + (4q^2 + 4q-5)t_X^2) c_{\epsilon} t_W]}{3\sqrt{2}t_X \sqrt{u^2 + v^2} \Lambda \sqrt{t_P^2 + t_Y^2} \beta^2} $
$H_5^- \Xi_{22}^{++} W_2^- A$	$rac{i 3 g_L g_R (u^2 - v^2) s_W c_\xi}{\sqrt{2} \sqrt{u^2 + v^2} \Lambda}$
$H_{6}^{q}\Xi_{33}^{-2q}X^{q}A$	$-i3g_Lg_Rqs_{lpha_2}s_{arphi_q}s_W$

Bảng A14. Tương tác của hai trường vô hướng với một gauge boson mang điện và một gauge boson trung hòa (tiếp).

Đỉnh	Hệ số
$H_5^- \Xi_{22}^{++} W_2^- Z_1$	$\frac{ig_Lg_R(v^2-u^2)c_{\xi}[(2\sqrt{3}t_R^2-4(q-1)\beta t_X^2)c_{\xi}t_X-(3t_R^2+(4q^2+4q-5)t_X^2)s_{\xi}t_W]}{\sqrt{2}}$
	$\frac{3\sqrt{2t_X}\sqrt{u^2+v^2}\Lambda\sqrt{t_R^2+t_X^2}\beta^2}{ig_{L}g_{R}(v^2-u^2)c_{\mathcal{E}}[(2\sqrt{3t_R^2}-4(q-1)\beta t_Y^2)s_{\mathcal{E}}t_X+(3t_R^2+(4q^2+4q-5)t_Y^2)c_{\mathcal{E}}t_W]}$
$H_5^- \Xi_{22}^{++} W_2^- Z_1'$	$\frac{-525\pi (1-1)^2 \chi}{3\sqrt{2}t_X\sqrt{u^2+v^2}\Lambda\sqrt{t_R^2+t_X^2\beta^2}}$
$H_5^- H_6^{-q} Y^{1+q} A$	$\frac{ig_Lg_R(q-1)c_{\alpha_1}c_{\varphi_q}s_W}{\sqrt{2}}$
$H_5^- H_6^{-q} Y^{1+q} Z$	$\frac{ig_Lg_R[(q-1)c_2W^{-1}-q]c_{\alpha_1}c_{\varphi_q}}{2\sqrt{2}c_W}$
$H_5^- H_6^{-q} Y^{1+q} \mathcal{Z}_1$	$\frac{-ig_L g_R c_{\alpha_1} c_{\varphi_q} [(t_R^2 - 2t_X^2 \beta^2) c_{\epsilon} t_X + (\sqrt{3}t_R^2 - 2(2+q)t_X^2 \beta) s_{\epsilon} t_W]}{2\sqrt{6}t_{X'} \sqrt{t_r^2 + t_r^2 \beta^2}}$
$H_5^- H_6^{-q} Y^{1+q} \mathcal{Z}_1'$	$\frac{-ig_Lg_Rc_{\alpha_1}c_{\varphi_q}[(t_R^2 - 2t_X^2\beta^2)s_\epsilon t_X - (\sqrt{3}t_R^2 - 2(2+q)t_X^2\beta)c_\epsilon t_W]}{2\sqrt{2}}$
$H_5^- H_7^{-q} Y^{1+q} A$	$\frac{ig_Lg_R(q-1)s_W[w(v^2-u^2)s_{\alpha_2}c_{\varphi_q}+\sqrt{2}\Lambda u(ws_{\varphi_q}-uc_{\alpha_2}c_{\varphi_q})]}{(d_Lg_R(q-1)s_W[w(v^2-u^2)s_{\alpha_2}c_{\varphi_q}+\sqrt{2}\Lambda u(ws_{\varphi_q}-uc_{\alpha_2}c_{\varphi_q})]}$
$H_5^- H_7^{-q} Y^{1+q} Z$	$\frac{ig_Lg_R[(q-1)w(u^2-v^2)c\varphi_qs_{\alpha_2}s_W^2+\sqrt{2}\Lambda u(uc_{\alpha_2}c\varphi_q-ws\varphi_q)(c_W^2+qs_W^2)]}{\sqrt{2}}$
$H_5^- H_7^{-q} Y^{1+q} \mathcal{Z}_1$	$=\frac{2w\Lambda\sqrt{u^2+v^2}c_W}{\frac{ig_Lg_Rc_{\varphi_q}s_{\alpha_2}(v^2-u^2)[(\sqrt{3}t_R^2-8(q-1)t_X^2\beta)c_\epsilon t_X+(3t_R^2+2(5+q(2q-1))t_X^2)s_\epsilon t_W]}{(\sqrt{3}t_R^2-8(q-1)t_X^2\beta)c_\epsilon t_X+(3t_R^2+2(5+q(2q-1))t_X^2)s_\epsilon t_W]}$
	$\frac{12t_X\sqrt{u^2+v^2}\Lambda\sqrt{t_R^2+t_X^2\beta^2}}{ig_Lg_Rc_{\alpha_1}[uc_{\alpha_2}c_{\varphi_q}-ws_{\varphi_q}][(t_R^2-2t_X^2\beta^2)c_\epsilon t_X+(\sqrt{3}t_R^2-2(2+q)t_X^2\beta)s_\epsilon t_W]}$
	$+ \frac{2}{2\sqrt{6}t_X w \sqrt{t_R^2 + t_X^2 \beta^2}}$
$H_5^- H_7^{-q} Y^{1+q} \mathcal{Z}_1'$	$-\frac{ig_Lg_Rc\varphi_qs_{\alpha_2}[v^2-u^2][(\sqrt{3t_R^2}-8(q-1)t_X^2\beta)s_\epsilon t_X-(3t_R^2+2(5+q(2q-1))t_X^2)c_\epsilon t_W]}{12t_X\sqrt{u^2+v^2}\Lambda_1/t_2^2+t_2^2\beta^2}$
	$+ \frac{ig_Lg_Rc_{\alpha_1}[uc_{\alpha_2}c_{\varphi_q} - ws_{\varphi_q}][(t_R^2 - 2t_X^2\beta^2)s_{\epsilon}t_X - (\sqrt{3}t_R^2 - 2(2+q)t_X^2\beta)c_{\epsilon}t_W]}{(\sqrt{3}t_R^2 - 2(2+q)t_X^2\beta)c_{\epsilon}t_W]}$
	$2\sqrt{6}t_Xw\sqrt{t_R^2+t_X^2eta^2}$
$H_{6}^{q}\Xi_{33}^{-2q}X^{q}Z$	$i 3g_L g_R q_S \varphi_{\varphi_q} s_W t_W$ $i g_L g_R g_S = \sum_{k=1}^{\infty} \left[(5\sqrt{3}t_{+}^2 + 8(q-1)\beta t_{+}^2) c_{-} t_W - (3t_{+}^2 + 2(2+q(2q-7))t_{+}^2) s_{+} t_W \right]$
$H_6^q \Xi_{33}^{-2q} X^q \mathcal{Z}_1$	$\frac{ig_L g_R g_R g_2 g_2 g_q (0,0,0) g_R + i(q-1)\beta g_X (0,0) g_X (0,$
$H_6^q \Xi_{33}^{-2q} X^q \mathcal{Z}_1'$	$\frac{ig_L g_R s_{\alpha_2} s_{\varphi_q} [(5\sqrt{3}t_R^2 + 8(q-1)\beta t_X^2) s_\epsilon t_X + (3t_R^2 + 2(2+q(2q-7))t_X^2) c_\epsilon t_W]}{6t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$
$H_7^q \Xi_{33}^{-2q} X^q A$	$i3g_Lg_Rqc_{\varphi_q}s_Ws_{\alpha_2}$
$H_7^q \Xi_{33}^{-2q} X^q Z$	$-i3g_Lg_Rqc_{arphi q}s_Ws_{lpha 2}t_W$
$H_7^q \Xi_{33}^{-2q} X^q \mathcal{Z}_1$	$\frac{ig_Lg_Rs_{\alpha_2}c_{\varphi_q}[(3t_R^2+2(2+q(2q-7))t_X^2)s_{\epsilon}t_W-(5\sqrt{3}t_R^2-8(q-1)\beta t_X^2)c_{\epsilon}t_X]}{(2q-1)(q-1)(q-1)(q-1)(q-1)(q-1)(q-1)(q-1)($
$H_7^q \Xi_{33}^{-2q} X^q Z_1'$	$\frac{-ig_L g_R s_{\alpha_2} c_{\varphi_q} [(3t_R^2 + 2(2+q(2q-7))t_X^2)c_{\epsilon}t_W + (5\sqrt{3}t_R^2 - 8(q-1)\beta t_X^2)s_{\epsilon}t_X]}{(2q+q)(2q+q$
rrarr-1-arr+a	${}^{6t}_X \sqrt{t_R} {}^{+t}_X {}^{\beta^2}_i {}^{i}\sqrt{3}g_L^2 {}^{\beta c}_{\mathcal{E}} {}^{c} {}^{\varphi} {}^{g}_W$
$H_6^{-1}H_8 = W_1^{-1}A$	$\frac{\frac{2}{\sqrt{2}}}{-i\sqrt{3}g_{\tau}^2}\beta c_{\tau} c_{(\tau)} s_{W} t_{W}$
$H_6^q H_8^{-1-q} W_1^+ Z$	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
$H_6^q H_8^{-1-q} W_1^+ \mathcal{Z}_1$	$\frac{\frac{ig_L c_\xi c\varphi_q \left[(2t_R - t_X \beta) c_\epsilon - \beta \beta t_X s_\epsilon t_W\right]}{\sqrt{6}\sqrt{t_P^2 + t_X^2 \beta^2}}}{\sqrt{6}}$
$H_6^q H_8^{-1-q} W_1^+ Z_1'$	$\frac{ig_L^2 c_\xi c_{\varphi q} [(2t_R^2 - t_X^2 \beta^2) s_\epsilon + 3\beta t_X c_\epsilon t_W]}{\sqrt{6}\sqrt{t_r^2 + t_r^2 \beta^2}}$
$H_{c}^{q}H_{c}^{-1-q}W_{c}^{+}A$	$\frac{i\sqrt{3}g_L^2\beta[w^2c_{\varphi_q}s_{\xi}+t_Rvc_{\xi}(uc_{\varphi_q}-wc_{\alpha_2}s_{\varphi_q})]s_W}{2}$
$H^{q}_{c}H^{-1-q}_{2}W^{+}_{2}Z$	$\frac{\sqrt{2w^2}}{-i\sqrt{3}g_L^2\beta[w^2c_{\varphi_q}s_\xi+t_Rvc_\xi(uc_{\varphi_q}-wc_{\alpha_2}s_{\varphi_q})]s_Wt_W}}$
$H^{q}_{q}H^{-1-q}_{q}W^{+}_{q}Z_{1}$	$\frac{\sqrt{2w^2}}{ig_L^2 s_\xi c\varphi_q} \frac{\sqrt{2w^2}}{[(2t_R^2 - t_X^2 \beta^2)c_\epsilon - 3\beta t_X s_\epsilon t_W]}$
$m_6 m_8 \qquad m_2 \omega_1$	$\sqrt{6}\sqrt{t_R^2 + t_X^2 \beta^2}$
$H_6^q H_8^{-1-q} W_2^+ \mathcal{Z}_1'$	$\frac{ig_L s_\xi c\varphi_q \left[(2t_R - t_X \beta) s_\epsilon + 3\beta t_X c_\epsilon t_W\right]}{\sqrt{6}\sqrt{t_R^2 + t_X^2 \beta^2}}$
$H_7^q H_8^{-1-q} W_1^+ A$	$\frac{i\sqrt{3}g_{L}^{2}\beta[wc\xi s\varphi_{q}-c_{\alpha2}c\varphi_{q}(uc\xi+t_{R}vs\xi)]s_{W}}{\sqrt{2}w}$
$H_7^q H_8^{-1-q} W_1^+ Z$	$\frac{-i\sqrt{3}g_L^2\beta[wc_{\xi}s\varphi_q - c_{\alpha_2}c\varphi_q(uc_{\xi} + t_Rvs_{\xi})]s_Wt_W}{\sqrt{2}w}$
$H_7^q H_8^{-1-q} W_1^+ Z_1$	$\frac{ig_L^2 c_{\xi}[ws_{\varphi_q} - uc_{\alpha_2}c_{\varphi_q}][(2t_R^2 - t_X^2\beta^2)c_{\epsilon} - 3\beta t_X s_{\epsilon} t_W]}{(2t_R^2 - t_X^2\beta^2)c_{\epsilon} - 3\beta t_X s_{\epsilon} t_W]}$
· ~ + -	$\frac{\sqrt{6w}\sqrt{t_R^2 + t_X^2\beta^2}}{ig_L g_R v c_{\alpha_2} c_{\varphi_q} s_{\varepsilon} [3t_X \beta s_{\epsilon} t_W - (t_P^2 - 2t_X^2 \beta^2) c_{\epsilon}]}$
	$+ \frac{2 + \sqrt{2} +$

Bảng A15. Tương tác của hai trường vô hướng với một gauge boson mang điện và một gauge boson trung hòa (tiếp).

Đỉnh	Hệ số
$H_7^q H_8^{-1-q} W_1^+ Z_1'$	$\frac{ig_L^2 c_{\xi}[ws_{\varphi_q} - uc_{\alpha_2} c_{\varphi_q}][(2t_R^2 - t_X^2 \beta^2)s_{\epsilon} + 3\beta t_X c_{\epsilon} t_W]}{(2t_R^2 - t_X^2 \beta^2)s_{\epsilon} + 3\beta t_X c_{\epsilon} t_W]}$
	$\sqrt{6w}\sqrt{t_R^2 + t_X^2\beta^2}$ $i q_L q_R v c_{\alpha\alpha} c_{(\alpha,\beta)} s_{\epsilon} [3t_X \beta c_{\epsilon} t_W + (t_R^2 - 2t_X^2 \beta^2) s_{\epsilon}]$
	$-\frac{-\frac{5254+\alpha_2+q}{\sqrt{6}w\sqrt{t_R^2+t_X^2\beta^2}}}{\sqrt{6}w\sqrt{t_R^2+t_X^2\beta^2}}$
$H_{\pi}^{q}H_{2}^{-1-q}W_{2}^{+}A$	$\frac{i\sqrt{3}g_L^2\beta[c_{\alpha_2}c_{\varphi_q}(t_Rvc_{\xi}-us_{\xi})+ws_{\xi}s_{\varphi_q}]s_W}{i\sqrt{3}g_L^2\beta[c_{\alpha_2}c_{\varphi_q}(t_Rvc_{\xi}-us_{\xi})+ws_{\xi}s_{\varphi_q}]s_W}$
$u^{q} u^{-1-q} w^{+} z$	$\frac{\sqrt{2w}}{-i\sqrt{3}g_L^2\beta[c_{\alpha_2}c_{\varphi_q}(t_Rvc_{\xi}-us_{\xi})+ws_{\xi}s_{\varphi_q}]s_Wt_W}$
$\Pi_7 \Pi_8 \qquad W_2 \qquad Z$	$\frac{\sqrt{2w}}{iq_T^2 s_{\epsilon}[w_{s(\alpha_{+}} - uc_{\alpha_{2}}c_{(\alpha_{+})}][(2t_D^2 - t_Y^2\beta^2)c_{\epsilon} - 3\beta t_Y s_{\epsilon}t_W]}$
$H_7^q H_8^{-1-q} W_2^+ \mathcal{Z}_1$	$\frac{\frac{1}{\sqrt{6}w\sqrt{t_R^2+t_X^2\beta^2}}}{\sqrt{6}w\sqrt{t_R^2+t_X^2\beta^2}}$
	$+\frac{ig_Lg_Rvc_{\alpha_2}c_{\varphi_q}c_{\xi}[(t_R^2-2t_X^2\beta^2)c_{\epsilon}-3t_X\beta s_{\epsilon}t_W]}{2}$
	$\sqrt{6}w\sqrt{t_R^2 + t_X^2\beta^2}$
$H_7^q H_8^{-1-q} W_2^+ \mathcal{Z}_1'$	$\frac{ig_L s_{\xi}[ws\varphi_q - uc_{\alpha_2}c_{\varphi_q}][(2t_R - t_X \beta) - s_{\epsilon} + s_{\beta}t_X c_{\epsilon}t_W]}{\sqrt{6}w_s\sqrt{t_r^2 + t_r^2}\beta^2}$
	$\frac{ig_Lg_Rvc_{\alpha_2}c_{\varphi_q}c_{\xi}[(t_R^2-2t_X^2\beta^2)s_{\epsilon}+3t_X\beta c_{\epsilon}t_W]}{ig_Lg_Rvc_{\alpha_2}c_{\varphi_q}c_{\xi}[(t_R^2-2t_X^2\beta^2)s_{\epsilon}+3t_X\beta c_{\epsilon}t_W]}$
	$+ \frac{\sqrt{6}w\sqrt{t_R^2 + t_X^2\beta^2}}{\sqrt{6}w\sqrt{t_R^2 + t_X^2\beta^2}}$
$H_6^q \Xi_{23}^{1-q} W_1^- A$	$\frac{ig_Lg_R(2q-1)s_Ws_\xi s_{\alpha_2}s_{\varphi_q}}{\sqrt{2}}$
$H_6^q \Xi_{23}^{1-q} W_1^- Z$	$\frac{ig_Lg_R(1-2q)s_Ws_\xi s_{\alpha_2}s_{\varphi_q}t_W}{\sqrt{2}}$
$H^q_c \Xi_{22}^{1-q} W^1 \mathcal{Z}_1$	$\underbrace{ig_L g_R s_\xi s_{\alpha_2} s_{\varphi_q} [3(1-2q)t_X s_\epsilon t_W - (\sqrt{3}t_R^2 + 4(q-1)\beta t_X^2)c_\epsilon]}_{\checkmark}$
0 23 1 1	$3\sqrt{2}\sqrt{t_R^2 + t_X^2\beta^2}$
$H_6^q \Xi_{23}^{1-q} W_1^- \mathcal{Z}_1'$	$\frac{ig_Lg_Rs_\xi s_{\alpha_2}s_{\varphi_q}[5(2q-1)\iota_X c_\epsilon \iota_W - (\sqrt{5}\iota_R + 4(q-1)\beta\iota_X)s_\epsilon]}{3\sqrt{2}\sqrt{t_2^2 + t_2^2\beta^2}}$
$H^q_{2}\Xi^{1-q}_{22}W^{-}_{2}A$	$\frac{ig_Lg_R(1-2q)s_Wc_\xi s_{\alpha_2}s_{\varphi_q}}{z}$
$H^q \Xi^{1-q} W^- Z$	$\frac{\sqrt{2}}{ig_Lg_R(2q-1)s_Wc_\xi s_{\alpha_2}s_{\varphi_q}t_W}$
$m_6 = 23 w_2 z$	$\frac{\sqrt{2}}{ig_Lg_Rc_fs_{\alpha_2}s_{\varphi_q}}\left[(\sqrt{3}t_R^2+4(q-1)\beta t_X^2)c_f+3(2q-1)t_Xs_ft_W\right]$
$H_6^{q}\Xi_{23}^{-q}W_2 Z_1$	$\frac{-\frac{1}{3\sqrt{2}\sqrt{t_R^2+t_X^2\beta^2}}}{3\sqrt{2}\sqrt{t_R^2+t_X^2\beta^2}}$
$H_6^q \Xi_{23}^{1-q} W_2^- \mathcal{Z}_1'$	$\frac{ig_L g_R c_\xi s_{\alpha_2} s_{\varphi_q} [(\sqrt{3}t_R^2 + 4(q-1)\beta t_X^2) s_\epsilon - 3(2q-1)t_X c_\epsilon t_W]}{\sqrt{2}}$
$\frac{1}{23}$	$\frac{3\sqrt{2}\sqrt{t_R^2 + t_X^2\beta^2}}{iq_Lq_R(1-2q)s_Ws_fs_{\alpha_2}c_{\varphi_2}}$
$H_7^q \Xi_{23}^{1-q} W_1^- A$	$\frac{325\pi(\sqrt{-1})^2}{\sqrt{2}}$
$H_7^q \Xi_{23}^{1-q} W_1^- Z$	$\frac{ig_Lg_R(2q-1)s_Ws_\xi s_{\alpha_2}c_{\varphi_q}v_W}{\sqrt{2}}$
$H_{7}^{q}\Xi_{23}^{1-q}W_{1}^{-}\mathcal{Z}_{1}$	$\frac{ig_L g_R s_\xi s_{\alpha_2} c_{\varphi_q} [(\sqrt{3}t_R^2 + 4(q-1)\beta t_X^2) c_\epsilon + 3(2q-1)t_X s_\epsilon t_W]}{2\sqrt{2}\sqrt{2}\sqrt{2}}$
a^{a-1-a}	$\frac{3\sqrt{2}\sqrt{t_R}+t_X}{ig_Lg_Rs_{\xi}s_{\alpha_2}c_{\varphi_q}[(\sqrt{3}t_R^2+4(q-1)\beta t_X^2)s_{\epsilon}-3(2q-1)t_Xc_{\epsilon}t_W]}$
$H_7^1 \Xi_{23}^{-1} W_1^- Z_1^-$	$\frac{1}{3\sqrt{2}\sqrt{t_R^2+t_X^2\beta^2}}$
$H_7^q \Xi_{23}^{1-q} W_2^- A$	$\frac{ig_Lg_R(2q-1)s_Wc_\xi s_{\alpha_2}c_{\varphi_q}}{\sqrt{2}}$
$H_7^q \Xi_{23}^{1-q} W_2^- Z$	$\frac{ig_Lg_R(1-2q)s_Wc_\xi s_{\alpha_2}c_{\varphi_q}t_W}{\sqrt{2}}$
$H^q_{\Xi}\Xi^{1-q}W^{\Xi}Z_1$	$\underbrace{ig_L g_R c_\xi s_{\alpha_2} c_{\varphi_q} [3(1-2q)t_X s_\epsilon t_W - (\sqrt{3}t_R^2 + 4(q-1)\beta t_X^2)c_\epsilon]}_{=}$
	$3\sqrt{2}\sqrt{t_R^2 + t_X^2\beta^2}$
$H_7^q \Xi_{23}^{1-q} W_2^- \mathcal{Z}_1'$	$-\frac{ig_Lg_Rc_\xi s_{\alpha_2}c_{\varphi_q}[3(2q-1)t_Xc_\epsilon t_W - (\sqrt{3t_R} + 4(q-1)\beta t_X)s_\epsilon]}{3\sqrt{2}\sqrt{t^2 + t^2 \beta^2}}$
$H_{-}^{+}H_{-}^{-1-q}X^{q}A$	$\frac{ig_Lg_R(2+q)s_Ws_{\alpha_1}}{ig_Lg_R(2+q)s_Ws_{\alpha_1}}$
$u^{+}u^{-1-q}v_{q}z$	${\sqrt{2}\over ig_L g_R s_{lpha_1} [c_W^{2} - (1+q) s_W^2]}$
$m_5 m_8 = \Lambda L$	$iq_{I}q_{R}s_{\alpha_{1}}[t_{X}(2t_{Y}^{2}\beta^{2}-t_{P}^{2})c_{e}+(\sqrt{3}t_{P}^{2}-2(a-1)t_{Y}^{2}\beta)s_{e}t_{W}]$
$H_5^+ H_8^{-1-q} X^q \mathcal{Z}_1$	$\frac{2\sqrt{6}t_X\sqrt{t_R^2+t_X^2\beta^2}}{2\sqrt{6}t_X\sqrt{t_R^2+t_X^2\beta^2}}$
$H_5^+ H_8^{-1-q} X^q \mathcal{Z}_1'$	$\frac{ig_Lg_Rs_{\alpha_1}[t_X(2t_X^2\beta^2-t_R^2)s_\epsilon-(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)c_\epsilon t_W]}{-(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)c_\epsilon t_W]}$
0 0 1	$2\sqrt{6}t_X\sqrt{t_R^2\!+\!t_X^2\beta^2}$

Bảng A16. Tương tác của hai trường vô hướng với một gauge boson mang điện và một gauge boson trung hòa (tiếp).

Đỉnh	Hệ số
\mathcal{AAZZ}_1'	$\frac{ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 [t_X c_{2\alpha_1} s_\epsilon + \sqrt{3} c_\epsilon t_W]}}{2\sqrt{3} t_X c_W}$
$\mathcal{AAZ}_1\mathcal{Z}_1$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[c_{\alpha_1}^2(t_Xc_{\epsilon} - \sqrt{3}\epsilon_{\epsilon}t_W)^2 + s_{\alpha_1}^2(t_Xc_{\epsilon} + \sqrt{3}s_{\epsilon}t_W)^2]}{6t_{\epsilon}^2}$
$\mathcal{AAZ}_1\mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[(t_X^2 - 3t_W^2)s_{2\epsilon} + 2\sqrt{3}c_{2\alpha_1}c_{2\epsilon}t_Xt_W]}{12t_X^2}$
$\mathcal{AAZ}_1'\mathcal{Z}_1'$	$\frac{ig_{L}^{2}(t_{R}^{2}+t_{X}^{2}\beta^{2})[t_{X}^{2}s_{\epsilon}^{2}+\sqrt{3}c_{2\alpha_{1}}s_{2\epsilon}t_{X}t_{W}+3c_{\epsilon}^{2}t_{W}^{2}]}{6t_{\epsilon}^{2}}$
H_1H_1ZZ	$\frac{\frac{ig_L^2}{2c_{W}^2}}{\frac{2c_{W}^2}{2c_{W}^2}}$
$H_1H_1Z\mathcal{Z}_1$	$\frac{-ig_L^2\sqrt{t_R^2 + t_X^2\beta^2}[t_Xc_{2\alpha_1}c_\epsilon + \sqrt{3}s_\epsilon t_W]}{2\sqrt{3}t_Xc_W}$
$H_1H_1Z\mathcal{Z}_1'$	$\frac{-ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2} [t_X c_{2\alpha_1} s_{\epsilon} - \sqrt{3}c_{\epsilon} t_W]}{2\sqrt{3} t_X c_W}$
$H_1H_1\mathcal{Z}_1\mathcal{Z}_1$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[s_{\alpha_1}^2(t_Xc_{\epsilon} - \sqrt{3}s_{\epsilon}t_W)^2 + c_{\alpha_1}^2(t_Xc_{\epsilon} + \sqrt{3}s_{\epsilon}t_W)^2]}{6t_W^2}$
$H_1H_1\mathcal{Z}_1\mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[(t_X^2 - 3t_W^2)s_{2\epsilon} - 2\sqrt{3}c_{2\alpha_1}c_{2\epsilon}t_Xt_W]}{12t_X^2}$
$H_1H_1\mathcal{Z}_1'\mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[t_X^2s_{\epsilon}^2 - \sqrt{3}c_{2\alpha_1}s_{2\epsilon}t_Xt_W + 3c_{\epsilon}^2t_W^2]}{6t_W^2}$
$H_1H_2Z\mathcal{Z}_1$	$\frac{ig_L^2\sqrt{t_R^2+t_X^2\beta^2}c_{\epsilons_{2\alpha_1}}}{2\sqrt{3}c_W}$
$H_1H_2Z\mathcal{Z}_1'$	$\frac{ig_L^2\sqrt{t_R^2+t_X^2\beta^2}s_\epsilon s_{2\alpha_1}}{2\sqrt{3}c_W}$
$H_1H_2\mathcal{Z}_1\mathcal{Z}_1$	$\frac{-ig_L^2(t_R^2 + t_X^2\beta^2)s_{2\alpha_1}s_{2\epsilon}t_W}{2\sqrt{3}t_X}$
$H_1H_2\mathcal{Z}_1\mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)s_{2\alpha_1}c_{2\epsilon}t_W}{2\sqrt{3}t_X}$
$H_1H_2\mathcal{Z}_1'\mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)s_{2\alpha_1}s_{2\epsilon}t_W}{2\sqrt{3}t_X}$
H_2H_2ZZ	$rac{ig_L^2}{2c_W^2}$
$H_2H_2Z\mathcal{Z}_1$	$\frac{ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2} [t_X c_{2\alpha_1} c_{\epsilon} - \sqrt{3} s_{\epsilon} t_W]}{2\sqrt{3} t_X c_W}$
$H_2H_2Z\mathcal{Z}_1'$	$\frac{ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2 [t_X c_{2\alpha_1} s_\epsilon + \sqrt{3} c_\epsilon t_W]}}{2\sqrt{3} t_X c_W}$
$H_2H_2\mathcal{Z}_1\mathcal{Z}_1$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[c_{\alpha_1}^2(t_Xc_{\epsilon} - \sqrt{3s_{\epsilon}}t_W)^2 + s_{\alpha_1}^2(t_Xc_{\epsilon} + \sqrt{3}s_{\epsilon}t_W)^2]}{6t_X^2}$
$H_2H_2\mathcal{Z}_1\mathcal{Z}_1'$	$\frac{ig_L^2(t_R^2 + t_X^2\beta^2)[2\sqrt{3}c_{2\alpha_1}c_{2\epsilon}t_Xt_W + s_{2\epsilon}(t_X^2 - 3t_W^2)]}{12t_Y^2}$
$H_2H_2\mathcal{Z}_1'\mathcal{Z}_1'$	$\frac{ig_{L}^{2}(t_{R}^{2}+t_{X}^{2}\beta^{2})[t_{X}^{2}s_{\epsilon}^{2}+\sqrt{3}c_{2\alpha_{1}}s_{2\epsilon}t_{X}t_{W}+3c_{\epsilon}^{2}t_{W}^{2}]}{6t_{V}^{2}}$
$H_3H_3\mathcal{Z}_1\mathcal{Z}_1$	$=\frac{i2g_L^2[3t_X^2(t_R^2+t_X^2\beta^2)^2c_\varphi^2c_\epsilon^2-s_\varphi^2((\sqrt{3}t_R^2-2(q-1)t_X^2\beta)c_\epsilon t_X+(3t_R^2+4(1+q+q^2)t_X^2)s_\epsilon t_W)^2]}{9t_X^2(t_R^2+t_X^2\beta^2)}$
$H_3H_3\mathcal{Z}_1\mathcal{Z}_1'$	$\frac{ig_R^2 s_2 \epsilon s_{\varphi}^2 [t_R^2 t_X^2 - (3t_R^2 + 8(1+q+q^2)t_X^2)t_W^2]}{3t_Y^2 (t_R^2 + t_Y^2 \beta^2)}$
	$+\frac{i2g_L^2[9(1+q)^2t_X^4-(3t_R^{21+}(1+q+4q^2)t_X^2)^2]c_{2\epsilon}s_{\varphi}^2t_W}{9\sqrt{3}t_X(t_R^2+t_Y^2\beta^2)}$
	$+\frac{ig_L^2 s_{2\epsilon}[9(t_R^2+t_X^2\beta^2)^2 c_{\varphi}^2+4t_X^2 s_{\varphi}^2((1+q-2q^2)^2 t_X^2-3\sqrt{3}(q-1)t_R^2\beta-12(1+q+q^2)^2 t_W^2)]}{27(t_R^2+t_Y^2\beta^2)}$
$H_3H_3\mathcal{Z}_1'\mathcal{Z}_1'$	$\frac{i2g_L^2[3t_X^2(t_R^2+t_X^2\beta^2)^2c_\varphi^2s_\epsilon^2+s_\varphi^2((\sqrt{3}t_R^2-2(q-1)t_X^2\beta)s_\epsilon t_X-(3t_R^2+4(1+q+q^2)t_X^2)c_\epsilon t_W)^2]}{9t_{Y_\ell}^2(t_R^2+t_Y^2\beta^2)}$
$H_3H_4\mathcal{Z}_1\mathcal{Z}_1$	$\frac{-ig_L^2 s_{2\varphi} t_W[(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2))s_{2\epsilon} t_X + 9(t_R^2 + t_X^2 (1 + \beta^2))^2 s_{\epsilon}^2 t_W]}{9t_{\ell_{\epsilon}}^2 (t_R^2 + t_{\ell_{\epsilon}}^2 \beta^2)}$
	$-\frac{ig_L^2 t_X^2 \beta [2\sqrt{3}t_R^2 + (1-4q)t_X^2 \beta] c_\epsilon^2 s_{2\varphi}}{3(t_R^2 + t_X^2 \beta^2)}$
$H_3H_4\mathcal{Z}_1\mathcal{Z}_1'$	$\frac{ig_L^2 s_{2\epsilon} s_{2\varphi} [3t_X^4 \beta(t_X^2 \beta(4q-1) - 2\sqrt{3}t_R^2) + (3t_R^2 + 4(1+q+q^2)t_X^2)^2 t_W^2]}{18t_V^2 (t_R^2 + t_V^2 \beta^2)}$
	$+\frac{ig_L^2 c_{2\epsilon} s_{2\varphi} t_W[(3t_R^{2+(1+q+4q^2)}t_X^2)^2 - 9(1+q)^2 t_X^4]}{9\sqrt{3}t_X(t_R^2 + t_Y^2\beta^2)}$
$H_3H_4\mathcal{Z}_1'\mathcal{Z}_1'$	$ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \end{array} \right \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_X^2 (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_Y (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^3 - 1)t_X^4 \beta - 6\sqrt{3}t_R^2 t_Y (q^2 - \beta^2)) s_{2\epsilon} t_X - 9(t_R^2 + t_X^2 (1 + \beta^2))^2 c_{\epsilon}^2 t_W]}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^2 - 1)t_X^2 (1 + \beta^2) t_Y (q^2 - \beta^2)) s_{2\epsilon} t_Y (q^2 - \beta^2) t_W}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^2 - 1)t_Y (q^2 - \beta^2)] s_{2\epsilon} t_W}{9t_Y^2 (t_P^2 + t_Y^2 \beta^2)} \right \\ \\ \\ \left \begin{array}{c} \frac{ig_L^2 s_{2\varphi} t_W [(3\sqrt{3}t_R^4 - 8(q^2 - 1)t_Y (q^2 - \beta^2)] s_{2\epsilon} t_W}{9t_Y^2 (t_P^2 + t_Y^2 q_Y}{1 + q^2} t_W}{1 + q^2} t_W (q^2 - q^2) t_W}{1 + q^2} t_W^2 (t_P^2 + t_W^2 q_W}{1 + q^2} t_W}{1 + q^2} t_W$
	$-\frac{ig_L^2 t_X^2 \beta [2\sqrt{3} t_R^2 + (1-4q) t_X^2 \beta] s_\epsilon^2 s_{2\varphi}}{3(t_R^2 + t_X^2 \beta^2)}$

Bảng A17. Tương tác của hai trường vô hướng với hai gauge boson trung hòa.

Đỉnh	Hệ số
\mathcal{AAZZ}_1	$\frac{ig_L^2\sqrt{t_R^2 + t_X^2\beta^2[t_Xc_{2\alpha_1}c_\epsilon - \sqrt{3}s_\epsilon t_W]}}{2\sqrt{3}t_Wc_W}$
$H_4H_4\mathcal{Z}_1\mathcal{Z}_1$	$\frac{i2g_L^2[3t_X^2(t_R^2+t_X^2\beta^2)^2s_\varphi^2c_\epsilon^2-c_\varphi^2((\sqrt{3}t_R^2-2(q-1)t_X^2\beta)c_\epsilon t_X+(3t_R^2+4(1+q+q^2)t_X^2)s_\epsilon t_W)^2]}{(\sqrt{3}t_R^2-2(q-1)t_X^2\beta)c_\epsilon t_X+(3t_R^2+4(1+q+q^2)t_X^2)s_\epsilon t_W)^2]}$
$H_A H_A \mathcal{Z}_1 \mathcal{Z}_1'$	$\frac{ig_L^2 s_{2\epsilon}[9(t_R^2 + t_X^2 \beta^2)^2 s_{\varphi}^2 + 4t_X^2 c_{\varphi}^2((1 + q - 2q^2)^2 t_X^2 - 3\sqrt{3}(q - 1)t_R^2 \beta - 12(1 + q + q^2)^2 t_W^2)]}{2(1 + q - 2q^2)^2 t_X^2 - 3\sqrt{3}(q - 1)t_R^2 \beta - 12(1 + q + q^2)^2 t_W^2)]}$
	$\frac{27(t_R^2 + t_X^2\beta^2)}{ig_R^2 s_{2\epsilon} c_{\varphi}^2 [t_R^2 t_X^2 - (3t_R^2 + 8(1 + q + q^2)t_X^2)t_W^2]}$
	$+\frac{3t_X^2(t_R^2+t_X^2\beta^2)}{[2q_1^2]9(1+q)^2t_X^4-(3t_2^2+(1+q+4q^2)t_X^2)^2]c_{2q}c_R^2}t_W$
	$+\frac{-5L^{(2)}(1+1)\cdot\frac{1}{X}\cdot\frac{1}{X}\cdot\frac{1}{X}}{9\sqrt{3}t_X(t_R^2+t_X^2\beta^2)}}$
$H_4H_4\mathcal{Z}_1'\mathcal{Z}_1'$	$=\frac{i2g_L^2[3t_X^2(t_R^2+t_X^2\beta^2)^2s_{\varphi}^2s_{\epsilon}^2+c_{\varphi}^2((\sqrt{3}t_R^2-2(q-1)t_X^2\beta)s_{\epsilon}t_X-(3t_R^2+4(1+q+q^2)t_X^2)c_{\epsilon}t_W)^2]}{9t_X^2(t_R^2+t_X^2\beta^2)}$
$H_5^- H_5^+ AZ$	$ig_L^2 c_{2W} t_W$
$H_5^- H_5^+ A \mathcal{Z}_1$	$\frac{ig_L^2\sqrt{t_R^2+t_X^2}\beta^2[\sqrt{3}t_Ws_\epsilon-t_Xc_{2\alpha_1}c_\epsilon]s_W}{\sqrt{3}t_X}$
$H_5^- H_5^+ A \mathcal{Z}_1'$	$\frac{-ig_L^2\sqrt{t_R^2+t_X^2\beta^2}[\sqrt{3}t_Wc_\epsilon+t_Xc_{2\alpha_1}s_\epsilon]s_W}{\sqrt{3}t_X}$
$H_5^- H_5^+ ZZ$	$\frac{ig_L^2 c_{2W}^2}{2c^2}$
$H_{z}^{-}H_{z}^{+}ZZ_{1}$	$\frac{ig_L^2 \sqrt{t_R^2 + t_X^2 \beta^2} c_{2W} [\sqrt{3} t_W s_\epsilon - t_X c_{2\alpha_1} c_\epsilon]}{2}$
$u^{-}u^{+}77'$	$\frac{2\sqrt{3t_X}c_W}{-ig_L^2\sqrt{t_R^2 + t_X^2\beta^2}c_{2W}[\sqrt{3t_W}c_\epsilon + t_Xc_{2\alpha_1}s_\epsilon]}$
$H_5 H_5 Z Z_1$	$\frac{2\sqrt{3}t_Xc_W}{ig_L^2(t_R^2 + t_X^2\beta^2)[t_X^2c_\epsilon^2 - \sqrt{3}s_2\epsilon c_{2\alpha_1}t_Xt_W + 3s_\epsilon^2t_W^2]}$
$H_5 H_5 Z_1 Z_1$	$\frac{6t_X^2}{6t_X^2} = \frac{6t_X^2}{6t_X^2} = 6t$
$H_5^- H_5^+ \mathcal{Z}_1 \mathcal{Z}_1'$	$-\frac{6t_L(t_R+t_X+t_R+t_X+t_L(t_R+t_X+t_R+t_X+t_L(t_R+t_X+t_R+t_X+t_R+t_X+t_R+t_X+t_R+t_X+t_R+t_X+t_R+t_R+t_R+t_R+t_R+t_R+t_R+t_R+t_R+t_R$
$H_5^-H_5^+\mathcal{Z}_1'\mathcal{Z}_1'$	$\frac{{}^{ig_{\tilde{L}}(t_{\tilde{R}}^{-}+t_{\tilde{X}}^{-}\beta^{-})[t_{\tilde{X}}^{-}s_{\tilde{\epsilon}}^{-}+\sqrt{3}s_{2\epsilon}c_{2}\alpha_{1}^{-}t_{\tilde{X}}^{-}t_{W}^{-}+3c_{\tilde{\epsilon}}^{-}t_{W}^{-}]}{6t_{\tilde{X}}^{2}}$
$H_6^q H_6^{-q} A A$	$i2g_L^2q^2s_W^2$
$H_6^q H_6^{-q} AZ$	$ig_L^2 qt_W [qc_{2W} - q - 1]$
$H_6^q H_6^{-q} A \mathcal{Z}_1$	$\frac{ig_{\tilde{L}}^{}qs_{W}[3\beta t_{X}s_{\epsilon}t_{W}-(2t_{\tilde{R}}^{}-t_{X}\beta^{-})c_{\epsilon}]}{\sqrt{3}\sqrt{t_{D}^{2}+t_{Y}^{2}\beta^{2}}}$
$H_6^q H_6^{-q} A \mathcal{Z}_1'$	$\frac{-ig_L^2 qs_W[3\beta t_X c_\epsilon t_W + (2t_R^2 - t_X^2 \beta^2)s_\epsilon]}{(\pi/2 + t_Z^2 \beta^2)}$
$H^{q}_{-}H^{-q}_{-}ZZ$	$\frac{\sqrt{5}\sqrt{t_R} + t_X\beta^2}{\frac{ig_L^2[1+q-qc_{2W}]^2}{2}}$
$H_6^{q}H_6^{-q}ZZ$	$\frac{2c_W^2}{ig_L^2(1+q-qc_{2W})[(2t_R^2-t_X^2\beta^2)c_\epsilon-3\beta t_Xs_\epsilon t_W]}$
$H_6H_6ZZ_1$	$\frac{2\sqrt{3}c_W\sqrt{t_R^2 + t_X^2\beta^2}}{(1+\alpha-\alpha)^{1/2}}$
$H_6^q H_6^{-q} Z \mathcal{Z}_1'$	$\frac{\frac{ig_L(1+q-qc_{2W})(2t_R-t_X\beta^{-1})s_\epsilon+3\beta t_Xc_\epsilon t_W)}{2\sqrt{3}c_W\sqrt{t_R^2+t_X^2\beta^2}}$
$H_6^q H_6^{-q} \mathcal{Z}_1 \mathcal{Z}_1$	$\frac{ig_L^2[(2t_R^2-t_X^2\beta^2)c_\epsilon-3t_X\beta s_\epsilon t_W]^2}{6(t_R^2+t_X^2\beta^2)}$
$H_6^q H_6^{-q} \mathcal{Z}_1 \mathcal{Z}_1'$	$\frac{ig_L^2[6t_X\beta(2t_R^2 - t_X^2\beta^2)c_{2\epsilon}t_W + s_{2\epsilon}((2t_R^2 - t_X^2\beta^2)^2 - 9t_X^2\beta^2t_W^2)]}{12(t_L^2 + t_L^2\beta^2)}$
$H_6^q H_6^{-q} \mathcal{Z}_1^\prime \mathcal{Z}_1^\prime$	$\frac{ig_L^2[(2t_R^2 - t_X^2\beta^2)s_{\epsilon} + 3t_X\beta c_{\epsilon}t_W]^2}{e^{(t_L^2 + t_X^2\beta^2)}}$
$H^q_c H^{-q}_{\pi} AZ$	$\frac{ig_L^2 q c \varphi_q t W[u c \alpha_2 c \varphi_q - w s \varphi_q]}{ig_L^2 q c \varphi_q t W[u c \alpha_2 c \varphi_q - w s \varphi_q]}$
$H^q_{a}H^{-q}_{-}A\mathcal{Z}_1$	$-\frac{ig_L^2 q s_2 \varphi_q s_W[(t_X^2 \beta (2q-2+3c_{2\alpha_2}) - \sqrt{3}t_R^2) \frac{w}{X} c_\epsilon - (3t_X^2 - (3t_R^2 + 4(1+q+q^2)t_X^2) c_{2\alpha_2}) s_\epsilon t_W]}{(1+q)^2 q s_2 (1+q)^2 q s_2 (1+q)^$
116117 11-1	$\frac{6t_X\sqrt{t_R^2+t_X^2}\beta^2}{ia_T^2a_T^2}\frac{6t_X\sqrt{t_R^2+t_X^2}\beta^2}{a_T^2a_T^2a_T^2a_T^2a_T^2a_T^2a_T^2a_T^2$
	$+\frac{3L^{2}V_{R}^{2}+\chi^{2}-42}{\sqrt{3}t_{X}w}$
$H_6^q H_7^{-q} A \mathcal{Z}_1'$	$-\frac{{}^{ig_L ds_2 \varphi_q s_W[(t_X \beta(2q-2+3c_{2\alpha_2})-\sqrt{3t_R})t_X s_{\epsilon}+(3t_X -(3t_R+4(1+q+q))t_X)c_{2\alpha_2})c_{\epsilon}t_W]}{6t_X \sqrt{t_P^2 + t_Y^2 \beta^2}}$
	$+\frac{ig_L^2 qu\sqrt{t_R^2 + t_X^2 \beta^2 c_{\alpha_2} s_W[t_X s_\epsilon + \sqrt{3}c_\epsilon t_W]}}{2}$
$\mathcal{A}\mathcal{A}ZZ$	$\sqrt{3t_X w}$ $ia_r^2/2c_{rr}^2$
$H^{q}_{a}H^{-q}_{-}ZZ$	$\frac{ig_L^2 c_{\varphi_q} (2qc_{2W} - 2q - 1)(uc_{\alpha_2} c_{\varphi_q} - ws_{\varphi_q})}{ig_L^2 c_{\varphi_q} (2qc_{2W} - 2q - 1)(uc_{\alpha_2} c_{\varphi_q} - ws_{\varphi_q})}$
1.6117 22	$2wc_W^2$

Bảng A18. Tương tác của hai trường vô hướng với hai gauge boson trung hò
a $({\rm tiếp}).$

Đỉnh	Hệ số
$H_5^- H_5^+ AA$	$i2g_L^2s_W^2$
$\Xi_{22}^{++}\Xi_{22}^{}AA$	$i8g_L^2s_W^2$
$\Xi_{22}^{++}\Xi_{22}^{}AZ$	$-i8g_L^2s_W^2t_W$
$\Xi_{22}^{++}\Xi_{22}^{}A\mathcal{Z}_1$	$\frac{i4g_L^2[(2(q-1)\beta t_X^2 - \sqrt{3}t_R^2)c_{\epsilon}t_X + (3t_R^2 + 2(2q(1+q)-1)t_X^2)s_{\epsilon}t_W]s_W}{3t_{ex}}$
$\Xi_{22}^{++}\Xi_{22}^{}A\mathcal{Z}_1'$	$\frac{3t_X\sqrt{t_R^+t_X\beta}}{44g_L^2[(2(q-1)\beta t_X^2 - \sqrt{3}t_R^2)s_\epsilon t_X - (3t_R^2 + 2(2q(1+q)-1)t_X^2)c_\epsilon t_W]s_W}{3t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{22}^{++}\Xi_{22}^{}ZZ$	$i8g_L^2s_W^2t_W^2$
$\Xi_{22}^{++}\Xi_{22}^{}Z\mathcal{Z}_1$	$\frac{i4g_L^2[(\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2)c_\epsilon t_X - (3t_R^2 + 2(2q(1+q)-1)t_X^2)s_\epsilon t_W]s_W^2}{3c_W t_X \sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{22}^{++}\Xi_{22}^{}ZZ_{1}^{\prime}$	$\frac{i4g_L^2[(\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2)s_\epsilon t_X + (3t_R^2 + 2(2q(1+q)-1)t_X^2)c_\epsilon t_W]s_W^2}{3c_W t_X \sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{22}^{++}\Xi_{22}^{}\mathcal{Z}_{1}\mathcal{Z}_{1}$	$\frac{i2g_L^2[(\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2)c_\epsilon t_X - (3t_R^2 + 2(2q(1+q)-1)t_X^2)s_\epsilon t_W]^2}{2(q_1^2 + q_2^2)^2}$
$\Xi_{22}^{++}\Xi_{22}^{}\mathcal{Z}_1\mathcal{Z}_1'$	$=\frac{9t_X^2(t_R^2+t_X^2\beta^2)}{9t_L^2[3t_R^4t_X^2-4\sqrt{3}(q-1)t_R^2t_X^4\beta+4(q-1)^2t_X^2\beta^2-(3t_R^2+2(2q(1+q)-1)t_X^2)^2t_W^2]s_{2\epsilon}}{9t_Y^2(t_R^2+t_X^2\beta^2)}$
	$+\frac{i2g_L^2[3\sqrt{3}t_R^4+2\sqrt{3}(q-2+4q^2)t_R^4t_X^2-4(1-3q+2q^3)t_X^4\beta]c_{2\epsilon}t_W}{0t_{2\epsilon}(t_L^2+t_L^2-d^2)}$
$\Xi_{22}^{++}\Xi_{22}^{}\mathcal{Z}_1'\mathcal{Z}_1'$	$\frac{i2g_L^2[(\sqrt{3}t_R^2 - 2(q-1)\beta t_X^2)s_\epsilon t_X + (3t_R^2 + 2(2q(1+q)-1)t_X^2)c_\epsilon t_W]^2}{9t_Y^2(t_R^2 + t_Y^2\beta^2)}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}AA$	$i2g_L^2(q-1)^2s_W^2$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}AZ$	$-i2g_L^2(q-1)^2s_W^2t_W$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}A\mathcal{Z}_1$	$\frac{ig_L^2(1-q)s_W[(\sqrt{3}t_R^2 - 4(1-q)\beta t_X^2)c_\epsilon t_X + (3t_R^2 + 2(q(5+2q)-1)t_X^2)s_\epsilon t_W]}{3t_X\sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}A\mathcal{Z}_{1}'$	$\frac{ig_L^2(1-q)s_W[(\sqrt{3}t_R^2-4(1-q)\beta t_X^2)s_\epsilon t_X-(3t_R^2+2(q(5+2q)-1)t_X^2)c_\epsilon t_W]}{3t_X\sqrt{t_R^2+t_X^2\beta^2}}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}ZZ$	$i2g_{L}^{2}(q-1)^{2}s_{W}^{2}t_{W}^{2}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}Z\mathcal{Z}_{1}$	$\frac{ig_L^2(q-1)s_W^2[(\sqrt{3}t_R^2 - 4(1-q)\beta t_X^2)c_\epsilon t_X + (3t_R^2 + 2(q(5+2q)-1)t_X^2)s_\epsilon t_W]}{3c_W t_X \sqrt{t_R^2 + t_X^2\beta^2}}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}Z\mathcal{Z}_{1}'$	$\frac{ig_L^2(q-1)s_W^2[(\sqrt{3}t_R^2 - 4(1-q)\beta t_X^2)s_\epsilon t_X - (3t_R^2 + 2(q(5+2q)-1)t_X^2)c_\epsilon t_W]}{3c_W t_X} \frac{1}{\sqrt{t_R^2 + t_X^2}}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}\mathcal{Z}_1\mathcal{Z}_1$	$\frac{ig_L^2[(\sqrt{3}t_R^2 - 4(1-q)\beta t_X^2)c_\epsilon t_X + (3t_R^2 + 2(q(5+2q)-1)t_X^2)s_\epsilon t_W]^2}{18t_Y^2(t_R^2 + t_X^2\beta^2)}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}\mathcal{Z}_1\mathcal{Z}_1'$	$\frac{ig_L^2[(\sqrt{3}t_R^2t_X-4(1-q)\beta t_X^3)^2-(3t_R^2+2(q(5+2q)-1)t_X^2)^2t_W^2]s_{2\epsilon}}{36t_Y^2(t_R^2+t_Y^2\beta^2)}$
	$-\frac{ig_L^2[3t_R^2+4(1+q-2q^2)t_X^2][3t_R^2+2(q(5+2q)-1)t_X^2]c_{2\epsilon}t_W}{18\sqrt{3}t_X(t_2^2+t_2^2)(t_2^2+t_2^2)}$
$\Xi_{23}^{1-q}\Xi_{23}^{q-1}\mathcal{Z}_{1}'\mathcal{Z}_{1}'$	$\frac{ig_L^2[(\sqrt{3}t_R^2 - 4(1-q)\beta t_X^2)s_\epsilon t_X - (3t_R^2 + 2(q(5+2q)-1)t_X^2)c_\epsilon t_W]^2}{18t_X^2(t_R^2 + t_X^2\beta^2)}$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}AA$	$i8g_L^2q^2s_W^2$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}AZ$	$-i8g_L^2q^2s_W^2t_W$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}A\mathcal{Z}_1$	$\frac{i8g_L^2qs_W[((1-q)\beta t_X^2-\sqrt{3}t_R^2)c_\epsilon-3qt_Xs_\epsilon t_W]}{3\sqrt{t_R^2+t_X^2\beta^2}}$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}AZ_1'$	$\frac{i8g_L^2qs_W[((1-q)\beta t_X^2-\sqrt{3}t_R^2)s_\epsilon+3qt_Xc_\epsilon t_W]}{3\sqrt{t_R^2+t_X^2\beta^2}}$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}ZZ_1$	$\frac{i8g_L^2qs_W^2[(\sqrt{3}t_R^2-(1-q)\beta t_X^2)c_\epsilon+3qt_Xs_\epsilon t_W]}{3c_W\sqrt{t_P^2+t_Y^2\beta^2}}$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}ZZ_1'$	$\frac{i8g_L^2qs_W^2[(\sqrt{3}t_R^2-(1-q)\beta t_X^2)s_\epsilon-3qt_Xc_\epsilon t_W]}{3c_W\sqrt{t_R^2+t_2^2\beta^2}}$
$\Xi_{33}^{2q}\Xi_{33}^{-2q}\mathcal{Z}_{1}\mathcal{Z}_{1}$	$\frac{i8g_L^2[(\sqrt{3}t_R^2 - (1-q)\beta t_X^2)c_{\epsilon} + 3qt_Xs_{\epsilon}t_W]^2}{9(t_R^2 + t_X^2\beta^2)}$

Bảng A19. Tương tác của hai trường vô hướng với hai gauge boson trung hò
a $({\rm tiếp}).$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{aligned} +6q-4q^{2}-6qc_{2\alpha_{2}}))c_{\epsilon}t_{X}+3((1+4q)t_{X}^{2}-2q(t_{R}^{2}+t_{X}^{2}(1+\beta^{2}))c_{2\alpha_{2}})s_{\epsilon}t_{W}] \\ & 12c_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ -2q)t_{X}^{2}\beta^{2}-2(1+q)t_{R}^{2})c_{\epsilon}+\sqrt{3}(2qt_{R}^{2}+t_{X}^{2}\beta(\sqrt{3}+2q\beta))s_{\epsilon}t_{W}] \\ & 2\sqrt{3}wc_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}c_{\epsilon}-3t_{X}\beta s_{W}s_{\epsilon}](ws_{\varphi q}-wc_{\alpha_{2}}c_{\varphi q}) \\ & 2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ +6q-4q^{2}-6qc_{2\alpha_{2}}))s_{\epsilon}t_{X}-3((1+4q)t_{X}^{2}-2q(t_{R}^{2}+t_{X}^{2}(1+\beta^{2}))c_{2\alpha_{2}})c_{\epsilon}t_{W}] \\ & 12c_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ -2q)t_{X}^{2}\beta^{2}-2(1+q)t_{R}^{2})s_{\epsilon}-\sqrt{3}(2qt_{R}^{2}+t_{X}^{2}\beta(\sqrt{3}+2q\beta))c_{\epsilon}t_{W}] \\ & 2\sqrt{3}wc_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ 2\sqrt{3}wc_{X}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ & 2\sqrt{3}w}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ & i2g_{L}^{2}q^{2}s_{W}^{2} \end{aligned}$
$H_{6}^{q}H_{7}^{-q}ZZ_{1}^{q}$ $+\frac{ig_{L}^{2}uc_{\alpha_{2}}s_{W}^{2}[t_{X}((1-2q)t_{X}^{2}\beta^{2}-2(1+q)t_{R}^{2})c_{e}^{A}}{2\sqrt{3}wcwt_{X}\sqrt{t_{R}^{2}+t_{X}^{2}}}$ $+\frac{ig_{L}^{2}c_{\varphi q}[(2t_{R}^{2}-t_{X}^{2}\beta^{2})cwc_{e}-3t_{X}\beta s_{R}}{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}}}]s_{e}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}}$ $H_{6}^{q}H_{7}^{-q}ZZ_{1}^{q}$ $+\frac{ig_{L}^{2}uc_{\alpha_{2}}s_{W}^{2}[t_{X}((1-2q)t_{X}^{2}\beta^{2}-2(1+q)t_{R}^{2})s_{e}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}}}{12cwt_{X}\sqrt{t_{R}^{2}+t_{X}^{2}}}]s_{e}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}}$ $H_{7}^{q}H_{7}^{-q}AA$ $H_{7}^{q}H_{7}^{-q}AZ$ $H_{7}^{q}H_{7}^{-q}AZ$ $ig_{2}^{2}asw[((1-4a-3c_{2\alpha_{2}}))t_{2}^{2}\beta-\sqrt{3}t_{X}\sqrt{6}t_{R}^{2}+t_{X}^{2}}]s_{e}t_{X}\sqrt{6}t_{R}^{2}+t_{X}^{2}}$	$\begin{aligned} & -2q)t_X^2\beta^2 - 2(1+q)t_R^2)c_\epsilon + \sqrt{3}(2qt_R^2 + t_X^2\beta(\sqrt{3} + 2q\beta))s_\epsilon t_W] \\ & 2\sqrt{3}wc_W t_X\sqrt{t_R^2 + t_X^2\beta^2} \\ & tt_R^2 - t_X^2\beta^2)c_W c_\epsilon - 3t_X\beta s_W s_\epsilon](ws_{\varphi q} - wc_{\alpha 2} c_{\varphi q}) \\ & + 6q - 4q^2 - 6qc_{2\alpha 2})s_\epsilon t_X - 3((1+4q)t_X^2 - 2q(t_R^2 + t_X^2(1+\beta^2))c_{2\alpha 2})c_\epsilon t_W] \\ & 12c_W t_X\sqrt{t_R^2 + t_X^2\beta^2} \\ & -2q)t_X^2\beta^2 - 2(1+q)t_R^2)s_\epsilon - \sqrt{3}(2qt_R^2 + t_X^2\beta(\sqrt{3} + 2q\beta))c_\epsilon t_W] \\ & 2\sqrt{3}wc_W t_X\sqrt{t_R^2 + t_X^2\beta^2} \\ & t_R^2 - t_X^2\beta^2)c_W s_\epsilon + 3t_X\beta s_W c_\epsilon](ws_{\varphi q} - wc_{\alpha 2} c_{\varphi q}) \\ & i2g_L^2 q^2 s_W^2 \end{aligned}$
$ \begin{array}{c c} H_{6}^{q}H_{7}^{-q}Z_{1}^{q}\\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{7}^{q}H_{7}^{-q}ZZ_{1}^{\prime}\\ H_{7}^{\prime}\\ $	$\begin{array}{c} 2\sqrt{3}wc_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}}\\ t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}c_{\epsilon}-3t_{X}\beta s_{W}s_{\epsilon}](ws_{\varphi q}-wc_{\alpha 2}c_{\varphi q})\\ +6q-4q^{2}c_{Q}w\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}}\\ +6q-4q^{2}-6qc_{2\alpha 2}))s_{\epsilon}t_{X}-3((1+4q)t_{X}^{2}-2q(t_{R}^{2}+t_{X}^{2}(1+\beta^{2}))c_{2\alpha 2})c_{\epsilon}t_{W}]\\ -2q)t_{X}^{2}\beta^{2}-2(1+q)t_{R}^{2})s_{\epsilon}-\sqrt{3}(2qt_{R}^{2}+t_{X}^{2}\beta(\sqrt{3}+2q\beta))c_{\epsilon}t_{W}]\\ 2\sqrt{3}wc_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}}\\ t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}s_{\epsilon}+3t_{X}\beta s_{W}c_{\epsilon}](ws_{\varphi q}-wc_{\alpha 2}c_{\varphi q})\\ 2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}}\\ i2g_{L}^{2}q^{2}s_{W}^{2}\end{array}$
$ \begin{array}{c c} H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}AA \\ H_{7}^{q}H_{7}^{-q}AZ \end{array} \right \begin{array}{c} H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}AZ \\ H_{7}^{q}H_{7}^{-q}AZ \end{array} \right \begin{array}{c} H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}ZZ \\ H_{7}^{\prime}H_{7}^{-q}ZZ \end{array} \right \begin{array}{c} H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{\prime}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{\prime}H_{7}^{-q}ZZ \\ H_{7}^{\prime}H_{7}^{-q}ZZ \end{array} \right \begin{array}{c} H_{6}^{q}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{\prime}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{\prime}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{\prime}H_{7}^{-q}ZZ \\ H_{7}^{\prime}H_{7}^{-q}ZZ_{1}^{\prime} \\ H_{7}^{\prime}H_{7}^{\prime} \\ H_{7}^{\prime} \\ H$	$\begin{array}{c} \begin{array}{c} 2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ +6q-4q^{2}-6qc_{2\alpha_{2}}))s_{\epsilon}t_{X}-3((1+4q)t_{X}^{2}-2q(t_{R}^{2}+t_{X}^{2}(1+\beta^{2}))c_{2\alpha_{2}})c_{\epsilon}t_{W}] \\ 12c_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ -2q)t_{X}^{2}\beta^{2}-2(1+q)t_{R}^{2})s_{\epsilon}-\sqrt{3}(2qt_{R}^{2}+t_{X}^{2}\beta(\sqrt{3}+2q\beta))c_{\epsilon}t_{W}] \\ 2\sqrt{3}wc_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}s_{\epsilon}+3t_{X}\beta s_{W}c_{\epsilon}](ws_{\varphi q}-wc_{\alpha_{2}}c_{\varphi q}) \\ 2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}\beta^{2}} \\ i2g_{L}^{2}q^{2}s_{W}^{2} \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{12c_W t_X \sqrt{t_R^2 + t_X^2 \beta^2}}{2^2 (1+q) t_R^2) s_\epsilon - \sqrt{3} (2q t_R^2 + t_X^2 \beta (\sqrt{3} + 2q\beta)) c_\epsilon t_W]}{2\sqrt{3} w c_W t_X \sqrt{t_R^2 + t_X^2 \beta^2}}$ $\frac{12 \sqrt{3} w c_W t_X \sqrt{t_R^2 + t_X^2 \beta^2}}{2\sqrt{3} w (t_R^2 + t_X^2 \beta^2)}$ $\frac{12 g_L^2 q^2 s_W^2}{2\sqrt{3} w \sqrt{t_R^2 + t_X^2 \beta^2}}$
$H_{7}^{q}H_{7}^{-q}AZ + \frac{ig_{L}^{2}c_{\varphi_{q}}[(2t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}s_{\epsilon}+3t_{X}\beta_{S}}{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}}} + \frac{ig_{L}^{2}c_{\varphi_{q}}[(2t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}s_{\epsilon}+3t_{X}\beta_{S}}{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}}} + \frac{ig_{L}^{2}c_{\varphi_{q}}[(2t_{R}^{2}-t_{X}^{2}\beta^{2})c_{W}s_{E}+t_{X}^{2}}{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}}} + \frac{ig_{L}^{2}c_{Y}g_{Z}s_{W}^{2}}{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}}} + \frac{ig_{L}^{2}c_{Y}g_{Z}s_{W}^{2}}{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{X}^{2}}} + \frac{ig_{L}^{2}c_{Y}s_{W}s_{W}s_{W}s_{W}s_{W}s_{W}s_{W}s_{W$	$egin{aligned} & 2\sqrt{3}wc_Wt_X\sqrt{t_R^2+t_X^2eta^2}\ & t_R^2-t_X^2eta^2)c_Ws_\epsilon+3t_Xeta s_Wc_\epsilon](ws_{arphi q}-uc_{lpha 2}c_{arphi q})\ & 2\sqrt{3}w\sqrt{t_R^2+t_X^2eta^2}\ & i2g_L^2q^2s_W^2 \end{aligned}$
$ \begin{array}{c c} H_{7}^{q}H_{7}^{-q}AA \\ H_{7}^{q}H_{7}^{-q}AZ \\ H_{7}^{q}H_{7}^{-q}AZ \end{array} & + \underbrace{-i2}_{2\sqrt{3}w\sqrt{t_{R}^{2}+t_{3}^{2}}} \\ i2g_{L}^{2}g^{2}s_{W}^{2}t \\ -i2g_{L}^{2}q^{2}s_{W}^{2}t \\ -i2g_{L}^{2}q^{2}s_{W}^{2}t \end{array} $	$2\sqrt{3}w\sqrt{t_R^2+t_X^2eta^2}$ $i2g_L^2q^2s_W^2$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$i2g_L^2q^2s_W^2$
$H_{7}^{q}H_{7}^{-q}AZ \qquad -i2g_{L}^{2}q^{2}s_{W}^{2}t \\ \frac{ia^{2}}{ia^{2}}a_{SW}[((1-4a-3c_{2}a_{2})t^{2}\beta-\sqrt{3}t^{2})c_{2}t_{Y}-(6at^{2})t^{2})]$	
$\frac{1}{1-a} = -a$ $\frac{1}{1-a}$ $\frac{1}{1-a} = \frac{1}{1-a} a_{SW} \left[\left((1-4a-3c_{SW}^2) + \sqrt{3}t_{SW}^2 \right) \right] (2t_{SW} - 6at_{SW}^2) $	$-i2g_{L}^{2}q^{2}s_{W}^{2}t_{W}$
$H_7^4 H_7^{-4} A Z_1$ = $\frac{29L32W [1/1 - 23 - 542]^{7} A P}{24.1.142 - 12}$ = $\frac{32L32W [1/1 - 23 - 542]^{7} A P}{24.1.142 - 12}$	$\frac{t_X^2\beta - \sqrt{3}t_R^2}{2t_{X-1}^2}c_{\epsilon}t_X - (6qt_X^2 + (3t_R^2 + 4(1+q+q^2)t_X^2)c_{2\alpha_2})s_{\epsilon}t_W]}{2t_{X-1}^2}$
$H_7^q H_7^{-q} A \mathcal{Z}_1' \left \begin{array}{c} ig_L^2 q_{SW} [((1 - 4q - 3c_{2\alpha_2})t_X^2 \beta - \sqrt{3}t_R^2)s_\epsilon t_X + (6qt_2^3) g_{2\alpha_2} + (6qt_2^3) g_{$	$ \begin{array}{l} \overset{otX}{t_X} \sqrt[V]{e_R + e_X} \\ & t_X \sqrt{t_R + t_X} (6qt_X^2 + (3t_R^2 + 4(1 + q + q^2)t_X^2)c_2\alpha_2)c_\epsilon t_W] \\ & 3t_X \sqrt{t_R^2 + t_X^2\beta^2} \end{array} $
$H_{7}^{q}H_{7}^{-q}ZZ$ $i2g_{L}^{2}q^{2}s_{W}^{2}t_{M}^{2}$	$i2g_L^2 q^2 s_W^2 t_W^2$
$H_{7}^{q}H_{7}^{-q}Z\mathcal{Z}_{1} \left \begin{array}{c} ig_{L}^{2}qs_{W}^{2}[(\sqrt{3}t_{R}^{2}+(4q-1+3c_{2\alpha_{2}})t_{X}^{2}\beta)c_{\epsilon}t_{X}+(6qt_{X}^{2}+6)c_{\epsilon}t_{X}+(6dt_{X$	$ + 3c_{2\alpha_2} t_X^2 \beta) c_{\epsilon} t_X + (6qt_X^2 + (3t_R^2 + 4(1 + q + q^2)t_X^2) c_{2\alpha_2}) s_{\epsilon} t_W] $
$H_{7}^{q}H_{7}^{-q}ZZ_{1}' \left[\frac{ig_{L}^{2}qs_{W}^{2}[(\sqrt{3}t_{R}^{2}+(4q-1+3c_{2}\alpha_{2})t_{X}^{2}\beta)s_{\epsilon}t_{X}-(6qt_{A}^{2})}{3c_{W}t_{X}\sqrt{t_{R}^{2}+t_{X}^{2}}}\right]$	$ + 3c_{2\alpha_2} t_X^2 \beta s_{\epsilon} t_X - (6qt_X^2 + (3t_R^2 + 4(1+q+q^2)t_X^2)c_{\epsilon} t_W] \\ - 3c_W t_X \sqrt{t_R^2 + t_X^2 \beta^2} $

Bång A20. Tương tác của hai trường vô hướng với hai gauge boson trung hòa (tiếp).

Hệ số	$\frac{ig_L^2 s_{\alpha_2}^2 \left[(\sqrt{3}t_R^2 + 4(q-1)\beta t_X^2) c_\epsilon t_X - (3t_R^2 + 2(2+q(2q-1))t_X^2) s_\epsilon t_W \right]^2}{18t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 c_{\alpha_2}^2 \left[(t_R^2 - 2t_X^2 \beta^2) c_\epsilon t_X + (\sqrt{3}t_R^2 - 2(2+q)t_X^2 \beta) s_\epsilon t_W \right]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)}$	$\frac{ig_L^2 \left[s_{2\epsilon} [\sqrt{3}t_R^4 - t_X^2 \beta(\sqrt{3}\beta t_W^2 - 2(4q - 1 + 3c_{2\alpha_2})(t_R^2 + t_W^2))\right] + 2t_X [\sqrt{3}t_R^2 \beta - (t_R^2 - t_X^2 \beta^2)(4q - 1 + 3c_{2\alpha_2})]c_{2\epsilon}t_W \right]}{12\sqrt{3}(t_R^2 + t_X^2 \beta^2)}$ $\frac{ig_L^2 t_W \left[2t_X (\sqrt{3}t_R^2 c_{2\alpha_n} + t_Z^2 \beta(3 + (4q - 1)c_{2\alpha_n}))c_{2\epsilon} + (3t_R^2 + (7 + 4q(1 + a))t_Z^2 + 12at_X^2 c_{2\alpha_n})s_{2\epsilon}t_W \right]}{ig_L^2 t_W \left[2t_X (\sqrt{3}t_R^2 c_{2\alpha_n} + t_Z^2 \beta(3 + (4q - 1)c_{2\alpha_n}))c_{2\epsilon} + (3t_R^2 + (7 + 4a(1 + a))t_Z^2 + 12at_X^2 c_{2\alpha_n})s_{2\epsilon}t_W \right]}$	$+\frac{ig_{L}^{2}t_{X}^{2}[5-4q+8q^{2}+3(4q-1)c_{2\alpha_{2}}][(t_{X}^{2}\beta^{2}-1+(t_{X}^{2}\beta^{2}+1)c_{2w}](t_{X}^{2}\beta^{2}-1)c_{2\alpha_{2}}][(t_{X}^{2}\beta^{2}-1+(t_{X}^{2}\beta^{2}+1)c_{2w}](t_{X}^{2}\beta^{2}-1)c_{2\alpha_{2}}](t_{X}^{2}\beta^{2}-1)c_{2\alpha_{2}}](t_{X}^{2}\beta^{2}-1+(t_{X}^{2}\beta^{2}+1)c_{2w})s_{2\epsilon}-2t_{X}\beta c_{2\epsilon}s_{2w}]}$	$\frac{ig_L^2 s_{\alpha_2}^2 [t_X (\sqrt{3}t_R^2 - 4(1-q)\beta t_X^2) s_\epsilon + (3t_R^2 + 2(3+\sqrt{3}(1-q)\beta) t_X^2) c_\epsilon t_W]^2}{18t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 c_{\alpha_2}^2 [t_X (t_R^2 - 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_{\alpha_2}^2 [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_{\alpha_2} [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_{\alpha_2} [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_R^2 [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_R^2 [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 - 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_R^2 [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 + 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_R^2 [t_X (t_R^2 + 2t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 + 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_R^2 [t_X (t_R^2 + t_X^2 \beta^2) s_\epsilon - (\sqrt{3}t_R^2 + 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 s_R^2 [t_R^2 + t_X^2 \beta^2 + 2(2+q)\beta t_X^2 + 2(2+q)\beta t_X^2) c_\epsilon t_W]^2}{6t_X^2 (t_R^2 + t_X^2 \beta^2)} + ig_L^2 s_R^2 [t_R^2 + t_X^2 \beta^2 + 2(2+q)\beta t_X^2 + 2(2+q)\beta t_X^2) c_\epsilon t_X^2 + 2(2+q)\beta $	$i2g_L^2(1+q)^2 s_W^2$	$ig_L^2(1+q)[(1+q)c_{2W}-q]t_W$	$\frac{ig_L^2(1+q)s_W[3t_X\beta s_\epsilon t_W - (2t_R^2 - t_X^2\beta^2)c_\epsilon]}{\sqrt{3}\sqrt{t_R^2 + t_X^2\beta^2}}$	$\frac{-ig_L^2(1+q)s_W[3t_X\beta c_\epsilon t_W+(2t_R^2-t_X^2\beta^2)s_\epsilon]}{\sqrt{3}\sqrt{t_R^2+t_X^2\beta^2}}$	$ig_L^2[q-(1+q)c_{2W}]^2$ $2c_{2V}^2$	$\frac{ig_L^2[(1+q)c_2w-q][3t_X\beta s_\epsilon t_W-(2t_R^2-t_X^2\beta^2)c_\epsilon]}{2\sqrt{3}c_W\sqrt{t_R^2+t_X^2\beta^2}}$	$\frac{ig_L^2[q-(1+q)c_2w][3t_X\beta c_\epsilon t_W+(2t_R^2-t_X^2\beta^2)s_\epsilon]}{2\sqrt{3}c_W\sqrt{t_R^2+t_Y^2\beta^2}}$	$\frac{ig_L^2\left[(2t_R^2-t_X^2\beta^2)c_\epsilon-3t_X\beta s_\epsilon t_W\right]^2}{6(t_2^2+t_2^2\beta^2)}$	$\frac{ig_L^2[6t_X\beta(2t_R^2 - t_X^2\beta^2)c_{2\epsilon}t_W + s_{2\epsilon}((2t_R^2 - t_X^2\beta^2)^2 - 9t_X^2\beta^2 t_W^2)]}{12(t_L^2 + t_2^2\beta^2)}$	$\frac{ig_L^2[(2t_R^2-t_X^2\beta^2)s_\epsilon+3t_X\beta c_\epsilon t_W]^2}{6(t_R^2+t_X^2\beta^2)}$	
Đỉnh	$H^q_7 H^{-q}_7 {\cal Z}_1 {\cal Z}_1$	$H_7^q H_7^{-q} {\cal Z}_1 {\cal Z}_1'$		$H^q_7 H^{-q}_7 {\cal Z}'_1 {\cal Z}'_1$	$H_8^{-1-q} H_8^{1+q} AA$	$H_8^{-1-q}H_8^{1+q}AZ$	$H_8^{-1-q}H_8^{1+q}A\mathcal{Z}_1$	$H_8^{-1-q}H_8^{1+q}A\mathcal{Z}_1$	$H_8^{-1-q}H_8^{1+q}ZZ$	$H_8^{-1-q}H_8^{1+q}Z\mathcal{Z}_1$	$H_8^{-1-q}H_8^{1+q}Z_1^{-1-q}$	$H_8^{-1-q}H_8^{1+q}\mathcal{Z}_1\mathcal{Z}$	$H_8^{-1-q}H_8^{1+q}\mathcal{Z}_1\mathcal{Z}$	$H_8^{-1-q}H_8^{1+q}\mathcal{Z}_1'\mathcal{Z}$	

Bảng A21. Tương tác của hai trường vô hướng với hai gauge boson trung hòa (tiếp).

Hệ số	$\frac{i8g_L^2 q^2 s_W^2 t_W^2}{i4g_L^2 [(9q^2 t_X^2 + (\sqrt{3}t_R^2 + (q-1)\beta t_X^2)^2 - 9q^2 t_X^2 c_W^2) s_{2e} - 6qt_X (\sqrt{3}t_R^2 + (q-1)\beta t_X^2) c_{2e}t_W]} \\ \frac{i4g_L^2 [(9q^2 t_X^2 + (\sqrt{3}t_R^2 + (q-1)\beta t_X^2) s_{e} - 3qt_X c_e t_W]^2}{9(t_R^2 + t_X^2 \beta^2)} \frac{i8g_L^2 [(\sqrt{3}t_R^2 + (q-1)\beta t_X^2) s_{e} - 3qt_X c_e t_W]^2}{9(t_R^2 + t_X^2 \beta^2)} \frac{i8g_L^2 [(\sqrt{3}t_R^2 + (q-1)\beta t_X^2) s_{e} - 3qt_X c_e t_W]^2}{9(t_R^2 + t_X^2 \beta^2)} \frac{i8g_L^2 [(\sqrt{3}t_R^2 + (q-1)\beta t_X^2) s_{e} - 3qt_X c_e t_W]^2}{9(t_R^2 + t_X^2 \beta^2)} \frac{ig_L^2 [9 + 12q + (4q^2 - 2q - 5)c_{2\alpha_2}) - 3\sqrt{3}t_R^4 c_{2\alpha_2} - t_X^4 \beta(9 + 6q(4q - 1) + 2(q(15 + 6q + 8q^2) - 2)c_{2\alpha_2})]s_{2e}s_{2\varphi_q} t_W}{36t_X (t_R^2 + t_X^2 \beta^2)} - \frac{ig_L^2 [9 t_R^4 + 24(1 + q + q^2) t_R^2 + (7 + 4q(4q(3 + q(2 + q) - 1)))t_X^4 + 12qt_X^2 (3t_R^2 + 4(1 + q + q^2) t_X^2)c_{2\alpha_2}]s_e^e s_{2\varphi_q} t_W^2}{36t_X^2 (t_R^2 + t_X^2 \beta^2)} + \frac{ig_L^2 u[3t_X^2 (t_X^2 \beta^2 - t_R^2) c_e^2 + (5 + 4q) t_X^2 \beta)s_{2e} + (3t_R^2 - \sqrt{3}(7 + 2q) t_X^2 \beta)s_e^e t_W]c_{\alpha_2}}{6t_2 t_W}$	$+\frac{ig_L^2\left[9t_R^4 - (3+8q+16q^4)t_X^4 + 2\sqrt{3}t_X^2\beta(6t_R^2s_{\alpha_2}^2 + (8q^2+2q-1)t_X^2c_{2\alpha_2})\right]c_\epsilon^2s_{2\varphi_q}}{36(t_R^2+t_Y^2\beta^2)} \\ +\frac{ig_L^2\left[2(\sqrt{3}t_R^4 + 2(q-1)t_R^2t_X^2\beta + (8+4q)t_X^4\beta^3)c_{2\epsilon}t_Wt_X - (t_X^2(t_R^2+t_Y^2\beta^2))^2 - (\sqrt{3}t_R^2 - (4+2q)t_X^2\beta)^2t_W^2)s_{2\epsilon}\right]c_{\alpha_2}^2s_{2\varphi_q}}{24t_X^2(t_R^2+t_Y^2\beta^2)} \\ -\frac{ig_L^2\left[\sqrt{3}t_R^2t_X^2(10+13q-2q^2+(2q^2-q-4)c_{2\alpha_2}) + t_X^4\beta(8q(3+q^2)-5+4(2+3q^2-2q^3)c_{2\alpha_2}) + 3\sqrt{3}t_R^4s_{\alpha_2}^2\right]c_{2\epsilon}s_{2\varphi_q}t_W}{36t_X(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(2t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_Q^2)t_X^2)^2t_W^2\right]s_{2\epsilon}s_{2\varphi_q}t_W}{72t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(2t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_Q^2)t_X^2)^2t_W^2\right]s_{2\epsilon}s_{2\varphi_q}}{72t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(2t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_Q^2)t_X^2)^2t_W^2\right]s_{2\epsilon}s_{2\varphi_q}}{72t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(2t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_Q^2)t_X^2)^2s_X^2\right]s_{2\epsilon}s_{2\varphi_q}}{72t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(2t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_X^2\beta^2)t_X^2)^2t_W^2\right]s_{2\epsilon}s_{2\varphi_q}}{72t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(2t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_Q^2+t_Z^2)^2t_X^2)^2t_W^2\right]s_{2\epsilon}s_{2\varphi_q}}{2t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^4\beta^2t_W^2 - ((\sqrt{3}t_R^2+t_X^2\beta^2))^2t_X^2 - (3t_R^2+t_Z^2)^2t_W^2)^2t_X^2\right]s_{2\epsilon}s_{2\varphi_q}}{t_{2}t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2\left[3(t_R^2-t_X^2\beta^2)^2t_X^2 - 27t_X^2\beta^2t_X^2 - (t_X^2t_R^2+t_X^2\beta^2)\right]s_{2\epsilon}s_{2}s_{2}s_{2}s_{2}s_{2}s_{2}s_{2}s_{2$	$\frac{\left[ig_{L}^{2}u[2t_{X}(\sqrt{3}t_{R}^{2}+(5+4q)t_{X}^{2}\beta)c_{2\epsilon}t_{W}+3s_{2\epsilon}(t_{X}^{2}(t_{R}^{2}-t_{X}^{2}\beta^{2})+(t_{R}^{2}+t_{X}^{2}\beta(\beta-2\sqrt{3}))t_{W}^{2})]c_{\alpha_{2}}}{12t_{X}^{2}w}\right]}{\left[ig_{L}^{2}[3\sqrt{3}t_{R}^{4}c_{2\alpha_{2}}-3t_{R}^{2}t_{X}^{2}(\sqrt{3}-6\beta-(\sqrt{3}+2(q-1)\beta)c_{2\alpha_{2}})-t_{X}^{4}\beta(6q-9-24q^{2}+2(2+q(2q-13-6\beta^{2}))c_{2\alpha_{2}})]s_{2\epsilon}s_{2\varphi_{q}}t_{W}}{36t_{X}(t_{R}^{2}+t_{X}^{2}\beta^{2})}\right]$	$-\frac{ig_L^2[t_R^4 + 2t_R^2t_X^2(1+\beta^2+2qc_{2\alpha_2}) + t_A^4(2+2\sqrt{3}\beta+2\beta^2+\beta^4+4q(1+\beta^2)c_{2\alpha_2})]c_\epsilon^2s_{2\varphi_q}t_W^2}{4t_X^2(t_R^2+t_X^2\beta^2)} \\ +\frac{ig_L^2[9t_R^4 - t_A^4(3+8q+16q^4-6\beta^2(3+2\sqrt{3}\beta)c_{2\alpha_2}) + 12\sqrt{3}t_R^2t_X^2\beta s_{\alpha_2}^2]s_\epsilon^2s_{2\varphi_q}}{36(t_R^2+t_X^2\beta^2)}$
Đỉnh	$egin{array}{c} \Xi_{3}^{2q} \Xi_{-}^{-2q} Z_{3} \\ \Xi_{3}^{2q} \Xi_{3}^{-2q} Z_{1} Z_{3} \\ \Xi_{3}^{2q} \Xi_{3}^{-2q} Z_{1} Z_{3} \\ \Xi_{3}^{2q} \Xi_{3}^{-2q} Z_{1} Z_{1} \\ H_{6}^{q} H_{7}^{-q} Z_{1} Z_{1} Z_{1} \end{array}$	$H_6^q H_7^{-q} {\cal Z}_1 {\cal Z}_1'$	$H_6^{d}H^{-d}\mathcal{Z}_1^{\prime}\mathcal{Z}_1^{\prime}$	

Bảng A22. Tương tác của hai trường vô hướng với hai gauge boson trung hòa (tiếp).

PHỤ LỤC B. BỀ RỘNG RÃ MUON

B1. Kênh rã chính

Giản đồ Feynman cho kênh rã này là giản đồ bên trái trong hình 3.1. Biên độ rã trong chuẩn unitary được xác định:

$$\begin{split} M_{fi}^{c} &= \frac{g^{2}}{2} \left[\frac{1}{s - m_{W}^{2}} \bar{u}_{(\nu_{\mu})}(q', s_{1}) \gamma^{\mu} \left(c_{\theta} P_{L} + s_{\theta} P_{R} \right) u_{(\mu)}(p', s_{2}) \right. \\ & \times \left. \bar{u}_{(e)}(p, s_{3}) \gamma^{\nu} \left(c_{\theta} P_{L} + s_{\theta} P_{R} \right) v_{(\nu_{e})}(q, s_{4}) \left(g_{\mu\nu} - \frac{(p+q)_{\mu}(p+q)_{\nu}}{m_{W}^{2}} \right) \right. \\ & \left. + \frac{1}{s - m_{K}^{2}} \bar{u}_{(\nu_{\mu})}(q', s_{1}) \gamma^{\mu} \left(s_{\theta} P_{L} - c_{\theta} P_{R} \right) u_{(\mu)}(p', s_{2}) \right. \\ & \left. \times \left. \bar{u}_{(e)}(p, s_{3}) \gamma^{\nu} \left(s_{\theta} P_{L} - c_{\theta} P_{R} \right) v_{(\nu_{e})}(q, s_{4}) \left(g_{\mu\nu} - \frac{(p+q)_{\mu}(p+q)_{\nu}}{m_{K}^{2}} \right) \right], \end{split}$$

ở đây $P_L = (1 - \gamma_5)/2$, $P_R = (1 + \gamma_5)/2$, $s \equiv (p + q)^2$, p và q lần lượt là động lượng của electron và phản neutrino electron. Với sự phân rã của muon, số hạng thứ hai trong hàm truyền boson có thể được bỏ qua. Theo đó, sau khi lấy tổng tất cả spin của các lepton, chúng tôi thu được biểu thức của bình phương biên độ $|M_{fi}^c|^2$,

$$\sum_{s_i} |M_{fi}^c|^2 = |M_{fi(1)}^c|^2 + |M_{fi(2)}^c|^2 + 2\operatorname{Re}\left(M_{fi(1)}^{c*}M_{fi(2)}^c\right).$$

Trong đó,

$$\begin{split} \left| M_{fi(1)}^{c} \right|^{2} &= \frac{g^{4}}{4(s - M_{W}^{2})^{2}} \sum_{s_{i}} \operatorname{Tr} \left\{ \left[\bar{u}_{(\mu)}(p', s_{2})\gamma^{\mu} \left(c_{\theta}P_{L} + s_{\theta}P_{R} \right) u_{(\nu\mu)}(q', s_{1}) \right] \right\} \\ &\times \left[\bar{u}_{(\nu\mu)}(q', s_{1})\gamma^{\nu} \left(c_{\theta}P_{L} + s_{\theta}P_{R} \right) u_{(\mu)}(p', s_{2}) \right] \right\} \\ &\times \operatorname{Tr} \left\{ \left[\bar{v}_{(\nu_{e})}(q, s_{4})\gamma_{\mu} \left(c_{\theta}P_{L} + s_{\theta}P_{R} \right) u_{(e)}(p, s_{3}) \right] \right\} \\ &\times \left[\bar{u}_{(e)}(p, s_{3})\gamma_{\nu} \left(c_{\theta}P_{L} + s_{\theta}P_{R} \right) v_{(\nu_{e})}(q, s_{4}) \right] \right\} \\ &= \frac{g^{4}}{4(s - M_{W}^{2})^{2}} \operatorname{Tr} \left\{ \left(p' + m_{\mu} \right)\gamma^{\mu} \left(c_{\theta}P_{L} + s_{\theta}P_{R} \right) \left(q' + m_{\nu\mu} \right)\gamma^{\nu} \left(c_{\theta}P_{L} + s_{\theta}P_{R} \right) \right\} \end{split}$$

$$\times \operatorname{Tr} \left\{ \left[(\not{q} - m_{\nu_{e}}) \gamma_{\mu} \left(c_{\theta} P_{L} + s_{\theta} P_{R} \right) \gamma_{\nu} (\not{p} + m_{e}) \left(c_{\theta} P_{L} + s_{\theta} P_{R} \right) \right] \right\}$$

$$\simeq \frac{g^{2}}{16(s - M_{W}^{2})^{2}} \operatorname{Tr} \left[\not{p}' \gamma^{\mu} \not{q}' \gamma^{\nu} \left(1 - \gamma^{5} c_{2\theta} \right) \right] \operatorname{Tr} \left[\not{q} \gamma_{\mu} \not{p} \gamma_{\nu} \left(1 - \gamma^{5} c_{2\theta} \right) \right]$$

$$= \frac{2g^{2}}{(s - M_{W}^{2})^{2}} \left[(2 - s_{2\theta}^{2}) (p' \cdot q) (q' \cdot p) + s_{2\theta}^{2} (q \cdot q') (p \cdot p') \right],$$

$$\left| M_{fi(2)}^{c} \right|^{2} \simeq \frac{g^{4}}{16(s - M_{K}^{2})^{2}} \operatorname{Tr} \left[\not{p}' \gamma^{\mu} \not{q}' \gamma^{\nu} \left(1 + \gamma^{5} c_{2\theta} \right) \right] \operatorname{Tr} \left[\not{q} \gamma_{\mu} \not{p} \gamma_{\nu} \left(1 + \gamma^{5} c_{2\theta} \right) \right]$$

$$= \frac{2g^{2}}{(s - M_{K}^{2})^{2}} \left[(2 - s_{2\theta}^{2}) (p' \cdot q) (q' \cdot p) + s_{2\theta}^{2} (q \cdot q') (p \cdot p') \right],$$

$$M_{fi(1)}^{c*} M_{fi(2)}^{c} \simeq \frac{g^{4}}{16(s - M_{W}^{2}) (s - M_{K}^{2})} s_{2\theta}^{2} \operatorname{Tr} \left[\not{p}' \gamma^{\mu} \not{q}' \gamma^{\nu} \gamma_{5} \right] \operatorname{Tr} \left[\not{p} \gamma_{\nu} \not{q} \gamma_{\mu} \gamma_{5} \right]$$

$$= \frac{2g^{2}}{(s - M_{W}^{2}) (s - M_{K}^{2})} s_{2\theta}^{2} \left[(p' \cdot q) (q' \cdot p) - (q \cdot q') (p \cdot p') \right],$$

ở đây chúng tôi đã bỏ qua các số hạng chứa khối lượng neutrino. Tiếp theo, chúng ta sẽ xem xét sự phân rã trong trạng thái nghỉ của muon, $p' = (m_{\mu}, 0, 0, 0)$, đồng thời bỏ qua khối lượng của electron và các neutrino. Sử dụng bảo toàn động lượng p' = q' + p + q, chúng tôi có các gần đúng sau:

$$p'.p = m_{\mu}E_{e}, \quad p'.q' = m_{\mu}E_{\nu_{\mu}}, \quad p'.q = m_{\mu}E_{\bar{\nu}_{e}},$$

$$q'.p = \frac{1}{2}\left[(q'+p)^{2} - q'^{2} - p'^{2}\right] \simeq \frac{1}{2}(p'-q)^{2} \simeq \frac{1}{2}\left(m_{\mu}^{2} - 2m_{\mu}E_{\nu_{e}}\right),$$

$$q'.q = \frac{1}{2}\left[(q+q')^{2} - q^{2} - q'^{2}\right] \simeq \frac{1}{2}\left(p'-p\right)^{2} \simeq \frac{1}{2}\left(m_{\mu}^{2} - 2m_{\mu}E_{e}\right),$$

$$s = (p+q)^{2} = (p'-q')^{2} \simeq \left(m_{\mu}^{2} - 2m_{\mu}E_{\bar{\nu}_{\mu}}\right) \ll M_{W}^{2}.$$

Bởi vì $s_{2\theta} \sim \frac{v'\epsilon}{V^2 + w^2} < \frac{M_W^2}{M_K^2}$, chúng tôi thấy rằng đóng góp lớn thứ hai chỉ đến từ $\left|M_{fi(2)}^c\right|^2$. Chỉ lấy thêm đóng góp này, chúng tôi có

$$\frac{1}{2} \left| M_{fi}^c \right|^2 \simeq 2g^2 \left(\frac{1}{M_W^4} + \frac{1}{M_K^4} \right) \left[(p'.q)(q'.p) \right].$$

Lưu ý tới giới hạn $\frac{1}{M_K^4} \to 0$ thì kết quả trên giống trong SM. Ở năng lượng thấp, hằng số Fermi được xác định [1]: $G_F \equiv \frac{\sqrt{2}g^2}{8M_W^2}$. Với mô hình 3-4-1 đang xem xét, hằng số Fermi được đồng nhất là

$$G_F^2 \equiv \frac{g^4}{32} \left(\frac{1}{M_W^4} + \frac{1}{M_K^4} \right).$$

Như vậy, bề rộng rã ứng với kênh rã chính trong mô hình đang xem xét là

$$\Gamma(\mu^- \to e^- + \tilde{\nu}_e + \nu_\mu) = \frac{G_F^2 m_\mu^5}{192\pi^2} = \frac{g^4 m_\mu^5}{6144\pi^2} \left(\frac{1}{M_W^4} + \frac{1}{M_K^4}\right).$$

B2. Kênh rã sai

Giản đồ Feynman cho kênh rã này là giản đồ bên phải trong hình 3.1. Chú ý là quy tắc Feynman cho các spinors Dirac là giống với các fermion và liên hợp của chúng [120]. Biên độ rã theo kênh này là

$$\begin{split} M_{fi} &= \frac{g^2}{2} \left[\frac{1}{s - m_X^2} \bar{u}_{(\nu\mu)}(q', s_1) \gamma^{\mu} \left(c_{\theta} P_L + s_{\theta} P_R \right) u_{(\mu)}(p', s_2) \right. \\ & \times \bar{u}_{(e)}(p, s_3) \gamma^{\nu} \left(c_{\theta} P_L + s_{\theta} P_R \right) v_{(\nu_e)}(q, s_4) \left(g_{\mu\nu} - \frac{(p+q)_{\mu}(p+q)_{\nu}}{m_X^2} \right) \\ & + \frac{1}{s - m_Y^2} \bar{u}_{(\nu\mu)}(q', s_1) \gamma^{\mu} \left(s_{\theta} P_L - c_{\theta} P_R \right) u_{(\mu)}(p', s_2) \\ & \times \bar{u}_{(e)}(p, s_3) \gamma^{\nu} \left(s_{\theta} P_L - c_{\theta} P_R \right) v_{(\nu_e)}(q, s_4) \left(g_{\mu\nu} - \frac{(p+q)_{\mu}(p+q)_{\nu}}{m_Y^2} \right) \right], \end{split}$$

ở đây $s \equiv (p+q)^2$ với p và q lần lượt là động lượng của electron và neutrino electron. Tương tự như kênh rã chính, kết quả bề rộng rã ứng với kênh rã sai trong mô hình đang xem xét được xác định là

$$\Gamma(\mu^- \to e^- + \tilde{\nu}_e + \nu_\mu) = \frac{G_F^2 m_\mu^5}{192\pi^2} = \frac{g^4 m_\mu^5}{6144\pi^2} \left(\frac{1}{M_X^4} + \frac{1}{M_Y^4}\right).$$